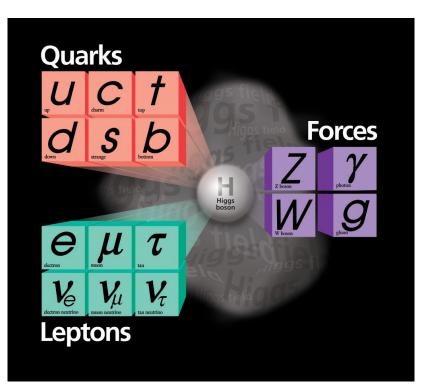
## **Neutrino Physics**

### **Outline**

- 1. Neutrino oscillations
- 2. Dirac or Majorana?
- 3. CP violation with leptons
- 4. 4th neutrino search (sterile neutrino search)
- 5. Dark matter search with neutrinos
- 6. Quantum gravity search with neutrinos
- 7. Conclusion

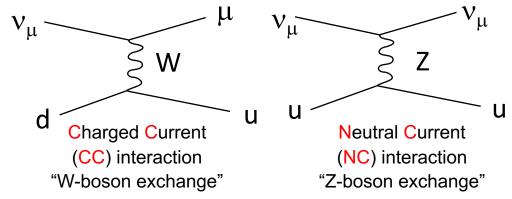
Please like our Facebook page!

"Institute of Physics Astroparticle Physics (IoPAPP)"


https://www.facebook.com/IOPAPP

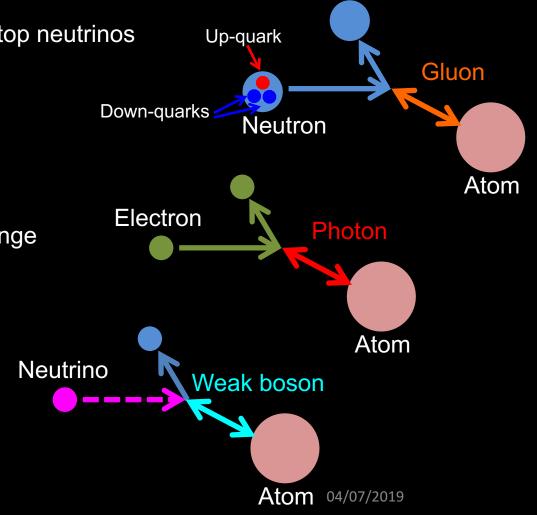
Teppei Katori IoP, UK, July 4, 2019

- 2. Dirac or Majorana?
- 3. CP violation with leptons
- 4. 4th neutrino search (sterile neutrino search)
- 5. Dark matter search with neutrinos
- 6. Quantum gravity search neutrinos
- 7. Conclusion


## 1. Neutrinos in Standard Model (SM)

SM describes 6 massive quarks, 3 massive charged leptons, 3 massless neutrinos, and 3 forces, and Higgs boson.



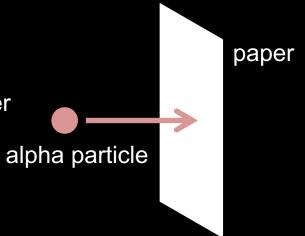

Neutrinos are special because,

1. they only interact with weak nuclear force.



#### 3 types of neutrinos

- Extremely difficult to stop neutrinos
- Quarks exchange
  - Gluons, or
  - Photons, or
  - Weak bosons
- Charged leptons exchange
  - Photons, or
  - Weak bosons
- Neutrinos exchange
  - Weak bosons




3 types of neutrinos

- Extremely difficult to stop neutrinos

Example: how to stop particles?

- Alpha particle (nuclei of Helium) → sheet of paper
- Beta particle (electron) → sheet of copper
- Gamma particle (photon) → chunk of lead



3 types of neutrinos
- Extremely difficult to stop neutrinos

Example: how to stop particles?
- Alpha particle (nuclei of Helium) → sheet of paper
- Beta particle (electron) → sheet of copper
- Gamma particle (photon) → chunk of lead
- Neutrino → 1 light year thickness of lead

You have to "wait" long time to see a rare neutrino which stops (=interacts)

Pluto: 0.0006 light year

Neptune

**Uranus** 

Saturn

1 light year length of lead

04/07/2019

Mercury

#### 3 types of neutrinos

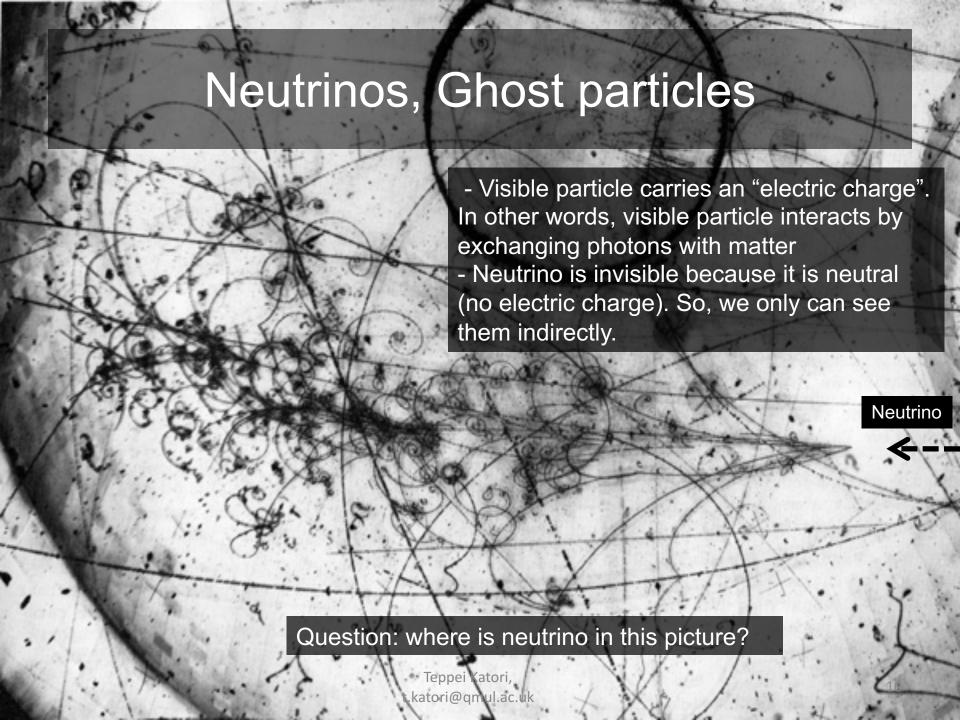
- Extremely difficult to stop neutrinos

Neutrinos are everywhere, but they penetrate without leaving any traces.

#### Solar neutrinos

60 billion electron neutrinos from the Sun pass through every 1cm<sup>2</sup>
of the Earth every second. However you have only a 25% chance for a
neutrino to hit your body in your lifetime.

#### **Bubble Chamber detector**


- Particles with an electric charge leave "tracks" in the detector by forming little bubbles, and we can take photos of them.

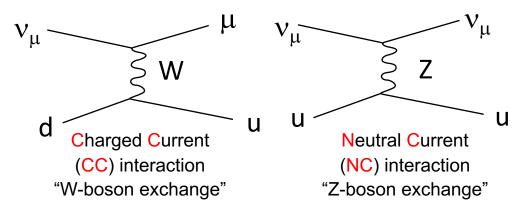
e.g.) Contrail



Teppei Katori, katori@gmul.ac.

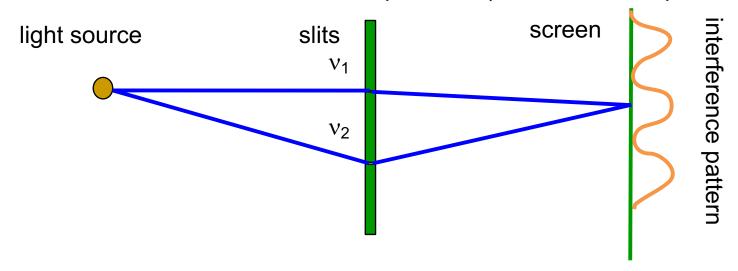
# Neutrinos, Ghost particles - Visible particle carries an "electric charge". In other words, visible particle interacts by exchanging photons with matter - Neutrino is invisible because it is neutral (no electric charge). So, we only can see them indirectly. Question: where is neutrino in this picture? Teppei Katori katori@gmul.ac.i




## 1. Neutrinos in Standard Model (SM)

SM describes 6 massive quarks, 3 massive charged leptons, 3 massless neutrinos, and 3 forces, and Higgs boson.




Neutrinos are special because,

1. they only interact with weak nuclear force.

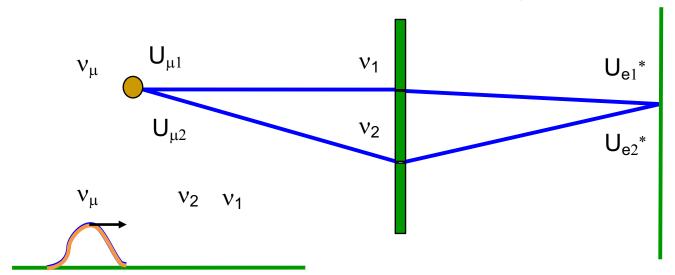


2. Weak interaction eigenstate is not Hamiltonian eigenstate (propagation eigenstate). Thus propagation of neutrinos changes their species, called neutrino oscillation.

Neutrino oscillation is an interference experiment (cf. double slit experiment)



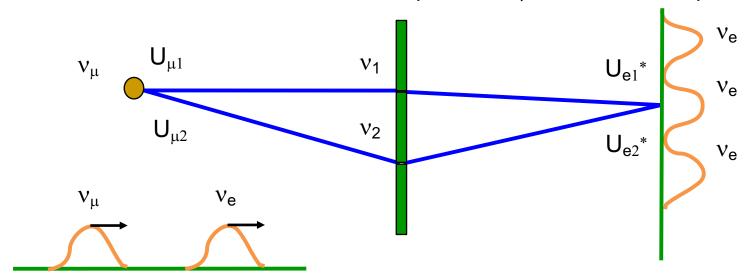
For double slit experiment, if path  $v_1$  and path  $v_2$  have different length, they have different phase rotations and it causes interference.


