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Problem 1

There is a photon detector in front of a very weak pulsed light source. The photon
signal is converted to an electric pulse, then the integrated pulse (=electric charge,
arbitrary unit) is recorded as a signal (1 event). After many hours of exposure, we
obtain a distribution of charge. The detector is very sensitive and it can "count"
individual photons (0 photon, 1 photon, 2 photons, etc). The data shows a large peak
corresponds to "zero detection" (called pedestal). The next moderate mountain
corresponds to a 1 photon detection.

[1] Why does a zero photon peak not deposit 0 charges?

[2] Why 1 photon makes round mountain signal, instead of a sharp peak?

[3] Estimate how many photons are detected on average in this setting.

problem 2

Prove both the binomial distribution  and the Poisson
distribution  are correctly normalized.

B(x, n, p, q) =  nCxpxq(n−x)

P(x, μ) = μxe−μ

x!

1 of 3



Problem 3

A radioactive source decays with decay constant , and thus the probability to
measure count  in time  is distributed with a Poisson distribution,

. This source is stored in the case for a long time, and because
of this now the case itself is activated and emit radiation with decay constant  and
count  in a time . What is the distribution of the total count rate ? is it a Poisson
distribution?

solution, problem 1

[1] Even there is no signal, the computer records integrated electric noise. Therefore
nonzero signal is not nonzero charge. It is an important feature for experiments to
record "zero detection".

[2] There is a number of reasons the data doesn't have a sharp peak, for example,
you can imagine the signal pulse may spread during the propagation, or perhaps part
of signal gets lost and is not quite 1 photon equivalent charge etc..., but all of these
are part of the detector resolution. Every detector has a finite resolution and every
successive measurement causes the distribution to smear out due to the detector
resolution.

[3] The zero measurement can be used to estimate the mean. By eye, the fraction
which are zero detection events (area of distribution left side from the "valley") is
about 1/5 (this is my eye-rolling estimation, you can get different numbers), this is
lower than 0.368 (0 observation probability when the mean is 1), so we can expect
more than 1 photon on average.
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In [8]:

solution, problem 2

solution, problem 3

The probability to measure count  is a product of 2 distribution  and
. Now, sum of  and  should be . By adding all possible ,

The term inside of  is the normalization condition of binomial distribution,
 where , thus,

. The total rate  is Poisson
distribution with decay constant  (addition theorem of Pisson distributed
variables).
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mean= 1.60943791243

import numpy as np
mu=-np.log(1.0/5.0)
print "mean=",mu
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