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Abstract

The influence of coupling inhomogeneities on the static magnetic response of a three-dimensional 8 · 8 · 8 network

of Josephson junctions is studied numerically. The inhomogeneities we consider are of two types. The first consists of an

extended low-coupling-energy region in the network, the second is realized by taking the in-plane superconducting

coupling energy ten times higher that the coupling energy between planes. The present analysis is carried out for

conventional 0-junctions.
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1. Introduction

The magnetic behaviour of one-dimensional

and two-dimensional Josephson junction networks

(1D, 2D-JJNs) has been extensively studied during

the last decade. Indeed, the discovery of high
temperature superconductivity (HTS) [1] has

stimulated a large variety of studies on these sys-

tems, since it was soon realized that the low
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magnetic field behaviour of high-Tc superconduc-

tors could be simulated by means of JJNs [2]. Only

at a later stage, it was recognized that inductances

needed to be included in these models in order to

properly describe shielding current effects in

granular HTS materials [3,4]. The great majority
of results has been obtained for homogeneous

networks of conventional 0-junctions [5–7], thus

accounting for the qualitative magnetic behaviour

of s-wave superconducting granular systems. More

recent approaches take account of d-wave sym-

metry in the HTS superconducting state by intro-

ducing p-junctions in the model networks [8,9].

However, the present work is carried out entirely
ed.
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Fig. 1. Josephson junction network model. (a) Network made

of n ¼ nxnynz cubes. (b) Elementary cubic Josephson junction

network with current variable. (c) Box containing inductance L
and ideal Josephson junction JJ, shunted with resistance R.
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within the framework of conventional s-wave su-

perconducting granular systems. In order to more

closely describe the properties of this class of ma-

terials, coupling inhomogeneities in JJN models

are taken into account. In this respect, the effects

of spatial variation of the maximum Josephson
current have been already studied using 2D-JJNs

[4]. On the other hand, three-dimensional Joseph-

son junction networks (3D-JJNs) could provide

additional information on the current and flux

distribution in s-wave granular materials.

In previous works we have studied the magnetic

response of a single cube [10,11] and of homoge-

neous network of n cubes [12]. The 3D-JJN with n
cubes showed an analogous behaviour to 1D- and

2D-JJNs. Indeed, the results obtained in this case

confirm the existence of the critical state and of the

vortex state, and also confirm that the flux pinning

parameter b plays a crucial role in characterizing

these states.

In the present work we shall investigate the ef-

fects of coupling inhomogeneities in 3D-JJN
models. We shall here treat two cases. In the first

case an extended region of Josephson coupling

energy in the network is considered, in the second

case the coupling Josephson energy is described by

a single value of the parameter b (bx ¼ by ¼ 1) for

junctions lying on horizontal planes (xy-planes)
and by a coupling parameter bz ¼ 0:1 for junctions
connecting adjacent horizontal planes and lying
along the vertical direction (z-axis). Therefore, in
the following section we shall give a rather brief

description of the analysis adopted, referring the

reader to more extensive earlier work on the sub-

ject. In the third section we shall present results

obtained in the two cases above and conclusions

will be drawn in the last section.
2. Model

We here give a short account of the procedure

followed in studying the properties of 3D-JJN

models (Fig. 1) consisting of n ¼ nx � ny � nz ele-
mentary cubic cells in the presence of a uniformly

applied magnetic field H. Though in the present
work we take nx ¼ ny ¼ nz ¼ 8, we shall neverthe-

less present a general description of these models.
We start by noticing that each cell in the net-

work of Fig. 1 contains 12 resistively shunted ideal

Josephson junctions, Fig. 1(b) and (c), which are

characterized by a spatially dependent maximum
Josephson current IJnðrÞ and a gauge-invariant

phase difference unðrÞ, where n is the direction

along which a junction lies in the cell and the

vector r is an additional index representing the

position of the junction (Fig. 1(a)). We denote

the face passing through the point r and parallel to

the lm-plane by the collection of indices ½r; lm�,
where ½r; lm� ¼ ½r; yz�, ½r; zx�, or ½r; xy�. The magnetic
flux through the face ½r; lm� is /lmðrÞ, and the

branch current flowing through a junction placed

at r and lying in the n-direction is InðrÞ. For an

overdamped junction, shunted with resistances R,
the current InðrÞ can be expressed as follows [13]

