Neutrino Astronomy

outline

1. Introduction

2. Solar neutrinos (1960s -)

3. Supernova neutrinos (1987, 202X?)

4. Atmospheric neutrinos (1960s -)

5. Extragalactic neutrinos (2013 -)

6. Cosmogenic neutrinos (202X?)

7. Big Bang relic neutrinos (203X?)

8. Conclusion

Find us on Facebook, "Institute of Physics Astroparticle Physics" https://www.facebook.com/IOPAPP Follow us on Twitter, @IoP_APP

Teppei Katori King's College London December 6, 2022

1. Introduction

- 2. Solar neutrinos (1960s)
- 3. Supernova neutrinos (1987, 202X?)
- 4. Atmospheric neutrinos (1960s)
- 5. Extragalactic neutrinos (2013)
- 6. Cosmogenic neutrinos (202X?)
- 7. Big Bang relic neutrinos (203X?)

Known astrophysical neutrino sources

The Sun (1-15 MeV) Neutrino "picture" taken by the SuperKamiokande detector

NGC1068 (1.5-15 TeV) Radio galaxy SN1987A (10-40 MeV) Supernova HST image after 24 years, not understood

TXS 0506+056 (40 – 400 TeV) Artistic image of this blazar

LONDON

From eV to EeV: Neutrino cross sections across energy scales

2. Solar neutrinos (1960s -)

- 3. Supernova neutrinos (1987, 202X?)
- 4. Atmospheric neutrinos (1960s)
- 5. Extragalactic neutrinos (2013)
- 6. Cosmogenic neutrinos (202X?)
- 7. Big Bang relic neutrinos (203X?)

Cleveland et al.,Astrophys.J.496(1998)505, Pontecorvo,Phys.Lett.28B(1969)493 GALLEX, PLB490(2000)16;SAGE, J.Expt.Theor.Phys.95(2002)181, Borexino, PRL 108(2012)051302

King's College London Snowmass21 "Report of the Topical Group on Particle Dark Matter for Snowmass 2021", arXiv:2209.07426 Borexino, PRL 108(2012)051302

1. Introduction

2. Solar neutrinos (1960s -)

- 3. Supernova neutrinos (1987, 202X?)
- 4. Atmospheric neutrinos (1960s)
- 5. Extragalactic neutrinos (2013)
- 6. Cosmogenic neutrinos (202X?)
- 7. Big Bang relic neutrinos (203X?)

3. Supernova neutrinos

SN1987A

- Large Magellanic Cloud, 51.4 kpc
- "Most famous 25 events", in 13 seconds

Known issues

- IMB neutrino energy > Kamiokande II energy?
- 13 seconds too long as neutrino flash (<1ms)

Neutrinos may be delay due to...

nonzero neutrino mass
nonzero neutrino
electric charge or
magnetic moment
violation of Lorentz
invariance

- etc

Hyper-Kamiokande, arXiv:1805.04163 Super-Kamiokande, PRD104(02021)122002

3. Supernova neutrinos, future

Diffuse Supernova Neutrino Background (DSNB)

- DSNB is always there
- Gadolinium doped Super-Kamiokande (SKGd)
- ~a few event per year
- Key is how to suppress the cosmogenic background

IBD prompt event >7MeV

 $\overline{\nu}_e$

 e^+

n

Gd

1. Introduction

- 2. Solar neutrinos (1960s)
- 3. Supernova neutrinos (1987, 202X?)
- 4. Atmospheric neutrinos (1960s)
- 5. Extragalactic neutrinos (2013)
- 6. Cosmogenic neutrinos (202X?)
- 7. Big Bang relic neutrinos (203X?)

Super-Kamiokande, PRD97(2018)072001

4. Atmospheric neutrinos

Conventional atmospheric neutrino

- π and K decays, up to ~10-20 TeV
- Discovery of neutrino oscillations

 ν_B

 ν_A

Super-Kamiokande, PRD97(2018)072001 IceCube, ApJ.928(2022)50

4. Atmospheric neutrinos, future

Conventional atmospheric neutrino

- π and K decays, up to ~10-20 TeV
- Discovery of neutrino oscillations
- Higher precision flux prediction to measure neutrino mass ordering

Prompt atmospheric neutrino

- D-meson (charm) decay neutrinos
- Significant around ~50-100 TeV?
- Not identified yet

LONDON

Super-Kamiokande oscillogram

1. Introduction

- 2. Solar neutrinos (1960s)
- 3. Supernova neutrinos (1987, 202X?)
- 4. Atmospheric neutrinos (1960s)
- 5. Extragalactic neutrinos (2013)
- 6. Cosmogenic neutrinos (202X?)
- 7. Big Bang relic neutrinos (203X?)

