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Basics of probability theory (Leo, 4.1)

The box describes entire universe, and the circle describes the set , the
intersection of 2 sets  and  is written , and union of 2 sets is written .
Define the probability to be  is , and the probability of  is , then the
probability of  is

which can be understood graphically.

e.g.) Array of identical detectors

There is a detector which can detect a certain phenomenon with 93% probability. We
prepare an array of 4 identical detectors, A, B, C, and D, and all are looking for the
same new phenomenon at the same location. If you require the coincidence of all 4
detectors, the total efficiency is 

In [7]:

A
A B A ∩ B A ∪ B
A P(A) B P(B)

A ∪ B

P(A ∪ B) + P(A) + P(B) − P(A ∩ B)

P(A ∩ B ∩ C ∩ D) = P(A) ⋅ P(B) ⋅ P(C) ⋅ P(D)

the total efficiency of the detector array is 0.74805201

p=0.93
print "the total efficiency of the detector array is",p*p*p*p
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Thus, detection efficiency is lower than a single detector. On the other hand, if you
lose the detection condition, for example, first we ask either A or B detects the
phenomenon. Second, we ask either C or D detects the phenomenon. And then we
ask the coincidence of them. Namely,

In [9]:

The detection efficiency changes depending on how to set the trigger condition.

A probability density distribution (PDF) P(x) is a distribution function of , and
normalized to be 1 in the universe.

mode is defined where the distribution makes the local peak. On the other hand,
median is defined where cumulative distribution is 50%.

P((A ∪ B) ∩ (C ∪ D)) = (P(A) + P(B) − P(A ∩ B)) ⋅ (P(C) + P(D) − P(C ∩ D))

x

P(x)dx = 1∫ ∞−∞

P(x)dx = 0.5∫ median−∞

the total efficiency of the detector array is 0.99022401

print "the total efficiency of the detector array is",(p+p-p*p)**
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mean ( , or the expectation value of x) is defined by (eq. 4.5)

The sample mean is the estimation of mean from series of measurement  (eq.
4.49)

An important concept is a variance ( ), where  is the standard deviation, often
used as the error of x (eq. 4.9),

Also,

The sample variance is the estimation of variance from series of measurement 
(eq. 4.52)

Please notice weird factor  instead of !

e.g.) Error comes from square trigger scintillator

In experiments, trigger is the concept to define data taking condition. There is an
experiment to measure particle beam passing through a device. The beam size must
be , but it is impossible to make a beam exactly . Instead, one could
place a scintillator with  area in front of the device, and record data only if this
scintillator (assuming 100% efficiency) detect particles passing through. Question,
what is the error for such scintillator? Here, use a coordinate where the origin is the
centre of the scintillator, then PDF can be defined , thus,

Therefore, such trigger adds an error of  on the beam position.

μ

xP(x)dx = μ = E[x]∫ ∞−∞

xi

=   ∼  μμ̂  1
n ∑

n
i=1 xi

σ2 σ

(x − μ P(x)dx = E[(x − μ ] =∫ ∞−∞ )2 )2 σ2

∫ (x − μ P(x)dx = ∫ ( − 2xμ + )P(x)dx = E[ ] − 2E[x]μ + = E[ ] −)2 x2 μ2 x2 μ2 x2 μ
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Bayes' theorem
The conditional probability of A with given B is . This is related to the
conditional probability of B with given A.

.

Most importantly, . Namely "the probability to get a king when you
get a spade (1/13)" is different from " the probability to get a spade when you get a
king (1/4)". This sounds damn and unmistakable, but many people do mistake in
particle physics.

Let's say, there are  different choices of B, namely , then the sum of
conditional probability will make the probability of A without any condition.

By combining these 2, one can get the conditional probability of  with given .

This is the famous Bayes' theorem.

e.g.) Probability to find a disease from a test

From a study, 0.5% of people in a certain area has a disease
( ). A test shows 97% times positive result ( ) if the
person has the disease ( ), and 0.4% times positive result even
though the person does not have the disease ( ). The probability to
get a positive result, when the person actually has the disease is

So the probability to find the disease by this test (97% times right!) is only 55%. This
sounds counterintuitive, and that's why probability theory is interesting.

In [1]:

P(A|B)

P(A ∩ B) = P(A|B)P(B) = P(B ∩ A) = P(B|A)P(A)

P(A|B) ≠ P(A|B)

n P( ) = 1∑ni Bi

P(A) = P(A| )P( )∑ni Bi Bi

Bi A

P( |A) =Bi
P(A| )P( )Bi Bi

P(A| )P( )∑nj Bj Bj

P( ) = 0.005,  P( ) = 0.995B1 B2 A
P(A| ) = 0.97B1

P(A| ) = 0.004B2

P( |A) = = = 0.55B1
P(A| )P( )B1 B1

P(A| )P( ) + P(A| )P( )B1 B1 B2 B2

0.97 ⋅ 0.005
0.97 ⋅ 0.005 + 0.004 ⋅ 0.995

0.054926387316

print 0.97*0.0005/(0.97*0.005+0.004*0.995)
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Bionial distribution (Leo, 4.2.1)
Say  is the probability of success, and  is the probability of fail . If you try N
times, then the probability to get  times success is described by the binomial
distribution

e.g.) uneven coin toss

There is an uneven coin, where probability to get the head is 40%, and the tail is
60%. What is the probability to get 1 head after 3 tosses?