InðrÞ ¼
/0

2pR
dunðrÞ
dt

þ IJnðrÞ sinunðrÞ; ð1Þ

where /0 is the magnetic flux quantum. By means

of fluxoid quantization [13], for each face in each
cell of the network we can write the magnetic

flux––superconducting phase difference relation as

follows

2p/lmðrÞ
/0

¼umðrþ al̂lÞ�umðrÞ�ulðrþ am̂mÞþulðrÞ;

ð2Þ

where a is the lattice constant and where zero-field-

cooling conditions are assumed. Furthermore, in

order to obtain a relation between the branch

currents and the magnetic flux, we can proceed as
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follows: The fluxes /lmðrÞ can be calculated from

the expression

/lmðrÞ ¼
I

AðrÞ � dlþ l0H � SlmðrÞ; ð3Þ

where the line integral is taken around the face
½r; lm�, and where A is the magnetic vector poten-

tial due to the branch currents and SlmðrÞ is the

area vector pertaining to the cube face around

which we are integrating. The line integral on a

single branch lying in the l-direction ðdl ¼ bll dlÞ
can be evaluated, so thatZ a

0

AðrÞ � dl ¼
Z a

0

AlðrÞdl

¼ l0

4p

X
r0

Z a

0

Z a

0

Ilðr0Þ
dl;l0

dldl0; ð4Þ

where dl;l0 is the distance between the element dl

lying along the branch chosen and a generic ele-

ment dl0 on any other branch in the network. By

Eq. (4) we see that only those elements dl0 lying

along the l-direction need to be considered. Now,

by defining the partial mutual inductance as

Mp
ðlÞðr; r

0Þ ¼ l0

4p

Z a

0

Z a

0

dldl0

dl;l0
; ð5Þ

we may rewrite Eq. (3) as follows:

/lmðrÞ ¼
X
r0

Mp
ðlÞðr; r

0Þ
hn

�Mp
ðlÞðrþ abmm; r0ÞiIlðr0Þ

� Mp
ðmÞðr; r

0Þ
h

�Mp
ðmÞðrþ abll; r0ÞiImðr0Þo

þ /ex
lmðrÞ; ð6Þ

where /ex
lmðrÞ ¼ l0H � SlmðrÞ. The partial mutual

inductances can be solved analytically for one di-

mensional wires [12].
We notice that, since Eq. (1) can be written for

all the n JJs in the network, it is representative of a

set of non-linear ordinary differential equations

whose initial conditions are given by the particular

superconducting state realized in the network.

Moreover, Eqs. (2) and (6), generally written for

any position vector r, are taken to be valid only

within the network, while they reduce to a trivial
equality (0¼ 0) outside the network. In this way

the boundary conditions may be imposed by set-

ting to zero all currents outside the network. In
order to obtain the magnetic flux and current

distribution in the network, we start by calculating

the fluxes from the phase-differences, Eq. (2), and

then solve Eq. (3) for the currents in terms of the

fluxes. Finally, we substitute the currents in Eq.

(1), and obtain a set of coupled non-linear differ-
ential equations for the phase differences. This set

of differential equations is solved using the fourth-

order Runge–Kutta method with adaptive time-

step. Further details on the 3D-JJN model can be

found in Refs. [10,12].
3. Results

In the present section we study the magnetic

response of zero-field-cooled (ZFC) networks nu-

merically. The external magnetic field is increased

in small increments in order to simulate realistic

magnetic field sweeps. For computational pur-

poses, we define a normalized external flux we ¼
2p/e=/0, where /e ¼ l0Ha

2, and a flux pinning
capacity parameter b ¼ 2plIJ=/0, where l is the

partial self inductance of a branch [12] and IJ is

the maximum Josephson current taken without the

indices n and r. In this way, the inhomogeneity can

be introduced through the adimensional parameter

b by letting IJ vary over the network branches; the

partial mutual inductance, however, is considered

to remain unaltered. Notice also that, even though
the parameter b should be written as a function of

n and r, in the present analysis we use b without

extra notation for simplicity.