04/07/2019

Neutrino oscillation is an interference experiment (cf. double slit experiment)



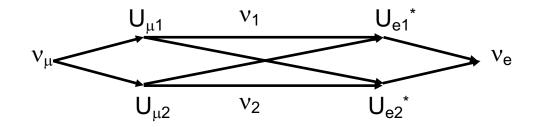
If 2 neutrino Hamiltonian eigenstates,  $v_1$  and  $v_2$ , have different phase rotation, they cause quantum interference.


Neutrino oscillation is an interference experiment (cf. double slit experiment)



If 2 neutrino Hamiltonian eigenstates,  $v_1$  and  $v_2$ , have different phase rotation, they cause quantum interference.

If  $v_1$  and  $v_2$ , have different mass, they have different velocity, so thus different phase rotation.


Neutrino oscillation is an interference experiment (cf. double slit experiment)



If 2 neutrino Hamiltonian eigenstates,  $v_1$  and  $v_2$ , have different phase rotation, they cause quantum interference.

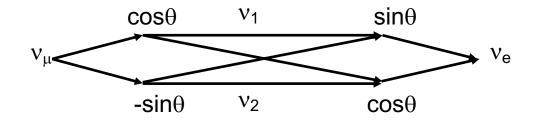
If  $v_1$  and  $v_2$ , have different mass, they have different velocity, so thus different phase rotation.

The detection may be different flavor (neutrino oscillations).



#### 2 neutrino mixing

The neutrino weak interaction eigenstate (flavor eigenstate) is described by neutrino Hamiltonian eigenstates,  $v_1$  and  $v_2$ , and their mixing matrix elements.


$$|\nu_{\mu}\rangle = U_{\mu 1}|\nu_{1}\rangle + U_{\mu 2}|\nu_{2}\rangle$$

The time evolution of flavor eigenstate is written by Hamiltonian mixing matrix elements and eigenvalues of  $v_1$  and  $v_2$ .

$$\left|\nu_{\mu}(t)\right\rangle = U_{\mu 1} e^{-i\lambda_1 t} \left|\nu_1\right\rangle + U_{\mu 2} e^{-i\lambda_2 t} \left|\nu_2\right\rangle$$

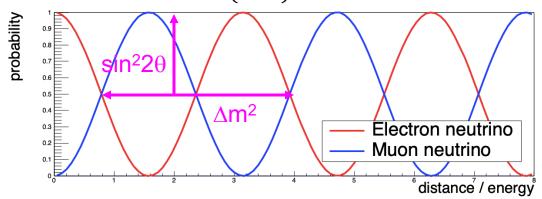
Then the transition probability from weak eigenstate  $\nu_{\mu}$  to  $\nu_{e}\,$  is,

$$P_{\mu \to e}(t) = \left| \left\langle \nu_e \middle| \nu_{\mu}(t) \right\rangle \right|^2 = -4U_{e1}^* U_{e2}^* U_{\mu 1} U_{\mu 2} sin^2 \left( \frac{\lambda_1 - \lambda_2}{2} t \right)$$



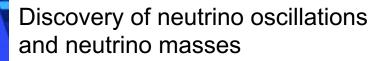
In the vacuum, 2 neutrino effective Hamiltonian has a mass term,

$$H_{eff} \sim \begin{pmatrix} \frac{m_{ee}^2}{2E} & \frac{m_{e\mu}^2}{2E} \\ \frac{m_{e\mu}^2}{2E} & \frac{m_{\mu\mu}^2}{2E} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \frac{m_1^2}{2E} & 0 \\ 0 & \frac{m_2^2}{2E} \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$


Therefore, 2 massive neutrino oscillation model is  $(\Delta m^2 = |m_1^2 - m_2^2|, t\sim L)$ 

$$P_{\mu \to e}(L/E) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

After adjusting the unit, 2 neutrino oscillation formula


$$P_{\mu \to e}(L/E) = \sin^2 2\theta \sin\left(1.27\Delta m^2 (eV^2) \frac{L(km)}{E(GeV)}\right)$$

Amplitude = mixing angle Period = neutrino mass



## BREAKTHROUGH

2016 Fundamental Physics Breakthrough Prize





## The Nobel Prize in Physics 2015



Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2



Photo: K. McFarlane. Queen's University Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino" oscillations, which shows that neutrinos have mass"



2016 Fundamental Physics Breakthrough Prize

- Koichiro Nishikawa (K2K and T2K)
- Atsuto Suzuki (KamLAND)
- Kam-Biu Luk (Daya
- Yifang Wang (Daya B
- Art McDonald (SNO)
- Yoichiro Suzuki (Super-Kamiokande)
- Takaaki Kajita (Super-Kamiokande)

## BREAKTHROUGH

2016 Fundamental Physics Breakthrough Prize

The Nobel Prize in Physics



Prize share: 1/3

1995

Leon M. Lederman



Melvin Schwartz Prize share: 1/3

The Nobel Prize in Physics



lack Steinberger Prize share: 1/3



Discovery of neutrino

C University of California

The Nobel Prize in Physics 2002



Raymond Davis Ir. Prize share: 1/4

Prize share: 1/4

Solar neutrino problem, supernova neutrino detection

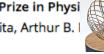
akthrough Prize

Discovery of and neutring



Yifang Wang and the Daya Bay Collaboration




Kam-Biu Luk and the Daya Bay Collaboration



The Nobel Prize in Physi Takaaki Kajita, Arthur B.



Yoichiro Suzuki and the Super K Collaboration







Atsuto Suzuki and the KamLAND Collaboration

Koichiro Nishikawa and

...and all 1440 collaborators

the K2K and T2K

Collaboration

## The Nobel 2015



Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2

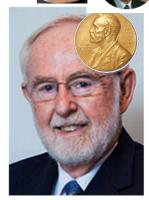
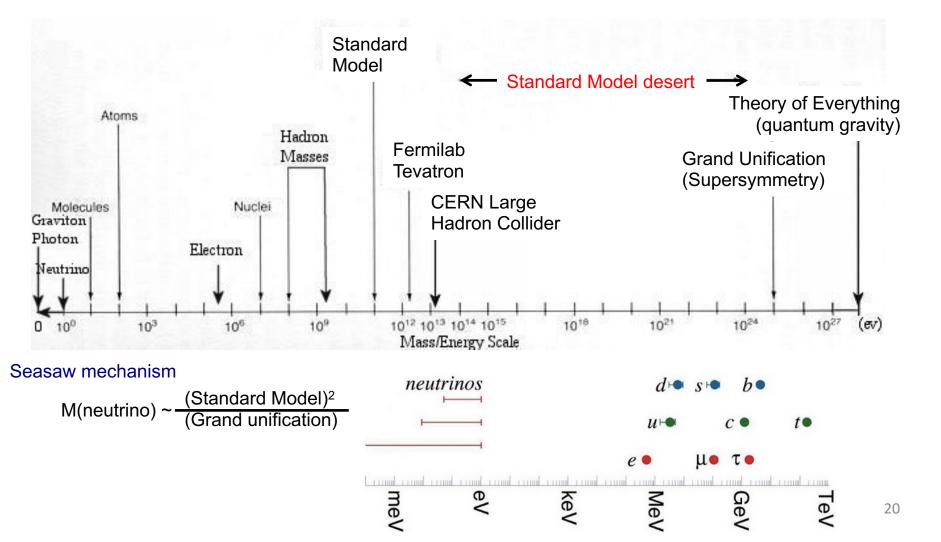



Photo: K. McFarlane. Queen's University

Arthur B. McDonald

Prize share: 1/2


The Nobel P Kajita and A oscillations.

Neutrino physics is the home of discovery physics!

#### 1. Neutrino masses

Neutrino masses are not predicted by the Standard Model

Seasaw mechanism relate extremely small neutrino masses with Grand Unification Theory (GUT)

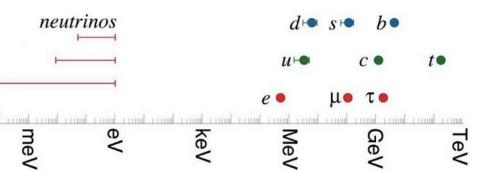


## 1. Neutrino physics, 2019

#### Neutrino Standard Model (vSM)

- SM + 3 active massive neutrino is established

#### Unknown parameters of vSM


- precise value of  $\theta_{23}$  ( $\theta_{12}$  and  $\theta_{13}$  are precisely known)
- order of mass (normal order m<sub>1</sub><m<sub>2</sub><m<sub>3</sub> or inverted order m<sub>3</sub><m<sub>1</sub><m<sub>2</sub>)
- Dirac or Majorana
- Dirac CP phase
- Majorana CP phase
- absolute neutrino mass

#### Beyond vSM (BSM)

- 4<sup>th</sup> neutrino search (sterile neutrino search)
- Dark matter search with neutrinos
- Space-time tests with neutrinos etc

#### Undetected neutrinos

- Big bang neutrino background
- Diffuse supernova neutrino background
- Solar CNO cycle neutrinos
- Solar atmospheric neutrinos
- GZK neutrinos



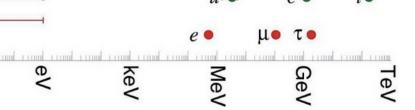
## 1. Neutrino physics, 2019

#### Neutrino Standard Model (vSM)

- SM + 3 active massive neutrino is established

#### Unknown parameters of vSM

- precise value of  $\theta_{23}$  ( $\theta_{12}$  and  $\theta_{13}$  are precisely known)
- order of mass (normal order m<sub>1</sub><m<sub>2</sub><m<sub>3</sub> or inverted order m<sub>3</sub><m<sub>1</sub><m<sub>2</sub>)
- Dirac or Majorana
- Dirac CP phase
- Majorana CP phase
- absolute neutrino mass

