Neutrino Physics

Neutrino oscillations
 History of neutrino oscillation
 T2K neutrino oscillation experiments
 Current and future neutrino experiments
 Neutrino astronomy
 Conclusion

Find us on Facebook, "Institute of Physics Astroparticle Physics" <u>https://www.facebook.com/IOPAPP</u> "Neutrino Scattering Theory-Experiment Collaboration" <u>https://www.facebook.com/nuxsec</u>

Teppei Katori King's College London JENNIFER2 Summer School July 22-23, 2020

katori@fnal.gov

Hi, my name is Teppei!

Experimental particle physicist – MiniBooNE

- T2K, Super-Kamiokande, Hyper-Kamiokande
- IceCube

Interests

- Neutrino interaction physics
- Effective operator new physics search
- Phenomenology
- Neutron capture application

Lecture slides: https://nms.kcl.ac.uk/teppei.katori/teach/2020/20 JENNIFER2/

> Teppei Katori King's College London JENNIFER2 Summer School July 22-23, 2020

> > katori@fnal.gov

2. History of neutrino oscillation

3. T2K neutrino oscillation experiments

4. Current and future neutrino experiments

5. Neutrino astronomy

6. Conclusion

Neutrino oscillation is an interference experiment (cf. double slit experiment)

For double slit experiment, if path v_1 and path v_2 have different length, they have different phase rotations and it causes interference.

Neutrino oscillation is an interference experiment (cf. double slit experiment)

If 2 neutrino Hamiltonian eigenstates, v_1 and v_2 , have different phase rotation, they cause quantum interference.

Neutrino oscillation is an interference experiment (cf. double slit experiment)

If 2 neutrino Hamiltonian eigenstates, v_1 and v_2 , have different phase rotation, they cause quantum interference.

If v_1 and v_2 , have different mass, they have different velocity, so thus different phase rotation.

Neutrino oscillation is an interference experiment (cf. double slit experiment)

If 2 neutrino Hamiltonian eigenstates, v_1 and v_2 , have different phase rotation, they cause quantum interference.

If v_1 and v_2 , have different mass, they have different velocity, so thus different phase rotation.

The detection may be different flavor (neutrino oscillations).

2 neutrino mixing

The neutrino weak eigenstate is described by neutrino Hamiltonian eigenstates, v_1 and v_2 , and their mixing matrix elements.

$$| \mathbf{v}_{\mu} \rangle = \mathbf{U}_{\mu 1} | \mathbf{v}_{1} \rangle + \mathbf{U}_{\mu 2} | \mathbf{v}_{2} \rangle$$

The time evolution of neutrino weak eigenstate is written by Hamiltonian mixing matrix elements and eigenvalues of v_1 and v_2 .

$$|\nu_{\mu}(t)\rangle = U_{\mu 1}e^{-i\lambda_{1}t} |\nu_{1}\rangle + U_{\mu 2}e^{-i\lambda_{2}t} |\nu_{2}\rangle$$

Then the transition probability from weak eigenstate v_{μ} to v_{e} is,

$$\mathsf{P}_{\mu \to e}(t) = \left| \left\langle v_{e} \mid v_{\mu}(t) \right\rangle \right|^{2} = -4U_{e1}U_{e2}U_{\mu 1}U_{\mu 2}\sin^{2}\left(\frac{\lambda_{1}-\lambda_{2}}{2}t\right)$$

In the vacuum, 2 neutrino effective Hamiltonian has a mass term,

$$\begin{split} H_{eff} \rightarrow & \left(\begin{array}{c} \frac{m_{ee}^2}{2E} & \frac{m_{e\mu}^2}{2E} \\ \frac{m_{e\mu}^2}{2E} & \frac{m_{\mu\mu}^2}{2E} \end{array}\right) = & \left(\begin{array}{c} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right) \left(\begin{array}{c} \frac{m_1^2}{2E} & 0 \\ 0 & \frac{m_2^2}{2E} \end{array}\right) \left(\begin{array}{c} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right) \end{split}$$
Therefore, 2 massive neutrino oscillation model is $(\Delta m^2 = |m_1^2 - m_2^2|)$

$$P_{\mu \rightarrow e}(L/E) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) = \sin^2 2\theta \sin^2 \left(\pi \frac{L}{L^{osc}}\right)$$

After adjusting the unit

$$\mathsf{P}_{\mu \to e}(\mathsf{L}/\mathsf{E}) = \sin^2 2\theta \sin^2 \left(1.27\Delta \mathsf{m}^2(\mathsf{eV}^2) \frac{\mathsf{L}(\mathsf{m})}{\mathsf{E}(\mathsf{MeV})}\right)$$

Wave packet formalism

- real formulation of neutrino oscillations

FIG. 1. A typical neutrino-oscillation experiment.

1. Neutrino oscillations

Wave packet formalism

- real formulation of neutrino oscillations

$$\mathsf{P}_{\alpha\beta}(\mathsf{L}) \propto \sum_{ij} \mathsf{U}_{\alpha i} \mathsf{U}_{\beta i}^{*} \mathsf{U}_{\alpha j}^{*} \mathsf{U}_{\beta j} \exp\left[-2\pi i \frac{\mathsf{L}}{\mathsf{L}_{ij}^{\text{osc}}} - \left(\frac{\mathsf{L}}{\mathsf{L}_{ij}^{\text{coh}}}\right)^{2} - 4\pi^{2} \left(\frac{\sigma_{\mathsf{x}}}{\mathsf{L}_{ij}^{\text{osc}}}\right)^{2}\right]$$

