Search of Quantum Gravity with Neutrinos: Hawking's Unfulfilled Dream

ICONOCLASTS

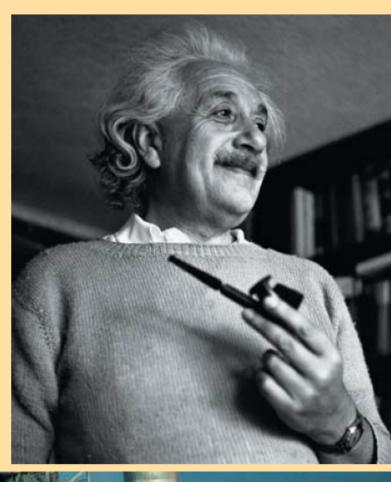
Toppling the Giant

Everyone wants to get a piece of Einstein. Two of the three most

SPECIAL ISSUE

SEPTEMBER 2004

WW SCIAM CON


SCIENTIFIC AMERICAN

For a century, his ideas have reshaped the world. But discover how physicists are now venturing **PERFORMED**

Toward a Theory of Everything Energy That Expands the Cosmos Different Physics, Infinite Universes Does the Speed of Light Change? Computing with Relativity Einstein vs. Newton And More ... itists and science unified theory is to have proved his is: perpetual-motion cannibals seeking the misguided amateurs seem in they will acquire all his disprove is their own

sts. Many serious and ayond Einstein, in the way e accompanying article ital search for departures discusses is based on a n all plausible relativityif particle physics. This ble deviation that could igh-energy pinnacle of the ry.

ty have attracted specific name "doubly special nni Amelino-Camelia of r by Lee Smolin of the n Ontario, João Magueijo

Teppei Katori (@teppeikatori) Queen Mary University of London Pint of Science, The Horseshoe, London May 21, 2019

Search of Quantum Gravity with Neutrinos: Hawking's Unfulfilled Dream

Teppei Katori (@teppeikatori) Queen Mary University of London Pint of Science, The Horseshoe, London May 21, 2019

Search of Quantum Gravity with Neutrinos: Hawking's Unfulfilled Dream

Teppei Katori (@teppeikatori) Queen Mary University of London Pint of Science, The Horseshoe, London May 21, 2019

Emmy Noether (1882-1935)

Mathematician from Germany

Noether's Theorem

"Every conservation law is a consequence of corresponding symmetry"

- conservation of energy
- conservation of electric charge
- prediction of Higgs boson

etc

Conservation of Angular Momentum

Rotating objects keep rotating

Conservation of angular momentum

Isaac Newton

Yulia Lipnitskaya (Russia)

Conservation of Angular Momentum

Rotating objects keep rotating

Conservation of angular momentum

Emmy Noether

Universe has no special direction → Universe has rotational symmetry (Lorentz symmetry)

Yulia Lipnitskaya (Russia)

Isotropy of the Space

(no directionality)

Lorentz Symmetry and Special Relativity

Einstein's theory of special relativity is based on the Lorentz symmetry

Lorentz symmetry is the isotropy of the space-time

If the universe has a special direction Space doesn't have Lorentz symmetry → Lorentz transformation is violated, or Lorentz violation

Angular momentum is not conserved, so Yulia Lipnitskaya cannot spin so much!

Since Yulia Lipnitskaya CAN spin so much, Lorentz violation is very weak effect, even if existed

ightarrow you need very precise measurements to find it

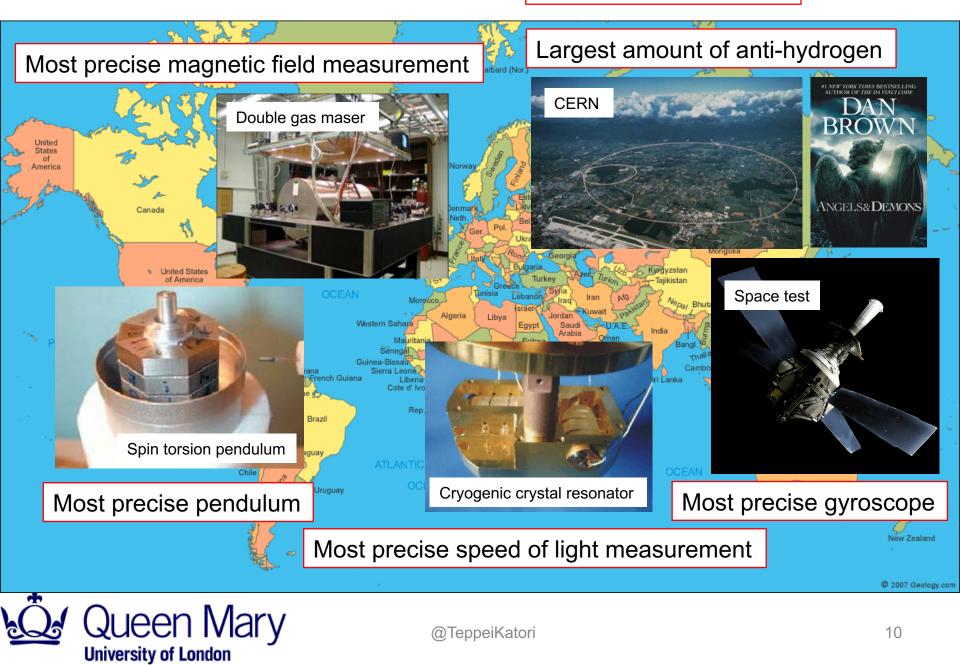
Lorentz Symmetry and Theory of Everything

Quantum Gravity or "Theory of Everything" (such as superstring theory, quantum loop gravity, etc) allow tiny amount of Lorentz violation

 \rightarrow Discovery of Lorentz violation could be the first evidence of Theory of Everything!

Einstein and Lorentz

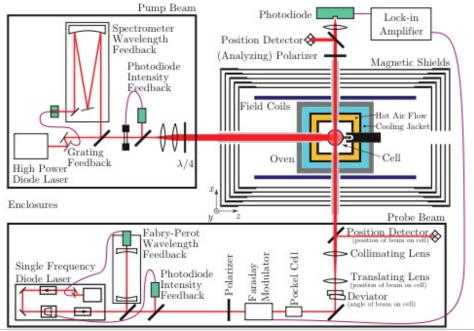
Bluhm, Kostelecky, Lane, Russell PRL 2002


Lorentz violation → Universe has a "direction", and physics law depends on this

http://www.physics.indiana.edu/~kostelec/faq.html

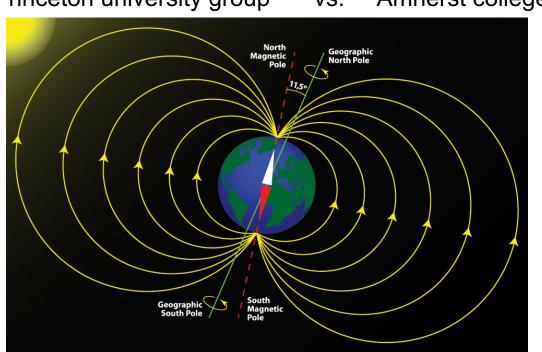
@TeppeiKatori


The race to defeat Einstein


Most precise something

A type of atomic clock very sensitive to a tiny magnetic field

 \rightarrow Lorentz violation is not discovered



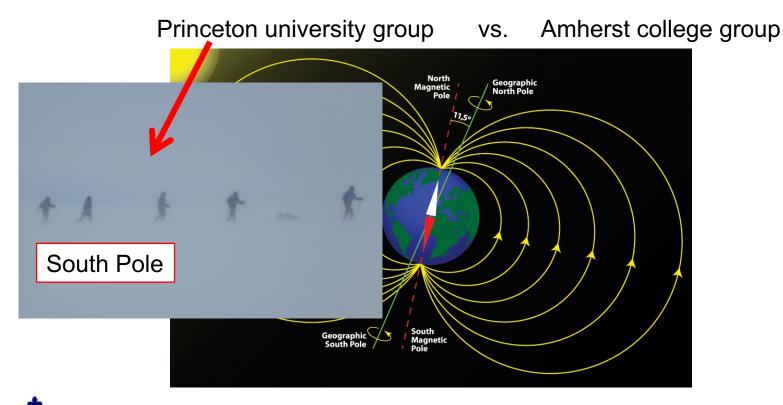
A type of atomic clock very sensitive to a tiny magnetic field

\rightarrow Lorentz violation is not discovered

The Earth magnetic field gives error. To improve sensitivity, scientists want to repeat the measurement at special location on the Earth (special earth magnetic field configuration)

Princeton university group vs. Amherst college group

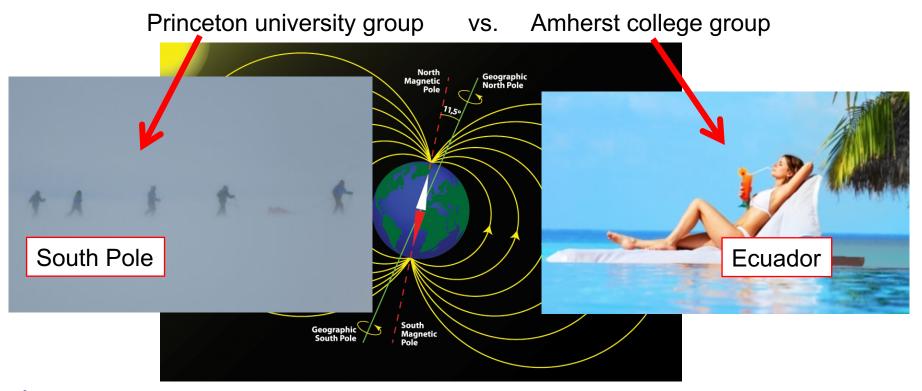
@TeppeiKatori


Jeen Mary

University of London

A type of atomic clock very sensitive to a tiny magnetic field

\rightarrow Lorentz violation is not discovered


The Earth magnetic field gives error. To improve sensitivity, scientists want to repeat the measurement at special location on the Earth (special earth magnetic field configuration)