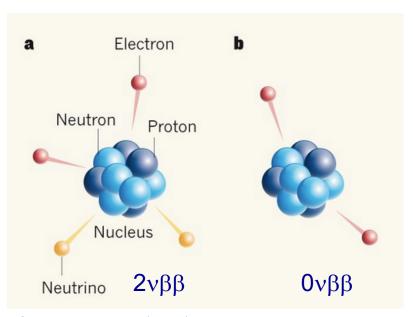

#### Beyond vSM (BSM)

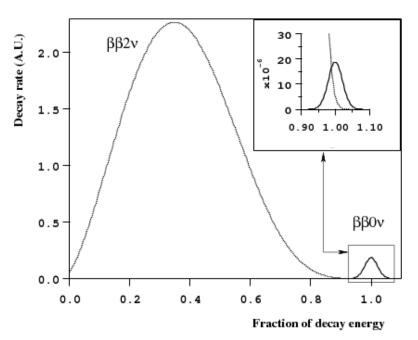
- 4<sup>th</sup> neutrino search (sterile neutrino search)
- Dark matter search with neutrinos
- Space-time tests with neutrinos etc

#### Undetected neutrinos

- Big bang neutrino background
- Diffuse supernova neutrino background
- Solar CNO cycle neutrinos
- Solar atmospheric neutrinos
- GZK neutrinos

This talk is the status of new physics search within neutrino physics





- 2. Dirac or Majorana?
- 3. CP violation with leptons
- 4. 4th neutrino search (sterile neutrino search)
- 5. Dark matter search with neutrinos
- 6. Quantum gravity search neutrinos
- 7. Conclusion

## 2. Neutrinoless double beta decay $(0v\beta\beta)$

#### Majorana particle

- antiparticles = particles
- only neutrinos in SM can be Majorana particles
- so far, neutrinoless double beta decay  $(0\nu\beta\beta)$ , 2X  $\rightarrow$  2e + 2X', is the only plausible test to look for Majorana nature of neutrinos
- double beta decay ( $2\nu\beta\beta$ ) is the second order nuclear process, possible only for few elements ( $^{82}$ Se,  $^{76}$ Ge,  $^{100}$ Mo,  $^{130}$ Te,  $^{136}$ Xe, etc)
- $0\nu\beta\beta$  is the lepton number violation process (BSM process)
- Expected half-life,  $\tau(0\nu\beta\beta) > 10^{27}$  yrs (>>10<sup>10</sup> yrs ~ life of universe)



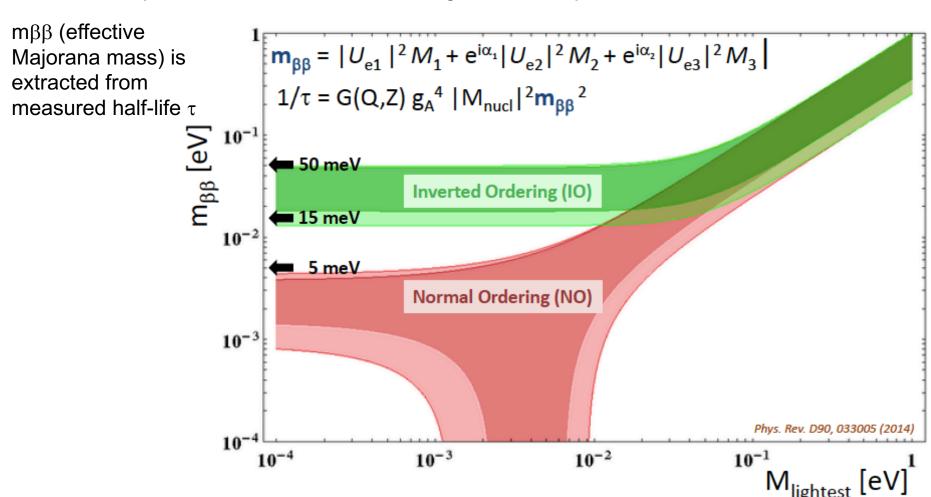


Gratta, Nature538(2016)48

04/07/2019

W

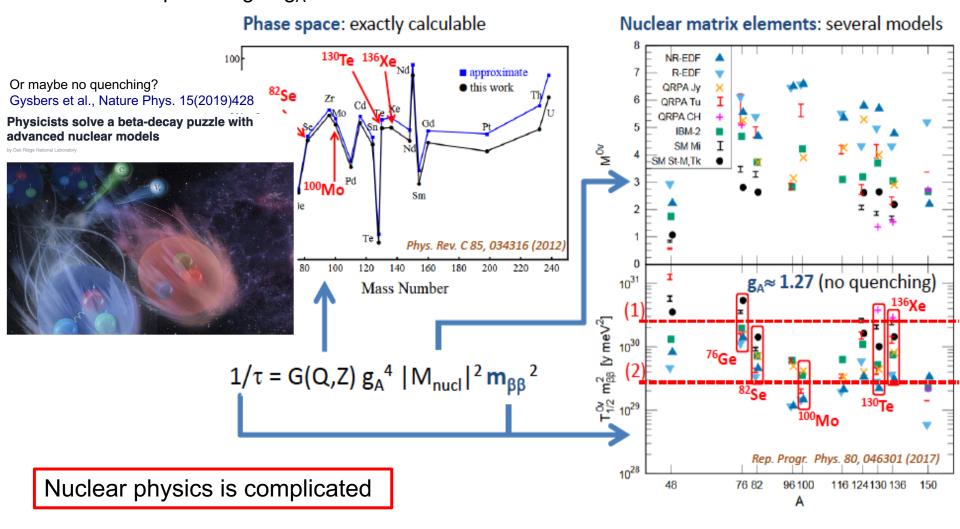
W


p

p

### 2. Neutrinoless double beta decay $(0v\beta\beta)$

#### Majorana particle


- $0\nu\beta\beta$  interpretation depends on neutrino mass ordering
- no  $0v\beta\beta$  doesn't mean neutrino is Dirac ( $0v\beta\beta$  observation mean neutrino is Majorana)
- Current experimental limits~ 40 meV, next generation experiments ~ 10 meV



### 2. Neutrinoless double beta decay and nuclear physics

Nuclear physics gives large systematics to extract  $m_{\beta\beta}$  from  $\tau$  (half-life)

- Nuclear matric element calculation
- Nuclear quenching of g<sub>A</sub>



- 1. Neutrino oscillations
- 2. Dirac or Majorana?
- 3. CP violation with leptons
- 4. 4th neutrino search (sterile neutrino search)
- 5. Dark matter search with neutrinos
- 6. Quantum gravity search neutrinos
- 7. Conclusion

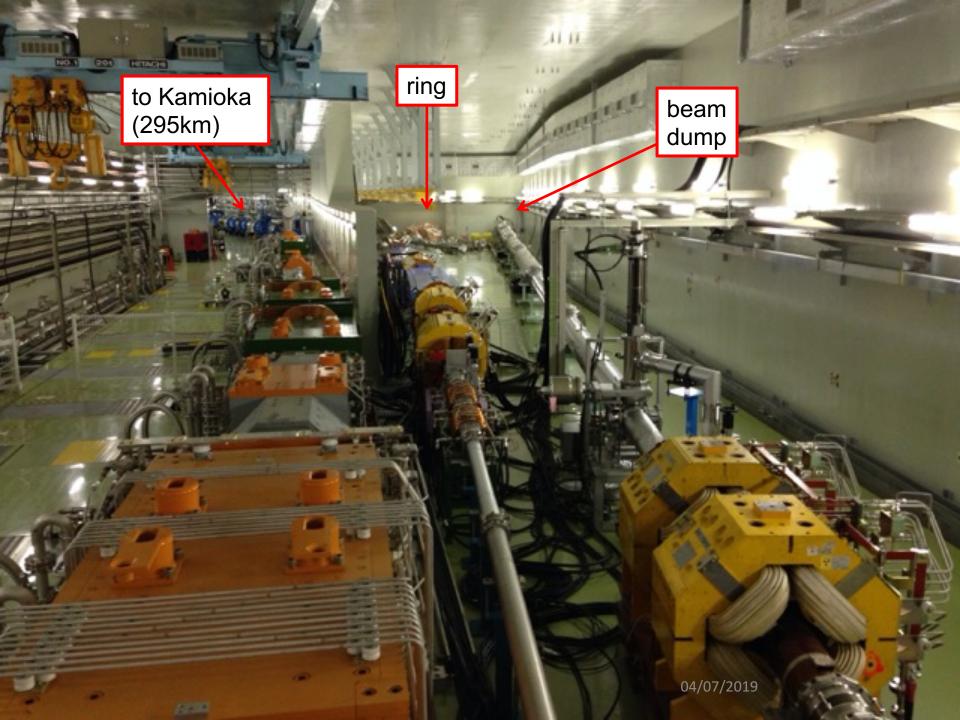
## 3. CP violation with leptons

#### CP violation (charge-parity symmetry violation)

- Amount of different behavior between particles and antiparticles
- Necessary ingredient to explain matter-antimatter asymmetry of universe (1 of "Sakharov's 3 conditions")

#### CP violation with quarks

- Jarlskog invariant, J<sub>quark</sub> ~10<sup>-5</sup> (very small)
- CP violation of lepton,  $J_{lepton} \sim 10^{-2} \rightarrow Leptonic CP$  violation may be responsible for matter-antimatter asymmetry of universe?