Coherent oscillation

Decoherence during propagation

Decoherence at production and detection

1. Neutrino oscillations

Wave packet formalism

- real formulation of neutrino oscillations

$$\mathsf{P}_{\alpha\beta}(\mathsf{L}) \propto \sum_{ij} \mathsf{U}_{\alpha i} \mathsf{U}_{\beta i}^{*} \mathsf{U}_{\alpha j}^{*} \mathsf{U}_{\beta j} \exp\left[-\frac{2\pi i \frac{\mathsf{L}}{\mathsf{L}_{ij}^{\text{osc}}} - \left(\frac{\mathsf{L}}{\mathsf{L}_{ij}^{\text{coh}}}\right)^{2} - 4\pi^{2} \left(\frac{\sigma_{x}}{\mathsf{L}_{ij}^{\text{osc}}}\right)^{2}\right]$$

Coherent oscillation

Decoherence during propagation Decoherence at production and detection

$$\begin{split} \mathsf{P}_{\alpha\beta}(\mathsf{L}) &\propto \sum_{ij} \mathsf{U}_{\alpha i} \mathsf{U}_{\beta i}^* \mathsf{U}_{\alpha j}^* \mathsf{U}_{\beta j} \exp \! \left[-2\pi i \frac{\mathsf{L}}{\mathsf{L}_{ij}^{\mathrm{osc}}} \right] \\ &\sim \sin^2 2\theta \sin^2 \! \left(\pi \frac{\mathsf{L}}{\mathsf{L}_{osc}^{\mathrm{osc}}} \right) \end{split}$$

1. Neutrino oscillations

Wave packet formalism

- real formulation of neutrino oscillations

$$\mathsf{P}_{\alpha\beta}(\mathsf{L}) \propto \sum_{ij} \mathsf{U}_{\alpha i} \mathsf{U}_{\beta i}^{*} \mathsf{U}_{\alpha j}^{*} \mathsf{U}_{\beta j} \exp\left[-2\pi i \frac{\mathsf{L}}{\mathsf{L}_{ij}^{\mathsf{osc}}} - \left(\frac{\mathsf{L}}{\mathsf{L}_{ij}^{\mathsf{coh}}}\right)^{2} - 4\pi^{2} \left(\frac{\sigma_{\mathsf{x}}}{\mathsf{L}_{ij}^{\mathsf{osc}}}\right)^{2}\right]$$

 v_1

 v_2

Coherent oscillation

Decoherence during propagation

Decoherence at production and detection

$$\mathbf{P} \propto \left[-\left(\frac{\mathbf{L}}{\mathbf{L}^{\text{coh}}}\right)^2 \right] \quad , \quad \mathbf{L}^{\text{coh}} \propto \frac{\sigma_x}{|\mathbf{v}_i - \mathbf{v}_j|}$$

Decoherence happens faster for narrower wave packet (small σ_x) and bigger group velocity difference difference (bigger Δm^2 , lower energy)

How to estimate σ_x ?

Giunti,Kim,Lee,PRD44(1991)3635 de Gauvea et al, arXiv:2005.032022

1. Neutrino oscillations

Wave packet formalism

- real formulation of neutrino oscillations

$$\mathsf{P}_{\alpha\beta}(\mathsf{L}) \propto \sum_{ij} \mathsf{U}_{\alpha i} \mathsf{U}_{\beta i}^{*} \mathsf{U}_{\alpha j}^{*} \mathsf{U}_{\beta j} \exp\left[-2\pi i \frac{\mathsf{L}}{\mathsf{L}_{ij}^{\mathsf{osc}}} - \left(\frac{\mathsf{L}}{\mathsf{L}_{ij}^{\mathsf{coh}}}\right)^{2} - 4\pi^{2} \left(\frac{\sigma_{\mathsf{x}}}{\mathsf{L}_{ij}^{\mathsf{osc}}}\right)^{2}\right]$$

V1

 v_2

Coherent oscillation

Decoherence during propagation

Decoherence at production and detection

$$\mathbf{P} \propto \left[- \left(\frac{\mathbf{L}}{\mathbf{L}^{\text{coh}}} \right)^2 \right] \quad , \quad \mathbf{L}^{\text{coh}} \propto \frac{\sigma_x}{|\mathbf{v}_i - \mathbf{v}_j|}$$

Decoherence happens faster for narrower wave packet (small σ_x) and bigger group velocity difference difference (bigger Δm^2 , lower energy)

How to estimate σ_x ?

 \rightarrow controversial subject

Reactor neutrino data interpretation says it is at least bigger than $\sim 10^{-13}$ m...

Wave packet formalism

Neutrino oscillation

 $v_2 v_1$

 $P = |A_1^+ A_2|^2$

Wave packet formalism

- real formulation of neutrino oscillations

Decoherent neutrino oscillation (time averaged neutrino oscillation)

1. Neutrino oscillations

Wave packet formalism

- real formulation of neutrino oscillations

$$\mathsf{P}_{\alpha\beta}(\mathsf{L}) \propto \sum_{ij} \mathsf{U}_{\alpha i} \mathsf{U}_{\beta i}^{*} \mathsf{U}_{\alpha j}^{*} \mathsf{U}_{\beta j} \exp\left[-2\pi i \frac{\mathsf{L}}{\mathsf{L}_{ij}^{\mathsf{osc}}} - \left(\frac{\mathsf{L}}{\mathsf{L}_{ij}^{\mathsf{coh}}}\right)^{2} - 4\pi^{2} \left(\frac{\sigma_{\mathsf{x}}}{\mathsf{L}_{ij}^{\mathsf{osc}}}\right)^{2}\right]$$

Coherent oscillation

Decoherence during propagation

Decoherence at production and detection

$$\mathsf{P} \propto \exp\left[-4\pi^2 \left(\frac{\sigma_x}{\mathsf{L}^{\rm osc}}\right)^2\right]$$

If the neutrino production or detection uncertainty is bigger than oscillation length, neutrino oscillation doesn't happen (time averaged oscillation or neutrino mixing). This is the situation of solar neutrinos.