After each increase Dwe ¼ 0:05p of the external

normalized flux we, the system is allowed to relax

close to its stationary solution with an integration

time Dt ¼ 100 l=R, where l=R is the natural time

unit of the JJN (about 10�10–10�12 s). The com-
puted values of the magnetic flux and current

distributions are recorded and stored before the

external magnetic field is increased again.

In the following, we shall examine flux pene-

tration mainly in the loops (or faces) parallel to the

xy-plane. These loops form layers characterized by

the ratio k ¼ rz=a, which defines the vertical posi-

tion of the layer in space. The directions of the
magnetic fields are chosen in such a way that

the flux distribution in xz- and yz-layers can be



Fig. 3. Magnetic flux distribution in the xy-layers of an inho-

mogeneous 8 · 8 · 8 network with b ¼ 1, (a) for we ¼ 0:7p, (b)
and for the remanent state (we ¼ 0). The inhomogeneity is a

low-jc region with b ¼ 0:1 located in the portion of the network

enclosed by the branches for which the index i ¼ rx=a ranges

from 2 to 5, the index j ¼ ry=a ranges from 0 to 4, and the index

k ¼ rz=a ranges from 4 to 6, where r ¼ ðrx; ry ; rzÞ denotes the

position of the branch and where the limiting branches are in-

cluded in the the low-jc region. bHH ¼ f0; 0; 1g.
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deduced from the one shown for the xy-layers. For
example, when the external field H is applied along

the z-direction, we see that, for a homogeneous

network, the flux lines are aligned along H and the

dark spots, denoting local presence of magnetic

flux, appear to have the same size and to be placed
in the same position in the layers (see Fig. 2(a)).

Notice that the values representing the normalized

magnetic flux multiplied by 2p are given in grey-

colour scales at the bottom of each figure. On the

other hand, when inhomogeneity is introduced in

the coupling parameters, these spots may change

in size and be displaced, on the xy-plane, with re-

spect to the upper or lower ones. In this case, it is
arguable that the flux lines are bent and that non-

null local magnetic flux appear in one or both of

the remaining coordinate planes. Thus we show

the flux distribution in xy-faces and cut off the

other faces for simplicity. However, when the flux

distribution in the other faces, for example the yz-
layers, is not immediately clear from the flux dis-

tribution in xy-layers, we provide a second figure,
which contains the flux distribution in yz-layers,
cutting off the other faces. Furthermore, the

spacing of the layers represented in Figs. 2–7 is

larger than the actual spacing between layers in the

network for the sake of clarity.
Fig. 2. Magnetic flux distribution in the xy-layers of a homo-

geneous 8· 8 · 8 network with b ¼ 1, (a) for we ¼ 0:7p, and (b)

for the remanent state (we ¼ 0). bHH ¼ f0; 0; 1g.

Fig. 4. Magnetic flux distribution in the xy-layers of a homo-

geneous 8 · 8· 8 network with b ¼ 1 (a) for we ¼ 0:7p, and (b)

for the remanent state (we ¼ 0). bHH ¼ f1=
ffiffiffi
2

p
; 0; 1=

ffiffiffi
2

p
g.
In the present paper we focus our attention on

the influence of coupling inhomogeneities, char-



Fig. 5. Magnetic flux distributions in the yz-layers of a homo-

geneous 8 · 8· 8 network with b ¼ 1, (a) for we ¼ 0:4p, (b)

for we ¼ 0:7p, and (c) for the remanent state (we ¼ 0). bHH ¼
f1=

ffiffiffi
2

p
; 0; 1=

ffiffiffi
2

p
g.