5. High-Energy Astrophysical Neutrinos

Direct messengers from the furthest celestial objects

KING'S College LONDON IceCube-Gen2, J.Phys.G.48(2021) 060501

5. Multi-messenger astronomy

IceCube,Science.342(2013)1242856,PRD104,(2021)022002,ApJ.928(2022)50

5. High-energy astrophysical neutrinos

- 60-2000 TeV neutrinos

 10^{-1}

 10^{2}

 10^{3}

 10^{5}

 10^{6}

 10^{4}

Muon Energy Proxy / GeV

 10^{7}

IceCube-Gen2, J.Phys.G.48(2021) 060501 IceCube, Science361(2018)147:378(2022)538

5. High-energy astrophysical neutrinos

NGC1068 (Radio galaxy)

- Point source

IceCube, Science361(2018)147, IceCube et al,(2018)eaat1378 Gao,Fedynitch,Winter, Pohl, Nature Astronomy 3(2019)88

eV

keV

5. Extragalactic neutrinos

TXS056+0506 (blazar)

а

- leptonic process can explain all optical signals from TXS0506+056 (Synchrotron self-Compton scattering)

- Neutrino signals imply presence of hadronic process $\pi^0 \rightarrow \gamma \gamma$

MeV

GeV

TeV

PeV

5. Extragalactic neutrinos

TXS056+0506 (blazar)

- leptonic process can explain all optical signals from TXS0506+056 (Synchrotron self-Compton scattering)

- Neutrino signals imply presence of hadronic process $\pi^0
ightarrow \gamma\gamma$

2 <mark>S</mark>_

 $\Xi_v^2 \Phi_{v+\overline{v}}$ [TeV cm]

NGC1068 (radio galaxy)

- Nearby AGN (14.4Mpc)
- 1.5 15 TeV with γ~3.2±0.2

Do we have more neutrino sources?

How to produce diffuse high-energy neutrino spectrum?

Any new physics information?

1. Introduction

- 2. Solar neutrinos (1960s)
- 3. Supernova neutrinos (1987, 202X?)
- 4. Atmospheric neutrinos (1960s)
- 5. Extragalactic neutrinos (2013)
- 6. Cosmogenic neutrinos (202X?)
- 7. Big Bang relic neutrinos (203X?)

Gaisser, Stanev, Tilav, Front.Phys.,2103,8(6),748

6. Cosmogenic neutrinos

GZK cut-off

 $p + \gamma \to \Delta \to \pi + p$

- $\pi^0 \rightarrow \gamma \gamma$: UHE γ -ray - $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$: UHE neutrinos

GZK cut-off of proton ~ 50 EeV GZK cut-off of iron >> 50 EeV

Do we see the GZK cut-off????????

ANITA, PRL121(2018)161102,126 (2021)071103, PRD99(2019)122001 PUEO, JINST16(2021)P08035

6. ANITA/PUEO

ANtarctic Impulse Transient Antenna (ANITA)

- Askaryan effect, radio emission from E&M shower in ice
- effective to measure EeV range astrophysical neutrinos
- Cosmogenic neutrinos (EeV neutrinos) not discovered yet

Trinity (ICRC2020), Arxiv:2109.03125

6. Trinity

6. TAMBO

Tau-Air-shower Mountain-Based Observatory (Peru)

- UHE tau induced air shower
- Water Cherenkov detector array
- Relatively low energy threshold (~1PeV)

