# **Neutrino Interaction Physics**

Lecture 1: Introduction of neutrino interactions

- 1. Overview
- 2. Neutrino lepton scattering
- 3. Neutrino quark scattering (DIS)
- 4. Neutrino nucleus reactions

Lecture 2: Neutrino interactions for long baseline oscillation experiments

- 1. Overview
- 2. CCQE interaction
- 3. Baryonic resonances
- 4. Shallow inelastic scattering (SIS)

Teppei Katori King's College London Nov. 1, 2022

Subscribe "NuSTEC-News" <u>nustec.fnal.gov</u> like "NuSTEC-News" on Facebook page use hashtag #nuxsec



Formaggio and Zeller, Rev.Mod.Phys.,84 (2012) 1307

## 1. From eV to EeV: Neutrino cross sections across energy scales



## 1. From eV to EeV: Neutrino cross sections across energy scales



## 1. Scattering measurements

Size of wave packet ~ momentum transfer (~energy)  $\hbar c = 197 MeV \cdot fm \rightarrow 200 \text{ MeV} \sim 1 \text{ fm} \text{ (size of nucleon)}$ 





## 1. Scattering measurements



## 1. Scattering measurements

Size of wave packet ~ momentum transfer (~energy)  $\hbar c = 197 MeV \cdot fm \rightarrow 200 \text{ MeV} \sim 1 \text{ fm} \text{ (size of nucleon)}$ 

Lecture 1: Introduction of neutrino interactions

- 1. Overview
- 2. Neutrino lepton scattering (Standard Model)
- 3. Neutrino quark scattering (v-q scattering)
- 4. Neutrino nucleus reactions (v-A scattering)

Lecture 2: Neutrino interactions for long baseline oscillation experiments (v-N scattering)

- 1. Overview
- 2. CCQE interaction
- 3. Baryonic resonances
- 4. Shallow inelastic scattering



Alexander 2016 J.Phys.:Conf. Ser. 718(2016)062076

## 2. Neutrino-electron scattering

Neutrino – electron differential cross section

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_e}{\pi} \left[ c_L^2 + c_R^2 \left( \frac{E-T}{E} \right)^2 - C_L C_R \frac{m_e T}{E^2} \right]$$

T=recoil electron kinetic energy E=neutrino energy

|                                 | CL                                           | C <sub>R</sub>                               |
|---------------------------------|----------------------------------------------|----------------------------------------------|
| ν <sub>e</sub> - e⁻             | $\frac{1}{2}$ +sin <sup>2</sup> $\theta_{w}$ | $sin^2 \theta_w$                             |
| $\overline{ u_e}$ - e-          | $sin^2\theta_w$                              | $\frac{1}{2}$ +sin <sup>2</sup> $\theta_{w}$ |
| ν <sub>μ</sub> - e <sup>-</sup> | $-\frac{1}{2}+\sin^2\theta_w$                | $sin^2\theta_w$                              |
| $\overline{ u_{\mu}}$ - e-      | $sin^2\theta_w$                              | $-\frac{1}{2}$ +sin <sup>2</sup> $\theta_w$  |



## 2. MINERvA neutrino flux tuning

Neutrino – electron differential cross section

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_e}{\pi} \left[ c_L^2 + c_R^2 \left(\frac{E-T}{E}\right)^2 - C_L C_R \frac{m_e T}{E^2} \right]$$

T=recoil electron kinetic energy E=neutrino energy

$$#events = \left(\int flux \otimes cross \ section \otimes efficiency \otimes target \ number\right) \times exposure$$

By assuming detector efficiency and cross-section are known, you can measure neutrino flux





## 2. Neutrino magnetic moment

Neutrino – electron differential cross section

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_e}{\pi} \left[ c_L^2 + c_R^2 \left( \frac{E - T}{E} \right)^2 - C_L C_R \frac{m_e T}{E^2} \right]$$