Kopp, Fermilab theory seminar (2012) http://theory.fnal.gov/seminars/seminars.html

1. Neutrino oscillations

Wave packet formalism

- real formulation of neutrino oscillations

$$\begin{split} P_{\alpha\beta}(L) \propto \sum_{j,k} U_{\alpha j}^* U_{\alpha k} U_{\beta k}^* U_{\beta j} \exp\left[-2\pi i \frac{L}{L_{jk}^{\text{osc}}} - \left(\frac{L}{L_{jk}^{\text{coh}}}\right)^2 \right. \\ \left. - \frac{(\Delta m_{jk}^2)^2}{32\sigma_m^2 E^2} - 2\pi^2 \xi^2 \left(\frac{\sigma_x}{L_{jk}^{\text{osc}}}\right)^2 - \frac{(m_j^2 + m_k^2)^2}{32\sigma_m^2 E^2}\right], \end{split}$$

Five terms:

Beuthe, Phys. Rept. 375 (2003) 105

- Oscillation ($L_{jk}^{osc} = 4\pi E / \Delta m_{jk}^2$)
- Decoherence during propagation
- Decoherence at production/detection
- Localization: Typically requires size of neutrino wave packet σ_x smaller than oscillation length (ξ = process-dependent parameter, can also be ~ 0)
- Approximate conservation of average energies/momenta

IceCube, Nature Physics 14 (2018) 961

1. Neutrino oscillations with new physics

Neutrino oscillation is interferometer

 $H = H_{mass} + H_{matter} + H_{exotic} \rightarrow P_{\alpha \rightarrow \beta} = P_{\alpha \rightarrow \beta}(H_{mass}, H_{matter}, H_{exotic})$ - tiny effect shifts oscillation (interference pattern) visible amount

- sensitive to new physics search

Search of non-standard interaction with matter Search of neutrino-light dark matter interaction Search of neutrino-dark energy interaction Search of new long-range force etc

e.g.) Search of violation of Lorentz invariance

- Interferometer arm length ~ 12700km

- Sensitivity goes far beyond Michelson-Morley experiment, or beyond any experiments (optics, atomic physics)

Neutrino oscillation is a natural interferometer

Formal description of neutrino oscillation is not easy, because quantum mechanics is not easy

Neutrino oscillations are also useful to look for new physics

2. History of neutrino oscillation

3. T2K neutrino oscillation experiments

4. Current and future neutrino experiments

5. Neutrino astronomy

6. Conclusion

2. Before 1998

	before	1998	1999	2000	2001	2002	2003	2004
solar neutrino	solar neutrino problem - Homestake - Kamiokande II - SAGE - GALLEX				SNO solved solar neutrino problem	Davis (Homestake) and Koshiba (Kamiokande II) won Nobel prizes		
reactor neutrino	null reactor neutrino oscillation - many						KamLAND reactor neutrino oscillation (LMA)	
atmospheric neutrino	atmospheric neutrino anomaly - Kamiokande II - IMB - Frejus	Super-K up-down asymmetry agrees with neutrino oscillation						Super-K neutrino oscillatory
accelerator neutrino	null accel. neutrino oscillation - many							

2. Solar neutrino problem

Gallium experiment

 v_e + ⁷¹Ga → e⁻ + ⁷¹Ge - Sensitive to pp-neutrino (0.42 MeV), 90% of total solar neutrino flux.

- Both experiments observed deficit, but weaker deficit than Homestake

Wolfenstein,PRD17(1978)2369 Mikheyev and Smirnov,Sov.J.Ncl.Phys,42(1986)913

2. MSW effect

Neutrino oscillation in vacuum

$$\mathsf{H}_{\mathsf{eff}} \rightarrow \left(\begin{array}{cc} \frac{m_{\mathsf{ee}}^2}{2\mathsf{E}} & \frac{m_{\mathsf{e}\mu}^2}{2\mathsf{E}} \\ \frac{m_{\mathsf{e}\mu}^2}{2\mathsf{E}} & \frac{m_{\mu\mu}^2}{2\mathsf{E}} \end{array} \right) = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \left(\begin{array}{cc} \frac{m_1^2}{2\mathsf{E}} & 0 \\ 0 & \frac{m_2^2}{2\mathsf{E}} \end{array} \right) \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array} \right)$$

Both θ_m and (m²)' are function of n_e and E

- no matter effect If density and/or energy is too low

$$\cos 2\theta_{m} = \frac{-AEn_{e} + \cos 2\theta}{\sqrt{\left(AEn_{e} - \cos 2\theta\right)^{2} + \sin^{2} 2\theta}} \qquad A = \frac{2\sqrt{2}G_{F}}{\Delta m^{2}}$$
$$\sin 2\theta_{m} = \frac{\sin 2\theta}{\sqrt{\left(AEn_{e} - \cos 2\theta\right)^{2} + \sin^{2} 2\theta}}$$

Wolfenstein, PRD17(1978)2369 Mikheyev and Smirnov, Sov. J. Ncl. Phys, 42(1986)913

2. MSW effect

Neutrino oscillation in matter

- Neutrinos interact with media
- Only electron neutrino exchange W

$$H_{eff} \rightarrow \begin{pmatrix} \frac{m_{ee}^2}{2E} + \sqrt{2}G_F n_e & \frac{m_{e\mu}^2}{2E} \\ \frac{m_{e\mu}^2}{2E} & \frac{m_{\mu\mu}^2}{2E} \end{pmatrix} = \begin{pmatrix} \cos\theta_m & -\sin\theta_m \\ \sin\theta_m & \cos\theta_m \end{pmatrix} \begin{pmatrix} \frac{(m_1^2)'}{2E} & 0 \\ 0 & \frac{(m_2^2)'}{2E} \end{pmatrix} \begin{pmatrix} \cos\theta_m & \sin\theta_m \\ -\sin\theta_m & \cos\theta_m \end{pmatrix}$$

