JINST 8 (2013) T07005 https://arxiv.org/abs/1304.0821

SPA6309

Dr. Teppei Katori

Lecture 22 – Detector designing, MicroBooNE PMT system

MicroBooNE PMT system

Dr. Teppei Katori

MicroBooNE PMT system

Dr. Teppei Katori

Motivation – What kind of physics do you want to study? → What kind of detector do you need?

Physics of radiation mechanism – What kind of signal do you expect?

 \rightarrow What is the signature of signal by this detector?

Detector mechanism – What is the character of signal?

- \rightarrow What is the character of background and noise? how to distinguish
- \rightarrow Precise specification of the detector

Signal processing – How to identify the physics you want to study?

 \rightarrow How to observe the phenomena exactly?

Statistics (Lecture 5) Signal transmission (Lecture 7) Signal processing (Lecture 8)

Particle Propagation (Lecture 3,4)

Particle Physics (Lecture 2)

Detector concept (Lecture 6)

Goal of MicroBooNE is to find sterile neutrinos from muon neutrino to electron neutrino oscillations, by detecting single isolated electron/positron in the detector from charged-current weak interaction.

Particle Physics (Lecture 2) Astrophysics Medical application etc

Dr. Teppei Katori

For this purpose, detector is required to

- measure and identify electron/positron
- distinguish it from gamma ray (background)

Therefore, MicroBooNE uses liquid argon time projection chamber (LArTPC)

- it can reconstruct electron/positron and measure their energies.
- it can reject gamma ray background

However, LArTPC is slow detector and other detector needs to tell when interactions happen \rightarrow we need PMT system to measure scintillation light

Physics of radiation mechanism

Scintillation light are generated from argon atoms by ionizations of charged particles.

Particle Propagation (Lecture 3,4) Scintillation (Lecture 9)

We took basic features of ICARUS T600 PMT system design and modified

ICARUS T600 photon detection system

- ETL 12 stage 8-inch bi-alkali PMT with Pt-coating
- 54 of PMTs to cover T300 3.6m x 3.9m x 19.6m volume (~0.5% photo-cathode coverage)
- PMTs are located 5mm behind of collection wire plane
- PMT windows are sand blasted to spray TPB solution
- Negative HV operation, custom made base directly soldered on PMT
- PEEK rod PMT mount

Inside of half module of ICARUS T300

We took basic features of ICARUS T600 PMT system design and modified

ICARUS T600 photon detection system vs MicroBooNE photon detection system - ETL 12 stage 8-inch bi-alkali PMT with Pt-coating

- 54 of PMTs to cover T300 3.6m x 3.9m x 19.6m volume (~0.5% photo-cathode coverage)
- PMTs are located 5mm behind of collection wire plane
- PMT windows are sand blasted to spray TPB solution
- Negative HV operation, custom made base directly soldered on PMT
- PEEK rod PMT mount

We took basic features of ICARUS T600 PMT system design and modified

ICARUS T600 photon detection system vs MicroBooNE photon detection system

- ETL 12 stage 8-inch bi-alkali PMT with Pt-coating
 - → Hamamatsu 8-inch tube
- 54 of PMTs to cover T300 3.6m x 3.9m x 19.6m volume (~0.5% photo-cathode coverage)
 > 0.85% photocathode coverage
- PMTs are located 5mm behind of collection wire plane
 ~20cm behind of collection wire plane
- PMT windows are sand blasted to spray TPB solution

 → TPB plate equipped in front of PMT
- Negative HV operation, custom made base directly soldered on PMT

 positive HV operation
- PEEK rod PMT mount
 > spring loaded wire mount

Designing

PMT unit mechanical model

Each PMT unit consists of 4 pieces

- PMT and base
- TPB plate
- PMT mount
- Cryogenic mu-metal shield

2009/03/09

Designing

PMT unit mechanical model

Each PMT unit consists of 4 pieces

- PMT and base
- TPB plate
- PMT mount
- Cryogenic mu-metal shield

2013/03/21

Material impurity test

PAB S1.AE 311 AR REAL.F CV

8/23/2009 12:00:00 AM Start of Last Week

PAB S1.AE 423 AR REAL.F CV

Oxygen monitor connected to air lock purge

HALO H2O meter (F CV)