T=recoil electron kinetic energy E=neutrino energy

Neutrino – electron differential cross section with neutrino magnetic moment

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_e}{\pi} \left[ c_L^2 + c_R^2 \left(\frac{E-T}{E}\right)^2 - C_L C_R \frac{m_e T}{E^2} \right] + \frac{\pi \alpha \mu_\nu^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E}\right)$$

large neutrino magnetic moment (BSM)

Lepton-only process (pure Standard Model) is often used to test new physics

SM



## 3. Neutrino-DIS cross section

Neutrino - single d-quark cross section

$$\frac{d\sigma}{dy}(\nu d \to \mu u) = \frac{G_F^2 x s}{\pi}$$

Neutrino – d-quark cross section

$$\frac{d\sigma}{dy}(\nu d \to \mu u) = \int_0^1 \frac{G_F^2 x s}{\pi} d(x) dx$$

Neutrino-nucleon DIS cross section

$$\frac{d\sigma}{dy}(\nu N \to \mu X) = \int_0^1 \frac{G_F^2 x s}{\pi} [(d(x) + s(x) \dots) + [\bar{u}(x) + \bar{c}(x) \dots](1 - y)^2] dx$$

Neutrino-nucleus DIS cross section with isoscalar assumption

$$\frac{d\sigma}{dy}(vA \to \mu X) = A \int_0^1 \frac{G_F^2 x s}{\pi} [Q(x) + \bar{Q}(x)(1-y)^2] dx$$
$$u^p(x) + u^n(x) = d^n(x) + d^p(x) = u(x) + d(x) \equiv Q(x)$$
$$\bar{u}^p(x) + \bar{u}^n(x) = \bar{u}^n(x) + \bar{u}^p(x) = \bar{u}(x) + \bar{d}(x) \equiv \bar{Q}(x)$$



## 3. Di-muon production



NuTeV, PRL88(2002)091802

## 3. Paschos-Wolfenstein ratio and NuTeV anomaly



IceCube, PRD104(2021)022002

# 3. Astrophysical high-energy neutrino measurement

Data and MC agree up to  $\sim$ PeV.  $\rightarrow$  We more or less understand neutrino interactions up to  $\sim$ PeV.







## 3. Neutrino DIS saturation









katori@fnal.gov

Dziewonski, Anderson (PREM), Phys. Earth Planet.Inter.25,(1981)297 Donini, Palomares-Ruiz, Salvado, Nature Physics 15(2019)37

## 3. Earth tomography

#### Earth absorption for Earth density measurement

- PREM (Preliminary reference Earth model)
- Standard earth density model used by T2K, NOvA, etc
- Earth density profile is extracted by assuming flux and cross section
- Measure Earth moment of inertia and Earth mass by neutrinos







## 3. Glashow resonance



# A 5.9 PeV event in IceCube







## 3. Collider neutrino

#### FASERnu

- Emulsion detector (high-resolution)
- neutrinos from ATLAS collision point

p-p collision at IP

of ATLAS <

10 cm

- neutrino excess from pilot run
- ~10,000 neutrino events from LHC run3

forward jets

emplead hundered





beam collision axis

katori@fna

Akindele (Neutrieno2020), <u>https://zenodo.org/record/3959532</u> SONGS, Journal of Applied Physics, 105(6), 064902 (2009)

## 4. Reactor neutrino

#### Low energy electron anti-neutrinos

- High-precision spectrum prediction
- Monitoring fission reactor











## 4. Solar neutrino



GALLEX, PLB490(2000)16;SAGE, J.Expt.Theor.Phys.95(2002)181 Borexino, PRL 108(2012)051302

## 4. Solar neutrino

#### Gallium experiment

 $v_e$  + <sup>71</sup>Ga  $\rightarrow$  e<sup>-</sup> + <sup>71</sup>Ge

- Sensitive to pp-neutrino (0.42 MeV), 90% of total solar neutrino flux.

