# **New Physics with Atmospheric Neutrinos**

#### outline

- 1. New physics with atmospheric neutrinos
- 2. Sterile neutrinos
- 3. Non-standard Interaction
- 4. Neutrino decoherence
- 5. Neutrino Lorentz violation
- 6. Conclusion



https://charge.wisc.edu/icecube/wipac\_store.aspx



IceCube IC170922 t-shirt (Crew-Neck) \$1800 The front side features an image of "IC170922" and the locCube logo on the back Heathered nay, crewneck, rinspun cotton/polyester, Available in unitex sizes 5-2XL, Runs small.

Support IceCube!

Find us on Facebook, "Institute of Physics Astroparticle Physics" https://www.facebook.com/IOPAPP

Teppei Katori for the IceCube collaboration King's College London PAHEN 2019 Humboldt-Universität Berlin, Germany, September 27, 2019

# **1. New physics with atmospheric neutrinos**

- 2. Sterile neutrinos
- 3. Non-standard interaction
- 4. Neutrino decoherence
- **5. Neutrino Lorentz violation**
- 6. Conclusion



Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.





Super-Kamiokande, PRD94(2016)052001

# 1. Atmospheric neutrinos, natural laboratories of new physics

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.



Super-Kamiokande, PRL93 (2004) 101801

## 1. Atmospheric neutrinos, natural laboratories of new physics

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.





IceCube, PRD97(2018)072009

# 1. Atmospheric neutrinos, natural laboratories of new physics

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.



e.g.) Non-standard interaction (~10<sup>-24</sup> GeV)

$$h_{eff} \sim \frac{1}{2E} M^2 + V_{CC}, \quad P_{\alpha\beta} = \left| \left\langle \nu_{\alpha} \left| U(h_{eff}, t) \left| \nu_{\beta} \right\rangle \right|^2 \right.$$
$$M^2 = \begin{pmatrix} m_{ee}^2 & m_{e\mu}^2 & m_{\tau e}^2 \\ \left( m_{e\mu}^2 \right)^* & m_{\mu\mu}^2 & m_{\mu\tau}^2 \\ \left( m_{\tau e}^2 \right)^* & \left( m_{\mu\tau}^2 \right)^* & m_{\tau\tau}^2 \end{pmatrix}, V_{CC} = \begin{pmatrix} \sqrt{2}G_F n_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

#### Neutrino oscillation

- quantum interference

- macroscopic phase shift (=count of neutrinos) by microscopic effects

cf) The highest precision hydrogen 1S-2S transition (PRL107(2011)203001) Fractional frequency uncertainty ~  $4x10^{-15} \rightarrow$  new physics sensitivity ~ $10^{-23}$  GeV



Teppei Katori

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.

High energy + high density  $\rightarrow$  1eV sterile neutrino MSW resonance

High energy + long baseline

- Open quantum system
- $\rightarrow$  Neutrino wave decoherence

High energy + long baseline

- Effective field theory
- $\rightarrow$  Lorentz violation (LV)

High energy + long baseline + high density

- Effective field theory
- $\rightarrow$  Non-standard interaction (NSI)



$$h_{eff} \sim \frac{1}{2E} M^2 + V_{CC}, \quad P_{\alpha\beta} = \left| \left\langle \nu_{\alpha} \left| U(h_{eff}, t) \right| \nu_{\beta} \right\rangle \right|^2$$
$$M^2 = \begin{pmatrix} m_{ee}^2 & m_{e\mu}^2 & m_{\tau e}^2 \\ \left( m_{e\mu}^2 \right)^* & m_{\mu\mu}^2 & m_{\mu\tau}^2 \\ \left( m_{\tau e}^2 \right)^* & \left( m_{\mu\tau}^2 \right)^* & m_{\tau\tau}^2 \end{pmatrix}, V_{CC} = \begin{pmatrix} \sqrt{2}G_F n_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.

High energy + high density<br/>  $\rightarrow$  1eV sterile neutrino MSW resonance $h_{eff} \sim \frac{1}{2E} M_s^2 + V_{CC}, \quad P_{\alpha\beta} = |\langle v_{\alpha} | U(h_{eff}, t) | v_{\beta} \rangle|^2$ High energy + long baseline<br/>
- Open quantum system<br/>  $\rightarrow$  Neutrino wave decoherence $M^2 = \begin{pmatrix} m_{ee}^2 & m_{e\mu}^2 & m_{\tau e}^2 \\ (m_{e\mu}^2)^* & m_{\mu\mu}^2 & m_{\mu\tau}^2 \\ (m_{\tau e}^2)^* & (m_{\mu\tau}^2)^* & m_{\tau\tau}^2 \end{pmatrix}, V_{CC} = \begin{pmatrix} \sqrt{2}G_F n_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 

High energy + long baseline

- Effective field theory

 $\rightarrow$  Lorentz violation (LV)

High energy + long baseline + high density

- Effective field theory

→ Non-standard interaction (NSI)



$$M_{S}^{2} = \begin{pmatrix} m_{ee}^{2} & m_{e\mu}^{2} & m_{\tau e}^{2} & m_{es}^{2} \\ \left(m_{e\mu}^{2}\right)^{*} & m_{\mu\mu}^{2} & m_{\mu\tau}^{2} & m_{\mu s}^{2} \\ \left(m_{\tau e}^{2}\right)^{*} & \left(m_{\mu\tau}^{2}\right)^{*} & m_{\tau\tau}^{2} & m_{\tau s}^{2} \\ \left(m_{es}^{2}\right)^{*} & \left(m_{\mu s}^{2}\right)^{*} & \left(m_{\tau s}^{2}\right)^{*} & m_{ss}^{2} \end{pmatrix}$$

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.

High energy + high density  $\rightarrow$  1eV sterile neutrino MSW resonance

High energy + long baseline

- Open quantum system
- → Neutrino wave decoherence

High energy + long baseline

- Effective field theory
- $\rightarrow$  Lorentz violation (LV)

High energy + long baseline + high density

- Effective field theory

 $\rightarrow$  Non-standard interaction (NSI)



$$h_{eff} \sim \frac{1}{2E} M^2 + V_{CC}, \quad P_{\alpha\beta}^{OQS} = Tr \left| \rho_{\alpha}(t) \rho_{\beta}(0) \right|^2$$
$$M^2 = \begin{pmatrix} m_{ee}^2 & m_{e\mu}^2 & m_{\tau e}^2 \\ \left( m_{e\mu}^2 \right)^* & m_{\mu\mu}^2 & m_{\mu\tau}^2 \\ \left( m_{\tau e}^2 \right)^* & \left( m_{\mu\tau}^2 \right)^* & m_{\tau\tau}^2 \end{pmatrix}, V_{CC} = \begin{pmatrix} \sqrt{2}G_F n_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{d\rho}{dt} = -i[h_{eff}, \rho] - D[\rho]$$

$$P_{\alpha\beta} = A \cdot \left[1 - e^{-\gamma_{ij}} cos\left(\frac{\Delta m_{ij}^2}{2E}L\right)\right]$$
damping of oscillation

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.