Both θ_m and (m²)' are function of n_e and E

- no matter effect If density and/or energy is too low

- the Sun happens to have $n_{\rm e}{\sim}150~cm^{\text{-}3}$ and E(^8B-v) ${\sim}10~MeV$

$$\cos 2\theta_{m} = \frac{-AEn_{e} + \cos 2\theta}{\sqrt{\left(AEn_{e} - \cos 2\theta\right)^{2} + \sin^{2} 2\theta}} \qquad A = \frac{2\sqrt{2}G_{F}}{\Delta m^{2}}$$
$$\sin 2\theta_{m} = \frac{\sin 2\theta}{\sqrt{\left(AEn_{e} - \cos 2\theta\right)^{2} + \sin^{2} 2\theta}}$$

Ve-

е

е

ve

W

Wolfenstein,PRD17(1978)2369 Mikheyev and Smirnov,Sov.J.Ncl.Phys,42(1986)913

2. MSW effect

Neutrino oscillation in matter

- Neutrinos interact with media
- Only electron neutrino exchange W

$$H_{eff} \rightarrow \begin{pmatrix} \frac{m_{ee}^2}{2E} + \sqrt{2}G_F n_e & \frac{m_{e\mu}^2}{2E} \\ \frac{m_{e\mu}^2}{2E} & \frac{m_{\mu\mu}^2}{2E} \end{pmatrix} = \begin{pmatrix} \cos\theta_m & -\sin\theta_m \\ \sin\theta_m & \cos\theta_m \end{pmatrix} \begin{pmatrix} \frac{(m_1^2)'}{2E} & 0 \\ 0 & \frac{(m_2^2)'}{2E} \end{pmatrix} \begin{pmatrix} \cos\theta_m & \sin\theta_m \\ -\sin\theta_m & \cos\theta_m \end{pmatrix}$$

 v_{e}

е

W

ve

Both θ_m and (m²)' are function of n_e and E

- no matter effect If density and/or energy is too low

- the Sun happens to have n_e~150 cm⁻³ and E(⁸B-v)~10 MeV

2. Kamiokande II experiment

Solar neutrino

 $v_e + e \rightarrow v_e + e$ - Direction of recoil electron (~direction of neutrino) is consistent from the Sun.

Atmospheric neutrino

 $v_{e} + X \rightarrow e + X'$ $v_{\mu} + X \rightarrow \mu + X'$

- electron neutrino is consistent with MC, but muon neutrino shows deficit

Supernova neutrino

- 12 events are observed (IMB observed 8 events)

katori@fnal.gov

2. Before 1998

There are 3 major discoveries

- Solar neutrino anomaly
- MSW effect
- Atmospheric neutrino anomaly

2. 1998-2004

	before	1998	1999	2000	2001	2002	2003	2004
solar neutrino	solar neutrino problem - Homestake - Kamiokande II - SAGE - GALLEX				SNO solved solar neutrino problem	Davis (Homestake) and Koshiba (Kamiokande II) won Nobel prizes		
reactor neutrino	null reactor neutrino oscillation - many						KamLAND reactor neutrino oscillation (LMA)	
atmospheric neutrino	atmospheric neutrino anomaly - Kamiokande II - IMB - Frejus	Super-K up-down asymmetry agrees with neutrino oscillation						Super-K neutrino oscillatory
accelerator neutrino	null accel. neutrino oscillation - many							
King's College London			katori@1	fnal.gov				32

2. Super-Kamiokande

50 kton water Cherenkov detector

and the second second

- ~40m height, ~40m diameter
- ~11000 20-inch PMTs (40% photo-cathode coverage)
- -~120 collaborators, 23 institutions
- -~\$100M project

2. Super-Kamiokande

New York Control of the American Street St

50 kton water Cherenkov detector
~40m height, ~40m diameter
~11000 20-inch PMTs (40% photo-cathode coverage)
~120 collaborators, 23 institutions

- ~\$100M project

Particle ID

μ : sharp ring e : fuzzy ring π° : 2 fuzzy rings

Super-kamiokande, PRL81(1998)1562

2. Super-Kamiokande

Up-Down asymmetry

- Atmospheric neutrino anomaly is function of distance
- But neutrinos might just disappear (decayed) or lose coherence (decoherence)

$$p + X \to X' + \pi \begin{cases} \pi^+ \to \mu^+ + \nu_\mu \\ \mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e \end{cases}$$
$$(\nu_e: \nu_\mu: \nu_\tau) = (1: 2: 0)$$

2. Super-Kamiokande

Up-Down asymmetry

- Atmospheric neutrino anomaly is function of distance
- But neutrinos might just disappear (decayed) or lose coherence (decoherence)
- Later Super-K also shows the first neutrino oscillatory behavior
- Super-K concludes v-oscillation is the solution of atmospheric neutrino anomaly

2. SNO

D₂O in acrylic vessel Simultaneously measure 3 channels

 $v_e + d \rightarrow p + p + e$ - charged current (CC) - only sensitive to v_e

 $v_x + d \rightarrow p + n + v_x$ - neutral current (NC) - sensitive to all flavors

 $v_e + e \rightarrow v_e + e$ - elastic scattering (ES) - sensitive to all flavors

2. SNO

D₂O in acrylic vessel Simultaneously measure 3 channels

- SNO concludes neutrino oscillation is the solution of solar neutrino problem

 v_e + d → p + p + e - charged current (CC) - only sensitive to v_e

 $v_x + d \rightarrow p + n + v_x$ - neutral current (NC) - sensitive to all flavors

 $v_e + e \rightarrow v_e + e$ - elastic scattering (ES) - sensitive to all flavors

Liquid scintillator detector

- Measure reactor electron anti-neutrinos from reactors from all over Japan anti-v_e + p \rightarrow e⁺ + n , n + p \rightarrow d + γ (2.2 MeV)

Liquid scintillator detector

- Measure reactor electron anti-neutrinos from reactors from all over Japan

anti- $v_e + p \rightarrow e^+ + n$, $n + p \rightarrow d + \gamma$ (2.2 MeV)