A type of atomic clock very sensitive to a tiny magnetic field

\rightarrow Lorentz violation is not discovered

The Earth magnetic field gives error. To improve sensitivity, scientists want to repeat the measurement at special location on the Earth (special earth magnetic field configuration)

@TeppeiKatori

The race to defeat Einstein

University of London

Most precise something

@TeppeiKatori

The race to defeat Einstein

										40.	
				т	able S3. Max	imal sensitiv	ities for the p	hoton sector	r		Comb
		- <u>-</u>	d-	3	Coefficient	Sensiti	vity			1 Ve	Comp
ARCTIC OC	EAN	3- 1			$k_{(V)00}^{(3)}$	10-43	GeV			-	1
	ណ្	18-13			k ⁽³⁾ (V)10	10-42	GeV			Svalb	
Table S2. Maxir	nal sensitiviti	es for th			Re k(V)11	10-42	GeV				
Coefficient	Electron	Pro			$\operatorname{Im} k_{(V)11}^{(3)}$	10-42	GeV				
			<i>d</i> –	4	Coefficient	Sensiti	vity Co	efficient	Sensitivity	-	
bx	10-31 GeV	10-33			$(\bar{\kappa}_{a+})^{XY}$	10-32	-	(a_)XY	10-17	-	
by ī	10 ⁻³¹ GeV 10 ⁻²⁹ GeV	10^{-33} 10^{-28}			$(\bar{\kappa}_{a+})^{XZ}$	10-32	6	$(a_{e-})^{XZ}$	10-17	2	$\frac{1}{2}(\bar{b}_T + \bar{d} 2\bar{g}_c)$
b _Z br	10 - Gev 10-26 GeV	10-7			$(\tilde{\kappa}_{e+})^{YZ}$	10-32	6	κ _{α-}) ^{YZ}	10-17		$\frac{1}{2}(2\bar{g}_{c}-\bar{g}_{T}-\bar{b}_{T})$
\tilde{b}_{J}^{*} , $(J = X, Y, Z)$		10		(R.1	$)^{XX} - (\bar{\kappa}_{a+})$		(8 -)X	$X = (\bar{\kappa}_{a-})^{YY}$		rway { { }	2(-32 31 -1
$v_{j}, (s - x, t, z)$	10 400				$(\bar{\kappa}_{e+})^{ZZ}$	10-32		$\bar{\kappa}_{a-})^{ZZ}$	10-16	Tho	ro oro
ē_	10 ⁻²⁰ GeV	10^{-24}								пе	re are
ēg	10-17 GeV	10^{-21}			$(\tilde{\kappa}_{o-})^{XY}$	10^{-32}	(7	$(i_{o+})^{XY}$	10-13	1	
ēx	10 ⁻²¹ GeV	10^{-25}			$(\bar{\kappa}_{\alpha-})^{XZ}$	10^{-32}	(7	$(\tilde{s}_{o+})^{XZ}$	10-14	LOLE	entz vi
ēy	10^{-21} GeV	10^{-25}			$(\bar{\kappa}_{o-})^{YZ}$	10-32	()	$(\tilde{s}_{o+})^{YZ}$	10-14		
ēz	10^{-20} GeV	10^{-24}		$(\bar{\kappa}_{o-}$	$(\tilde{\kappa}_{\alpha-})^{XX} - (\tilde{\kappa}_{\alpha-})$					the	summ
ērx	10 ⁻¹⁸ GeV	10^{-20}			$(\tilde{\kappa}_{o-})^{ZZ}$	10-32		Ř _{tr}	10-14		oanni
ēry	10 ⁻¹⁸ GeV	10^{-20}	Isot	ropic	Coefficient	Sensiti	vity			doc	ument
ē _{TZ}	10 ⁻²⁰ GeV	10^{-20}	_			Table S4.	Maximal sen	sitivities for	the neutrino	uuu	union
ērr	10 ⁻¹⁸ GeV	10-11		d = 3	Coefficient	t eµ	ет	μτ	Coeff		
\bar{d}_+	10 ⁻²⁷ GeV	10-7			$\operatorname{Re}(a_L)^T$	10 ⁻²⁰ GeV	10 ⁻¹⁹ GeV	-	$Im(a_L)$		
<i>d</i> _	10-26 GeV				$\operatorname{Re}(a_L)^X$	10-20 GeV	10 ⁻¹⁹ GeV	$10^{-23} {\rm GeV}$	$\operatorname{Im}(a_L)$	h	ut nob
đo	10-26 GeV	10-7			$\operatorname{Re}(a_L)^Y$	10-21 GeV	10 ⁻¹⁹ GeV	10-23 GeV	Im (a _L		
dxy	10-26 GeV				$\operatorname{Re}(a_L)^Z$	10 ⁻¹⁹ GeV	10 ⁻¹⁹ GeV	-	$\operatorname{Im}(a_L)$	10 - G	ev 10 Gev
dyz	10-26 GeV			d = 4	Coefficient	t eµ	ет	μτ	Coeffi	ient eµ	ет
dzx	10 ⁻²⁶ GeV		_			10-21	10-17	10-23			
d_X	10^{-22} GeV	10 ⁻²⁷ G	eV		$\operatorname{Re}(c_L)^{XY}$				$\operatorname{Im}(c_L)$	YZ 10-21	
dy	10^{-22} GeV	10 ⁻²⁷ G	eV		$\operatorname{Re}(c_L)^{XZ}$	10-21	10 ⁻¹⁷ 10 ⁻¹⁶	10^{-23} 10^{-23}	$\operatorname{Im}(c_L)$	$\frac{XZ}{YZ} = \frac{10^{-21}}{10^{-21}}$	
d_Z	10 ⁻¹⁹ GeV	-			$\operatorname{Re}(c_L)^{YZ}$	10^{-21} 10^{-21}	10-16	10 -23	$\operatorname{Im}(c_L)$	xx 10 ⁻²¹	
					$\operatorname{Re}(c_L)^{XX}$	10 -21	10-16	10-23	$\operatorname{Im}(c_L)$	YY 10 ⁻²¹	
\bar{H}_{XT}	10^{-26} GeV	-			$\operatorname{Re}(c_L)^{YY}$ $\operatorname{Re}(c_L)^{ZZ}$	10-19	10 -16	10 -	$\operatorname{Im}(c_L)$ $\operatorname{Im}(c_L)$	ZZ	10 -16
\tilde{H}_{YT}	10 ⁻²⁶ GeV	-			$Re(c_L)$ $Re(c_L)^{TT}$	10-19	10-17		$\operatorname{Im}(c_L)$ $\operatorname{Im}(c_L)$	TT -	10-17
H_{ZT}	10 ⁻²⁶ GeV	-			$\operatorname{Re}(c_L)^{TX}$	10-22	10-17	10-27	$\operatorname{Im}(c_L)$	rx 10-22	
					$\operatorname{Re}(c_L)^{TY}$	10-22	10-17	10-27	$\operatorname{Im}(c_L)$		
ğr	10^{-27} GeV	10 ⁻⁷ G	eV		$\operatorname{Re}(c_L)^{TZ}$	10-20	10-16	-	$\operatorname{Im}(c_L)$	rz _	10-16
\tilde{g}_{e}	10 ⁻²⁶ GeV	-									
$\bar{g}Q$	-	-		Isotropic	Coef	ficient	Sensitivity		Coe	efficient	Sensitivity
<u>ĝ</u>	-	-			â	(3)	10-7 GeV			â ⁽³⁾	10^{-20} GeV
\tilde{g}_{TJ} , $(J = X, Y, Z)$		-			è	(4)	10-9			$\hat{c}_{a\mu}^{(4)}$	10-19
<u>9xy</u>	10 ⁻¹⁷ GeV 10 ⁻¹⁷ GeV	_			â	(5)	10-18 GeV-1			ā ⁽⁵⁾	10 ⁻¹⁹ GeV ⁻¹
gy x		_			è	(6)	10^{-9} GeV^{-2}			č ⁽⁶⁾	10 ⁻¹⁹ GeV ⁻²
ĝz x	10 ⁻¹⁸ GeV 10 ⁻¹⁷ GeV	_			â	(7)	10-29 GeV-2	1		â ⁽⁷⁾	10 ⁻¹⁹ GeV ⁻³
<u>9x</u> z	10 ⁻¹⁷ GeV 10 ⁻¹⁷ GeV	_			ě	(8)	10-11 GeV-4			č ^(B)	$10^{-18} \text{ GeV}^{-4}$
ĝy z	10 ⁻¹⁸ GeV	_				(P)	10-40 GeV-!	5		ā.(9)	$10^{-18} \text{ GeV}^{-5}$
<u>ĝ</u> zy	10 Gev 1022 GeV	10-27 G	J		ĉ	(10)	10-14 GeV-6	5		2(10) Cap	10 ⁻¹⁸ GeV ⁻⁶
ĝdx ĝdy				10-28 Ge	v 41	•			W		gZX , gZY
9118	10-22 CeV										
<u>ĝ</u> DZ	10 ⁻²² GeV 10 ⁻²² GeV	10 ⁻²⁷ G	ev	10 Ge		J			e	ĝD,	J , (J = X, Y, Z)