#### Neutrino oscillations

- Neutrino oscillations depends on CP violation (Dirac CP phase)
- Effect is small, need high statistics
- Need large scale long-baseline neutrino oscillation experiments

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= \mid U_{\mu 1}^{*} e^{-im_{1}^{2}L/2E} U_{e1} + U_{\mu 2}^{*} e^{-im_{2}^{2}L/2E} U_{e2} + U_{\mu 3}^{*} e^{-im_{3}^{2}L/2E} U_{e3} \mid^{2} \\ &= \mid 2U_{\mu 3}^{*} U_{e3} \sin \Delta_{31} e^{-i\Delta_{32}} + 2U_{\mu 2}^{*} U_{e2} \sin \Delta_{21} \mid^{2} \\ &\approx \mid \sqrt{P_{atm}} e^{-i(\Delta_{32} + \textcircled{0})} + \sqrt{P_{sol}} \mid^{2} \\ &\qquad \qquad \Delta_{ij} = \frac{\delta m_{ij}^{2} L}{4E} \end{split}$$
 where  $\sqrt{P_{atm}} = 2 \mid U_{\mu 3} \mid \mid U_{e3} \mid \sin \Delta_{31} = \sin \theta_{23} \sin 2\theta_{13} \sin \Delta_{31}$ 

where 
$$\sqrt{P_{atm}} = 2|U_{\mu 3}||U_{e 3}|\sin \Delta_{31} = \sin \theta_{23}\sin 2\theta_{13}\sin \Delta_{31}$$
  
and  $\sqrt{P_{sol}} \approx \cos \theta_{23}\sin 2\theta_{12}\sin \Delta_{21}$ .







## The Nobel Prize in Physics 2015



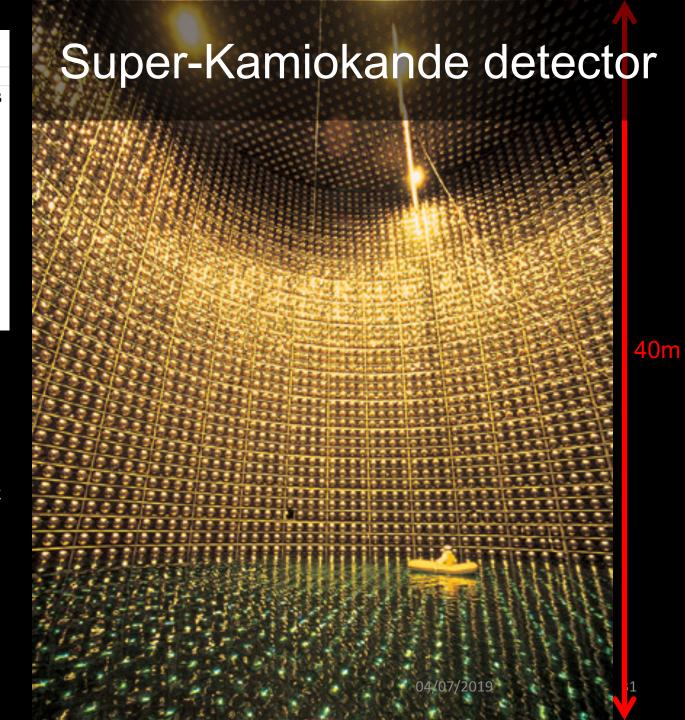


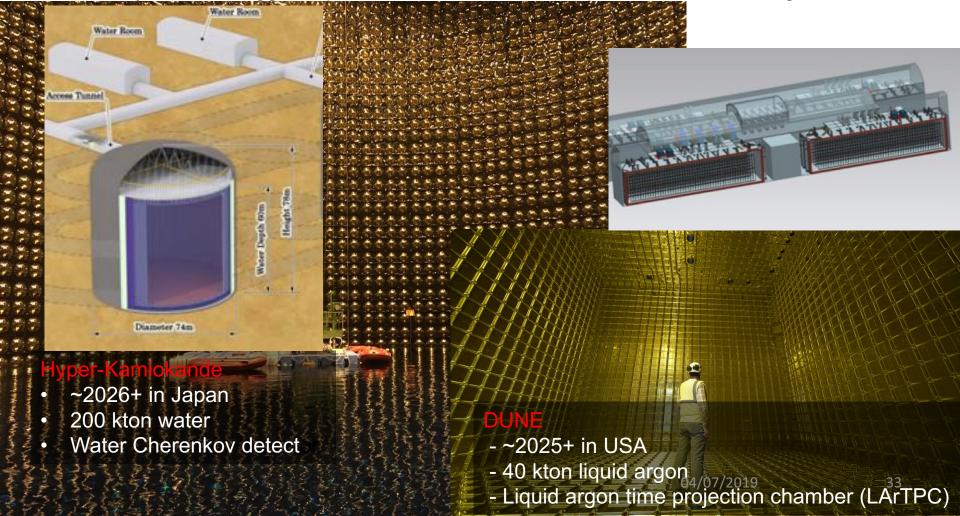



Photo: K. McFarlane. Queen's University /SNOLAB Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

- 40m height, 40m wide, 50k ton of pure water
- Roughly 25 million neutrino from J-PARC pass through every second (and you see <1 neutrino per day)




## Super-Kamiokande detector refurbishment 2018

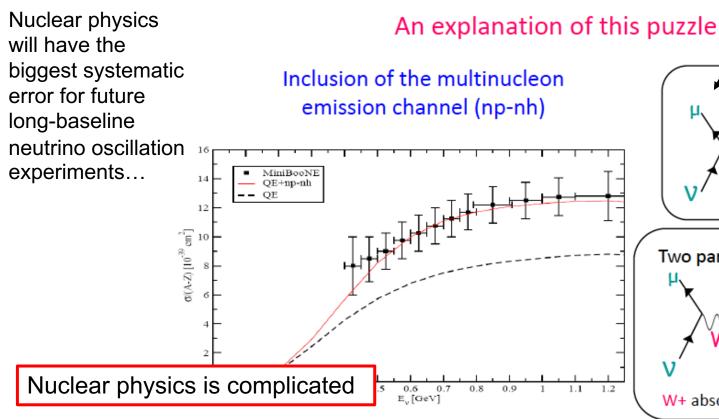


## 3. Hyper-Kamiokande and DUNE

#### Next generation long-baseline neutrino oscillation experiments

- T2K and NOvA are leading long-baseline neutrino oscillation experiments
- As of 2019, both found an indication (2σ level signal) of leptonic CP
- Probably we need bigger experiments to find 5σ level leptonic CP violation signal




MiniBooNE: PRD81(2010)092005 Martini et al,PRC80(2009)065501

## 3. Neutrino interaction physics and nuclear physics

Neutrinos are invisible, and neutrino energy is estimated from particles created by neutrino interactions. So neutrino-nucleus interactions need to be understood to measure neutrino oscillations.

#### Discovery of nucleon correlation in neutrino scattering

- nuclear physics modify interaction rate and outgoing particle kinematics
- hot topic for current beam-based neutrino experiments



Marco Martini

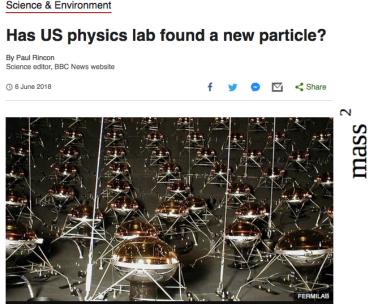
W

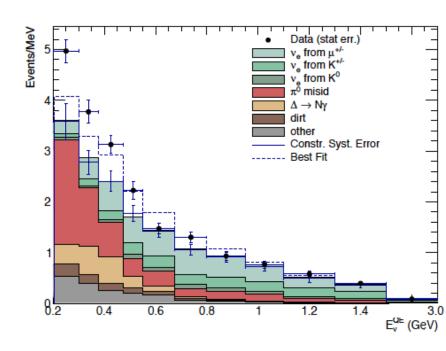
(particle physicist)

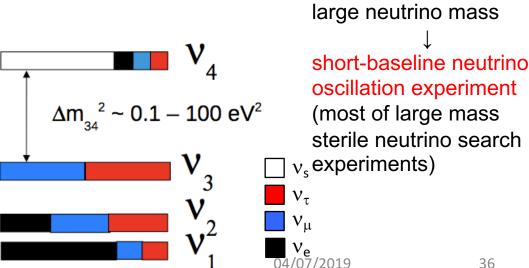
me

- 1. Neutrino oscillations
- 2. Dirac or Majorana?
- 3. CP violation with leptons
- 4. 4th neutrino search (sterile neutrino search)
- 5. Dark matter search with neutrinos
- 6. Quantum gravity search neutrinos
- 7. Conclusion