Liquid scintillator detector

- Measure reactor electron anti-neutrinos from reactors from all over Japan

anti- $v_e + p \rightarrow e^+ + n$, $n + p \rightarrow d + \gamma$ (2.2 MeV)

- First evidence of reactor neutrino oscillations
- Solar neutrino parameters are fixed

Liquid scintillator detector

- Measure reactor electron anti-neutrinos from reactors from all over Japan

anti- $v_e + p \rightarrow e^+ + n$, $n + p \rightarrow d + \gamma$ (2.2 MeV)

- First evidence of reactor neutrino oscillations
- Solar neutrino parameters are fixed
- Result shows nice oscillatory shape

Liquid scintillator detector

- Measure reactor electron anti-neutrinos from reactors from all over Japan

anti- v_e + p \rightarrow e⁺ + n , n + p \rightarrow d + γ (2.2 MeV)

- First evidence of reactor neutrino oscillations
- Solar neutrino parameters are fixed
- Result shows nice oscillatory shape
- Nonzero θ_{13} makes agreement with solar data better...

2. 1998-2004

2 major problems are solved

- Super-Kamiokande solved atmospheric neutrino anomaly
- SNO solved solar neutrino problem

KamLAND nailed down there was only 1 oscillation parameter set to explain solar neutrino oscillation in 2 massive neutrino oscillation model

A lot of exotic models are killed

- Models to explain atmospheric neutrino anomaly are mostly dead (neutrino decay, neutrino decoherence, Lorentz violation, etc)

- Models to explain solar neutrino anomaly are mostly dead (large neutrino magnetic moment, etc)

- It was the biggest genocide time for phenomenologists. These days phenomenologists look for second order effects in data

2.2005-2011

2. K2K experiment

First long baseline neutrino oscillation experiment

- ~1.3GeV muon neutrinos over 250km

18

- ~3GeV muon neutrinos and muon anti-neutrinos over 735km

- Due to B-field, neutrino and anti-neutrino interactions are separated

2. MINOS

Magnetized detector

- ~3GeV muon neutrinos and muon anti-neutrinos over 735km
- Due to B-field, neutrino and anti-neutrino interactions are separated
- First direct measurement of anti-neutrino oscillation parameter consistent only 2%

2. MINOS

Magnetized detector

- ~3GeV muon neutrinos and muon anti-neutrinos over 735km
- Due to B-field, neutrino and anti-neutrino interactions are separated
- First direct measurement of anti-neutrino oscillation parameter consistent only 2%
- Final data show no anomalies, neutrino and anti-neutrino data are consistent (one and only one neutrino oscillation experiment with magnetized far detector)

2. Borexino

⁷Be solar neutrino

- high pure liquid scintillator detector to detector low energy (=7Be solar neutrino)
- Pre-borexino \rightarrow MSW was about right, but not quite right

Barger et al, PLB617(2008)78 TK,Kostelecky,Tayloe,PRD74(2006)105009

2. Borexino

⁷Be solar neutrino

- high pure liquid scintillator detector to detector low energy (=7Be solar neutrino)
- Pre-borexino \rightarrow MSW was about right, but not quite right
- Borexino 7Be, and pep measurement agree with MSW prediction

Borexino, PRL101(2008)091302;108(2012)051302 Volpe, Ann. Phys. 525 (2013) 588

2. Borexino

⁷Be solar neutrino

- high pure liquid scintillator detector to detector low energy (=7Be solar neutrino)
- Pre-borexino \rightarrow MSW was about right, but not quite right
- Borexino 7Be, and pep measurement agree with MSW prediction

2. Borexino (2020)

CNO neutrino

- Sub-dominant heat production mechanism in the Sun (but the main heat production for all other massive stars)

- Finally, we confirmed why stars are bright!

katori@fnal.gov

2.2005-2011

Neutrino oscillation physics is getting into precision era

- neutrino and anti-neutrino oscillation parameters are tested
- 2 massive neutrino oscillation models are established (θ_{solar} , Δm^2_{solar} , θ_{atm} , Δm^2_{atm})

Almost all alternative exotic models are killed, neutrino oscillations are due to neutrino masses, and all exotic effects are secondary effects

- non-standard interaction
- sterile neutrino mixing
- Lorentz violation
- decay, decoherence, extra-dimension, etc

2.2012-2020

	2012	2013	2014	2015	2016	2017	2018	2019	2020
solar neutrino	Borexino pep neutrino agrees with MSW			McDonald won the Nobel prize					Borexino measures CNO neutrinos
reactor neutrino	θ ₁₃ is measured - Double Chooz - Daya Bay - Reno								
atmospheric neutrino		Super-K v_{τ} appearance result		Kajita won the Nobel prize			Hint of normal mass ordering by SuperK?		
accelerator neutrino	T2K v _e appearance result	MiniBooNE keeps showing anomalous excess							Hint of large CP violation by T2K?
TZINIC'S									

Albright, ArXiv:0905.0146 Fogli et al,PRL101(2008)141801

2. Discovery of nonzero θ_{13}

T2K, Double Chooz, Daya Bay, Reno

- θ_{13} was truly unknown parameter
- there was a "hint" from Solar-KamLAND tension

Double Chooz,PRL108(2012)131801; DayaBay,PRL108(2012)171803; Reno,108(2012)191802 Daya Bay, PRL112(2014)061801, T2K, PRL112(2014)061802

2. Discovery of nonzero θ_{13}

T2K, Double Chooz, Daya Bay, Reno

- θ_{13} was truly unknown parameter
- there was a "hint" from Solar-KamLAND tension
- nature was too kind for us!
 - anti- v_e reactor disappearance
 - $v_{\mu} \rightarrow v_{e}$ long baseline neutrino oscillation

Double Chooz,PRL108(2012)131801; DayaBay,PRL108(2012)171803; Reno,108(2012)191802 Daya Bay, PRL112(2014)061801, T2K, PRL112(2014)061802

2. Discovery of nonzero θ_{13}

T2K, Double Chooz, Daya Bay, Reno

- θ_{13} was truly unknown parameter
- there was a "hint" from Solar-KamLAND tension
- nature was too kind for us!
 - anti- ν_{e} reactor disappearance
 - $v_{\mu} \rightarrow v_{e}$ long baseline neutrino oscillation
- nonzero $\theta_{13} \rightarrow$ leptonic CP violation

$$P_{\rm sur} \approx 1 - \sin^2 2\theta_{13} \sin^2 (1.267 \Delta m_{31}^2 L/E)$$

Neutrino Physics takes center stage!