- Both experiments observed deficit, but higher than Homestake result





COHERENT, Science10.1126/science.aao0990 (2017), PRL126(2021)012002; 129(2022)081801

## 4. Neutrino-Nucleus coherent scattering

Cs



Ge

Neutron number

Cross section (10<sup>-40</sup> cm<sup>2</sup>) 

Na



## Conclusion

v-I scattering : well-known, test of weak theory
 Neutrino-electron scattering for neutrino flux measurement
 Anti-electron neutrino scattering for neutrino magnetic moment search (BSM)

v-q scattering : test of weak theory, test of quark model

DIS cross sections Di-muon production Paschos-Wolfenstein ratio Astrophysical neutrinos collider neutrinos

#### v-A scattering :

Reactor neutrino experiments Neutrino nuclear capture by CI and Ga, important for solar neutrinos Neutrino coherent scattering, important for supernova (2017)

v-N scattering : important reactions for long baseline neutrino oscillation experiment (T2K, NOvA, DUNE, Hyper-Kamiokande)

katori@fnal.go

## 1. From eV to EeV: Neutrino cross sections across energy scales



## 1. NuInt22 in Seoul (Oct. 24-29, 2022)

Neutrino interaction physics community <a href="https://nuint22.org/">https://nuint22.org/</a>





The 13th International Workshop on Neutrino-Nucleus Interactions in the Few GeV Regions

#### October 24 to 29, 2022 (OFFLINE)

Hoam Faculty House Seoul National University Seoul, Korea





Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

# 1. Next generation neutrino oscillation experiments

## Accelerator-based neutrino oscillation experiments

- Present to Future: T2K, NOvA, Hyper-Kamiokande, DUNE



## 1. Next generation neutrino oscillation experiments

#### Accelerator-based neutrino oscillation experiments

- Present to Future: T2K, NOvA, Hyper-Kamiokande, DUNE...



## 1. Next generation neutrino oscillation experiments

#### Accelerator-based neutrino oscillation experiments

- Present to Future: T2K, NOvA, Hyper-Kamiokande, DUNE...

#### Most of data are from muon neutrino beam

- create by  $\pi$ -DIF, K-DIF (pion and kaon decay-in-flight)
- $\Phi(\nu_{\mu}) > \Phi(\bar{\nu}_{\mu})$ : more  $\pi^+$  and K<sup>+</sup> than  $\pi^-$  and K<sup>-</sup> (for low energy accelerators)
- $\mu$ -decay can make electro-neutrinos but they are background
- $\delta_{CP}$  study need electro-neutrino and antineutrino cross-sections (v<sub>e</sub> appearance)

#### Nuclear physics sucks

- Simple extrapolation may be broken due to nuclear physics
- We are not good at nuclear physics because we are not nuclear physicists
- Nuclear physics = non-perturbative QCD (many models, no theory)
- Particle physics is developed by avoiding nuclear physics...



 ${}_{k}P_{\mu\to e}(L/E) = \sin^{2}2\theta\sin^{2}\left(1.27\Delta m^{2}(eV^{2})\frac{L(km)}{E(GeV^{2})}\right)$ 

Benhar, Day, Sick, Rev. Mod. Phys. 80(2008) 189 Nakamura et a;, Rep. Prog. Phys. 80(2017) 056301

## 1. Particle Physics vs. Nuclear Physics



Particle physics (neutrino physics) Interactions are classified in  $Q^2$  (4momentum transfer) and v (energy transfer) or  $W^2$  (invariant mass)

katc

## **Nuclear physics**

Interactions are classified in q (3-momnetum transfer) and ω (energy transfer)





## 1. Neutrino cross-section formula

**Cross-section** 

- product of Leptonic and Hadronic tensor

$$d\sigma \sim L^{\mu\nu}W_{\mu\nu}$$



Hadronic tensor  $\rightarrow$  nuclear physics (hard)





## 1. Neutrino cross-section formula

**Cross-section** 

- product of Leptonic and Hadronic tensor

$$d\sigma \sim L^{\mu\nu}W_{\mu\nu}$$

Leptonic tensor → the Standard Model (easy)

Hadronic tensor → nuclear physics (hard)

All complication of neutrino cross-section is how to model the hadronic tensor part





