Radiation Detector 2018/19 (SPA6309), Tutorial 3

© 2019 Teppei Katori
Name:
ID:

Problem 1

There is a photon detector in front of a very weak pulsed light source. The photon signal is converted to an electric pulse, then the integrated pulse (=electric charge, arbitrary unit) is recorded as a signal (1 event). After many hours of exposure, we obtain a distribution of charge. The detector is very sensitive and it can "count" individual photons (0 photon, 1 photon, 2 photons, etc). The data shows a large peak corresponds to "zero detection" (called pedestal). The next moderate mountain corresponds to a 1 photon detection.
[1] Why does a zero photon peak not deposit 0 charges?
[2] Why 1 photon makes round mountain signal, instead of a sharp peak?
[3] Estimate how many photons are detected on average in this setting.

problem 2

Prove both the binomial distribution $B(x, n, p, q)={ }_{n} C_{x} p^{x} q^{(n-x)}$ and the Poisson distribution $P(x, \mu)=\frac{\mu^{x} e^{-\mu}}{x!}$ are correctly normalized.

Problem 3

A radioactive source decays with decay constant λ_{s}, and thus the probability to measure count r_{s} in time t is distributed with a Poisson distribution,
$P\left(r_{s}, \lambda_{s} t\right)=\frac{\left(\lambda_{s} t\right)^{r_{s}} e^{-\lambda_{s} t}}{r_{s}!}$. This source is stored in the case for a long time, and because of this now the case itself is activated and emit radiation with decay constant λ_{b} and count r_{b} in a time t. What is the distribution of the total count rate r ? is it a Poisson distribution?

solution, problem 1

[1] Even there is no signal, the computer records integrated electric noise. Therefore nonzero signal is not nonzero charge. It is an important feature for experiments to record "zero detection".
[2] There is a number of reasons the data doesn't have a sharp peak, for example, you can imagine the signal pulse may spread during the propagation, or perhaps part of signal gets lost and is not quite 1 photon equivalent charge etc..., but all of these are part of the detector resolution. Every detector has a finite resolution and every successive measurement causes the distribution to smear out due to the detector resolution.
[3] The zero measurement can be used to estimate the mean. By eye, the fraction which are zero detection events (area of distribution left side from the "valley") is about $1 / 5$ (this is my eye-rolling estimation, you can get different numbers), this is lower than 0.368 (0 observation probability when the mean is 1), so we can expect more than 1 photon on average.

In [8]: import numpy as np
$m u=-n p . \log (1.0 / 5.0)$
print "mean=", mu
mean $=1.60943791243$
solution, problem 2
$\Sigma_{x=0}^{n} B(x, n, p, q)=\sum_{x=0}^{n}{ }_{n} C_{x} p^{x} q^{(n-x)}$
$={ }_{n} C_{0} p^{0} q^{n}+{ }_{n} C_{1} p^{1} q^{(n-1)}+\cdots+{ }_{n} C_{(n-1)} p^{(n-1)} q^{1}+{ }_{n} C_{n} p^{n} q^{0}$
$=(p+q)^{n}=(p+1-p)^{n}=1$
$\sum_{x=0}^{\infty} P(x, \mu)=\sum_{x=0}^{\infty} \frac{\mu^{x} e^{-\mu}}{x!}$
$=e^{-\mu} \Sigma_{x=0}^{n} \frac{\mu^{x}}{x!}=e^{-\mu} e^{\mu}=1$

solution, problem 3

The probability to measure count r is a product of 2 distribution $P\left(r_{s}, \lambda_{s} t\right)$ and $P\left(r_{b}, \lambda_{b} t\right)$. Now, sum of r_{s} and r_{b} should be r. By adding all possible r_{b},
$P=\sum_{r_{b}=0}^{r} P\left(r-r_{b}, \lambda_{s} t\right) P\left(r_{b}, \lambda_{b} t\right)$
$=\Sigma_{r_{b}=0}^{r} \frac{\left(\lambda_{s} t\right)^{r-r_{b}} e^{-\lambda_{s} t}}{\left(r-r_{b}\right)!} \frac{\left(\lambda_{b} t\right)^{r} e^{r} e^{-r_{b} t}}{r_{b}!}$
$=\frac{1}{r!}\left[\Sigma_{r_{b}=0}^{r} \frac{r!}{\left(r-r_{b}\right)!r_{b}!}\left(\lambda_{s} t\right)^{\left(r-r_{b}\right)}\left(\lambda_{b} t\right)^{r_{b}}\right] e^{-\left(\lambda_{s}+\lambda_{b}\right) t}$
The term inside of [] is the normalization condition of binomial distribution, $B\left(r_{b}, r, \lambda_{s} t, \lambda_{b} t\right)$ where $\sum_{r_{b}=0}^{r} B\left(r_{b}, r, \lambda_{s} t, \lambda_{b} t\right)=\left(\lambda_{s} t+\lambda_{b} t\right)^{r}$, thus,
$P=\frac{1}{r!}\left(\lambda_{s} t+\lambda_{b} t\right)^{r} e^{-\left(\lambda_{s}+\lambda_{b}\right) t}=P\left(r,\left(\lambda_{s}+\lambda_{s}\right) t\right)$. The total rate r is Poisson distribution with decay constant $\lambda_{s}+\lambda_{b}$ (addition theorem of Pisson distributed variables).