Fig. 6. Magnetic flux distribution in the xy-layers of a inho-

mogeneous 8· 8 · 8 network with bx ¼ by ¼ 1, and bz ¼ 0:1,

(a) for we ¼ 0:7p, and (b) for the remanent state (we ¼ 0).bHH ¼ f1=
ffiffiffi
2

p
; 0; 1=

ffiffiffi
2

p
g.
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acterized by low critical current density jc, on the

magnetic flux distribution of 3D-JJNs. As specified

before, the network size is 8 · 8 · 8, which is large

enough to show the characteristic behaviour of

these systems. In all cases the external magnetic
flux is at first swept up from zero to we ¼ 4p and

then decreased down to we ¼ 0. We chose to use

parameter values b ¼ 1 and b ¼ 0:1, which are

suitable for showing inhomogeneity effects on the

same scale of the size of a Josephson network

vortex.

Let us first study the response of a homoge-

neous 3D-JJN, when the magnetic field is applied
along the z-axis. In Fig. 2(a) the magnetic flux

distribution is reported for the external flux value

we ¼ 0:7p, which is just above the lower threshold

normalized flux of the JJN, wth, defined as the

value of the normalized external flux at which first

irreversible penetration takes place. The value of

wth can be obtained by observing, for increasing

values of the applied normalized flux we, through
small increments Dwe, for which value of we non-

zero values of the magnetic flux could be first de-

tected in the remanent state. Here, the Josephson

network vortices penetrate into the sample identi-

cally from each side. Notice that in Fig. 2(a) flux

lines gather in four regions closer to the midpoints

of the four sides in each layer. As the field in-

creases, more vortices move into the sample. After
the maximum value we ¼ 4p is reached, the ex-

ternal flux is decreased and some network vortices

flow out of the system. Finally, at zero field

(we ¼ 0) the remanent flux distribution shown in

Fig. 2(b) is obtained. In Fig. 2(b) the flux patterns

on the two diagonals are equal, even though it

does not clearly appear from the picture.

Having obtained the magnetic flux distribution
in the homogeneous network, we may study the

effect of the presence of low-jc regions in an

8 · 8 · 8 JJN with b ¼ 1. In Fig. 3 we report the

flux distribution in this type of network, presenting



Fig. 7. Magnetic flux distributions in the yz-layers of an inho-

mogeneous 8 · 8· 8 network with bx ¼ by ¼ 1, and bz ¼ 0:1, (a)

for we ¼ 0:4p, (b) for we ¼ 0:7p, and (c) for the remanent state

(we ¼ 0). bHH ¼ f1=
ffiffiffi
2

p
; 0; 1=

ffiffiffi
2

p
g.
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a low-jc region with b ¼ 0:1 in the network portion

where the index i ¼ rx=a ranges from 2 to 5, the

index j ¼ ry=a ranges from 0 to 4, and the index
k ¼ rz=a ranges from 4 to 6. Thus, in the low-jc
region, IJ is ten times lower than in the b ¼ 1 re-

gion. As it can be seen from Fig. 2(a), in the ho-

mogeneous network the vortices tend to be

straight, since the flux pattern is not altered from

layer to layer. The same can be noticed for the

outer layers in Fig. 3(a), where we ¼ 0:7p: The

vortices are straight and their magnetic moments
tend to be parallel to the external field. However,

in the middle layers (k ¼ 4; 5; 6), where the low-jc
region is present, the magnetic flux is distributed
over a larger area than in the b ¼ 1 layers. This is

in agreement with the network penetration depth

being inversely proportional to the square root of

the critical current density [6,7]. Therefore, except

for the flux spreading effect appearing in the

b ¼ 0:1 region, the flux distribution for we ¼ 0:7p
is quite similar to that of the homogeneous net-

work with b ¼ 1. The same can be noted for the

remanent magnetic flux distribution reported in

Fig. 3(b): The flux distribution is similar to that of

the homogeneous network in Fig. 2(a), except for

the portion of the network where the low-jc region
is present. It is therefore clear that the magnetic

flux trapping capacity of the network is lower in
the low-jc region, so that this region may work as a

bridge for the magnetic flux to enter and leave the

network.