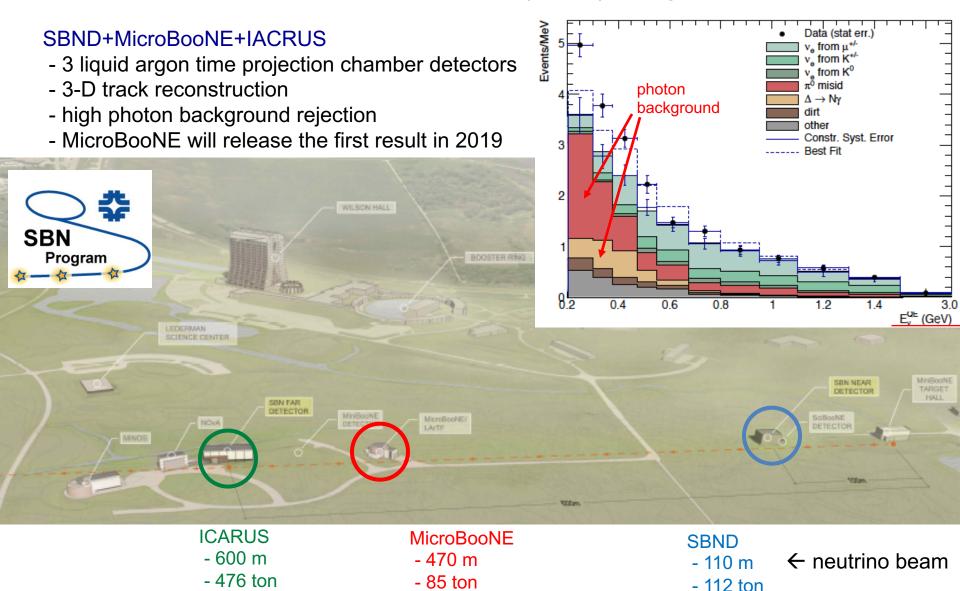
#### 4. Sterile neutrino search


#### **MiniBooNE**

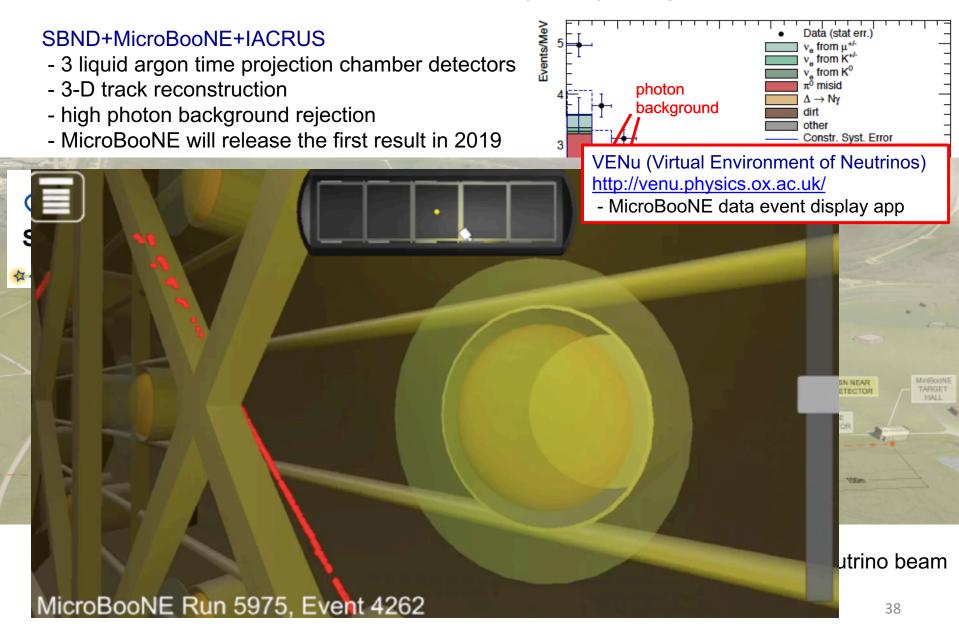

- USA based neutrino oscillation experiment persistently shows unexplained excess
- This can be interpreted  $\nu_{\mu} \rightarrow \nu_{e}$  oscillation through 4<sup>th</sup> neutrino ( $\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$ )


News Sport Weather iPlayer TV Radio

- However, number of neutrinos is known to be 3 from Z-boson decay width measurement, so 4<sup>th</sup> neutrino doesn't interact with weak force
- → sterile neutrino