BREAKTHROUGH PRIZE

- Koichiro Nishikawa (K2K and T2K)
- Atsuto Suzuki (KamLAND)
- Kam-Biu Luk (Daya Bay
- Yifang Wang (Daya Bay
- Art McDonald (SNO)
- Yoichiro Suzuki (Super-Kamiokande)
- Takaaki Kajita (Super-Kamiokande)

The Nobel Prize in Physics 2015 Takaaki Kajita, Arthur B. McDonald

Share this: f 📴 🗾 🛨 🔤 1.6K

The Nobel Prize in Physics 2015

Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2

Photo: K. McFarlane. Queen's University /SNOLAB Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino* ^{1.gov} oscillations, which shows that neutrinos have mass"

katori@fna

T2K, Nature 580 (2020) 339

2. Toward leptonic CP violation search

3-flavor neutrino oscillation

It is no longer adequate to use 2 neutrino oscillation model, it must be 3 neutrinos

 $\begin{array}{l} \text{...including high-order term to look for mass ordering} \\ P(\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e}) \\ \approx 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\phi_{31} \left[1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2s_{13}^{2})\right] \\ \stackrel{(+)}{=} 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\phi_{32}\sin\phi_{31}\sin\phi_{21}\sin\delta_{CP} \\ \stackrel{(+)}{=} 8c_{13}^{2}s_{13}^{2}s_{23}^{2}(1 - 2s_{13}^{2})\frac{aL}{4E}\cos\phi_{32}\sin\phi_{31} \\ + (CP\text{-even, solar terms}), \end{array}$ (1)

JUNO mass-ordering search

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

$$\Delta_{ij} = 1.27 \Delta m_{ij}^2 L/E$$

T2K, Nature 580 (2020) 339 T2K, Nature 580 (2020) 339 **2. T2K (2020)**

Indication of nonzero dCP

- T2K observe too many electron neutrinos
- → upper octant+NMO+large negative dCP

2. NOvA (2020)

Indication of nonzero dCP?

- T2K observe too many electron neutrinos
- → upper octant+NMO+large negative dCP
- NOvA observed moderate signals in both electron neutrinos and antineutrinos

Nakajima (SuperK), Neutrino 2020

2. Super-Kamiokande (2020)

State-of-the-art solar neutrino physics

- No upturn of ⁸B solar neutrino (no evidence of MSW transition)
- 1.9 signal of day-night effect (no definitive earth matter effect)
- Solar-KamLAND tension is reduced (no sign of new physics)

Parke and Ross-Lonergan, PRD93(2016)113009 IceCube, PRD99(2019)032007

2. Non-unitarity of PMNS matrix (2020)

Precision era of neutrino physics

- Without unitarity, some PMNS elements have large error
- It looks tau neutrino appearance $(v_{\mu} \rightarrow v_{\tau})$ is the most important channel
- tau neutrinos are not easy to measure

2. Neutrino physics 2020

Neutrino Standard Model (vSM)

- SM + 3 active massive neutrinos

Unknown parameters of vSM

- Dirac CP phase
- θ_{23} (θ_{23} =40° and 50° are same for sin2 θ_{23} , but not for sin θ_{23})
- order of mass (normal ordering $m_1 < m_2 < m_3$ or inverted ordering $m_3 < m_1 < m_2$)
- Majorana phases
- Dirac or Majorana

- not relevant to neutrino oscillation experiment?
- absolute neutrino mass

Unmeasured effects

- Upturn of ⁸B solar neutrino
- Solar neutrino day-night effect
- PMNS matrix unitarity

Very few unsolved anomalies

- Solar-KamLAND tension
- LSND signal
- MiniBooNE signal
- Reactor anomaly
- Gallium anomaly

motivation of 1eV scale sterile neutrino

Short-Baseline Neutrino Anomalies

PRC83(2011)065504 (3.0σ) Gallium Anomaly

LSND excess

PRD64(2001)112007 (3.8o)

PRC83(2011)054615 (2.5o) Reactor Anomalies

MiniBooNE excess

PRL121(2018)221801 (4.7σ)

Short-Baseline Neutrino Anomalies

19)542 (3.0σ → 2.3σ)

BEST

Gallium Anomaly

LSND excess

PRD64(2001)112007 (3.8o)

JSNS²

Null results from PROSPECT, PRL122(2019)251801 STEREO, ArXiv:1912.06582 DANSS, ArXiv:1911.101 NEOS, PRL118(2017)121802 (positive result from Neutrino-4 JETP Lett.109(2019)213)

Reactor Anomalies

MiniBooNE excess

PRL121(2018)221801 (4.7σ)

MicroBooNE

https://microboone.fnal.gov

http://research.kek.jp/group/mlfnu/eng/

2. MiniBooNE (2020)

MiniBooNE final oscillation result

- Full statistics of 17 years data
- More excess at low energy (4.8σ)
- Both timing and coordinate distributions are consistent with $v_{\mu} \rightarrow v_{e}$ oscillation signal...

2. Conclusions

Neutrino oscillation physics show series of discoveries in the last 20 years.

Very few anomalies left (sorry for phenomenologists!), and all exotic processes are sub-dominant.