## 2. Charged Current Quasi-Elastic scattering (CCQE)

The simplest and the most abundant interaction around ~1 GeV.

$$v_{\mu} + n \rightarrow p + \mu^{-} \quad (v_{\mu} + X \rightarrow X' + \mu^{-})$$

 $d\sigma \sim L_{\mu\nu}T^{\mu\nu}$   $L_{\mu\nu} \sim J_{\mu}J_{\nu}$ : Lepton tensor  $W_{\mu\nu} = \int f(\vec{k}, \vec{q}, \omega)T_{\mu\nu}dE$ : hadronic tensor  $f(\vec{k}, \vec{q}, \omega)$ : nucleon phase space  $T_{\mu\nu} = T_{\mu\nu}(F_1, F_2, F_A, F_P)$ : form factors

Form factors can be parameterized with dipole form

$$F(Q^2) = \frac{g}{\left(1 + \frac{Q^2}{M^2}\right)^2}$$





Quasi Elastic

## 2. Form factors







cosθ

## 2. Charged Current Quasi-Elastic scattering (CCQE)

The simplest and the most abundant interaction around ~1 GeV.

$$v_{\mu} + n \rightarrow p + \mu^{-} \quad (v_{\mu} + X \rightarrow X' + \mu^{-})$$

Neutrino energy is reconstructed from the observed lepton kinematics "QE assumption"

n

X

D

- 1. assuming neutron at rest
- 2. assuming interaction is CCQE

Neutrinos hit nucleons inside of nucleus, and the energy reconstruction is possible only with QE assumption

v-beam







**Quasi Elastic** 

 $E_{\nu}^{QE} = \frac{ME_{\nu} - 0.5m_{\mu}^2}{M - E_{\mu} + p_{\mu}cos\theta}$ 

## 2. Nucleon correlations

#### 2-particle 2-hole (2p2h) effect

- Mimic CCQE interaction, significant change cross section (both shape and normalization)
- The biggest topic in nuxsec community (T2K, NOvA, MINERvA, MicroBooNE)

## An explanation of this puzzle







#### Martini et al, PRC80(2009)065501 NOvA, EPJC80,1119(2020)

## 2. Nucleon correlations

### 2-particle 2-hole (2p2h) effect

- Mimic CCQE interaction, significant change cross section (both shape and normalization)
- The biggest topic in nuxsec community (T2K, NOvA, MINERvA, MicroBooNE)
- 2p2h models in generators don't describe data well?
- High resolution detector (LArTPC, emulsion, etc) can find what is going on?





#### Smith and Moniz, NPB43(1972)605 Khachatryan et al., Nature 599(2021)565

## 2. Fermi motion

#### Quasi Elastic $v_l$ $u^+$ $v_r$ $v_$

#### Fermi motion

- Measured energy is smeared from the true energy if you assume nucleon at rest
- High resolution detector can measure all outgoing hadrons
  - $\rightarrow$  initial nucleon momentum can be reconstructed (no Fermi motion smearing)



#### katori@fnal.gov

#### Pauli blocking

- Low momentum transfer reaction is forbidden.
- data show more suppression than what Pauli blocking can  $\rightarrow$  RPA(?)
- In the global Fermi gas model, Pauli blocking looks unphysical



#### Smith and Moniz, NPB43(1972)605 MiniBooNE, PRD81(2010)092005 **2. Pauli blocking**



Smith and Moniz, NPB43(1972)605 Bodek and Cai, EPJC79(2019)293

## 2. Nuclear Shell structure and binding energy

#### Binding energy ~ unobserved energy

- Energy to cost to release 1 nucleon, not constant
- Separation energy + excitation energy + recoil energy
  - Separation energy: energy to release 1 nucleon from the shell (~15 MeV, depends)
  - Excitation energy: energy used to excite leftover target nucleus (~1 MeV)
  - Recoil energy: kinetic energy of recoil target nucleus (~2-3 MeV)