6. High-Energy Astrophysical Neutrinos

Many planned experiments targeting PeV-EeV neutrinos

Energy Range	Experiment	Technology	Detected Flavor	Ref.
$\lesssim 10^3~{ m GeV}$	JUNO	Liquid scintillator	All Flavors	[234]
$\lesssim 10^3~{ m GeV}$	DUNE	LArTPC	All Flavors	[671]
$\lesssim 10^3~{ m GeV}$	THEIA	WbLS	All Flavors	[486]
$\lesssim 10^3~{ m GeV}$	Super-Kamiokande	Gd-loaded Water C	All Flavors	[645]
$\lesssim 10^4~{ m GeV}$	Hyper-Kamiokande	Water Cherenkov	All Flavors	[483]
$\lesssim 10^5 \; { m GeV}$	ANTARES	Sea-Water Cherenkov	$\nu_{\mu}, \bar{\nu}_{\mu}$ (CC)	[672]
$\lesssim 10^6~{ m GeV}$	IceCube/IceCube-Gen2	Ice Cherenkov	All Flavors	[433, 673]
$\lesssim 10^6~{ m GeV}$	KM3NeT	Sea-Water Cherenkov	All Flavors	[674]
$\lesssim 10^6~{ m GeV}$	Baikal-GVD	Lake-Water Cherenkov	All Flavors	[675]
$\lesssim 10^6~{ m GeV}$	P-ONE	Sea-Water Cherenkov	All Flavors	[676]
1-100 PeV	TAMBO	Earth-skimming WC	$ u_{ au}, ar{ u}_{ au}$ (CC)	[677]
$\gtrsim 1 \; PeV$	Trinity	Earth-skimming Image	$\nu_{\tau}, \bar{\nu}_{\tau} (CC)$	[678]
$\gtrsim 10 \ { m PeV}$	RET-N	Radar echo	All Flavors	[679]
$\gtrsim 10 \text{ PeV}$	IceCube-Gen2	In-ice Radio	All Flavors	[433]
$\gtrsim 10 \text{ PeV}$	ARIANNA-200	On-ice Radio	All Flavors	[680]
$\gtrsim 20 \; { m PeV}$	POEMMA	Space Air-shower Image	$\nu_{\tau}, \bar{\nu}_{\tau} (CC)$	[681]
$\gtrsim 100 \; { m PeV}$	RNO-G	In-ice Radio	All Flavors	[682]
$\gtrsim 100 \text{ PeV}$	ANITA/PUEO	Balloon Radio	All Flavors	[683, 684]
$\gtrsim 100 \; { m PeV}$	Auger/GCOS	Earth-skimming WC	$\nu_{\tau}, \bar{\nu}_{\tau} (CC)$	[685,686]
$\gtrsim 100 \; { m PeV}$	Beacon	Earth-skimming Radio	$\nu_{\tau}, \bar{\nu}_{\tau} (CC)$	[687]
$\gtrsim 100 \; { m PeV}$	GRAND	Earth-skimming Radio	$\nu_{\tau}, \bar{\nu}_{\tau} (CC)$	[688]

1. Introduction

- 2. Solar neutrinos (1960s)
- 3. Supernova neutrinos (1987, 202X?)
- 4. Atmospheric neutrinos (1960s)
- 5. Extragalactic neutrinos (2013)
- 6. Cosmogenic neutrinos (202X?)
- 7. Big Bang relic neutrinos (203X?)

PTOLEMY, arXiv:1808.01892 Project 8, PRD80(2009)051301

7. Cosmic Neutrino Background (CvB)

PTOLEMY and Project 8

- Motivated by KATRIN
- Nuclear ν_{e} capture is zero threshold

 $v_e + A \rightarrow A' + e$

if M(A) - M(A') = Q > 0

- Measure end point of tritium (18 keV) from cyclotron radiation of single electron RF

- Target: ~meV shift of end point due to neutrino mass.

Q-m_ν → neutrino mass effect on β-decay Q+m_ν → C_νB capture

Project 8 concept

Conclusion

Astrophysical neutrinos are everywhere!

Solar neutrino: up-turn, hep-neutrino, neutrino fog Supernova neutrino: DSNB Atmospheric neutrino: mass ordering, prompt neutrino Extra-galactic neutrino: we don't understand most of things

Cosmogenic neutrinos: never detected Big bang neutrinos: never detected, really hard

(Thank you for your attention!)

Backup

COHERENT, Science10.1126/science.aao0990 (2017), PRL126(2021)012002; 129(2022)081801

Cs

1. Neutrino-Nucleus coherent scattering

Ge

Neutron number

Cross section (10⁻⁴⁰ cm²)

Na

IceCube, Science361(2018)147, IceCube et al,(2018)eaat1378 IceCube-Gen2, J.Phys.G.48(2021) 060501

1. Multi-messenger astronomy

High-energy protons, gamma rays, and neutrinos are all related

$$\begin{array}{c} p+p\\ p+\gamma \rightarrow X+\pi \begin{cases} \pi^{0}\rightarrow\gamma\gamma\\ \pi^{+}\rightarrow\mu^{+}+\nu_{\mu}\\ \mu^{+}\rightarrow e^{+}+\bar{\nu}_{\mu}+\nu_{e}\\ n\rightarrow p+e^{-}+\bar{\nu}_{e} \end{cases} \end{array}$$

LONDON

5. High-energy astrophysics

Above ~10-100 TeV neutrinos are only direct extra-galactic messengers

5. High-energy fixed target experiment

College

LONDON

5. IceCube detector

IceCube-Gen2, J.Phys.G.48(2021) 060501

5. IceCube event morphology

Track v_{μ} CC $v_{\mu} + N \rightarrow \mu + X$ Cascade $v_eCC, v_\tau CC, NC$ $v_e + N \rightarrow e + X$ $v_\tau + N \rightarrow \tau + X$ $v_\chi + N \rightarrow v_\chi + X$

Double cascade v_{τ} CC (L~50m•E/PeV) $v_{\tau} + N \rightarrow \tau + X$ $\tau \rightarrow X'$

5. Active Galactic Nuclei (AGNs)