High energy + high density  $\rightarrow$  1eV sterile neutrino MSW resonance

High energy + long baseline

- Open quantum system
- $\rightarrow$  Neutrino wave decoherence

### High energy + long baseline

- Effective field theory
- → Lorentz violation (LV)

High energy + long baseline + high density

- Effective field theory
- → Non-standard interaction (NSI)



$$P_{\alpha\beta} \sim sin^2 (E^{d-3}a^{(d)}L)$$
  
high-energy limit oscillation phase



Teppei Katori

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high density material (~13g/cm<sup>3</sup>) on Earth.

High energy + high density  $\rightarrow$  1eV sterile neutrino MSW resonance

High energy + long baseline

- Open quantum system
- $\rightarrow$  Neutrino wave decoherence

High energy + long baseline

- Effective field theory
- $\rightarrow$  Lorentz violation (LV)

High energy + long baseline + high density

- Effective field theory
- $\rightarrow$  Non-standard interaction NSI)



$$M_{eff} \sim \frac{1}{2E} M^{2} + V_{CC} + NST$$
$$M^{2} = \begin{pmatrix} m_{ee}^{2} & m_{e\mu}^{2} & m_{\tau e}^{2} \\ \left(m_{e\mu}^{2}\right)^{*} & m_{\mu\mu}^{2} & m_{\mu\tau}^{2} \\ \left(m_{\tau e}^{2}\right)^{*} & \left(m_{\mu\tau}^{2}\right)^{*} & m_{\tau\tau}^{2} \end{pmatrix}, V_{CC} = \begin{pmatrix} \sqrt{2}G_{F}n_{e} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $h \sim \frac{1}{M^2 + V} + NSL$ 

$$NSI = V_{CC} \frac{n_f}{n_e} \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{\tau e} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{\tau e}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

IceCube, Nature Physics14,961(2018), PRD97(2018)072009, Salvado et al., JHEP01(2017)141, Coloma et al., EPJC(2018)78:614 Super-Kamiokande, PRD91(2015)052003, PRD84(2011)113008,

# 1. New physics search with neutrino interferometry

New physics sensitivity with atmospheric neutrino is limited by  $\Delta m_{atm}^2$ . In order to discover BSM physics, scale of BSM physics needs to be order ~  $\Delta m_{atm}^2/4E$ 

New physics operators without energy dependence

## Decoherence and LV in IceCube (~20 TeV)

- Naïve sensitivity ~ 10<sup>-26</sup> GeV
- → Decoherence limit,  $\gamma_0^{n=0} \sim 10^{-24} \text{ GeV}$
- → LV limit,  $a^{(3)} \sim 10^{-24}$  GeV

### Decoherence and NSI in DeepCore (~50 GeV)

- naïve sensitivity ~ 10<sup>-23</sup> GeV

- → Decoherence limit,  $\gamma_0^{n=0} \sim 10^{-23} \text{ GeV}$
- → NSI limit,  $\varepsilon \sim 10^{-2}$  (V<sub>cc</sub>x $\varepsilon \sim 10^{-24}$  GeV)

Due to suppression of mass term, higher energy neutrinos often have higher sensitivity to new physics



Damping term (decoherence)

$$\gamma_{ij} = \gamma_{ij}^0 \cdot \left(\frac{E}{GeV}\right)^r$$

Effective LV new operator  $a^{(d)} \cdot E^{d-3}$ 

IceCube, Nature Physics14,961(2018), PRD97(2018)072009, Salvado et al., JHEP01(2017)141, Coloma et al., EPJC(2018)78:614 Super-Kamiokande, PRD91(2015)052003, PRD84(2011)113008,

# 1. New physics search with neutrino interferometry

New physics sensitivity with atmospheric neutrino is limited by  $\Delta m_{atm}^2$ . In order to discover BSM physics, scale of BSM physics needs to be order ~  $\Delta m_{atm}^2/4E$ 

New physics operators with energy dependence

Decoherence with n=2 in IceCube (~20 TeV)

- Naïve sensitivity ~ 10<sup>-34</sup> GeV
- → Decoherence limit,  $\gamma_0^{n=2} \sim 10^{-33} \text{ GeV}$
- LV with dimension-6 operator in IceCube (~20 TeV) - naïve sensitivity ~ 10<sup>-39</sup> GeV<sup>-2</sup>
- → LV limit,  $c^{(6)} \sim 10^{-36} \text{ GeV}^{-2}$

Damping term (decoherence)

$$\gamma_{ij} = \gamma^0_{ij} \cdot \left(\frac{E}{GeV}\right)^n$$

Effective LV new operator  $c^{(d)} \cdot E^{d-3}$ 

Due to suppression of mass term, higher energy neutrinos often have higher sensitivity to new physics

Some new physics may show up only at high-energy, and IceCube is good at find them (=high-energy)



# **1. New physics with atmospheric neutrinos**

# 2. Sterile neutrinos

- 3. Non-standard interaction
- 4. Neutrino decoherence
- **5. Neutrino Lorentz violation**

# 6. Conclusion



MiniBooNE,PRL121(2018)221801 Diaz et al., ArXiv:1906.00045

# 2. 1eV sterile neutrino

### Short-baseline anomalies

- LSND excess
- MiniBooNE excess
- Gallium anomaly
- Reactor anomaly



#### MiniBooNE data excess

2

mass





Teppei





## Has US physics lab found a new particle?

By Paul Rincon Science editor, BBC News website

O 6 June 2018

f 😏 🔗 🗹 < Share



#### IceCube, PRL117(2016)071801 Hignight, NuFact 2019

# 2. 1eV sterile neutrino

1eV sterile neutrino MSW resonance

- TeV neutrinos undergo resonance

## Through going muon sample

- pure  $\nu_{\mu}$  up-going muon
- up to 20 TeV
- Data-MC agree well, set limit







IceCube, PRL117(2016)071801 Hignight, NuFact 2019

# 2. 1eV sterile neutrino

1eV sterile neutrino MSW resonance

- TeV neutrinos undergo resonance

## Through going muon sample

- pure  $\nu_{\mu}$  up-going muon
- up to 20 TeV
- Data-MC agree well, set limit