**Quasi Elastic** 

 $W^+$ 

## 2. Final state interaction

#### Cascade model

- Elastic scattering: Nucleon elastic scattering, pion elastic scattering
- Inelastic scattering: Nucleon inelastic scattering, pion inelastic scattering
- Charge exchange: Nucleon charge exchange, pion charge exchange
- Absorption: Nucleon absorption, pion absorption





## 3. Neutrino Baryonic resonance data

## Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation





MiniBooNE  $\pi^{\circ}$  momentum vs simulation



## 3. Neutrino Baryonic resonance data

## RESonance

 $W^+$ 



- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation





MiniBooNE  $\pi^{\circ}$  momentum vs simulation



## 3. Neutrino Baryonic resonance data

### RESonance



#### Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation







## 3. Neutrino Baryonic resonance data

# v<sub>l</sub>\_\_\_\_

**RESonance** 

 $W^+$ 

### Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation





All neutrino baryonic resonance processes have ~30% errors

# 3. pion production global fit

## MINERvA pion data



- $\nu_{\mu}CC\pi^{\pm}$ , low Q2 suppression, over-predicted
- $\nu_{\mu}CC\pi^{0}$ , strong low Q2 suppression
- $\bar{\nu}_{\mu}CC\pi^{-}$ , no low Q2 suppression
- $\bar{\nu}_{\mu}CC\pi^{0}$ , low Q2 suppression, under-predicted

The study relies of available knobs in the simulation

It looks the simulation doesn't have good knobs to tune or missing





# 4. Shallow- and Deep-Inelastic Scattering (SIS and DIS)

#### **Cross section**

- Higher resonances and hadron dynamics
- Quark-Hadron duality (low Q<sup>2</sup>, low W DIS)
- Nuclear dependent DIS







Neutrino experiment around 1-10 GeV is not quite DIS ye

# 4. Higher baryonic resonances

#### **Cross section**

- Higher resonances and hadron dynamics
- Quark-Hadron duality (low Q<sup>2</sup>, low W DIS)
- Nuclear dependent DIS

#### DCC model

- Total amplitude is conserved
- Channels are coupled ( $\pi N$ ,  $\pi \pi N$ , etc)
- 2 pion productions ~10% at 2 GeV







2

Bodek and Yang, AIP.Conf.Proc.670(2003)110, Nucl.Phys.B(Proc.Suppl.)139(2005)11

## 4. Quark-Hadron duality

#### **Cross section**

- Higher resonances and hadron dynamics
- Quark-Hadron duality (low Q<sup>2</sup>, low W DIS)
- Nuclear dependent DIS

#### GRV98 LO PDF + Bodek-Yang correction

- GRV98 for low Q<sup>2</sup> DIS
- Bodek-Yang correction for QH-duality
- 20 years old, out-of-dated

- not sure how to implement systematic errors

katori@





# Nachtmann $\xi = \frac{2x}{\left(1 + \sqrt{1 + \frac{4x^2M^2}{Q^2}}\right)}$



#### Proton F2 function GRV98-BY correction vs. data



HKN,PRC76(2007)065207, EPS,JHEP04(2009)065, FSSZ,PRD85(2012)074028 nCTEQ, PRD80(2009)094004

## 4. Nuclear dependent DIS



#### **Cross section**

- Higher resonances and hadron dynamics
- Quark-Hadron duality (low Q<sup>2</sup>, low W DIS)
- Nuclear dependent DIS

#### Nuclear PDF

- Shadowing, EMC effect, Fermi motion
- Likely due to nucleon dynamics in nucleus
- Various models describe charged lepton data
- Neutrino data look very different





## Conclusion

v-N scattering : important reactions for long baseline neutrino oscillation experiment (T2K, NOvA, DUNE, Hyper-Kamiokande, etc)

CCQE: charged-current quasi-elastic, around 1 GeV RES: baryonic resonance, around 2 GeV DIS: deep inelastic scattering, 3 GeV to higher