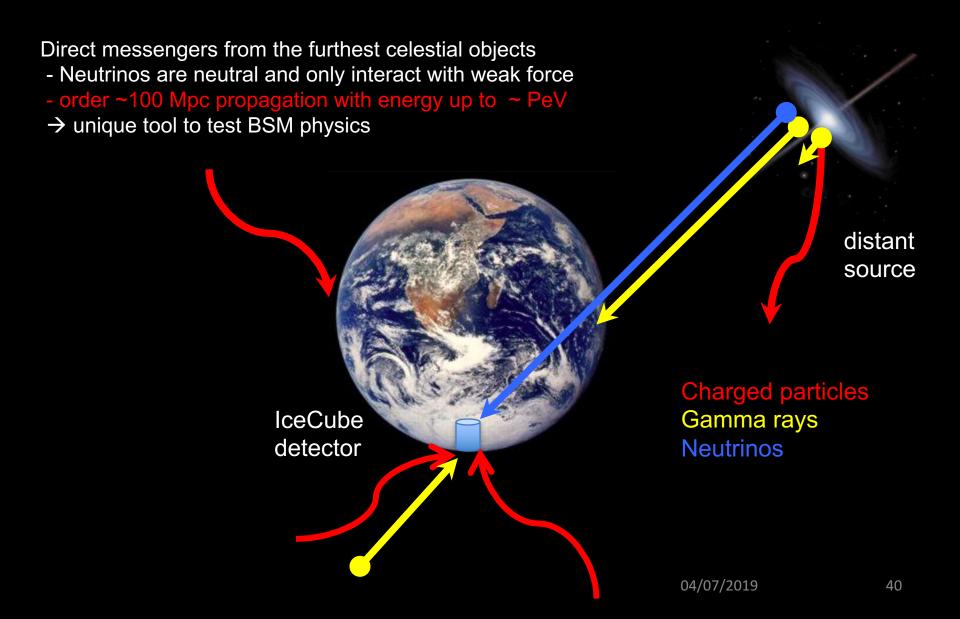

NEWS

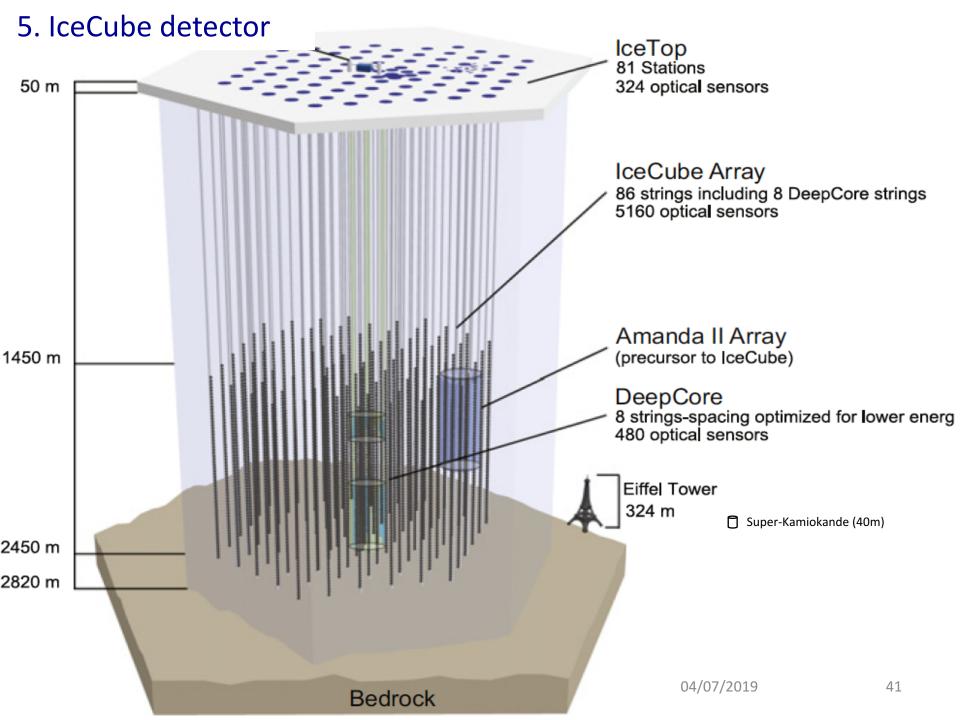


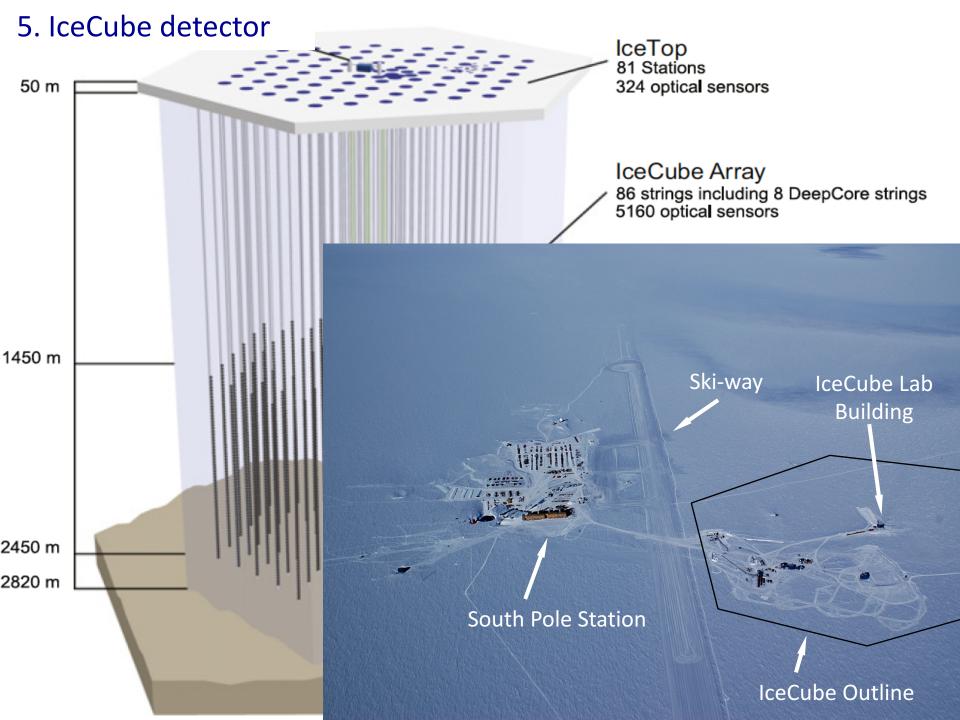


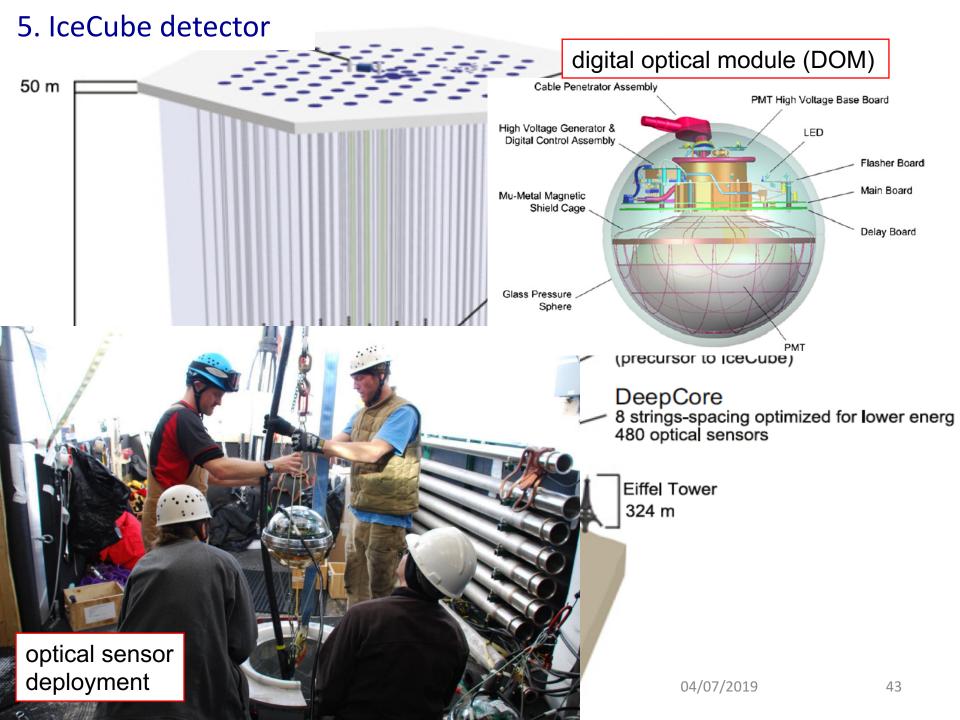



# 4. Fermilab short baseline neutrino (SBN) program





# 4. Fermilab short baseline neutrino (SBN) program



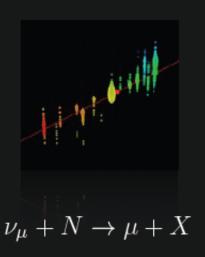


- 1. Neutrino oscillations
- 2. Dirac or Majorana?
- 3. CP violation with leptons
- 4. 4th neutrino search (sterile neutrino search)
- 5. Dark matter search with neutrinos
- 6. Quantum gravity search neutrinos
- 7. Conclusion

# 5. High-Energy Neutrino Astronomy





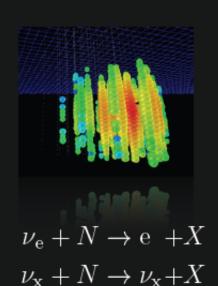





# 5. Astrophysical High-Energy Neutrinos

### **Topology**

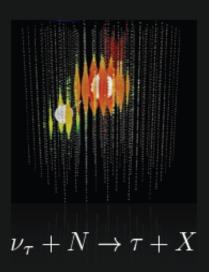
- Track = muon ( $\sim v_{\parallel}$ CC)
- Shower (cascade) = electron, tau, hadrons ( $\sim$ ,  $v_e$ CC,  $v_\tau$ CC, NC)


# **CC Muon Neutrino**



track (data)

factor of ≈ 2 energy resolution < 1° angular resolution


# Neutral Current / Electron Neutrino



cascade (data)

≈ ±15% deposited energy resolution ≈ 10° angular resolution (at energies ≥ 100 TeV)

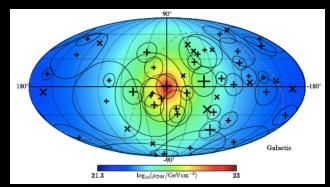
# CC Tau Neutrino

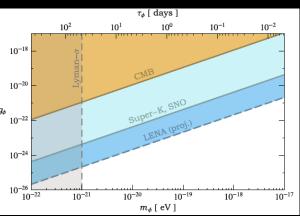


"double-bang" and other signatures (simulation)

Hill, Neutrino 2014

# 5. Dark matter search with astrophysical neutrinos


Neutrinos from Earth, Sun, Milky Way center


- Signal of dark matter annihilation to neutrino pair emission
- → no excess in Earth, Sun, Milky Way center

Astrophysical neutrino spectrum distortion, flavor anomaly

- Signal of neutrino-dark matter interaction
- → no modification of spectrum, flavors

These approaches can investigate dark matter from dark matter particle mass ~10<sup>-22</sup> eV to ~10<sup>13</sup> eV (order 35!)







Modified neutrino signal

New physics

astrophysical neutrino

- 1. Neutrino oscillations
- 2. Dirac or Majorana?
- 3. CP violation with leptons
- 4. 4th neutrino search (sterile neutrino search)
- 5. Dark matter search with neutrinos
- 6. Quantum gravity search neutrinos
- 7. Conclusion

# 6. Quantum gravity

### "Theory of Everything" is QFT+GR

- Quantum Field Thoery (QFT) → particle physics, microscopic scale
- General Relativity (GR) → gravity, large scale

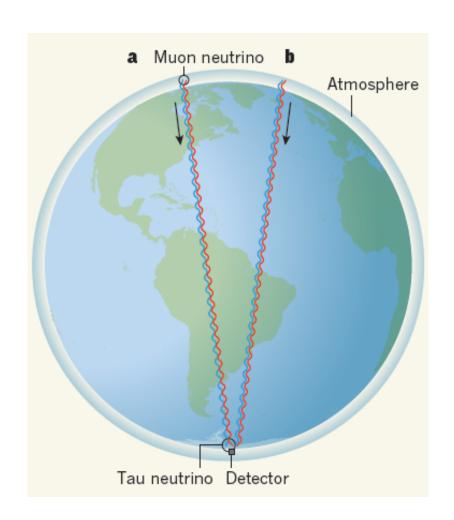


- ~10<sup>19</sup> GeV (Planck energy), the energy of the Big Bang and no machines can replicate
- ~(10<sup>19</sup> GeV)<sup>-1</sup>, expected quantum fluctuation of space-time itself ← our focus

### quantum foam

- quantum fluctuation of space time

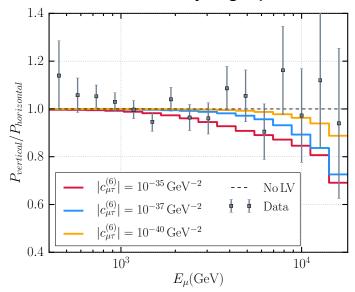



### Lorentz violating field

- new field saturating the universe (aether)



Teppei Katori, Queen Mary University of London


# 6. Neutrino interferometry with atmospheric neutrinos



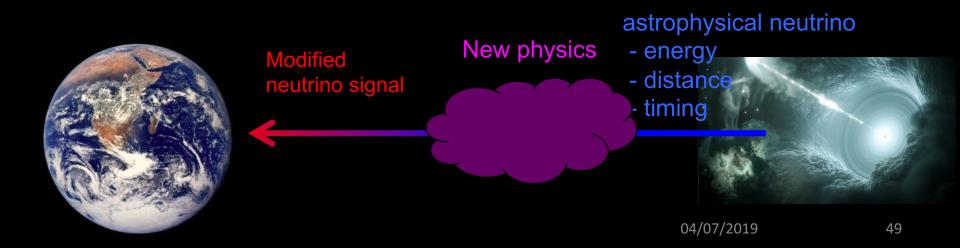
Neutrinos are natural interferometer. And the biggest interferometer on the Earth is the size of Earth diameter.

Using atmospheric neutrinos produced on other side of the Earth, we can test violation of Lorentz invariance with the highest precision.

There is no anomalous neutrino oscillation, Lorentz invariance is valid with very high-precision

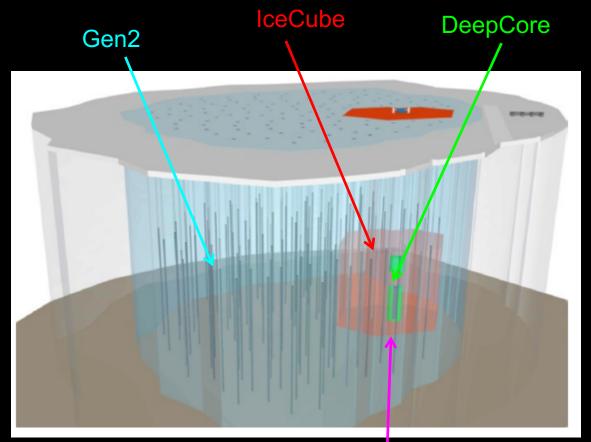


# 6. Quantum gravity search with astrophysical neutrinos


### TXS0506+056

- Blazar, a type of active galactic nuclei (AGNs)
- Coincidence signals of neutrinos and photons are detected
- 3<sup>rd</sup> celestial neutrino source (Sun, supernova 1987A)

### Neutrino time of flight


- Fuzzy quantum gravity space-time may slow down neutrinos
- From the distance of TXS0506+056 (1.3 Gpc), energy of astrophysical neutrinos (>200 TeV), and time delay (~10 days), scale of quantum fluctuation of space-time is limited to < 10<sup>-16</sup> GeV<sup>-1</sup>

Need more statistics to study the quantum gravity



# 6. IceCube-Gen2





Bigger IceCube and denser DeepCore can push their physics

### Gen2

Larger string separations to cover larger area

### **PINGU**

Smaller string separation to achieve lower energy threshold for neutrino mass hierarchy measurement

IceCube-Gen2 collaboration



**PINGU** 



https://charge.wisc.edu/icecube/wipac store.aspx



IceCube IC170922 t-shirt (Crew-Neck)

The front side features an image of "IC170922" and the IceCube logo on the back Heathered navy, crewneck, rinspun cotton/polyester, Available in unisex sizes S-2XL. Runs

Support IceCube!