## New IceCube analysis (Spencer Axani, MIT)

- 7 times more statistics
- better systematics (ice, flux)
- limits on both  $\theta_{23}$  and  $\theta_{34}$





IceCube, PRL117(2016)071801 Hignight, NuFact 2019

# 2. 1eV sterile neutrino

## 1eV sterile neutrino MSW resonance

- TeV neutrinos undergo resonance

## Through going muon sample

- pure  $\nu_{\mu}$  up-going muon
- up to 20 TeV
- Data-MC agree well, set limit

## New IceCube analysis (Spencer Axani, MIT)

- 7 times more statistics
- better systematics (ice, flux)
- limits on both  $\theta_{23}$  and  $\theta_{34}$

## New DeepCore analysis (Andrii Terliuk, DESY)

- limits on both  $\theta_{23}$  and  $\theta_{34}$  through  $U_{\tau4}$  and  $U_{\mu4}$ 





Asaka and Watanabe, JHEP07(2012)112 Richard (SuperK), Neutrino 2014

# 2. Heavy neutrino decay

### $\nu MSM$

- MeV sterile neutrinos are theoretically motivated.

### Trident event search in SuperK

 $- N \rightarrow e^+ + e^- + \nu$ 

Invariant mass and zenith angle distributions are used for the fit.

Atmospheric neutrinos look not competitive(?) compared with beam experiments.





19

# **1. New physics with atmospheric neutrinos**

# 2. Sterile neutrinos

# 3. Non-standard interaction

# 4. Neutrino decoherence

**5. Neutrino Lorentz violation** 

# 6. Conclusion



IceCube, PRD97(2018)072009, Super-K, PRD84(2011)113008, Salvado et al., JHEP01(2017)141  $h_{eff} \sim \frac{1}{2F}M^2 + V_{CC} + NSI$ 

N

## 3. Non-standard interaction (NSI)

### **NSI** in propagation

- Wolfenstein term Vcc =  $\sqrt{2}G_F n_e \sim 4 \times 10^{-22} GeV$
- expected sensitivity  $\varepsilon \sim 10^{-2-3}$

#### SuperK and DeepCore analyses

- Limits are set on  $\varepsilon_{u\tau}$  coefficient



≯Ν

$$V = V_{CC} \frac{n_f}{n_e} \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{\tau e} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{\tau e}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$



IceCube, PRD97(2018)072009, Super-K, PRD84(2011)113008, Salvado et al., JHEP01(2017)141  $h_{eff} \sim \frac{1}{2F}M^2 + V_{CC} + NSI$ Blot. TAUP2019

# 3. Non-standard interaction (NSI) $M^{2} = \begin{pmatrix} m_{ee}^{2} & m_{e\mu}^{2} & m_{\tau e}^{2} \\ \left(m_{e\mu}^{2}\right)^{*} & m_{\mu\mu}^{2} & m_{\mu\tau}^{2} \\ \left(m_{\tau e}^{2}\right)^{*} & \left(m_{\mu\tau}^{2}\right)^{*} & m_{\tau\tau}^{2} \end{pmatrix}, V_{CC} = \begin{pmatrix} \sqrt{2}G_{F}n_{e} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

## **NSI** in propagation

- Wolfenstein term Vcc =  $\sqrt{2}G_F n_e \sim 4 \times 10^{-22} GeV$
- expected sensitivity  $\varepsilon \sim 10^{-2-3}$

## SuperK and DeepCore analyses

- Limits are set on  $\varepsilon_{\mu\tau}$  coefficient

## New DeepCore analysis (Thomas Ehrhardt, JGU Mainz)

 $\nu_{\alpha}$ .

Ν

- 10 times more statistics
- Limits on all complex parameters
- Limits on parameter combinations



**→** Ν

 $NSI = V_{CC} \frac{n_f}{n_e} \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{\tau e} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\pi}^* & \varepsilon_{e\pi}^* & \varepsilon_{e\pi} \end{pmatrix}$ 



# **1. New physics with atmospheric neutrinos**

- 2. Sterile neutrinos
- 3. Non-standard interaction
- 4. Neutrino decoherence
- **5. Neutrino Lorentz violation**
- 6. Conclusion



23

# 4. Neutrino decoherence

## Space-time foam

Quantum gravity motivated quantum fluctuation of space-time.

- Planck scale black hole background
- D-brane fluctuation



Propagating particles lose coherence with interactions with these background

- New damping terms in oscillation



- Toy model (Tom Stuttard, NBI)
- Space-time foam baseline variation damp oscillations.
- Flavor basis interaction with Spacetime foam may randomize flavor basis

Different physics collapse wave functions differently.



Ellis, Mavromatos, Nanopoulos, MPLA12(1997)1759:1773 Farzan, Schwetz, Smirnov, JHEP07(2008)067

## 4. Neutrino decoherence

### Open quantum system

$$P_{\alpha\beta}^{OQS} = Tr \big| \rho_{\alpha}(t) \rho_{\beta}(0) \big|^{2}$$

- Model independent search of decoherence
- Density matrix formalism and decoherence term

$$\frac{d\rho}{dt} = -i[h_{eff},\rho] - D[\rho], \quad D[\rho] = \begin{pmatrix} 0 & \rho_{12}\gamma_{12} & \rho_{31}\gamma_{31} \\ \rho_{12}\gamma_{12} & 0 & \rho_{23}\gamma_{23} \\ \rho_{31}\gamma_{31} & \rho_{23}\gamma_{23} & 0 \end{pmatrix}$$

Damping term

$$\gamma_{ij} = \gamma_{ij}^0 \cdot \left(\frac{E}{GeV}\right)^n$$

- Analysis can be designed to find nonzero  $\gamma_{ij}^{0}$ .