Nuclear physics sucks

- Fermi motion: nucleon motion smears kinematic reconstruction
- Pauli blocking: It limits low momentum transfer reaction
- Nuclear shell structure: separation energy (missing energy) for different nucleons
- Final state interaction: RES looks like CCQE, DIS looks like RES, etc
- Nucleon correlation: Physics between v-N and v-A interaction
- Quark-Hadron duality: Physics between v-q and v-N interaction
- Nuclear dependent PDF: Physics between v-q and v-A interaction

Currently, ~30% error is acceptable for many processes

## References (books)

Quarks and Leptons (Halzen and Martin)

- show many calculations
- solutions for all exercises

Weak interactions of Leptons and Quarks (Commins and Bucksbaum)

- show details of weak interaction calculations
- too many typos

Physics of Neutrinos (Fukugita and Yanagida)

- very intense

- from solar neutrinos to SUSY

Neutrino astrophysics (Bahcall)

- good book to read

Foundation of Nuclear and Particle Physics (2017) - Authors: Donnelly, Formaggio, Holstein, Milner, Surrow - buy if your PhD thesis topic is about neutrino cross section measurements in T2K, NOvA, SBN, etc

The Physics of Neutrino interactions (2020)

- Authors: Sajjad Athar, Singh
- The newest book in this kind (970 pages!)





## References (papers)

"From eV to EeV: Neutrino cross sections across energy scales"

- Authors: Formaggio and Zeller (MicroBooNE spokesperson)
- Rev.Mod.Phys.84(2012)1307, https://arxiv.org/abs/1305.7513
- very good summary of neutrino cross sections

"Neutrino-Nucleus Cross Sections for Oscillation Experiments"

- Authors: Katori (me) and Martini (Martini model)
- J.Phys. G45 (2018) no.1, 013001, https://arxiv.org/abs/1611.07770
- A review both theoretical and experimental views

"NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering"

- NuSTEC (Neutrino Scattering Theory-Experiment Collaboration)
- Prog.Part.Nucl.Phys. 100 (2018) 1-68, https://arxiv.org/abs/1706.03621
- Cover all open issues in the community

"NuSTEC News"

- http://nustec.fnal.gov/
- subscribe mailing list, "like" facebook page, use #nuxsec





## Backup





Neutrino energy is reconstructed from the observed lepton kinematics "QE assumption"

- 1. assuming neutron at rest
- 2. assuming interaction is CCQE

40m



ν

- Big and dense, to maximize interaction rate

- Coarsely instrumented, to minimize cost

(not great detector to measure hadrons)

Typical neutrino oscillation detector

# 3. non-QE background (resonance pion production)

#### non-QE background $\rightarrow$ shift spectrum



Typical neutrino oscillation detector

- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost

(not great detector to measure hadrons)



**RESonance** 

w+

# 3. non-QE background (resonance pion production)

#### non-QE background $\rightarrow$ shift spectrum



Typical neutrino oscillation detector

- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost

(not great detector to measure hadrons)



**RESonance** 

# 3. non-QE background (resonance pion production)

#### non-QE background $\rightarrow$ shift spectrum





#### RESonance

 $W^+$ 

**RESonance** Coloma et al, PRL111(2013)221802 Mosel et al, PRL112(2014)151802 3. non-QE background (resonance pion production)  $W^+$  $\Lambda^{++}$ DUNE true vs. reconstructed Ev spectrum Pion production for  $v_{\mu}$ ....  $\partial_{CP} = +\pi/2$ disappearance search 0.02 0π - Source of mis-reconstruction of 0.015 neutrino energy Event distribution/A (10<sup>-38</sup> cm<sup>2</sup>/GeV) pion absorption 0.01 μ 0.005 Ζ  $\delta_{CP} = -\pi/2$ Ν Ν 0 0.02 Neutral pion production in  $v_e$  $0\pi + 1p + Xn$ appearance search 0.015 - Source of misID of electron 0.01  $NC\pi^{o}$  + asymmetric decay 0.005 πο Ζ 2 3 5 6 Ν Ν E, (GeV)



Understanding of neutrino baryonic resonance meson production is important for oscillation experiments