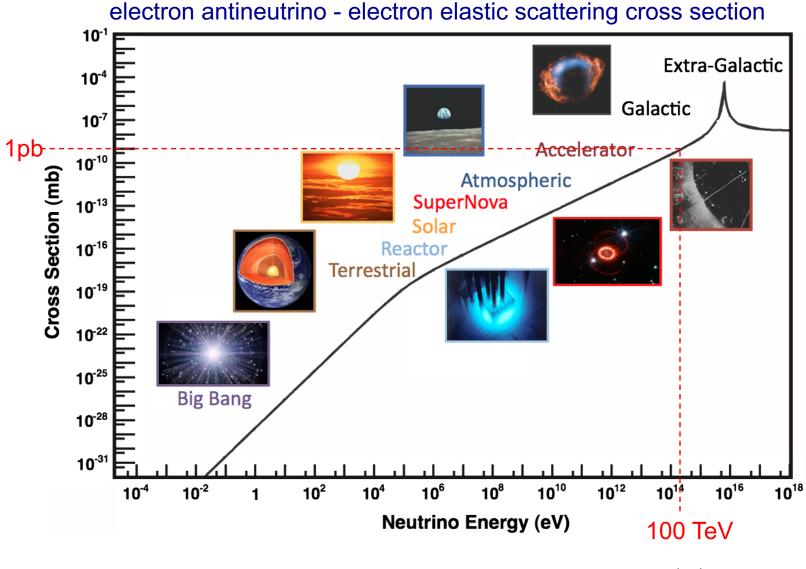
# Conclusions

Current paradigm: Neutrino Standard Model (vSM)

- SM + 3 active massive neutrino is established

### Properties of vSM

- small neutrino masses → related to high energy scale physics (GUT)?
- Majorana neutrino → lepton number violation process?
- Dirac CP phase → matter-antimatter asymmetry of universe?


### BSM physics with neutrinos

- Neutrino oscillations (interferometer) can be used to look for new physics
- Long propagation & high energy is useful to look for new physics

There are many ongoing experiments and future planned experiments

# Thank you for your attention!

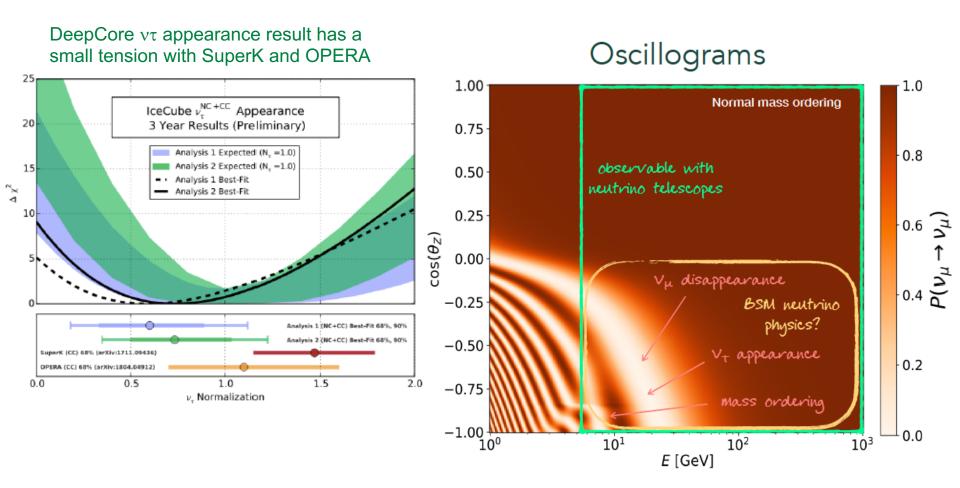
### 1. Neutrinos – from meV to EeV



# Impact of direct mass ordering (MO) measurement



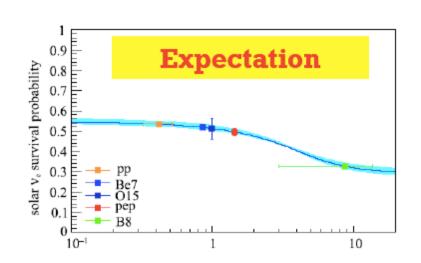
# 5. Neutrino-less Double Beta Decay

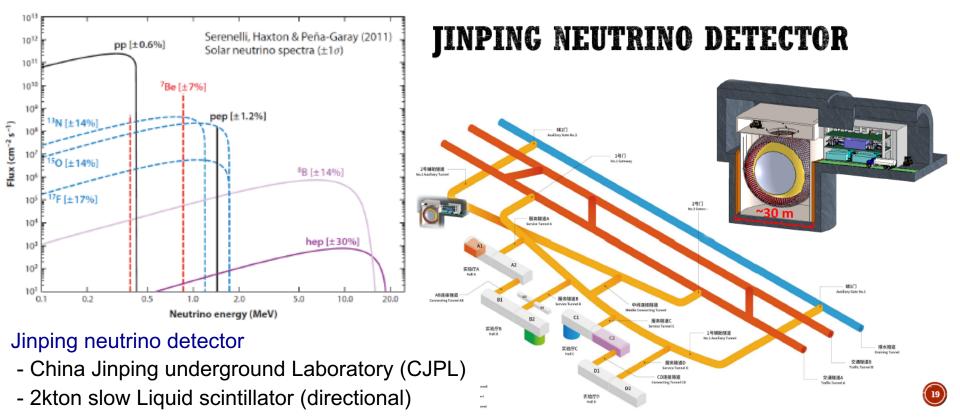

Approaches and experiments

| source = detector              |                               | NOW                                   | MID-TERM                 | LONG-TERM              |                           |
|--------------------------------|-------------------------------|---------------------------------------|--------------------------|------------------------|---------------------------|
| Scalability                    | Fluid<br>embedded<br>source   | Xe-based<br>TPC                       | EXO-200                  |                        | nEXO                      |
|                                |                               |                                       | NEXT-10                  | NEXT-100<br>PandaX-III | NEXT-2.0<br>PandaX-III 1t |
|                                |                               | Liquid<br>scintillator<br>as a matrix | KamLAND-Zen 800          |                        | KamLAND2-Zen              |
|                                |                               |                                       | SNO+ phase I             |                        | SNO+ phase II             |
| High $\Delta E$ and $\epsilon$ | Crystal<br>embedded<br>source | Germanium<br>diodes                   | GERDA-II                 | LEGEND 200             | LEGEND 1000               |
|                                |                               |                                       | MJD                      |                        |                           |
|                                |                               | Bolometers                            | AMoRE pilot, I           | AMoRE II               |                           |
|                                |                               |                                       | CUORE<br>CUPID-0, CUPID- | Мо                     | CUPID                     |

# 6. Atmospheric neutrinos

### PINGU and ORCA


- Dense arrays of PMTs in South Pole ice or Medetrrenian sea water (=lower threshold)
- NMO by MSW effect around 4-6 GeV.
- Large  $v_{\tau}$  appearance data (PMNS unitary test)




# 6. Solar neutrinos

### Solar neutrino open questions

- Detection of hep neutrino → HyperK
- Day-night asymmetry measurement → HyperK
- MSW upturn at 3 MeV → Jinping
- Precise CNO neutrino measurement → Jinping





# 6. Supernova neutrinos

### Galactic supernova (~3 per century)


- Good luck for HyperK, DUNE, IceCube, etc

### Diffused supernova background (DSNB)

- Guaranteed signal, ~few events/yr by SuperK-Gd
- lower ebergy than galactic SN (<20 MeV)

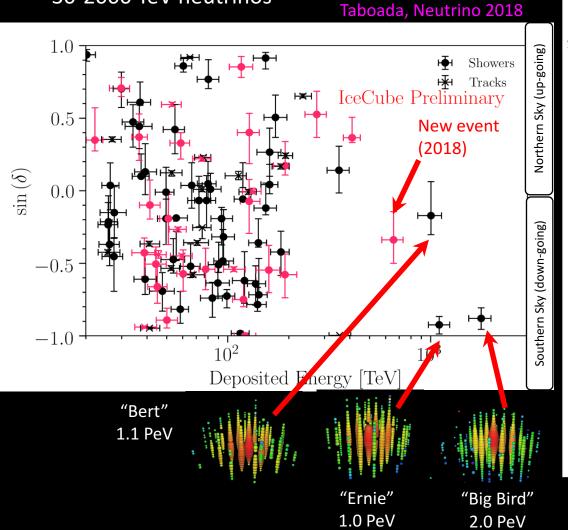
### SuperK-Gd

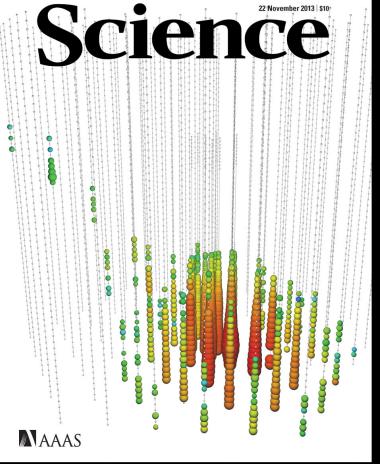
- Gd-loaded (neutron capture)
- Massive refurbishment work during summer 2018





Riding the SuperK boat!


Dream of all neutrino physicists!



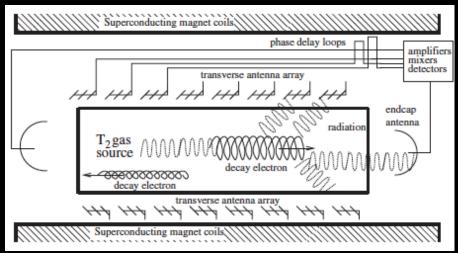



# 6. Astrophysical Very-High-Energy Neutrinos

First observation (2013) - 30-2000 TeV neutrinos






# 6. Cosmic Neutrino Background (CvB)

### PTOLEMY and Project 8

- Motivated by KATRIN
- Tritium  $v_e$  capture (no threshold)
- Measure end point of tritium (18 keV) from cyclotron radiation of single electron RF
- Target: ~meV shift of end point due to neutrino mass.