Ŧ

0.284

100.00

-

Current

0.000

8/31/2009 8:50:45 AM

0.88

0.000 ppm

17.31 ppb

Ø

Hamamatsu R5912-02mod

- 14 stage high gain, 8-inch hemi-spherical photocathode, Pt-coating
- 32 PMTs to cover 2.5m x 2.4m x 10.6m volume (0.85% photocathode coverage)
- All PMTs are tested at PMT test stand (next)

Cryogenic base

- Metal film resistor, NP0/C0G capacitor, glass reinforced PC board, Teflon cable, etc
- Naked board (LAr is good insulator)
- Positive HV operation \rightarrow One cable carries both signal and HV
- Total heat ~ 0.5W

MicroBooNE PMT base circuit

Hamamatsu R5912-02mod

- 14 stage high gain, 8-inch hemi-spherical photocathode, Pt-coating
- 32 PMTs to cover 2.5m x 2.4m x 10.6m volume (0.85% photocathode coverage)
- All PMTs are tested at PMT test stand (next)

Cryogenic base

- Metal film resistor, NP0/C0G capacitor, glass reinforced PC board, Teflon cable, etc
- Naked board (LAr is good insulator)
- Positive HV operation \rightarrow One cable carries both signal and HV
- Total heat ~ 0.5W

Every PMTs are tested before installation

Signal transmission (Lecture 7) Signal processing (Lecture 8)

Every PMTs are tested before installation

PMT LN2 running with counters - PMT sees cosmic rays, too

Every PMTs are tested before installation

PMT TEST STAND

C.Kendziora 12.21.12

Dr. Teppei Katori

Every PMTs are tested before installation

Lid

- All structures are attached on glass fiber lid
- there are 5 penetrations
- i. LN2 injection
- ii. gas vent
- iii. level sensor
- iv. cable feed-through
- v. light injection system

Fiber is coupled to LED outside of Dewar, sand blasted diffuser illuminate all PMTs

Every PMTs are tested before installation

Lid

- All structures are attached on glass fiber lid
- there are 5 penetrations
- i. LN2 injection
- ii. gas vent
- iii. level sensor
- iv. cable feed-through
- v. light injection system

Fiber is coupled to LED outside of Dewar, sand blasted diffuser illuminate all PMTs

PMT fixture

- In room temperature, PMTs sit on Delrin bottom fixture

- In LN2, PMTs float and fit in Delrin upper fixture
- There is a weight at the bottom of the structure

Every PMTs are tested before installation

chief engineer, Nathan B. fiber injection

optical fiber penetrates (SMA connected to variable LED) lid, and sandblast glass diffuser diffuses light.

light injection system

HV feed-through Commercial SHV feedthrough has 4 pig tails. The connectors are tested with 8kV with gas Argon.

fiber end sand blasted glass diffuser We can control the depth of the fiber and the distance to the diffuser

Radiation Detector

Argon gas G10 HV (8kV) spark protection

Dr. Teppei Katori

Every PMTs are tested before installation

Dr. Teppei Katori

Every PMTs are tested before installation

Basic properties of PMTs are tested

- Long term stability
- Cooling test (how fast to cool down?)
- Noise in cryogenic temperature
- Gain change in cryogenic temperature

Statistics (Lecture 5)

Tetra-Phenyl Butadiene (TPB)

Scintillation of liquid argon is not visible by PMTs

TPB (tetraphenyl butadiene)

- convert 128nm to blue (efficiency > 100%?!)
- degrade by UV light (possibly by humidity, too)

Testing TPB plate

Scintillation of liquid argon is not visible by PMTs

TPB (tetraphenyl butadiene)

- convert 128nm to blue (efficiency > 100%?!)
- degrade by UV light (possibly by humidity, too)

Dr. Teppei Katori

PMT sits in spring-loaded structure

- avoid direct glass-metal contact by teflon
- cryogenic magnetic shield

Dr. Teppei Katori

PMT sits in spring-loaded structure

- avoid direct glass-metal contact by teflon
- cryogenic magnetic shield

Dr. Teppei Katori

Cryogenic magnetic shield

Frame design

In ICARUS, PMTs need to be installed first, and sit months \rightarrow there is a worry of degradation of TPB coating...

Oil-free linear (Thomson) bearing

- Racks slide in and out by Teflon coated Thomson bearing
- PMTs can be installed after TPC is installed

Installation

Always fun part...

First light (cosmic rays?) seen by MicroBooNE PMT system - coincidence of 2 PMTs

Summary

Designing of an experiment (sub-detector)

- 1. Motivation
- 2. Physics of radiation mechanism
- 3. Detector design
- Detector mechanism
- specification
- 4. Performance