Most precise something

		6. Electron sector, $d = 3, 4$ (pa				
630	Table D					
N. M	Combination	Result	System	Ref.		
E	bo	$< 2 \times 10^{-14}~{\rm GeV}$	Cs spectroscopy [30]*, [31]*		
Svalb		$< 2 \times 10^{-12}~{\rm GeV}$	Tl spectroscopy [30]*, [31]*		
		$< 7 \times 10^{-15} \text{ GeV}$	Dy spectroscopy [30]*, [31]*		
	7	Table D6	part 2 of 3)			
	$\bar{b}\chi$	Combination	Result		System	Ref.
	bγ	ê ^{UR(4)}	$< 1.5 \times 10^{-15}$	Astrophy	sies	[41]*, [18]*
2	bZ		$> -5 \times 10^{-13}$			[42]*, [18]*
- 1	$\frac{1}{2}(\tilde{b}_{T} + \tilde{d}_{-} - 2\tilde{g}_{c} - 3\tilde{g}_{T} + 0)$		$(-1.3 \text{ to } 0.2) \times 10^{-15}$			[43]*, [18]*
18	$\frac{1}{2}(2\tilde{g}_{c}-\tilde{g}_{T}-\tilde{b}_{T}+4\tilde{d}_{+}-$	2	$> -1.2 \times 10^{-16}$			[44]*, [18]*

are tons of experiments to look for z violation all over the world, and just mmary of all results is a 50 page nent!

nobody found Lorentz violation (so far)

μτ

 10^{-21}

 10^{-21}

 10^{-21}

 10^{-21}

 10^{-21}

 10^{-22}

 10^{-22}

-7 to 4) × 10 ⁻¹⁵	2	[58]*	$\times 10^{-9}$	7
$5 \text{ to } 1.5) \times 10^{-15}$		[58]*	$\times 10^{-9}$	7
-4 to 2) × 10 ⁻¹⁷		[58]*	$\times 10^{-6}$	Nuclear binding energy
$<1.3\times10^{-15}$		[59]*	$\times 10^{-6}$	Cs interferometer
			$\times 10^{-15}$	Collider physics
			× 10 ⁻¹⁴	7
$<2.5\times10^{-15}$		[59]*	× 10 ⁻¹⁵	77
			× 10 ⁻¹³	
			× 10 ⁻¹¹	1S-2S transition
$.8) \times 10^{-27} \text{ GeV}$	Torsion pendulum	[32]	× 10 ⁻¹⁶	Optical, microwave resonat
$(4) \times 10^{-27} \text{ GeV}$		[32]	× 10 ⁻¹⁶	"
$(.9) \times 10^{-27} \text{ GeV}$		[32]	× 10 ⁻¹⁶	
$(2) \times 10^{-27} \text{ GeV}$		[32]	× 10 ⁻¹⁶	7
$< 2 \times 10^{-14}$	Astrophysics	[60]*	× 10 ⁻¹⁶	7
$< 3 \times 10^{-15}$		[60]*		
$< 2 \times 10^{-15}$		[60]*	× 10 ⁻¹⁶	
$< 2 \times 10^{-14}$		[60]*		New 2
$< 7 \times 10^{-15}$		[60]*		New 2
$< 5 imes 10^{-14}$		[60]*		· · · · · · · · · · · · · · · · · · ·
$< 5 \times 10^{-15}$		[60]*		
$< 8 \times 10^{-17}$		[60]*		
$< 10^{-22} \text{ GeV}$	Hg/Cs comparison	[39], [40]*		© 2007
$< 10^{-19} { m GeV}$	Astrophysics	[28]*		
$< 10^{-17} \text{ GeV}$	Astrophysics	[28]*		
$< 10^{-17} \text{ GeV}$		[28]*		
$< 10^{-18} \text{ GeV}$		[28]*		16
$< 10^{-22} \text{ GeV}$	Penning trap	[28]*		10
$< 10^{-22} { m ~GeV}$	Hg/Cs comparison	[39], [40]*		

[49]

[50]

[51]

[52]*

[52]*

52

[52]

[53]*

[54]*

[54]*

[54]*

[54]*

[54]*

Geology.com

Zealand

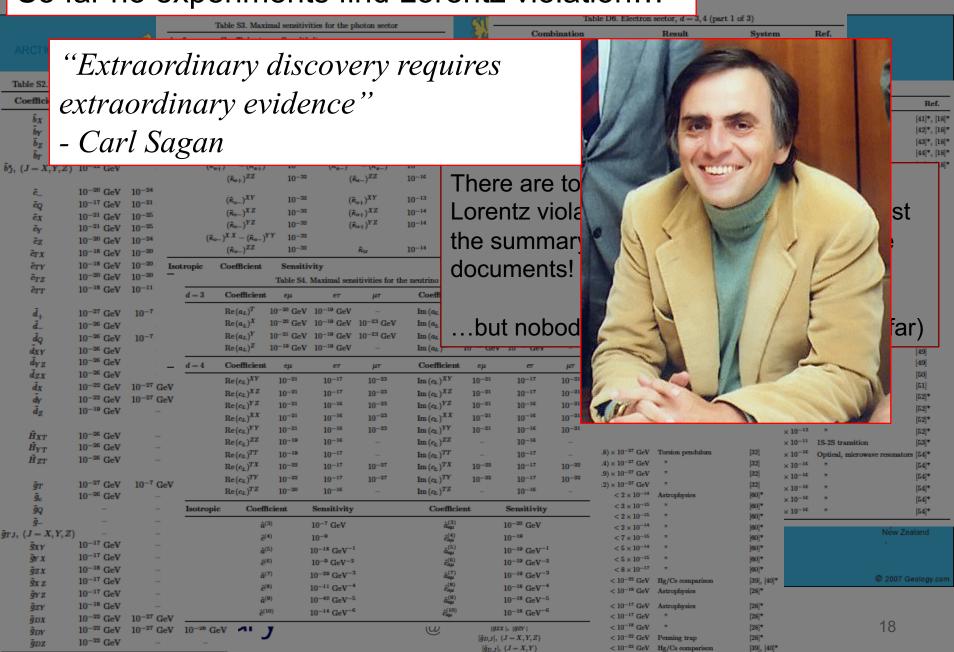
tors [54]*

ost precise something

So far no experiments find Lorentz violation...