Let us now study the response of the system

when the magnetic field is applied in the directionbHH ¼ f1=
ffiffiffi
2

p
; 0; 1=

ffiffiffi
2

p
g. Magnetic flux distribution

of a homogeneous 8 · 8 · 8 network with b ¼ 1 is

shown for the xy-layers in Fig. 4, and for the yz-
layers in Fig. 5. The external flux values are

we ¼ 0:4p in Fig. 5(a), we ¼ 0:7p in Figs. 4(a) and

5(b). In Figs. 4(b) and 5(c) we is brought back to

we ¼ 0. From Fig. 5(a) we notice that the magnetic

flux has not irreversibly penetrated into the sam-

ple. The lower threshold normalized flux in this

case is just above 0:4p, which qualitatively agrees

with lower threshold field results of a single cube
[11]. As it can be seen from Figs. 4(a) and 5(b), at

we ¼ 0:7p several vortices, with magnetic moments

parallel to the external field, have entered the

sample. Furthermore, the flux distributions in the

xy-layers are similar to the corresponding ones for

yz-layers, as one would expect. In the remanent

state, Figs. 4(b) and 5(c), some magnetic flux is

trapped in the innermost cells lying along the di-
rection parallel to the external field direction.

Other vortices are present elsewhere in the net-

work, appearing to be slightly bent. Notice, finally,

how the overall magnetic flux distribution in the

xy-layers (Fig. 4(a) and (b)) results quite different

from those obtained for bHH ¼ f0; 0; 1g and re-

ported in Fig. 2(a) and (b).

The above results were presented also to allow
comparison with the case, which we shall consider

next, where the junctions lying in the x- or y-
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directions have a maximum Josephson current IJ
ten times higher than those lying on the z-direc-
tion. The corresponding b values are bx ¼ by ¼ 1

and bz ¼ 0:1. In Figs. 6 and 7 the magnetic flux

distribution of the inhomogeneous network is re-

ported for the xy-layers and the yz-layers, respec-
tively. As before, the external flux values are

we ¼ 0:4p for Fig. 7(a), we ¼ 0:7p for Figs. 6(a)

and 7(b), and we ¼ 0 for Figs. 6(b) and 7(c). From

Fig. 7(a) we see that, at we ¼ 0:4p, the magnetic

flux has already penetrated the inner region of the

JJN, in the form of Josephson network vortices

through the yz-layers, but not through the xy-
layers (Fig. 6(a)). Thus these Josephson network
vortices have magnetic moments parallel to the x-
direction. Notice also that penetrated vortices in

the yz-layers spread over regions having smaller

dimensions in the z-direction than in the y-direc-
tion, as visible from Fig. 7(a). With increasing

fields more vortices penetrate into the yz-layers
through the weak junctions lying in z-direction.
These vortices may reduce or increase the net
current flowing in the outermost junctions and

thus, in general, the magnetic flux may enter into

the xy-layers at different external flux values than

in the homogeneous case discussed above. Indeed,

in the case at hand, we need to specify two different

lower threshold fluxes: one for the x-direction,
wth;x ¼ 0:35p–0:4p, and another for the z-direction,
wth;z ¼ 0:65p–0:7p. Therefore, at we ¼ 0:7p the
Josephson network vortex has just penetrated into

the uppermost and downmost xy-layers, Fig. 6(a),
whereas in the yz-layers magnetic flux is fully

penetrated, Fig. 7(b). The remanent magnetic flux

distribution in the xy-layers, Fig. 6(b), is quite

similar to that of Fig. 2(b), and most of the vor-

tices seen in the xy-layers have magnetic moments

parallel to the z-direction. The only visible differ-
ence is given by a few additional vortices which lie

in the same direction as the external field, Fig. 7(c),

and go through the xy-layers, Fig. 6(b). Therefore,
the average remanent magnetization is not parallel

to bHH in this case.