- Experimental sensitivity is many order far away than expected Planck scale physics region? (naturalness: decoherence length of neutrino with E~M<sub>Planck</sub> is Planck length)



25

Coloma et al, EPJC(2018)78:614

## 4. Neutrino decoherence

Stronger sensitivity on  $\gamma_0$  (damping term scale) can be obtained by assuming larger n

### New analysis (Tom Stuttard, NBI)

- DeepCore data
- Weak dependence on mass ordering
- Exotic  $v_{\mu}$  disappearance (different pattern, new structure)





# **1. BSM physics with atmospheric neutrinos**

- 2. Sterile neutrinos
- 3. Non-standard interaction
- 4. Neutrino decoherence
- **5. Neutrino Lorentz violation**

# 6. Conclusion



Kostelecký and Samuel, PRD39(1989)683 Kostelecký and Mewes, PRD69(2004)016005;70(2004)076002

## 5. Lorentz violation

## Particle Lorentz violation

Quantum gravity motivated physics could generate vacuum expectation values with Lorentz indices (spontaneous Lorentz symmetry violation)



nonrenormalizable

Kostelecký and Samuel, PRD39(1989)683 Kostelecký and Mewes, PRD69(2004)016005;70(2004)076002

## 5. Lorentz violation

### Particle Lorentz violation

Quantum gravity motivated physics could generate vacuum expectation values with Lorentz indices (spontaneous Lorentz symmetry violation)

## Standard Model Extension (SME)

Effective field theory to study Lorentz violation

- Sidereal time variation
- Spectrum distortion
- CPT violation, etc

SME Lagrangian

$$L = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi + \bar{\psi}\gamma^{\mu}a^{(3)}_{\mu}\psi + \bar{\psi}\gamma^{\mu}c^{(4)}_{\mu\nu}\partial^{\nu}\psi \cdots$$

SME motivated effective Hamiltonian for neutrinos

$$h_{eff} \sim \frac{1}{2E} M^2 + V_{CC} + a^{(3)} + Ec^{(4)} + E^2 a^{(5)} + E^3 c^{(6)} \cdots$$
  
nonrenormalizable

"In a sense it is beyond the SM, but I would rather say it is beyond the leading terms – the renormalisable, unsuppressed part of the SM," says Weinberg. "But hell – so is gravity! The symmetries of general relativity don't allow any renormalisable interactions of massless spin-2 particles called gravitons."

> Steve Weinberg (CERN Courier, Nov 2017)

horizontal = no exotic oscillation vertical = exotic oscillation

tau neutrino

King's College London

Higher-dimension operator search is interesting, and IceCube is good at that (=high energy)



nonrenormalizable

#### IceCube,PRL115(2015)081102;117(2016)071801 Fedynitch et al,EPJ.Web.Conf.99(2015)08001

# 5. Analysis method

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

400 GeV<E<18 TeV ("conventional") Angle, -1<cosθ<0 ("through up-going")

## Simulation



 $v_{atm}$  is complicated from ~20 TeV

- Prompt atmospheric neutrinos (=charm)
- Astrophysical neutrinos
- Earth absorption becomes significant





## 5. Analysis method

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

400 GeV<E<18 TeV ("conventional") Angle, -1<cosθ<0 ("through up-going")

## Simulation

- atmospheric neutrinos from MCEq <a href="https://github.com/afedynitch/MCEq">https://github.com/afedynitch/MCEq</a>
- simple power law astrophysical neutrinos (=background)
- DIS cross section from Cooper-Sarkar-Sarkar (CSS) paper Cooper-Sarkar and Sarkar, JHEP01(2008)075
- Analytic oscillation formula to test exotic  $v_{\mu}$ - $v_{\tau}$  oscillation Gonzalez-Garcia et al., PRD71(2005)093010

### Systematics (6 nuisance parameters)

- normalization of flux : conventional (40%), prompt (free), and astrophysical (free)
- spectrum index : primary cosmic ray (2%) and astrophysical neutrinos (25%)
- $\pi/K$  ratio for conventional flux (10%)
- Ice model : negligible
- DOM efficiency : constrained

#### Fit methods Foreman-Mackey et al., Publ.Astron.Soc.Pac.125(2013)306

- Frequentist Wilk's theorem (main results)
- Bayesian Markov Chain Monte Carlo (MCMC) http://dan.iel.fm/emcee/current/



## 5. Results

 $H \sim \frac{m^2}{2E} + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)} \cdots .$ (1)

### We don't find Lorentz violation

- we set new limits on Lorentz violation
- demonstrate the potential of neutrino interferometry

| dim.     | method                            | type                         | sector   | limits                                                                                                                                                                                                                                                                                                    | ref.      |
|----------|-----------------------------------|------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 3        | CMB polarization                  | astrophysical                | photon   | $\sim 10^{-43}~{ m GeV}$                                                                                                                                                                                                                                                                                  | [6]       |
|          | He-Xe comagnetometer              | tabletop                     | neutron  | $\sim 10^{-34}~{ m GeV}$                                                                                                                                                                                                                                                                                  | [10]      |
|          | torsion pendulum                  | tabletop                     | electron | $\sim 10^{-31}~{ m GeV}$                                                                                                                                                                                                                                                                                  | [12]      |
|          | muon g-2                          | accelerator                  | muon     | $\sim 10^{-24}~{ m GeV}$                                                                                                                                                                                                                                                                                  | [13]      |
|          | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $\begin{aligned}  \text{Re}(\mathring{a}^{(3)}_{\mu\tau}) ,  \text{Im}(\mathring{a}^{(3)}_{\mu\tau})  &< 2.9 \times 10^{-24} \text{ GeV } (99\% \text{ C.L.}) \\ &< 2.0 \times 10^{-24} \text{ GeV } (90\% \text{ C.L.}) \end{aligned}$                                                                   | this work |
| 4        | GRB vacuum birefringence          | astrophysical                | photon   | $\sim 10^{-38}$                                                                                                                                                                                                                                                                                           | [7]       |
|          | Laser interferometer              | LIGO                         | photon   | $\sim 10^{-22}$                                                                                                                                                                                                                                                                                           | [8]       |
|          | Sapphire cavity oscillator        | tabletop                     | photon   | $\sim 10^{-18}$                                                                                                                                                                                                                                                                                           | [5]       |
|          | Ne-Rb-K comagnetometer            | tabletop                     | neutron  | $\sim 10^{-29}$                                                                                                                                                                                                                                                                                           | [11]      |
|          | trapped Ca <sup>+</sup> ion       | tabletop                     | electron | $\sim 10^{-19}$                                                                                                                                                                                                                                                                                           | [14]      |
|          | neutrino oscillation              | atmospheric                  | neutrino | $ \operatorname{Re}(\hat{c}^{(4)}_{\mu\tau}) ,  \operatorname{Im}(\hat{c}^{(4)}_{\mu\tau})  < 3.9 \times 10^{-28} (99\% \text{ C.L.}) < 2.7 \times 10^{-28} (90\% \text{ C.L.})$                                                                                                                          | this work |
| <b>5</b> | GRB vacuum birefringence          | astrophysical                | photon   | $\sim 10^{-34} { m GeV^{-1}}$                                                                                                                                                                                                                                                                             | [7]       |
|          | ultra-high-energy cosmic ray      | astrophysical                | proton   | $\sim 10^{-22}$ to $10^{-18} { m GeV^{-1}}$                                                                                                                                                                                                                                                               | [9]       |
|          | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $\frac{ \operatorname{Re}(\hat{a}_{\mu\tau}^{(5)}) ,  \operatorname{Im}(\hat{a}_{\mu\tau}^{(5)}) }{< 1.5 \times 10^{-32} \text{ GeV}^{-1} (90\% \text{ C.L.})} $                                                                                                                                          | this work |
| 6        | GRB vacuum birefringene           | astrophysical                | photon   | $\sim 10^{-31} { m GeV}^{-2}$                                                                                                                                                                                                                                                                             | [7]       |
|          | ultra-high-energy cosmic ray      | astrophysical                | proton   | $\sim 10^{-42}$ to $10^{-35}$ GeV <sup>-2</sup>                                                                                                                                                                                                                                                           | [9]       |
|          | gravitational Cherenkov radiation | astrophysical                | gravity  | $\sim 10^{-31} { m GeV}^{-2}$                                                                                                                                                                                                                                                                             | [15]      |
|          | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $ \operatorname{Re}(\hat{c}_{\mu\tau}^{(6)}) ,  \operatorname{Im}(\hat{c}_{\mu\tau}^{(6)})  < 1.5 \times 10^{-36} \text{ GeV}^{-2} (99\% \text{ C.L.}) < 9.1 \times 10^{-37} \text{ GeV}^{-2} (90\% \text{ C.L.})$                                                                                        | this work |
| 7        | GRB vacuum birefringence          | astrophysical                | photon   | $\sim 10^{-28} { m GeV^{-3}}$                                                                                                                                                                                                                                                                             | [7]       |
|          | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $ \operatorname{Re}(\mathring{a}_{\mu\tau}^{(7)}) ,  \operatorname{Im}(\mathring{a}_{\mu\tau}^{(7)})  < 8.3 \times 10^{-41} \text{ GeV}^{-3} (99\% \text{ C.L.}) < 3.6 \times 10^{-41} \text{ GeV}^{-3} (90\% \text{ C.L.})$                                                                              | this work |
| 8        | gravitational Cherenkov radiation | astrophysical                | gravity  | $\sim 10^{-46} { m GeV^{-4}}$                                                                                                                                                                                                                                                                             | [15]      |
|          | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $\begin{aligned}  \operatorname{Re}\left( \overset{\circ}{c}{}^{(8)}_{\mu\tau} \right) ,  \operatorname{Im}\left( \overset{\circ}{c}{}^{(8)}_{\mu\tau} \right)  &< 5.2 \times 10^{-45} \text{ GeV}^{-4} (99\% \text{ C.L.}) \\ &< 1.4 \times 10^{-45} \text{ GeV}^{-4} (90\% \text{ C.L.}) \end{aligned}$ | this work |
|          |                                   |                              |          |                                                                                                                                                                                                                                                                                                           |           |