									den		Ta	ble D6. Electro
				Table S3. Maxi	imal sensitiv	ities for the p	hoton sector	r		Camb	ination	
		1 de la como de la com	- 3	Coefficient	Sensiti	vity			102		macion	
ARCTIC OC		13° .		$k_{(V)00}^{(3)}$	10-43	GeV			, ć	1	b ₀	
		18 Y		$k_{(V)10}^{(3)}$	10-42	GeV			Svalb		2	
Table S2. Maxi	inal consitiatiti	on for th		$\operatorname{Re} k_{(V)11}^{(3)}$	10-42						7	
-				$\operatorname{Im} k_{(V)11}^{(3)}$	10-42							
Coefficient	Electron	Pre_									bx	Cor
$\bar{b}\chi$	10 ⁻³¹ GeV	10-33 4	- 4	Coefficient	Sensiti		efficient	Sensitivity			by	
by	10^{-31} GeV	10^{-33}		$(\bar{\kappa}_{a+})^{XY}$	10-32		$(a_{-})^{XY}$	10^{-17}			bz	
\bar{b}_Z	10^{-29} GeV	10^{-28}		$(\bar{\kappa}_{a+})^{XZ}$	10^{-32}	(i	i) ^{XZ}	10^{-17}		$\frac{1}{2}(\tilde{b}_T + \tilde{d} 2\tilde{g}_c$		
\bar{b}_T	10^{-26} GeV	10^{-7}		$(\tilde{\kappa}_{e+})^{YZ}$	10-32	(i	$i_{a-})^{YZ}$	10-17	way 1	$\frac{1}{2}(2\tilde{g}_{c}-\tilde{g}_{T}-\tilde{b}_{T})$	+ 4 <i>d</i> _+ -	
\tilde{b}_{J}^{*} , $(J = X, Y, Z)$) 10 ⁻²² GeV		(<i>ĸ</i>	$(\kappa_{a+})^{X X} - (\tilde{\kappa}_{a+})^{Y}$			$(\tilde{\kappa}_{s-})^{YY}$					
				$(\tilde{\kappa}_{e+})^{ZZ}$	10^{-32}	(i	t _{a−}) ^{ZZ}	10-16	The	re are	ton	s of a
ē	10^{-20} GeV	10^{-24}		(-)XV	10-32	<i>(</i> -	XV	10-13			UII	5010
āg	10^{-17} GeV	10^{-21}		$(\tilde{\kappa}_{a-})^{XY}$			(+) ^{XY}		lor	ontz vi	alat	ion o
ēχ	10^{-21} GeV	10^{-25}		$(\bar{\kappa}_{\alpha-})^{XZ}$	10-32		(a+) ^{XZ}	10-14	LOI	entz vi	olat	ion a
ēγ	10^{-21} GeV	10^{-25}		$(\bar{\kappa}_{o-})^{YZ}$	10-32	(/	i₀+) ^{YZ}	10-14				C 11
ēz	10^{-20} GeV	10^{-24}	(κ	$(a_{-})^{XX} - (\bar{\kappa}_{a-})^{Y}$					the	summ	arv	ot all
ērx	10^{-18} GeV	10^{-20}		$(\tilde{\kappa}_{o-})^{ZZ}$	10-32		κ _{tr}	10-14				••••••
ēry	10^{-18} GeV		sotropic	Coefficient	Sensiti	vity			doc	ument	el	
\bar{c}_{TZ}	10^{-20} GeV	10-20	•		Table S4.	Maximal sen	sitivities for	the neutrino	uuu	unicin	.3:	
ērt	10^{-18} GeV	10-11	d = 3	Coefficient	eµ	ET.	117	Coeff				
							P**					
<i>d</i> ₊	10^{-27} GeV	10^{-7}		$\operatorname{Re}(a_L)^T$		10 ⁻¹⁹ GeV 10 ⁻¹⁹ GeV	-	$Im(a_L$				~
<i>d</i>	10^{-26} GeV			$\operatorname{Re}(a_L)^X$				· · ·	b	ut nob	odv	toun
dq	10 ⁻²⁶ GeV	10^{-7}		$\operatorname{Re}(a_L)^Y$ $\operatorname{Re}(a_L)^Z$		10 ⁻¹⁹ GeV 10 ⁻¹⁹ GeV	10 GeV	,			· · ·	
dxy	10 ⁻²⁶ GeV			$\operatorname{Re}(a_L)^Z$	10 Gev	10 Gev	-	$Im(a_L)$	10 0	ev to ~ Gev	_	-7 to 4) × 10 ⁻¹
d_{YZ}	10 ⁻²⁶ GeV	· · · -	<i>d</i> = 4	Coefficient	eµ	ет	μτ	Coeffic	ient eµ	er	μτ	5 to 1.5) × 10 ⁻¹
dzx	10 ⁻²⁶ GeV			$\operatorname{Re}(c_L)^{XY}$	10^{-21}	10-17	10^{-23}	$\operatorname{Im}(c_L)^J$	VY 10 ⁻²	1 10-17	10^{-21}	-4 to 2) × 10 ⁻¹ < 1.3 × 10 ⁻¹
dx	10 ⁻²² GeV			$\operatorname{Re}(c_L)^{XZ}$	10^{-21}	10^{-17}	10^{-23}	$\operatorname{Im}(c_L)^{J}$		1 10-17	10^{-21}	< 1.5 × 10
dy	10 ⁻²² GeV	10^{-27} GeV		$\operatorname{Re}(c_L)^{YZ}$	10^{-21}	10-16	10^{-23}	$Im(c_L)^3$	Z 10 ⁻²	1 10-16	10^{-21}	
d_Z	10 ⁻¹⁹ GeV			$\operatorname{Re}(c_L)^{XX}$	10^{-21}	10-16	10^{-23}	$\operatorname{Im}(c_L)^{J}$	xx 10 ⁻²	1 10-16	10^{-21}	$<2.5\times10^{-1}$
	10-26 10 11			$\operatorname{Re}(c_L)^{YY}$	10^{-21}	10-16	10^{-23}	$\operatorname{Im}(c_L)^{3}$	(Y 10 ⁻²		10^{-21}	
H_{XT}	10-26 GeV			$\operatorname{Re}(c_L)^{ZZ}$	10-19	10^{-16}		$\operatorname{Im}(c_L)^2$	(Z _	10-16		
\tilde{H}_{YT}	10 ⁻²⁶ GeV			$\operatorname{Re}(c_L)^{TT}$	10-19	10-17		$\operatorname{Im}(c_L)^T$		10-17		$.8) \times 10^{-27} \text{ GeV}$
H_{ZT}	10 ⁻²⁶ GeV	-		$\operatorname{Re}(c_L)^{TX}$	10^{-22}	10^{-17}	10^{-27}	$\operatorname{Im}(c_L)^T$		2 10-17	10^{-22}	$(4) \times 10^{-27} \text{ GeV}$
-	10 ⁻²⁷ GeV	10 ⁻⁷ GeV		$\operatorname{Re}(c_L)^{TY}$	10^{-22}	10^{-17}	10^{-27}	$\operatorname{Im}(c_L)^T$		2 10-17	10^{-22}	$(.9) \times 10^{-27} \text{ GeV}$ $(.2) \times 10^{-27} \text{ GeV}$
ĝr	10 - Gev 10-26 GeV	10 · Gev		$\operatorname{Re}(c_L)^{TZ}$	10^{-20}	10^{-16}		$\operatorname{Im}(c_L)^T$	rz _	10-16		$(2) \times 10^{-1}$ GeV $< 2 \times 10^{-1}$
ĝ _e	10 004		Isotrop		Icient	Sensitivity			fficient	Sensitivity		$< 3 \times 10^{-1}$
<u>ĝ</u> q ĝ_			Isotrop									$< 2 \times 10^{-1}$
\tilde{g}_{TJ} , $(J = X, Y, Z)$	0			â		10 ⁻⁷ GeV			ā ⁽³⁾	10^{-20} GeV		$< 2 imes 10^{-1}$
g_{TJ} , $(J = X, T, Z)$ \bar{g}_{XY}	10 ⁻¹⁷ GeV			č		10-9			č(4) Cap	10-19		$< 7 \times 10^{-1}$
9XY <u>9</u> XX	10 GeV			ã		10-18 GeV-1			ā	10 ⁻¹⁹ GeV ⁻¹		$< 5 \times 10^{-1}$ $< 5 \times 10^{-1}$
gr x gz x	10 GeV				6)	10 ⁻⁹ GeV ⁻²			с(6) Саци	$10^{-19} \text{ GeV}^{-2}$		$< 5 \times 10^{-1}$ $< 8 \times 10^{-1}$
gz x ĝx z	10-17 GeV				7)	10-29 GeV-2			ā(7)	10 ⁻¹⁹ GeV ⁻³		< 10 ⁻²² GeV
GA Z GY Z	10-17 GeV			-	8)	10-11 GeV-4			с ^(В)	$10^{-18} \text{ GeV}^{-4}$		$< 10^{-19}$ GeV
97 Z QZY	10 GeV				(D)	10-40 GeV-2			ā(9)	$10^{-18} \text{ GeV}^{-5}$		$< 10^{-17}$ GeV
g _D x	10 GeV	10^{-27} GeV	,	$\hat{c}^{(1)}$	10)	10-14 GeV-6		i	(10) ap	$10^{-18} \text{ GeV}^{-6}$		< 10 ⁻¹⁷ GeV
<u><u></u> <u><u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u></u></u>	10-22 GeV	10-27 GeV		leV 🐴	y			w		gZX , gZY		$< 10^{-18} \text{ GeV}$
g _{DZ}	10-22 GeV	_		-						J , (J = X, Y, Z)		$< 10^{-22}$ GeV
302									j.	$ D_{J,J} , (J = X, Y)$		$< 10^{-22} \text{ GeV}$

630	Table	e D6. Electron sector, $d = 3, 4$ (par	rt 1 of 3)			
tin	Combination	Result	System	Ref.		
E	b ₀	$< 2 \times 10^{-14}~{\rm GeV}$	Cs spectroscopy	[30]*, [31]*		
Svalb		$< 2 \times 10^{-12} \text{ GeV}$	T1 spectroscopy	[30]*, [31]*		
		$< 7 \times 10^{-15} \text{ GeV}$	Dy spectroscopy	[30]*, [31]*		
		Table D6	3. Electron sector, $d = 3, 4$ ((part 2 of 3)		
	δχ	Combination	Result		System	Ref.
	δγ	ć ^{UR(4)}	$< 1.5 \times 10^{-13}$	5 Astrophys	sics	[41]*, [18]*
5	\bar{b}_Z		$> -5 \times 10^{-13}$	2 1		[42]*, [18]*
1	$\frac{1}{2}(\tilde{b}_{T} + \tilde{d}_{-} - 2\tilde{g}_{c} - 3\tilde{g}_{T} + $	•	$(-1.3 \text{ to } 0.2) \times 10^{-13}$	5 8		[43]*, [18]*
18	$rac{1}{2}(2 {ar g}_c - {ar g}_T - {ar b}_T + 4 {ar d}_+ -$		$> -1.2 \times 10^{-16}$	6 7		[44]*, [18]*


There are tons of experiments to look for Lorentz violation all over the world, and just the summary of all results makes 50 page documents!