From the viewpoint of granular materials, these

results indicate that intergranular vortices may be

bent and the area occupied by one vortex may lo-
cally vary. Thus intergranular vortices are elastic,

in the sense of collective pinning theory, cf. [14]. It
is finally important to notice that, while the net-

work size used in the present work might still allow

us to draw conclusions on some features of the

magnetic response of these superconducting sys-

tems, as, for instance, the presence of intergranular

critical state [12], a full quantitative analysis should
take into account the actual extension of the sam-

ple and would thus result in excessively long and

complex numerical computations.
4. Conclusions

The low-field magnetic response of an 8 · 8 · 8
inhomogeneous three-dimensional network of

Josephson junctions is studied numerically. Two

types of inhomogeneities were considered, the first

being an extended low-coupling-energy region in

the network, the second being given by an aniso-

tropic type of coupling for which the in-plane su-

perconducting coupling energy is ten times higher

that the coupling energy between planes. More-
over, two different field orientations, one along the

z-direction, one forming an angle of p=4 with the

z-axis, are chosen to investigate the magnetic re-

sponse of the system.

The results show that a non-uniform coupling

between adjacent junctions introduce the charac-

teristic feature of magnetic flux bending. Indeed,

when an extended region of low-coupling energy is
introduced in the homogeneous network and the

resulting flux distribution in the network layers is

shown for various external field values, the net-

work vortices are seen to spread over a larger area

in the low-coupling-energy region. In this way the

flux lines are necessarily bent inside the system.

Moreover, when the coupling parameters bn ðn ¼
x; y; zÞ are chosen to give an overall anisotropic
coupling of the Josephson junctions in the network

(bx ¼ by ¼ 1 and bz ¼ 0:1), the system is seen to

show different threshold fields. Thus, for applied

fields not parallel to the z-axis, the flux lines may

penetrate the lateral layers of the network more

easily, so that, even in this case, the flux lines are

bent, inside the system, with respect to the external

field direction.
As for possible applications of the present

analysis to the study of the magnetic behaviour of
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s-wave superconducting granular specimens, we

may say that inhomogeneities in the JJN model

can mimic the variation of the coupling energy

between adjacent grains. Therefore, extrapolating

these results to the case of superconducting gran-

ular systems, where the interstitial regions between
grains act as pinning centers with characteristic

barrier energy of the order of the Josephson cou-

pling energy, we notice that the presence of low-jc
regions in the sample may degrade its shielding

and pinning properties, if at least one border of

this region coincides with the external border of

the sample. In this case, indeed, Josephson junc-

tions with low IJ values are located in the periph-
eral part of the network and the threshold field is

lowered. This allows irreversible flux penetration

in the system at lower applied field magnitudes and

an easier escape route for flux lines when the

normalized applied flux we is lowered down to

zero, where the remanent state is realized.

Finally, we may notice that only by extending

the present analysis to larger systems a behaviour
quantitatively closer to the magnetic response of

granular superconductors could be approached.

However, the characteristic feature of magnetic

flux bending, obtained with the present analysis,

is expected to remain unaltered. Nevertheless, in

order to perform flux penetration simulations in

real specimens, massive computation would be

needed and, even if it were possible to produce
such a great amount of calculations, this effort

would still not be sufficient to give a full quanti-

tative description of the static magnetic response

of superconducting granular systems. In fact, in

order to attain the goal of a full quantitative de-

scription of the magnetic properties of granular

superconductors, one should also account for the

magnetic response of the superconducting grains,
which in JJN systems are simply taken to be point-

like objects. Aiming at this goal poses new chal-

lenges to researchers in the field, but surely opens

new fascinating perspectives for the future.
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