TABLE I: Comparison of attainable best limits of SME coefficients in various fields.

IceCube, Nature Physics 14 (2018) 961

5. Results

# Atomic physics results dominate LV tests with renormalizable operators (effective field theory approach)

$$H \sim \frac{m^2}{2E} + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)} \cdots .$$
(1)

| dim. | method                                | type                         | sector                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | limits                                                                                                                                                                   |                            | ref.      |
|------|---------------------------------------|------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|
| 3    | CMB polarization                      | astrophysical                | photon                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-43} { m GeV}$                                                                                                                                                 |                            | [6]       |
|      | He-Xe comagnetometer                  | tabletop                     | neutron                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-34} \text{ GeV}$                                                                                                                                              |                            | [10]      |
|      | torsion pendulum                      | tabletop                     | electron               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-31} \text{ GeV}$                                                                                                                                              |                            | [12]      |
|      | muon g-2                              | accelerator                  | muon                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-24} \text{ GeV}$                                                                                                                                              |                            | [13]      |
|      | neutrino oscillation                  | $\operatorname{atmospheric}$ | neutrino               | $ \operatorname{Re}(\mathring{a}^{(3)}_{\mu\tau}) ,  \mathrm{I} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{l} \mathrm{m}\left( \overset{(3)}{a} _{\mu 	au}  ight)  ight  &< 2.9 	imes 10^{-24} \ \mathrm{GeV} \\ &< 2.0 	imes 10^{-24} \ \mathrm{GeV} \end{array} $ | (99%  C.L.)<br>(90%  C.L.) | this work |
| 4    | GRB vacuum birefringence              | astrophysical                | photon                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-38}$                                                                                                                                                          |                            | [7]       |
|      | Laser interferometer                  | LIGO                         | photon                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-22}$                                                                                                                                                          |                            | [8]       |
|      | Sapphire cavity oscillator 🧲          | tabletop                     | photon                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-18}$                                                                                                                                                          |                            | [5]       |
|      | Ne-Rb-K comagnetometer                | tabletop                     | neutron                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-29}$                                                                                                                                                          |                            | [11]      |
|      | trapped Ca <sup>+</sup> ion           | tabletep                     | electron               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-19}$                                                                                                                                                          |                            | [14]      |
|      | neutrino oscillation                  | $\operatorname{atmospheric}$ | neutrino               | $ \mathrm{Re}\left(\overset{\mathrm{o}(4)}{c_{\mu	au}} ight) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \operatorname{Im}(\overset{\circ}{c}{}^{(4)}_{\mu\tau})  < 3.9 \times 10^{-28} (9) < 2.7 \times 10^{-28} (9)$                                                          | 9% C.L.)<br>0% C.L.)       | this work |
| 5    | GRB vacuum birefringer ce             | astrophysical                | photon                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-34} { m GeV^{-1}}$                                                                                                                                            | 110                        | 30        |
|      |                                       | astrophysical                | proton                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim 10^{-22}$ to $10^{-18}$ GeV <sup>-1</sup>                                                                                                                          | $c^{(4)}$                  | 10-22     |
|      |                                       | atmospheric                  | neutrino               | $\operatorname{Re}(\hat{a}_{n}^{(5)}) \mid \operatorname{Im}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(0.5)_{  } < 2.3 \times 10^{-32} \text{ GeV}^{-1}$                                                                                                                      | 1 (9 0.07                  | 10        |
|      | D <sub>n</sub> <10 <sup>-3</sup> 4GeV | atmospheric                  | incuti inco            | $(a\mu \tau)$ , $(iii)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.5 \times 10^{-32} \text{ GeV}^{-1}$                                                                                                                                   | 1 (9                       |           |
| 6    | C <sub>n</sub> <10 <sup>-29</sup>     | astrophysical                | photon                 | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sim 10^{-21} \text{ GeV}^{-2}$                                                                                                                                         |                            |           |
|      |                                       | ast Spin to                  | rsion pend             | ulum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Crystal oscillator                                                                                                                                                       |                            |           |
|      | gra                                   | ast b <sub>e</sub>           | <10 <sup>-30</sup> GeV |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∆c/c<10 <sup>-18</sup>                                                                                                                                                   | Ref. and                   | A.        |
|      |                                       | at                           | 150                    | ) ,  In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          | (9                         | the state |
|      |                                       | -                            | da                     | 7,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          | <sup>(9</sup> PLB76        | 1(2016)1  |
| 7    |                                       | ast                          | C ANT                  | Contraction of the local division of the loc |                                                                                                                                                                          |                            | .(        |
|      |                                       | at                           |                        | ) ,  In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          | 99% C.L.)                  | this work |
|      |                                       |                              | 1                      | 71,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          | <sup>9</sup> (90% C.L.)    | [ ]       |
| 8    | gra                                   | ast                          | STATE OF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                            | [15]      |
|      |                                       | at                           |                        | ) ,  In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          | (99% C.L.)                 | this work |
|      | PRL107(2011)171604                    |                              |                        | 7171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          | * (90% C.L.)               |           |
|      | PRL112(2014)110801                    | PRL97(                       | 2006)021               | 603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                          |                            |           |
|      | TABLE I: Compar                       | fison or attain              | able best              | mmus of SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nature.Comm.6(2015)8174                                                                                                                                                  | lds.                       |           |