...but nobody found Lorentz violation (so far)

$\times 10^{-15}$	2	[58]*	1×10^{-9}	7	[49]
$\times 10^{-15}$		[58]*	$\times 10^{-9}$	7	[49]
$\times 10^{-17}$	7	[58]*	1×10^{-6}	Nuclear binding energy	[50]
$\times 10^{-15}$		[59]*	$\times 10^{-6}$	Cs interferometer	[51]
			$\times 10^{-15}$	Collider physics	[52]*
			$\times 10^{-14}$	7	[52]*
× 10 ⁻¹⁵		[59]*	$\times 10^{-15}$	7	[52]*
			× 10 ⁻¹³		[52]*
			× 10 ⁻¹¹	1S-2S transition	[53]*
27 GeV	Torsion pendulum	[32]	× 10 ⁻¹⁶	Optical, microwave reson	ators [54]*
27 GeV		[32]	× 10 ⁻¹⁶	7	[54]*
27 GeV	2	[32]	× 10 ⁻¹⁶	я	[54]*
27 GeV		[32]	× 10 ⁻¹⁶		[54]*
$\times 10^{-14}$	Astrophysics	[60]*	× 10 ⁻¹⁶		[54]*
$\times 10^{-15}$	2	[60]*	× 10 ⁻¹⁶	7	[54]*
$\times 10^{-15}$		[60]*	× 10		[o.e]
$\times 10^{-14}$	2	[60]*		New	Zealand
$\times 10^{-15}$		[60]*			Zealand
× 10 ⁻¹⁴		[60]*			
$\times 10^{-15}$		[60]*			
× 10 ⁻¹⁷		[60]*		.	
22 GeV	Hg/Cs comparison	[39], [40]*		© 200	7 Geology.
19 GeV	Astrophysics	[28]*			
17 GeV	Astrophysics	[28]*			
17 GeV	2	[28]*			
18 GeV	2	[28]*		17	
²² GeV	Penning trap	[28]*			
²² GeV	Hg/Cs comparison	[39], [40]*			

So far no experiments find Lorentz violation...

ost precise something

So far no experiments find Lorentz violation...

ost precise something

Ref.

Ref.

[41]*, [18]* [42]*, [18]*

[43]*, [18]* [44]*, [18]*

st

far)

19

[49] [50] [51] [52]* [52]* [52]* [53]* [54]* [54]* [54]* [54]*

tor, d = 3,4 (part 1 of 3)

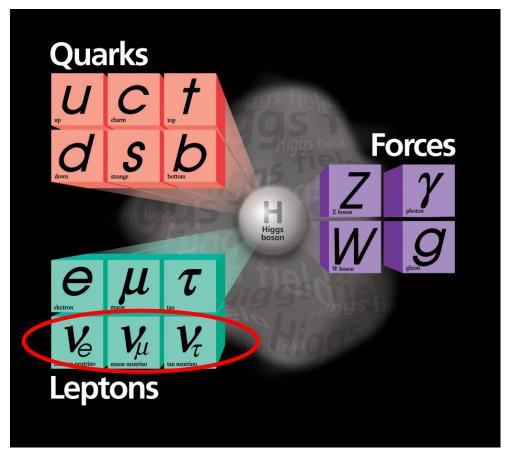
Result

Combination

Table S2 Coeffic δx \tilde{b}_{J}^{*} , $(J = \lambda$ ēx ēy \tilde{c}_Z ēτγ \tilde{c}_{TZ} ērr d+ d dq dxy dyz dzx

"Extraordinary discovery requires extraordinary evidence" - Carl Sagan

"Extraordinary discovery requires extraordinary particles"

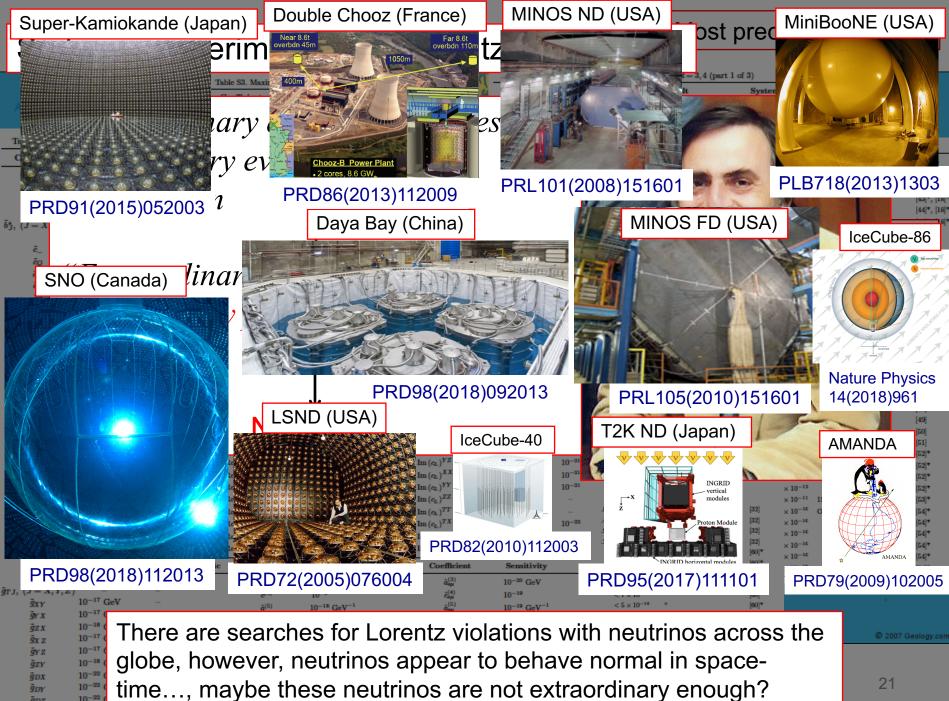

- Teppei

Neutrino!

dy J	10 - GeV 10-19 GeV	10 - Gev	Re	$(c_L)^{YZ}$	10^{-21}	10-16	10^{-23}	$\text{Im}(c_L)^{YZ}$	10^{-21}	10-16	10-21	1 vil		-		
d_Z	10 Gev		Re	$(c_L)^{XX}$	10^{-21}	10-16	10^{-23}	$\operatorname{Im}(c_L)^{XX}$	10^{-21}	10-16	10-21	1900		Th	100	and the second
\bar{H}_{XT}	10 ⁻²⁶ GeV			$(c_L)^{YY}$	10^{-21}	10-16	10^{-23}	$\text{Im}(c_L)^{YY}$	10^{-21}	10-16	10^{-21}				$\times 10^{-13}$	
\tilde{H}_{YT}	10 GeV 10 ⁻²⁶ GeV		Re	$(c_L)^{ZZ}$	10^{-19}	10^{-16}		$\text{Im}(c_L)^{ZZ}$		10-16					$\times 10^{-11}$	1S-2S tran
			Re	$(c_L)^{TT}$	10^{-19}	10^{-17}		$\text{Im}(c_L)^{TT}$		10-17		$.8) \times 10^{-27} \text{ GeV}$	Torsion pendulum	[32]	$\times 10^{-16}$	Optical, n
H_{ZT}	10^{-26} GeV			$(c_L)^{TX}$	10^{-22}	10^{-17}	10^{-27}	$Im(c_L)^{TX}$	10^{-22}	10-17	10^{-22}	$(.4) \times 10^{-27} \text{ GeV}$		[32]	$\times 10^{-16}$	77
				$(c_L)^{TY}$	10^{-22}	10-17	10^{-27}	$Im(c_L)^{TY}$	10^{-22}	10-17	10^{-22}	$.9) \times 10^{-27} \text{ GeV}$		[32]	$ imes 10^{-16}$	7
ğr	10^{-27} GeV	10^{-7} GeV		$(c_L)^{TZ}$	10-20	10-16		$Im (c_L)^{TZ}$		10-16		$.2) \times 10^{-27} \text{ GeV}$		[32]	$\times 10^{-16}$	7
\tilde{g}_c	10^{-26} GeV			·(•£)	10	10		m (cr)		10			Astrophysics	[60]*	$\times 10^{-16}$	7
<u>ā</u> Q			Isotropic	Coef	ficient	Sensitivity		Coefficie	nt	Sensitivity		$< 3 \times 10^{-15}$ $< 2 \times 10^{-15}$		[60]* [60]*	$\times 10^{-16}$	7
\tilde{g}_{-}				â	(3)	10 ⁻⁷ GeV		â(3)		10 ⁻²⁰ GeV		$< 2 \times 10^{-14}$		[60]*		
\tilde{g}_{TJ} , $(J = X, Y, Z)$				÷	(4)	10-9		č(4)		10-19		$< 7 \times 10^{-15}$		[60]*		
\bar{g}_{XY}	10^{-17} GeV	-			(5)	10 ⁻¹⁸ GeV ⁻¹		ā.(5)		10 ⁻¹⁹ GeV ⁻¹		$< 5 \times 10^{-14}$		[60]*		
ĝγ x	10^{-17} GeV				(6)	10 ⁻⁹ GeV ⁻²		С.(6) С.(1)		10 GeV 10 ⁻¹⁹ GeV ⁻²		$< 5 \times 10^{-15}$		[60]*		
ĝz x	10^{-18} GeV	-		-	(7)					10 ⁻¹⁹ GeV ⁻³		$< 8 \times 10^{-17}$	7	[60]*		
ĝx z	10^{-17} GeV	-		-		10 ⁻²⁹ GeV ⁻³		â(7)				$< 10^{-22} { m ~GeV}$	Hg/Cs comparison	[39], [40]*		
ĝy z	10^{-17} GeV			-	(8)	10-11 GeV-4		<i>c</i> _{αμ} ⁽⁸⁾		10 ⁻¹⁸ GeV ⁻⁴		$< 10^{-19} \text{ GeV}$	Astrophysics	[28]*		
ązy	10-18 GeV			â	(P)	$10^{-40} \text{ GeV}^{-5}$		ā(9)		$10^{-18} \text{ GeV}^{-5}$		< 10 ⁻¹⁷ GeV	Astrophysics	[28]*		
2		10^{-27} GeV		ë	10)	10 ⁻¹⁴ GeV ⁻⁶		č., (10)		$10^{-18} \text{ GeV}^{-6}$		$< 10^{-17} \text{ GeV}$		[28]*		
ĝDX T			10-28 GeV	41	*			(U)	10	ZX , <i>gZY</i>		$< 10^{-18} \text{ GeV}$		[28]*		
<u>ĝ</u> DY			10 - Gev	· · · ·)			<u>e</u>		(J - X, Y, Z)			Penning trap	[28]*		
<u>ĝ</u> DZ	10^{-22} GeV	-	_							, (J = X, Y)			Hg/Cs comparison	[39], [40]*		