In [2]:

Poisson distribution (Leo, 4.2.2)

The Poisson distribution describes the distribution of the probability to get  when
the mean is .

p q = 1 − p
r

B(r;N, p)  , = =  combination=N CrprqN−r  NCr
N!

r!(N − r)!

B(1; 3, 0.4) = 3 ⋅ 0.4 ⋅ 0.36 = 43.2%=3 C10.410.62

r
μ

P(r; μ) =
μre−μ

r!

0.432

import math
print math.factorial(3)/math.factorial(1)/math.factorial(3-1)*0.4
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One important feature is , namely, the error of the Poisson distribution is
given by . Notice Poisson distribution is not symmetric. This means expression
like  error doesn't make sense if the statistics are too low. Usually,  is
safe enough to assume Poisson distribution is symmetric.

e.g.) Measurement from zero event

In common sense, zero measurement means nothing. But if you know underlying
distribution, measuring zero is different from not measure. If you know a
phenomenon happen with randomly and distribute with Poisson distribution, one can
derive an interesting result from the measurement of zero. Let's say you are
performing a measurement of some random process, where you measure 0 for 40%
times.

P(0;\mu)=e^{-\mu}=0.40~,~\mu=-ln(0.4)=0.92$

So the expectation value of this process is 0.92. Remarkably, you find this from
measuring zero. "Don't perform measurement" and "performing a measurement and
find zero" are statistically very different!

In [4]:

e.g.) Null result limit (Leo, 4.5.4)

Let's say the mean rate of a process is , which make mean  on a time period 
( ). Then the zero-observation probability during period  is (eq. 4.57),

This can be seen as a PDF of , namely  (extra  is to normalize PDF
to be 1).

Then, the probability to observe a rate  is lower than  is (4.58),

, 

Such probability is called confidence level (CL) and used to make a statistical
statement of a null result. For example, if there is no observation during period T,
90%CL upper limit of  is . For unit length, . 2.3
is another important magic number, namely, when you try to observe something
and you cannot, then the 90%CL upper limit of that phenomenon is 2.3.

= μσ2

μ⎯⎯√
±30% μ > 5

λ μ T
μ = λ ⋅ T T

P(0; λ) = e−λT

λ P(λ) = Te−λT T

λ λ0

P(λ| ) = T dλ = 1 −λ0 ∫ λ00 e−λT e− Tλ0 = − ln(1 − P(λ| ))λ0
1
T

λ0

λ − ln(1 − 0.9)1
T

−ln(1 − 0.9) = 2.3

0.999672340813

import numpy as np
print -np.log(0.368)
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Gaussian distribution (Leo, 4.2.3)

Gaussian distribution is the continuous limit of Poisson distribution. With mean  and
variance ,

Unlike Poisson distribution, Gaussian distribution is always symmetric.  is often
used to show the significance of a measurement. Let's say, you measure The
distribution has 68.3% of area within [ , ], 95.4% within
[ , ], and 99.5% within [ , ]. Therefore, if the signal has "
significance", this means you are  away from not signal, and the chance signal is
by accident is 0.5%. Surprisingly, particle physicists think 0.5% is too large, and
these days they require  significance to claim the "evidence".

e.g.) Statistical error

An experiment measures 10 events of some random process in 1-day data taking.
The statistical error is  (Poisson distribution), and the measurement
can be quoted  and the data is 10/3.16=3.16  away from zero (Gaussian
distribution). The statistical error of the measurement is 31.6%. If you take the data
10 days, the measurement would be  and the statistical error is 10%. The
measurement is now 10  away from nonzero, so the measurement is definitely not
zero. Not surprisingly, fractional statistical error shrinks if you take data longer, or if
you use bigger detector (more events in a certain time period). This is a major reason
why you want to go bigger detectors with longer time period data taking.

Accuracy and Precision

μ
σ2

P(x) = exp (− )1
2πσ2
⎯ ⎯⎯⎯⎯⎯⎯⎯
√

(x−μ)2

2σ 2

σ

μ − 1σ μ + 1σ
μ − 2σ μ + 2σ μ − 3σ μ + 3σ 3 σ

3 σ

5 σ

= 3.16 = σ10⎯ ⎯⎯⎯√
10 ± 3.16 σ

100 ± 10
σ
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