IceCube, Nature Physics 14 (2018) 961

Astrophysical observations dominate LV test with non-5. Results renormalizable operators (quantum gravity motivated models) UHECR  ${}^{\circ}a^{(5)} - E^3 \cdot {}^{\circ}c^{(6)} \cdots$  (1) GRB vacuum birefringence c6<10-42 GeV-2 <u>κ<sub>e+</sub>,</u> κ<sub>o-</sub><10<sup>-37</sup> s8<10-46 GeV-4 type sector ef. tion  $\sim 10$ astrophysical photon 10] tabletop  $\sim 10$ neutron  $\mathbf{pmeter}$ tabletop  $\sim 10$ 12lumelectron 13accelerator  $\sim 10^{\circ}$ muon A A Stolley MARS  $|\text{Re}(\hat{a}_{\mu\tau}^{(3)})|, |\text{Im}(\hat{a}_{\mu\tau}^{(3)})|$ < ation atmospheric neutrino work JCAP0904(2009)022 PRL110(2013)201601 ringence astrophysical photon  $\mathbf{7}$ PLB749(2015)551 √ 10<sup>-22</sup> neterLIGO photon 8  $\sim 10^{-18}$ Sapphire cavity oscillator tabletop photon [5]  $\sim 10^{-29}$ Ne-Rb-K comagnetometer tabletop neutron [11]trapped Ca<sup>+</sup> ion tabletop electron [14] $< 3.9 \times 10^{-28}$  (99% C.L.)  $|\operatorname{Re}(\overset{\circ}{c}{}^{(4)}_{\mu\tau})|, |\operatorname{Im}(\overset{\circ}{c}{}^{(4)}_{\mu\tau})|$ neutrino oscillation atmospheric neutrino this work  $< 2.7 \times 10^{-28}$  (90% C.L.) GRB vacuum birefringence astrophysical photon  $\sim 10^{-34} \text{ GeV}^{-1}$  $\mathbf{5}$ [7] $\sim 10^{-22}$  to  $10^{-18}$  GeV<sup>-1</sup> ultra-high-energy cosmic ray astrophysical proton 9 atmospheric neutrino  $|\text{Be}(\hat{a}_{\mu\tau}^{(5)})|, |\text{Im}(\hat{a}_{\mu\tau}^{(5)})| < 2.3 \times 10^{-32} \text{ GeV}^{-1}$  (99% C.L.)  $< 1.5 \times 10^{-32} \text{ GeV}^{-1}$  (90% C.L.) neutrino oscillation this work  $\sim 10^{-31} \text{ GeV}^{-2}$ 6 GRB vacuum birefringene astrophysical photon [7] $\sim 10^{-42}$  to  $10^{-35}~{\rm GeV^{-2}}$ ultra-high-energy cosmic ray astrophysical proton 9  $\sim 10^{-31} \text{ GeV}^{-2}$ gravitational Cherenkov radiation astrophysical gravity [15] $< 1.5 \times 10^{-36} \text{ GeV}^{-2}$  (99% C.L.) atmospheric neutrino  $|\operatorname{Re}(\overset{\circ}{c}{}^{(6)}_{\mu\tau})|, |\operatorname{Im}(\overset{\circ}{c}{}^{(6)}_{\mu\tau})|$ neutrino oscillation this work  $< 9.1 \times 10^{-37} \text{ GeV}^{-2}$  (90% C.L.)  $\sim 10^{-28} \text{ GeV}^{-3}$ 7 GRB vacuum birefringence astrophysical photon [7] atmospheric neutrino  $|\operatorname{Re}(\overset{\circ}{a}{}^{(7)}_{\mu\tau})|, |\operatorname{Im}(\overset{\circ}{a}{}^{(7)}_{\mu\tau})| \leq 8.3 \times 10^{-41} \text{ GeV}^{-3} (99\% \text{ C.L.})$ neutrino oscillation this work  $\sim 10^{-46} \text{ GeV}^{-4}$ gravitational Cherenkov radiation astrophysical gravity [15]8  $< 5.2 \times 10^{-45} \text{ GeV}^{-4}$  (99% C.L.) atmospheric neutrino  $|\operatorname{Re}(\hat{c}^{(8)}_{\mu\tau})|, |\operatorname{Im}(\hat{c}^{(8)}_{\mu\tau})|$ neutrino oscillation this work  $< 1.4 \times 10^{-45} \text{ GeV}^{-4}$  (90% C.L.)

TABLE I: Comparison of attainable best limits of SME coefficients in various fields.