Search of Lorentz Violation with Neutrinos

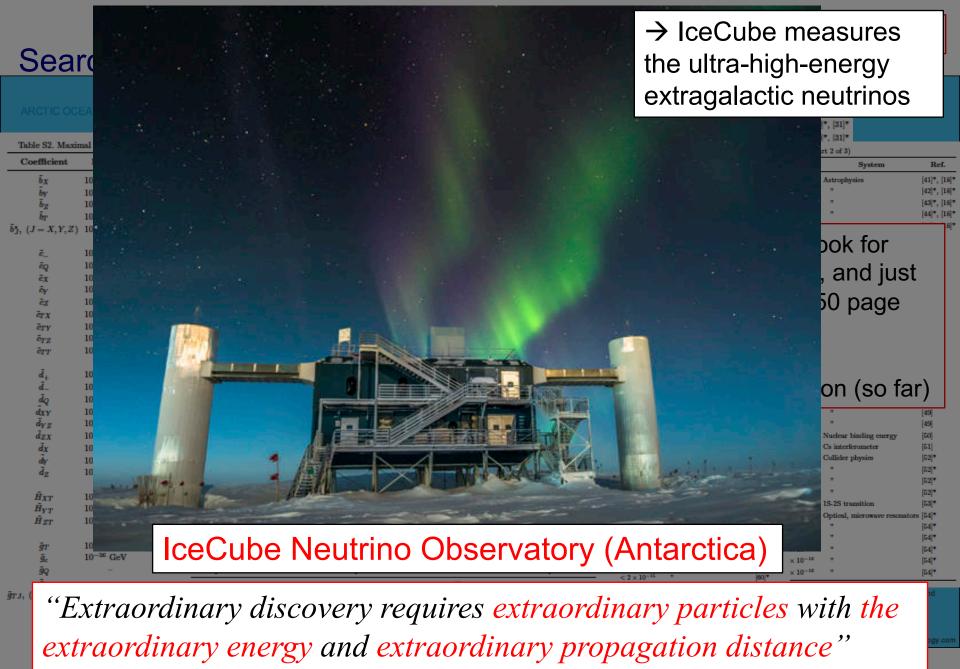
People use ordinary particles to look for Lorentz violation, but cannot find \rightarrow Maybe we should use extraordinary particles, such as neutrinos


Neutrinos

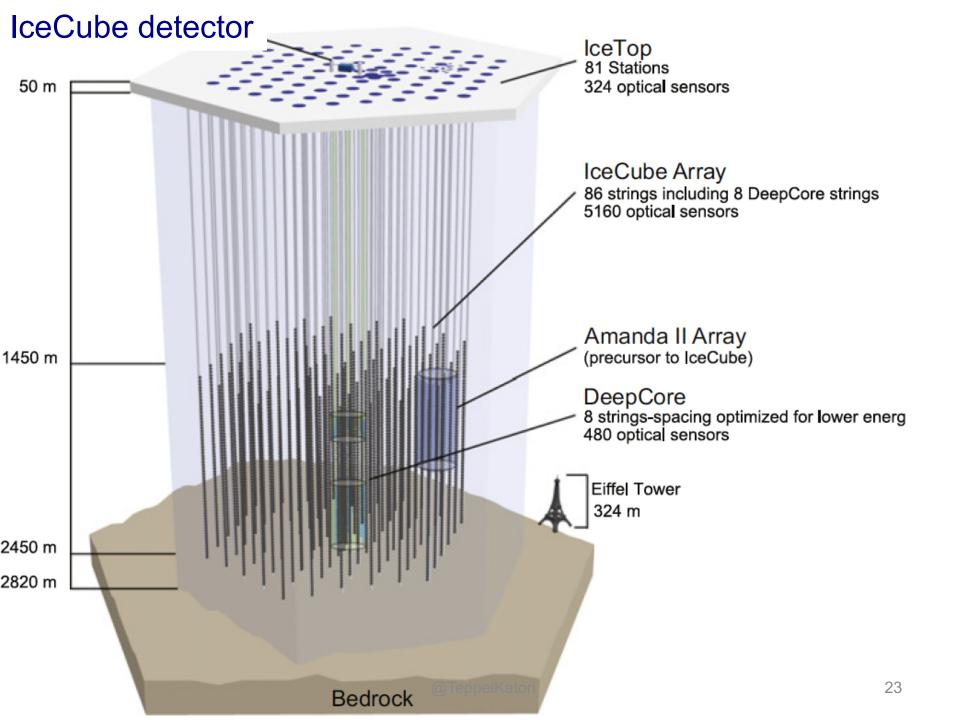
- 3 types
- neutral (no electric charge)
- extremely tiny mass
- second most abundant particles in the universe (after photons)

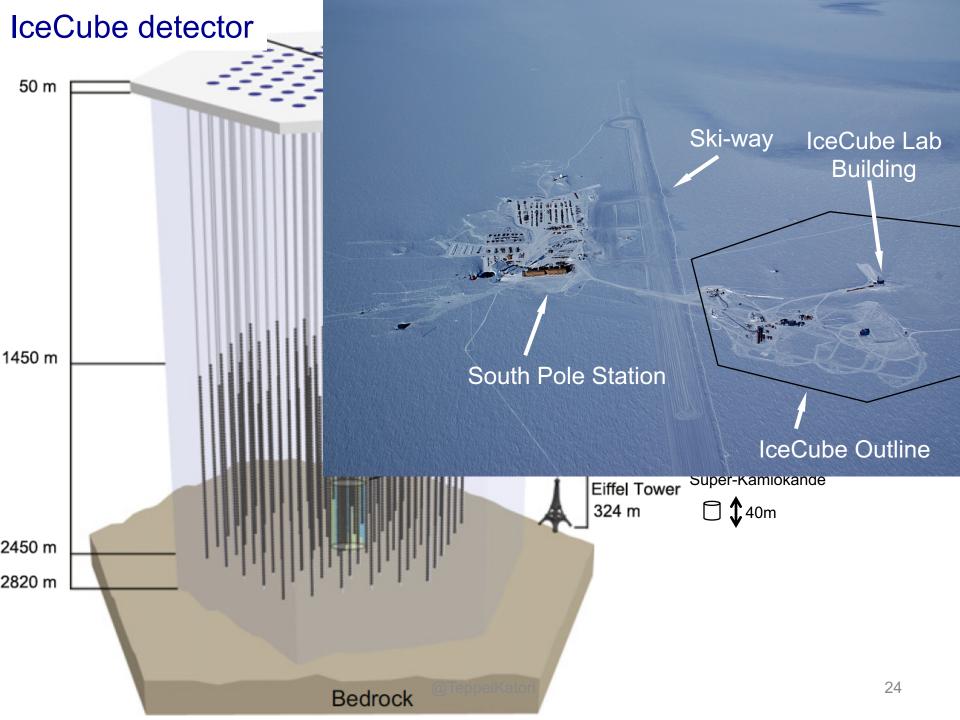
- neutrinos interact very very weakly with matter, so extremely difficult to detect

ex) Neutrinos from the Sun ~1 trillion neutrinos pass through your body every second, and you have 25% chance to hit one neutrino in 80 years