Current unknown parameters of vSM are

- δ_{CP}
- θ₂₃
- mass ordering.
- Majorana phase
- Dirac or Majorana
- Absolute neutrino mass

Unmeasured effects - Upturn of ⁸B solar neutrino - Solar neutrino day-night effect - PMNS matrix unitarity

1. Neutrino oscillations

2. History of neutrino oscillation

3. T2K neutrino oscillation experiments

4. Current and future neutrino experiments

5. Neutrino astronomy

6. Conclusion

3. Neutrino oscillations for CP violation measurement

Keep the first order of CP violation for muon neutrino to electron neutrino oscillation Jarlskog invariant

(1)

 $J_{\text{CP,I}} = \frac{1}{8} \cos\theta_{13} \sin(2\theta_{12}) \sin(2\theta_{23}) \sin(2\theta_{13}) \sin\delta_{\text{CP}}$

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}(2\theta_{13})\sin^{2}\theta_{23}\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$
- Neutrino
+ Antineutrino
$$= \frac{1.27\Delta m_{21}^{2}L}{E} 8J_{CP}\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$

If there is no CP violation, $P(v_{\mu} \rightarrow v_{e})$ and $P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$ are the same

(2) Expected oscillation probability to measure δ_{CP} is small

3. Neutrino oscillation experiment

Super-Kamiokande detector (far detector)

3.1. Neutrino beam

3.2. Neutrino detector

3.3. Neutrino interaction physics

3.4. Oscillation result

RCS (Rapid Cycling Synchrotron) - 3 GeV

Main Ring - 30 GeV

То

Kamioka

LINAC

14

Neutrino

- 400 MeV

TH

-

T2K, PRD87(2013)012001, 93(2016)012006

3.1. Neutrino beamline

Primary beamline

- 30 GeV protons are extracted from MR by superconducting magnets

- 1 pulse contains 8 bunches in ~5us, about ~2.5E14 ppp (protons per pulse) with 2.48 sec period

This is the sound of neutrinos!

T2K, PRD87(2013)012001, NIMA789(2015)57

3.1. Neutrino beamline

Secondary beamline

- Protons collide the graphite target (in the Horn 1) to produce mesons, and these mesons decay in the decay volume to produce neutrinos (decay-in-flight).

- In neutrino mode, 3 magnetic horns focus positive mesons and defocus negative mesons to produce neutrino beam (flux \sim x17). In antineutrino mode, horn current is reversed to focus negative mesons.

Horn 3 test (250 kA, ~1.7 T)

T2K, PRD87(2013)012001 NA61/SHINE, EPJC76(2016)84 3.1. Neutrino beamline

Off-axis beam

- 2.5° off-axis to make ~0.6 GeV narrow band beam

CERN NA61/SHINE

- Hadron production at the target is simulated with the data from the hadron measurement

 $P(\nu_{\mu} \to \nu_{\mu})$

0.5

 $\sin^2 2\theta_{23} = 1.0$

 $\Delta m_{32}^2 = 2.4 \times 10^{-3} \,\mathrm{eV}^2$

OA 0.0°

OA 2.0°

OA 2.5°

'447,

T2K, PRD87(2013)012001 Vladisavljevic (T2K), NuInt18 **3.1. Neutrino beamline**

2009 - 2018 data

- Neutrino mode, 1.49E21 POT
- Antineutrino mode, 1.64E21 POT

(POT=protons on target)

Accumulated POT

Neutrino flux prediction

- muon neutrino dominant (neutrino mode)
- muon antineutrino dominant (antineutrino mode)
- ~9% error at the flux peak
- replica target NA61/SHINE data can reduce error to ~5%

Beam Power (kW)

3.1. Neutrino beam

3.2. Neutrino detector

3.3. Neutrino interaction physics

3.4. Oscillation result

T2K, NIMA659(2011)106 Oyama (T2K), CNNP2020 **3.2. Near detectors**

INGRID

- on-axis near detector
- Mainly for neutrino flux monitoring

ND280

- off-axis near detector
- Data are used to constrain various systematics

T2K, NIMA659(2011)106, PRL121(2018)171802

3.2. Off-axis detectors

ND280

- P0D: Water-scintillator tracker
- FGD: Fully active scintillator tracker
- TPC: Ar gas TPC
- ECal: Lead-scintillator calorimeter
- SMRD: Iron-scintillator tracker
- UA1 magnet

Near detector data

- 14 samples are used for the oscillation analysis to constrain flux and cross-section systematic errors

3.2. Off-axis detectors

ND280

- P0D: Water-scintillator tracker
- FGD: Fully active scintillator tracker
- TPC: Ar gas TPC
- ECal: Lead-scintillator calorimeter
- SMRD: Iron-scintillator tracker
- UA1 magnet

Near detector data

- 14 samples are used for the oscillation analysis to

constrain flux and cross-section systematic errors/

T2K, NIMA659(2011)106, PRL121(2018)171802

3.2. Off-axis detectors

ND280

- P0D: Water-scintillator tracker
- FGD: Fully active scintillator tracker
- TPC: Ar gas TPC
- ECal: Lead-scintillator calorimeter
- SMRD: Iron-scintillator tracker
- UA1 magnet

Near detector data

- 14 samples are used for the oscillation analysis to constrain flux and cross-section systematic errors

PRELIMINARY

PRELIMINARY

3.2. Far detector

Super-Kamiokande

- 50 kton water Cherenkov detector
- 2015 Nobel prize
- 11,146 20-inch PMTs (inner detector)
- 1,885 8-inch PMTs (outer detector)

Photo-multiplier tube (PMT)

20-inch PMT is quite big...