IceCube, Nature Physics 14 (2018) 961

| 5.        | Results This analy Limits are                                                                                                           | This analysis set the strongest limits for any operators in the neutrino sector.<br>Limits are also among the strongest from atomic experiments to cosmology. |                                                   |                                                                                                                                                                                                                                                                                                                     |                                   |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| dim.<br>3 | Mext step:<br><u>meth</u> - 3 flavor - 3 flavor - Simultar torsion pe muon                                                              | full analysis<br>neous fit usi<br>I time deper                                                                                                                | ng upg<br>ndence                                  | oing muon + cascade<br>(test rotation symmetry violation)                                                                                                                                                                                                                                                           | [10]                              |  |  |
|           | neutrino oscillation                                                                                                                    | atmospheric                                                                                                                                                   | neutrino                                          | $\begin{aligned}  \text{Re}(\mathring{a}^{(3)}_{\mu\tau}) ,  \text{Im}(\mathring{a}^{(3)}_{\mu\tau})  &< 2.9 \times 10^{-24} \text{ GeV (99\% C.L.)} \\ &< 2.0 \times 10^{-24} \text{ GeV (90\% C.L.)} \end{aligned}$                                                                                               | this work                         |  |  |
| 4         | GRB vacuum birefringence<br>Laser interferometer<br>Sapphire cavity oscillator<br>Ne-Rb-K comagnetometer<br>trapped Ca <sup>+</sup> ion | astrophysical<br>LIGO<br>tabletop<br>tabletop<br>tabletop                                                                                                     | photon<br>photon<br>photon<br>neutron<br>electron | $ \sim 10^{-38} \\ \sim 10^{-22} \\ \sim 10^{-18} \\ \sim 10^{-29} \\ \sim 10^{-19} $                                                                                                                                                                                                                               | [7]<br>[8]<br>[5]<br>[11]<br>[14] |  |  |
|           | neutrino oscillation                                                                                                                    | atmospheric                                                                                                                                                   | neutrino                                          | $ \operatorname{Re}(\hat{c}^{\circ(4)}_{\mu\tau}) ,  \operatorname{Im}(\hat{c}^{\circ(4)}_{\mu\tau})  < 3.9 \times 10^{-28} (99\% \text{ C.L.}) < 2.7 \times 10^{-28} (90\% \text{ C.L.})$                                                                                                                          | this work                         |  |  |
| 5         | GRB vacuum birefringence<br>ultra-high-energy cosmic ray                                                                                | astrophysical<br>astrophysical                                                                                                                                | photon<br>proton                                  | $\sim 10^{-34} \text{ GeV}^{-1}$<br>$\sim 10^{-22} \text{ to } 10^{-18} \text{ GeV}^{-1}$                                                                                                                                                                                                                           | [7]<br>[9]                        |  |  |
|           | neutrino oscillation                                                                                                                    | atmospheric                                                                                                                                                   | neutrino                                          | $\begin{aligned}  \operatorname{Re}\left(\overset{\circ}{a}{}^{(5)}_{\mu\tau}\right) ,  \operatorname{Im}\left(\overset{\circ}{a}{}^{(5)}_{\mu\tau}\right)  &< 2.3 \times 10^{-32} \operatorname{GeV}^{-1} (99\% \text{ C.L.}) \\ &< 1.5 \times 10^{-32} \operatorname{GeV}^{-1} (90\% \text{ C.L.}) \end{aligned}$ | this work                         |  |  |
| 6         | GRB vacuum birefringene<br>ultra-high-energy cosmic ray<br>gravitational Cherenkov radiation                                            | astrophysical<br>astrophysical<br>1 astrophysical                                                                                                             | photon<br>proton<br>gravity                       | $ \sim 10^{-31} \text{ GeV}^{-2} \\ \sim 10^{-42} \text{ to } 10^{-35} \text{ GeV}^{-2} \\ \sim 10^{-31} \text{ GeV}^{-2} $                                                                                                                                                                                         | [7]<br>[9]<br>[15]                |  |  |
|           | neutrino oscillation                                                                                                                    | atmospheric                                                                                                                                                   | neutrino                                          | $ \operatorname{Re}(\hat{c}_{\mu\tau}^{(6)}) ,  \operatorname{Im}(\hat{c}_{\mu\tau}^{(6)})  < 1.5 \times 10^{-36} \text{ GeV}^{-2} (99\% \text{ C.L.}) < 9.1 \times 10^{-37} \text{ GeV}^{-2} (90\% \text{ C.L.})$                                                                                                  | this work                         |  |  |
| 7         | GRB vacuum birefringence                                                                                                                | astrophysical                                                                                                                                                 | photon                                            | $\sim 10^{-28} { m ~GeV^{-3}}$                                                                                                                                                                                                                                                                                      | [7]                               |  |  |
|           | neutrino oscillation                                                                                                                    | atmospheric                                                                                                                                                   | neutrino                                          | $ \operatorname{Re}(\overset{\circ}{a}{}^{(7)}_{\mu\tau}) ,  \operatorname{Im}(\overset{\circ}{a}{}^{(7)}_{\mu\tau})  < 8.3 \times 10^{-41} \text{ GeV}^{-3} (99\% \text{ C.L.}) < 3.6 \times 10^{-41} \text{ GeV}^{-3} (90\% \text{ C.L.})$                                                                        | this work                         |  |  |
| 8         | gravitational Cherenkov radiation                                                                                                       | n astrophysical                                                                                                                                               | gravity                                           | $\sim 10^{-46}~{ m GeV^{-4}}$                                                                                                                                                                                                                                                                                       | [15]                              |  |  |
|           | neutrino oscillation                                                                                                                    | $\operatorname{atmospheric}$                                                                                                                                  | neutrino                                          | $ \operatorname{Re}(\hat{c}_{\mu\tau}^{(8)}) ,  \operatorname{Im}(\hat{c}_{\mu\tau}^{(8)})  < 5.2 \times 10^{-45} \text{ GeV}^{-4} (99\% \text{ C.L.}) < 1.4 \times 10^{-45} \text{ GeV}^{-4} (90\% \text{ C.L.})$                                                                                                  | this work                         |  |  |

TABLE I: Comparison of attainable best limits of SME coefficients in various fields.

TK, Argüelles, Farrag, Mandalia, ArXiv:1906.09204

ONDON

# 5. New physics search with neutrino interferometry

# Quantum Gravity-motivated new physics operator search

Sensitivity is normalized with Planck mass (M<sub>Planck</sub>~10<sup>19</sup> GeV)

15 New physics sensitivity of log 10 (Sensitivity) atmospheric neutrinos is 10 non-renormalizable competitive to astrophysical sources It looks sensitivity exceed naïve 0 expectation of Planck scale - dim-5 ~ 1/M<sub>Planck</sub> ~ 10<sup>-19</sup> GeV<sup>-1</sup> -5  $- \dim -6 \sim 1/M_{Planck}^2 \sim 10^{-38} \text{ GeV}^{-2}$ Plank Scale Physics -10 IceCube v<sub>atm</sub> IceCube Vastro potential GRB pol. (photon) -15 Grav. Cherenkov (gravity) UHECR (proton) -20 5 6 Dimension of new physics operators renormalize sector operator (dimension-3 and -4) have many very strong limits from atomic physics Teppei Katori

New physics limits and projected sensitivity

# Conclusion

Atmospheric neutrinos offers unique laboratories of new physics.