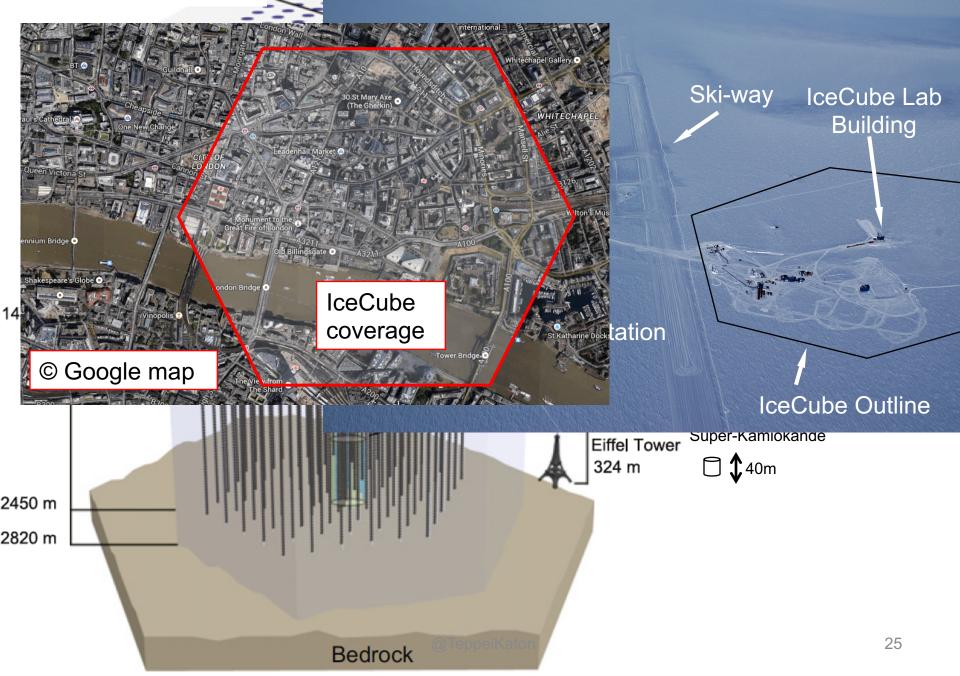


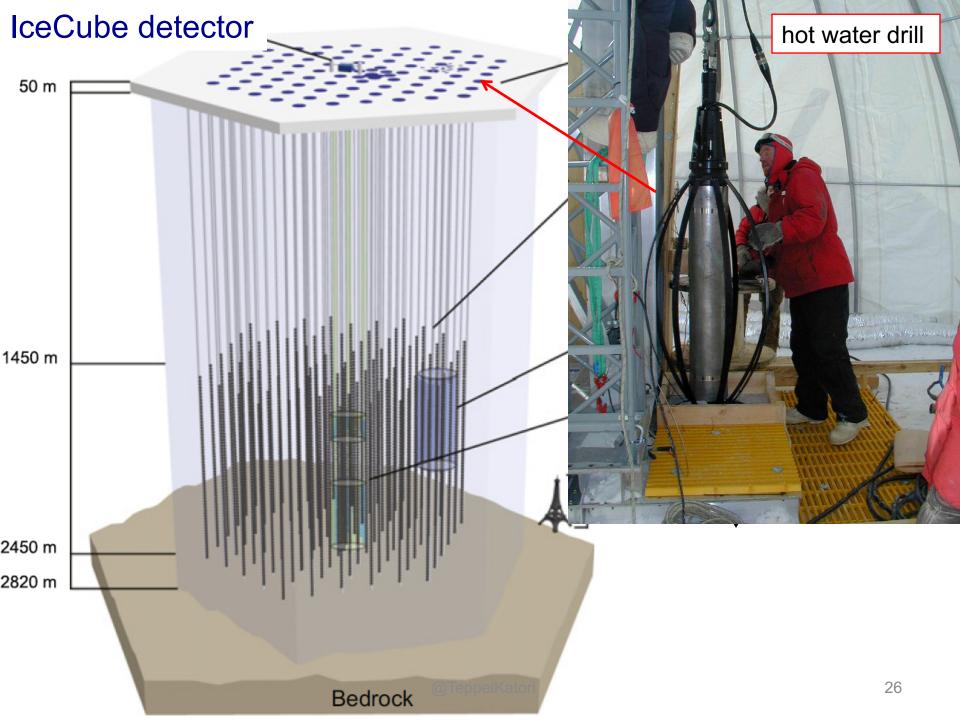
ĝ_{DY}

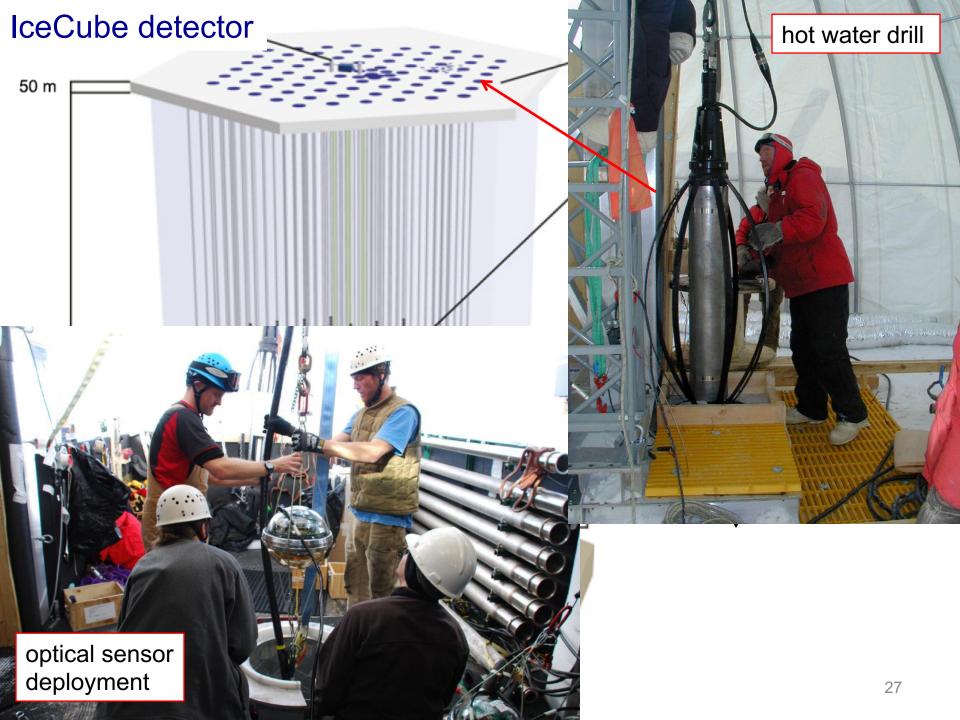

₫DZ

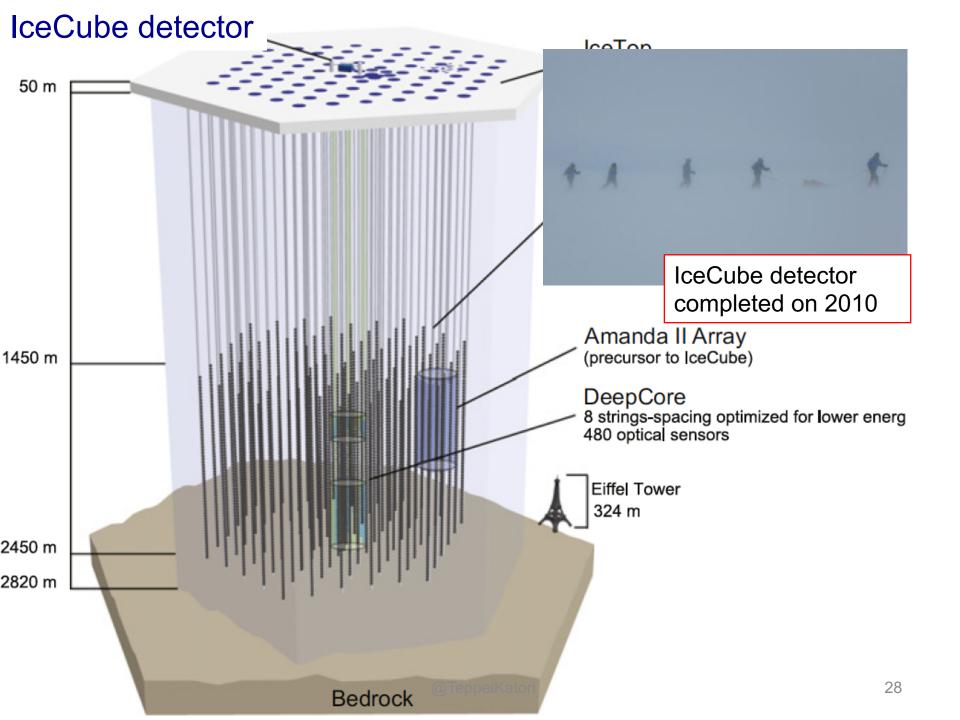

 10^{-22}

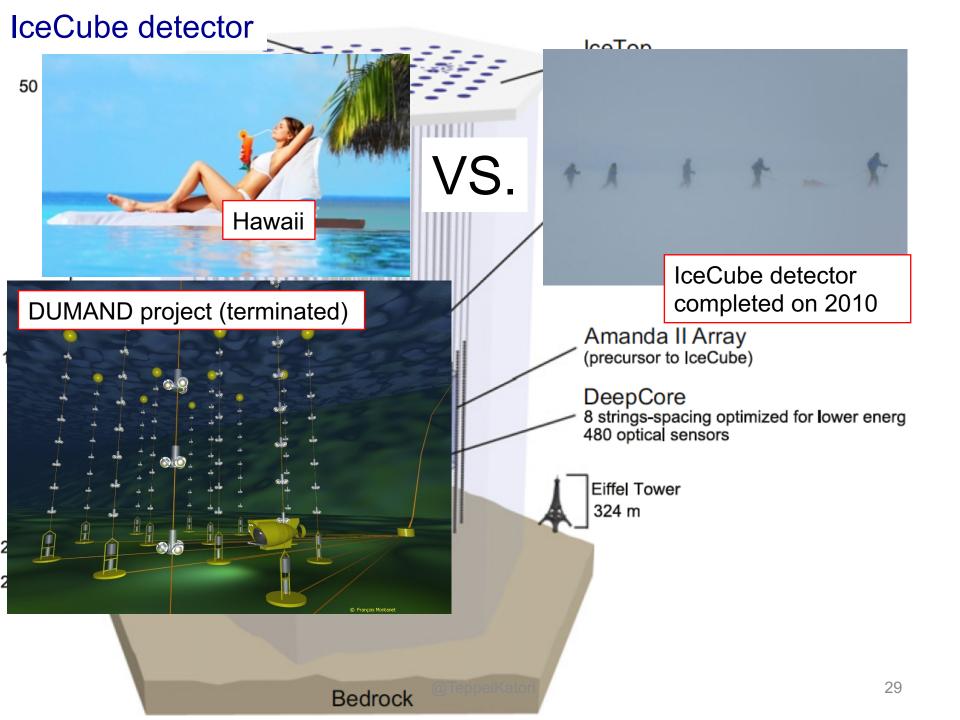
²¹

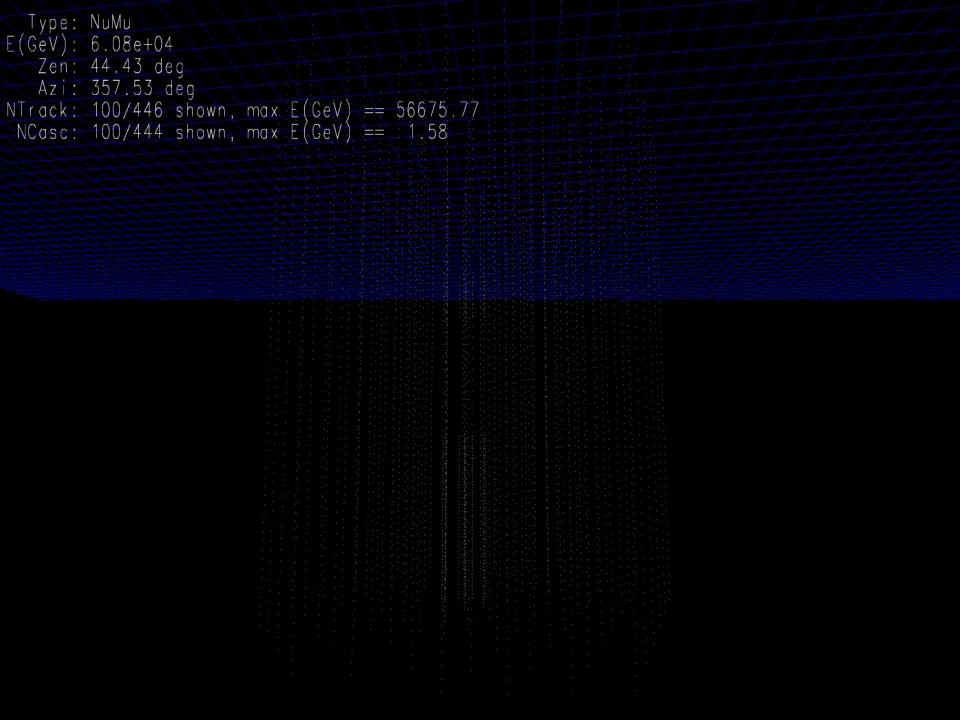


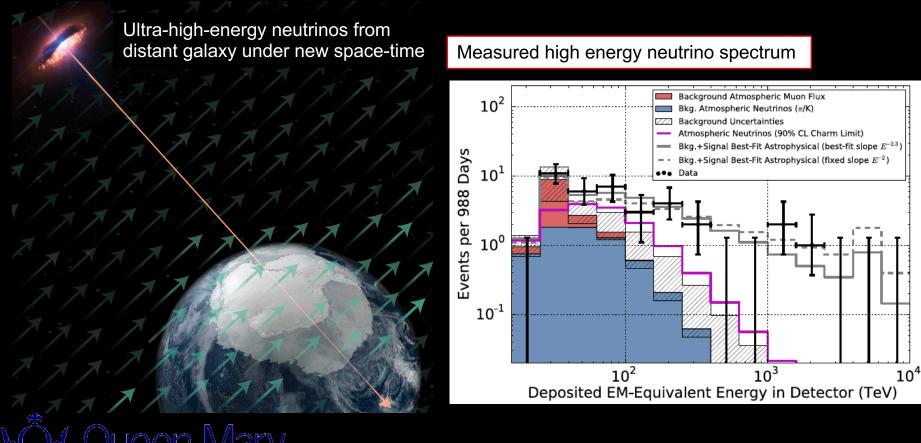

- Teppei

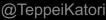





IceCube detector

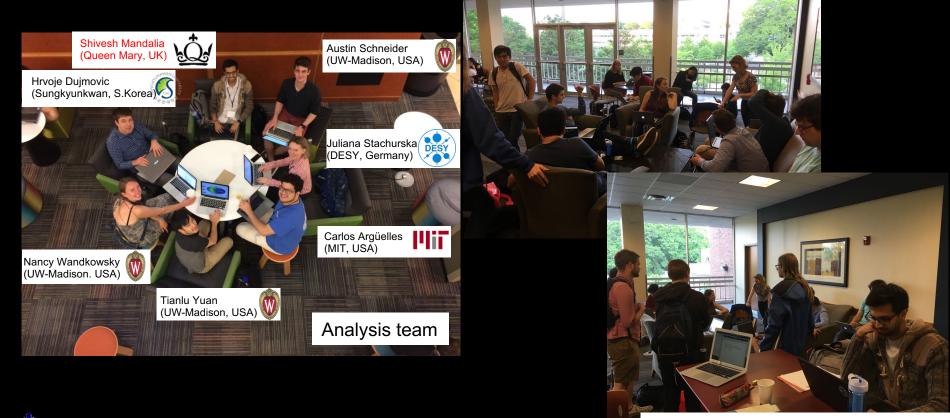






60 TeV to 2000 TeV high energy neutrinos (Large Hadron Collider ~ 7 TeV)

Analysis has been developed to look for Lorentz violation from astrophysical neutrino data



of London

60 TeV to 2000 TeV high energy neutrinos (Large Hadron Collider ~ 7 TeV)

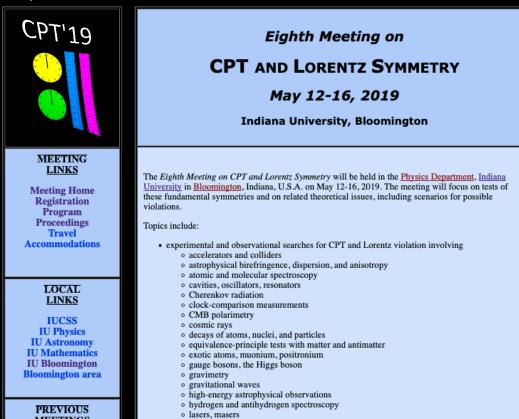
Analysis has been developed to look for Lorentz violation from astrophysical neutrino data (not by me)

Shivesh (Queen Mary) is not quite satisfied with the result...

@TeppeiKatori

<u>lueen Mary</u>

University of London


60 TeV to 2000 TeV high energy neutrinos (Large Hadron Collider ~ 7 TeV)

Analysis has been developed to look for Lorentz violation from astrophysical neutrino data (not by me)

Unfortunately, we didn't discover Lorentz violation..., result was presented at the Lorentz violation conference (last week).

Why no Lorentz violation???

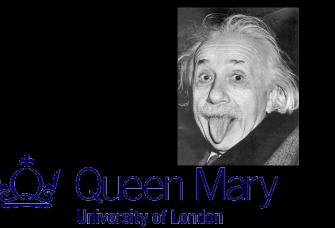

60 TeV to 2000 TeV high energy neutrinos (Large Hadron Collider ~ 7 TeV)

Analysis has been developed to look for Lorentz violation from astrophysical neutrino data (not by me)

Unfortunately, we didn't discover Lorentz violation..., result was presented at the Lorentz violation conference (last week).