OD PMT unit - 8-inch PMT - wave-length shifting plate

White Tyvek reflector

87

3.2. Far detector

Event reconstruction

- From measured time and charge information from all PMTs, particle identification (PID) and kinematics are reconstructed

- From reconstructed charged lepton kinematics, neutrino energy is reconstructed

$$E_{\nu}^{QE} = \frac{ME - 0.5m_l^2}{M - E + p\cos\theta}$$

 $v_e(\bar{v}_e)$ measurement has 2 major backgrounds

1. Intrinsic background $v_e(\bar{v}_e)$ contamination in the beam (~0.5%)

2. misID background

Gamma rays counted as electron (positron). Majority of them are from neutral current π^{o} production where one of γ is undetected

$$\nu_{\mu} + A \to \nu_{\mu} + A' + \pi^{o}, \pi^{o} \to \gamma + \mathbf{X}$$

3.1. Neutrino beam

3.2. Neutrino detector

3.3. Neutrino interaction physics

3.4. Oscillation result

3.3. Charged current quasi-elastic (CCQE) scattering

Event reconstruction

- From measured time and charge information from all PMTs, particle identification (PID) and kinematics are reconstructed

- From reconstructed charged lepton kinematics, neutrino energy is reconstructed

$$E_{\nu}^{QE} = \frac{ME - 0.5m_l^2}{M - E + pcos\theta}$$

CCQE is the most abundant interaction at ~1 GeV.

Neutrino energy is reconstructed from the observed lepton kinematics

"QE assumption"

1. assuming neutron at rest

2. assuming interaction is CCQE (2-body kinematics)

3.3. CCQE puzzle

Nuclear correlations

- Martini et al pointed out that neutrino interactions around 1 GeV can be modified ~30% by correlated nucleons (2p2h, 2-body current, meson exchange current, etc)

A large community effort (both theorists and experimentalists) to understand the role of nucleon correlations in neutrino interaction physics.

charged lepton

(proton)

cosθ

neutrino

katori@fnal.gov

 $E_{\nu}^{QE} \neq \frac{ME - 0.5m_l^2}{M - E + pcos\theta}$

An explanation of this puzzle

Martini et al, PRC80(2009)065501, TK, Martini, JPhysG45(2017)1

3.3. CCQE puzzle (2020)

Advanced nuclear models can reproduce MiniBooNE CCQE-like data, but there are large systematics errors on nuclear parameters.

Martini – RPA+2p2h Nieves – Valencia 2p2h model SuSA – Superscaling+MEC Giusti – Relativistic Green's function Butkevich – RDWIA+MEC

25

20

15

10

5 0

0

We use Valencia 2p2h model for our simulation

3.3. Neutrino-induced single pion production

Baryon resonant pion production + final state interaction (FSI)

- Neutrino induced pion productions have large errors
- Final state interaction of hadrons have large errors

MINERvA, PRD100(2019)072005 MiniBooNE, PRD83(2011)052009, Lalakulich et al, PRC87(2013)014602 3.3. Pion puzzle (2020)

MINERvA simultaneous fit for 4 different data set

- Most advanced study in this community
- Not conclusive on baryon resonance and FSI models

G. Zeller

GiBUU vs. MiniBooNE CCⁿ° data

Kaboth (T2K), NuPhys2018

3.3. Neutrino interaction physics, external data constraints

We accept large systematic errors on neutrino interaction models

We need to constrain these errors internally, using the data from the ND280 near detector data

PDG (2020)

Section 43. Monte Carlo Neutrino Generators Section 51. Neutrino Cross Section Measurements

NuSTEC (https://nustec.fnal.gov/)

New theory-experiment collaboration to promote neutrino interaction physics

3.1. Neutrino beam

3.2. Neutrino detector

3.3. Neutrino interaction physics

3.4. Oscillation result

3.4. T2K oscillation results

External data give initial guess of crosssection systematics

3.4. T2K oscillation results

Internal data can constrain systematic errors for the event rate (flux x cross-section)

SuperK sample systematic error

sample	Without ND280	With ND280
ν μ-like ring	14.6%	5.1%
ν e-like ring	16.9%	8.8%
ν̄ μ-like ring	12.5%	4.5%
\overline{v} e-like ring	14.4%	7.1%

3.4. T2K oscillation results

SuperK data prefer a model with negative CP violation angle ($\sim -\pi/2$)

- Enhancement of $P(\nu_{\mu} \rightarrow \nu_{e})$
- Suppression of $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

C	1e0de v-mode	1e0de $\bar{\nu}$ -mode	1e1de <i>v</i> -mode
$ u_{\mu} ightarrow u_{e}$	59.0	3.0	5.4
$ar{ u}_{\mu} ightarrow ar{ u}_{e}$	0.4	7.5	0.0
Background	13.8	6.4	1.5
Total predicted	73.2	16.9	6.9
Systematic uncertainty	8.8%	7.1%	18.4%
Data	75	15	15

2009 - 2018 data

- Neutrino mode, 1.49E21 POT
- Antineutrino mode, 1.64E21 POT

T2K, Nature 580 (2020) 339

CP violating phase (δ_{CP})

can take a value between -180° and 180°

Enhance electron neutrino

-90°

appearance

3.4. T2K oscillation results

All oscillation parameters are fit by assuming normal or inverted mass ordering.

- δ_{CP} , sin² θ_{23} , Δm^2_{32} : flat prior
- $\sin^2\theta_{12}$, $\sin^2\theta_{13}$, Δm^2_{21} : external constraint (PDG)

Now the 3σ contour is closed, more data or new **b** generation experiments can find the right value from here (Note, zero CP violation is not rejected with 3σ).

0°

±180°

Disfavored

region at the 3o C.L

← CP symmetric

← CP symmetric

(No neutrino-antineutrino difference)

90°

(No neutrino-antineutrino difference)

Enhance electron

Conclusion

T2K is the second generation long-baseline neutrino oscillation experiment in Japan

Neutrinos from the J-PARC neutrino beam are measured by the Super-Kamiokande detector

2009-2018 data shows asymmetric oscillations, and neutrino oscillation is enhanced, and antineutrino oscillation is suppressed. This can be interpreted as negative CP violation phase.

 δ CP=0 is rejected more than 2σ , and 3σ interval is [-3.41, -0.03] (normal ordering), and [-2.54, -0.32] (inverted ordering)