Q-m<sub>ν</sub>  $\rightarrow$  neutrino mass effect on β-decay Q+m<sub>ν</sub>  $\rightarrow$  CvB capture

### Project 8 concept





# 4. Neutrino physics for Peace

### Paper Number: IAEA-CN-184/27 Reactor Neutrino Detection for Non Proliferation with the NUCIFER Experiment Th. Lasserre, V.M. Bui, M. Cribier, A. Cucoanes, M. Fallot, M. Fechner, J. Gaffiot, L. Giot, R. Granelli, A. Letourneau, D. Lhuillier, J. Martino, G. Mention, D. Motta, Th.A. Mueller, A. Porta, R. Queval, J. L. Sida, C. Varignon, F. Yermia Neutrino nuclear reactor monitoring Neutrino beam to destroy nuclear weapon Destruction of Nuclear Bombs Using hep-ph/0305062 revised, June 2003 Ultra-High Energy Neutrino Beam nuclear bomb muon storage ring dedicated to Professor Masatoshi Koshiba neutrino beam inside of the earth Iirotaka Sugawara\* Hiroyuki Hagura<sup>†</sup> Toshiya Sanami<sup>‡</sup> 02/28/05 03/07/05 03/14/05 03/21/05 03/28/05 3 mDate

# 4. Neutrino physics to become Rich

# Reactor Neutrino Detection for Non Proliferation with the NUCIFER Experiment Th. Lasserre, V.M. Bui, M. Cribier, A. Cucoanes, M. Fallot, M. Fechner, J. Gaffiot, L. Giot, R. Granelli, A. Letourneau, D. Lhuillier, J. Martino, G. Mention, D. Motta, Th.A. Mueller, A. Porta, R. Queval, J. L. Sida, C. Varignon, F. Yermia Neutrino nuclear reactor monitoring Neutrino beam to destroy nuclear weapon Neutrino earth tomography to find oil reservoir

# Could one find petroleum using neutrino oscillations in matter?

T. Ohlson(\*) and W. Winter(\*\*)

Institut für Theoretische Physik, Physik-Department, Technische Universität München James-Franck-Straße, 85748 Garching bei München, Germany

## 4. Neutrino Communications



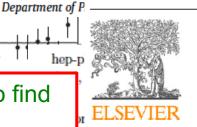
Contents lists available at ScienceDirect

# Physics Letters B

Using neutrino to communicate submarines under the deep water

### Reactor Neutrino Detection

Th. Lasserre, V.M. Bui, M. Cribier, Letourneau, D. Lhuillier, J. Martino C. Varignon, F. Yermia


Neutrino nuclear reactor monitoring

Neutrino beam to destroy nuclear weapon

Neutrino earth tomography to find oil reservoir

Submarine neutrino communication

Patrick Huber



Contents lists available at ScienceDirect

Physics Letters B

High power neutrino beam to communicate with Aliens(?)

# Could one find petroleun

in matter?

Galactic neutrino communication

John G. Learned a, Sandip Pakvasa a,\*, A. Zee b

T. OHLSSON(\*) and W. WINTER( a Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822, USA b Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

Institut für Theoretische Physik, Physik-Department, Technische Universität München James-Franck-Straße, 85748 Garching bei München, Germany

Reacto

Th. Lasserre, \

Letourneau, D C. Varignon, I

### 4. Neutrino Communications

Modern Physics Letters A Vol. 27, No. 12 (2012) 1250077 (10 pages) © World Scientific Publishing Company DOI: 10.1142/S0217732312500770



Finally, MINERvA experiment sent Morse code signal through neutrino beam

### DEMONSTRATION OF COMMUNICATION USING NEUTRINOS

D. D. STANCIL<sup>1,\*</sup>, P. ADAMSON<sup>2</sup>, M. ALANIA<sup>3</sup>, L. ALIAGA<sup>4</sup>, M. ANDREWS<sup>2</sup> C. ARAUJO DEL CASTILLO<sup>4</sup>, L. BAGBY<sup>2</sup>, J. L. BAZO ALBA<sup>4</sup>, A. BODEK<sup>5</sup> D. BOEHNLEIN<sup>2</sup>, R. BRADFORD<sup>5</sup>, W. K. BROOKS<sup>6</sup>, H. BUDD<sup>5</sup>, A. BUTKEVICH<sup>7</sup> D. A. M. CAICEDO<sup>8</sup>, D. P. CAPISTA<sup>2</sup>, C. M. CASTROMONTE<sup>8</sup>, A. CHAMORRO<sup>3</sup> E. CHARLTON<sup>9</sup>, M. E. CHRISTY<sup>10</sup>, J. CHVOJKA<sup>5</sup>, P. D. CONROW<sup>5</sup>, I. DANKO<sup>11</sup> M. DAY<sup>5</sup>, J. DEVAN<sup>9</sup>, J. M. DOWNEY<sup>12</sup>, S. A. DYTMAN<sup>11</sup>, B. EBERLY<sup>11</sup> J. R. FEIN<sup>11</sup>, J. FELIX<sup>13</sup>, L. FIELDS<sup>14</sup>, G. A. FIORENTINI<sup>8</sup>, A. M. GAGO<sup>4</sup> H. GALLAGHER<sup>15</sup>, R. GRAN<sup>16</sup>, J. GRANGE<sup>17</sup>, J. GRIFFIN<sup>5</sup>, T. GRIFFIN<sup>2</sup> E. HAHN<sup>2</sup>, D. A. HARRIS<sup>2,†</sup>, A. HIGUERA<sup>13</sup>, J. A. HOBBS<sup>14</sup>, C. M. HOFFMAN<sup>5</sup> B. L. HUGHES<sup>1</sup>, K. HURTADO<sup>3</sup>, A. JUDD<sup>5</sup>, T. KAFKA<sup>15</sup>, K. KEPHART<sup>2</sup> J. KILMER<sup>2</sup>, M. KORDOSKY<sup>9</sup>, S. A. KULAGIN<sup>7</sup>, V. A. KUZNETSOV<sup>14</sup> M. LANARI<sup>16</sup>, T. LE<sup>18</sup>, H. LEE<sup>5</sup>, L. LOIACONO<sup>5,19</sup>, G. MAGGI<sup>6</sup>, E. MAHER<sup>20</sup> S. MANLY<sup>5</sup>, W. A. MANN<sup>15</sup>, C. M. MARSHALL<sup>5</sup>, K. S. MCFARLAND<sup>5,2</sup> A. MISLIVEC<sup>5</sup>, A. M. MCGOWAN<sup>5</sup>, J. G. MORFÍN<sup>2</sup>, H. DA MOTTA<sup>8</sup>, J. MOUSSEAU<sup>17</sup> J. K. NELSON<sup>9</sup>, J. A. NIEMIEC-GIELATA<sup>5</sup>, N. OCHOA<sup>4</sup>, B. OSMANOV<sup>17</sup> J. OSTA<sup>2</sup>, J. L. PALOMINO<sup>8</sup>, J. S. PARADIS<sup>5</sup>, V. PAOLONE<sup>11</sup>, J. PARK<sup>5</sup>, C. PEÑA<sup>6</sup> G. PERDUE<sup>5</sup>, C. E. PÉREZ LARA<sup>4</sup>, A. M. PETERMAN<sup>14</sup>, A. PLA-DALMAU<sup>2</sup> B. POLLOCK<sup>9</sup>, F. PROKOSHIN<sup>6</sup>, R. D. RANSOME<sup>18</sup>, H. RAY<sup>17</sup>, M. REYHAN<sup>18</sup> P. RUBINOV<sup>2</sup>, D. RUGGIERO<sup>5</sup>, O. S. SANDS<sup>12</sup>, H. SCHELLMAN<sup>14</sup>, D. W. SCHMITZ<sup>2</sup> E. C. SCHULTE<sup>18</sup>, C. SIMON<sup>21</sup>, C. J. SOLANO SALINAS<sup>3</sup>, R. STEFANSKI<sup>2</sup> R. G. STEVENS<sup>19</sup>, N. TAGG<sup>22</sup>, V. TAKHISTOV<sup>18</sup>, B. G. TICE<sup>18</sup>, R. N. TILDEN<sup>14</sup> J. P. VELÁSQUEZ<sup>4</sup>, I. VERGALOSOVA<sup>18</sup>, J. VOIRIN<sup>2</sup>, J. WALDING<sup>9</sup>, B. J. WALKER<sup>14</sup> T. WALTON<sup>10</sup>, J. WOLCOTT<sup>5</sup>, T. P. WYTOCK<sup>14</sup>, G. ZAVALA<sup>13</sup>, D. ZHANG<sup>9</sup> L. Y. ZHU10 and B. P. ZIEMER21

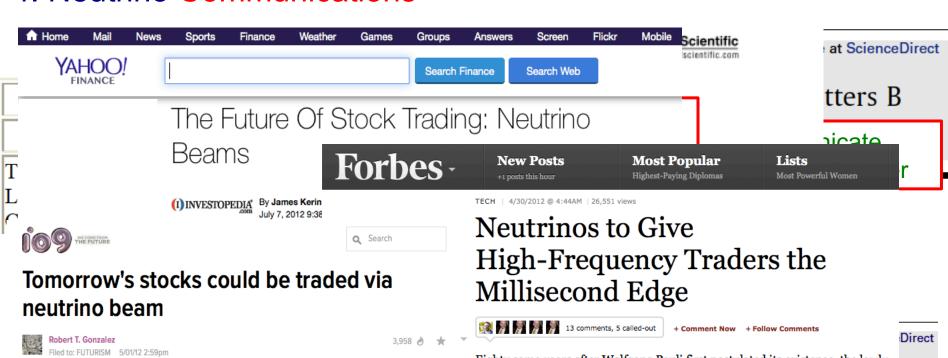
at ScienceDirect

tters B

nicate p water

ole at ScienceDirect

etters B


1 to

96822, USA

Neutrino b nuclear we Neutrino e oil reservo oil reser

Institut für Theoretische Physik, Physik-Department, Technische Universität München James-Franck-Straße, 85748 Garching bei München, Germany

### 4. Neutrino Communications





Neutrinos may not travel faster than light, but that doesn't mean they can't be put to good use.

Eighty some years after Wolfgang Pauli first postulated its existence, the lowly neutrino is now on the cusp of being harnessed to facilitate automated high-frequency trading through earth itself. That is, if this weakly-interacting, electrically-neutral subatomic particle can be successfully time-encoded and pointed from one financial center to another.

The idea is that by sending neutrino-based buy-and-sell messages via a 10,000 km shortcut through earth; high-velocity traders could handily beat their competitors.

Most neutrinos are leftover relics of thermal reactions that took place during the Big Bang, some 13.7 billion years ago. Today, however, they're artificially generated inside



Trading floor of the New York Stock Exchange a few years before the arrival of computer-driven

hen