Why no Lorentz violation???

1. There is no Lorentz violation. Einstein is just right.


60 TeV to 2000 TeV high energy neutrinos (Large Hadron Collider ~ 7 TeV)

Analysis has been developed to look for Lorentz violation from astrophysical neutrino data (not by me)


Unfortunately, we didn't discover Lorentz violation..., result was presented at the Lorentz violation conference (last week).

Why no Lorentz violation???

1. There is no Lorentz violation. Einstein is just right. 2. We need a better detector and better simulation, and more advanced analysis!

IceCube-Generation 2 (Gen2)

IceCube is too small.

To study astrophysical neutrinos more carefully, we need a bigger IceCube

Gen2

10 times bigger than IceCube.

UK members: Queen Mary, Manchester, Oxford, UCL

@TeppeiKatori

IceCube-Generation 2 (Gen2)

IceCube-Gen2 collaboration meeting (May 1, 2015)

IceCube is too small.

To study astrophysical neutrinos more carefully, we need a bigger IceCube

Gen2

10 times bigger than IceCube.

Project has been started with the biggest ever scale!

UK members: Queen Mary, Manchester, Oxford, UCL

@TeppeiKatori

Conclusion

Lorentz violation may be the first evidence of Theory of Everything

There is a worldwide effort to look for Lorentz violation, using various state-of-the-art techniques, but so far nobody found Lorentz violation

Ultra-high-energy astrophysical neutrinos have a great potential to discover Lorentz violation. The ultimate search of Lorentz violation has just begun, the effort to fulfill Hawking's dream continues...

Contact: KATORI@FNAL.GOV Twitter: @teppeikatori

(Thank you for your attention!)