Introduction to Modern Physics 2017/18 (SEF038)

Scale and Unit

© 2017 Teppei Katori

Key words

- Scale and unit
- SI unit
- Joule and MeV

Scale

Physics deal very small to very large objects. Let's go through a quick view of scales from the famous "Power of Ten" a movie (1977) directed by Charles and Ray Eames (1998 selected to USA National Film Regsitry, <u>https://en.wikipedia.org/wiki/Powers_of_Ten_(film (https://en.wikipedia.org/wiki/Powers_of_Ten_(film))</u>).

scale	name	symbol	
10^{0}			
10^{1}	deca	da	
10^{2}	hecto	h	
10 ³	kilo	k	
10 ⁶	mega	М	
10 ⁸			$c = 299,792,458 \text{ m/s} \sim 3 \cdot 10^8 \text{ m/s}$
10 ⁹	giga	G	Radius of the Sun
10^{11}			Solar system
10 ¹²	tera	Т	
1013			Pluto orbit (1930) \rightarrow asteroid (2006)
10 ¹⁵	peta	Р	
10 ¹⁶			$1 lyr = 0.946 \cdot 10^{16} m, 1pc = 3.26 lyr$
10^{18}	exa	Ε	
10^{21}	zetta	Ζ	Milky Way
10 ²⁴	yotta	Y	Limit of vision
10 ²⁶			46 Glyr = Cosmic Microwave Background

Man, the universe is huge! Even tiny Milky Way is much larger than 1 light year! (sorry you have really small chancwe to meet any Aliens). Notice, CMB is from distance 46 Glyr, which means light spend 46 billion years to arrie to the Earth. There is already something strange..., the age of universe is 13.8 billon years? Let's move on smaller scale.

scale	name	symbol	
10 ⁰			
10^{-1}	deci	d	
10^{-2}	centi	с	
10^{-3}	milli	т	
10^{-4}			Human limit
10^{-5}			Human hair
10^{-6}	micro	μ	
10^{-8}			DNA
10^{-9}	nano	n	Molecularsizes
10^{-10}	Ångström	Å	Atom
10^{-12}	pico	р	
10^{-14}			Nucleus
10^{-15}	femto	f	Nucleon
10^{-18}	atto	а	
10^{-21}	zepto	z	
10^{-24}	yopto	У	
10^{-35}			Planck length

Smallest we can reach is something inner structure of nucleon, so 10^{-16} or so, but theory suggest spacetime may be discrete at Planck scale (=size of "strings" of string theory?)

Unit

In our world, we use **SI unit** system (international system of units or "Système international d'unités", I hate French). SI unit is also called **MKSA system** because it includes metre (m), kilogram (kg), second (s), and ampare (A). And all other units are derived from SI units. Science often uses other system, too. For example, physics for small world (including nuclear physics, particle physics, etc) often describes energy with **mega** electron volt (MeV) where $1 MeV = 1.602 \cdot 10^{-13} J$ and $1 MeV/c^2 = 1.782 \cdot 10^{-30}$ kg. Alternatively, CGS system use centi metre (cm), gram (g), and second (s) for the bases of units.

_	Energy	Momentum	Mass
SI unit	$J(kg \cdot m^2/s^2)$	$kg \cdot m/s$	kg
Small world	$MeV (10^6 \ electron \ volt)$	MeV/c	MeV/c^2

SI units

5 of 7 SI units are defined by following way.

Table 1. Present SI base quantities, base units, and definitions		
Base quantity	Base unit	Definition
Time	second	The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom.
Length	meter	The meter is the length of the path traveled by light in vacuum during a time interval of 1/299792458 of a second.
Mass	kilogram	The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
Electric current	ampere	The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per meter of length.
Thermodynamic temperature	kelvin	The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.

However, from 2018, this SI unit will be canned a lot. The main purpose of this is to **remove kilogram**! Below is the list of new SI units. This shift will not affect our dayly lives, but it is crazy to throw away kilogram?! no?

Table 2. New SI base quantities, defining constants, and definitions				
Base quantity	Defining constant	Definition		
Frequency	Δ <i>ν</i> (¹³³ Čs) _{hfs}	The unperturbed ground-state hyperfine splitting frequency of the cesium-133 atom Δv (¹³³ Cs) _{hb} is exactly 9 192 631 770 hertz.		
Velocity	с	The speed of light in vacuum c is exactly 299792458 meter per second.		
Action	h	The Planck constant h is exactly $6.626X \times 10^{-34}$ joule second.		
Electric charge	е	The elementary charge e is exactly $1.602X \times 10^{-19}$ coulomb.		
Heat capacity	k	The Boltzmann constant k is exactly $1.380X \times 10^{-23}$ joule per kelvin.		

Useful numbers

$$h = 6.626 \times 10^{-34} J \cdot s$$

$$c = 2.99792458 \times 10^{8} m/s$$

$$e = 1.602 \times 10^{-19} C$$

$$N_{A} = 6.022 \times 10^{23}$$

$$k_{B} = 1.380 \times 10^{-23} J/K$$

$$\hbar \cdot c = 197 MeV \cdot fm$$

$$G_{N} = 6.674 \times 10^{-11} N \cdot m^{2}/kg^{2}$$

$$1pc = 3.26 lyr$$