- Highest energy particles (~20 TeV)
- Longest baseline (12700km)
- Traveling through high density material (~13g/cm<sup>3</sup>)

Neutrinos make natural quantum system (neutrino interferometry) and sensitive to small effect.

- Sterile neutrinos
- Non-standard interaction
- Quantum decoherence
- Lorentz violation

Atmospheric neutrino system has one of the highest sensitivity to quantum gravity motivated physics, but astrophysical neutrino system has even higher sensitivity.

# Thank you for your attention!

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the highest density material (~13g/cm<sup>3</sup>) on Earth.

In order to discover BSM physics, scale of BSM physics needs to be ~  $\Delta m_{atm}^2/4E \sim 10^{-26}$  GeV  $\sim$ 20TeV)  $\rightarrow$  Sensitivity limit of energy independent new physics 14 90% CL 90% CI 12  $10^{-17}$ 90% CL Super-K  $10^{-23}$  $\gamma = \gamma_0 (E/GeV)^n$ 90% CI Salvado et al  $\operatorname{Im}(\overset{\circ}{a}{}^{(3)}_{\mu\tau})$  (GeV) 10  $10^{-20}$  $2\Delta LLH$  $10^{-24}$ 8  $\bullet \gamma_{31} = \gamma_{32}$  $10^{-25}$ 6  $\bullet \gamma_{21} = \gamma_{31}$  $\land \gamma_{21} = \gamma_{32}$  $10^{-29}$  $10^{-26}$ 2 10-32  $10^{-27}$  $10^{-26}$   $10^{-25}$   $10^{-24}$   $10^{-23}$   $10^{-22}$ 10-27 2 -2-10 1 -0.010-0.0050.000 0.005 0.010  $\operatorname{Re}(\mathring{a}_{\mu\tau}^{(3)})$  (GeV) n  $\epsilon_{\mu\tau}$ **Decoherence** limit Lorentz violation limit Non-standard interaction limit  $\gamma_0 \sim 10^{-24} \text{ GeV}$ a<sup>(3)</sup> ~ 10<sup>-24</sup> GeV  $V_{cc}x\epsilon \sim 10^{-19} \text{ GeV}$ IceCube,PRD97(2018)072009 Coloma et al., EPJC(2018)78:614 IceCube,Nature Physics14,961(2018) Super-Kamiokande, PRD91(2015)052003 Super-Kamiokande, PRD84(2011)113008 Salvado et al., JHEP01(2017)141



Phase space of atmospheric neutrinos are largely unexplored.





Formaggio and Zeller, Rev.Mod.Phys.,84 (2012) 1307

DNDON

## 1. Atmospheric neutrinos, natural laboratories of new physics

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the highest density material (~13g/cm<sup>3</sup>) on Earth.







Kostelecký and Mewes, PRD85(2012)096005

## 5. Neutrino flavour with Lorentz violation

We start from isotropic model of nonminimal SME

$$h_{eff} \sim \frac{1}{2E} U^{\dagger} M^{2} U + a_{\alpha\beta}^{(3)} - E c_{\alpha\beta}^{(4)} + E^{2} a_{\alpha\beta}^{(5)} - E^{3} c_{\alpha\beta}^{(6)} + E^{4} a_{\alpha\beta}^{(7)} - E^{5} c_{\alpha\beta}^{(8)} \cdots$$

dim-6 isotropic SME (d=6)



We test dim-3 to dim-8 operators one by one to find nonzero scale (or set limit on scale)

$$h_{eff} \sim \frac{1}{2E} U^{\dagger} M^{2} U - E^{3} c_{\alpha\beta}^{(6)} = V^{\dagger}(E) \Delta V(E)$$
$$V(E) = \begin{pmatrix} V_{e1}(E) & V_{e2}(E) & V_{e3}(E) \\ V_{\mu1}(E) & V_{\mu2}(E) & V_{\mu3}(E) \\ V_{\tau1}(E) & V_{\tau2}(E) & V_{\tau3}(E) \end{pmatrix}, \quad \Delta = \begin{pmatrix} \lambda_{1}(E) & 0 & 0 \\ 0 & \lambda_{2}(E) & 0 \\ 0 & 0 & \lambda_{3}(E) \end{pmatrix}$$



# 5. Test of Lorentz violation with neutrinos

Test of Lorentz violation with neutrinos can be classified to 2 groups.  $\rightarrow$  We test spectral distortion of atmospheric neutrino spectrum due to Lorentz violation.



# 5. Analysis method

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

 $v_{\text{atm}}$  is complicated from ~20 TeV

- Astrophysical neutrinos

- Prompt atmospheric neutrinos (=charm)

400 GeV<E<18 TeV ("conventional") Angle, -1<cosθ<0 ("through up-going")





Fedynitch et al, EPJ. Web. Conf. 99 (2015) 08001

# 5. Analysis method

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

400 GeV<E<18 TeV ("conventional") Angle, -1<cosθ<0 ("through up-going")

### Simulation

- atmospheric neutrinos from MCEq <a href="https://github.com/afedynitch/MCEq">https://github.com/afedynitch/MCEq</a>





Figure 3. Primary model dependence of the atmospheric conventional + prompt neutrino flux. The model abbreviations are described in the caption of Fig. 2.



#### Vincent et al, PRD94(2016)023009 IceCube,PRL115(2015)081102 5. Analysis method

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

400 GeV<E<18 TeV ("conventional") Angle,  $-1 < \cos\theta < 0$  ("through up-going")

### Simulation

- atmospheric neutrinos from MCEq <u>https://github.com/afedynitch/MCEq</u>

- simple power law astrophysical neutrinos

This moment, we don't have a consistent flux model for astrophysical neutrinos. Spectrum index is highly correlated with normalization of the flux.

 $\rightarrow$  in this analysis,  $\gamma$ =2 ( $\Phi$ ~E<sup>-2</sup>) is used. We found in this analysis dependence on spectrum index is weak.





Cooper-Sarkar and Sarkar, JHEP01(2008)075 Gonzalez-Garcia et al., PRD71(2005)093010

## 5. Analysis method

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

400 GeV<E<18 TeV ("conventional") Angle, -1<cosθ<0 ("through up-going")

### Simulation

- atmospheric neutrinos from MCEq <a href="https://github.com/afedynitch/MCEq">https://github.com/afedynitch/MCEq</a>
- simple power law astrophysical neutrinos
- DIS cross section from Cooper-Sarkar-Sarkar (CSS) paper
- Analytic oscillation formula

### Systematics (6 nuisance parameters)

- normalization of flux : conventional (40%), prompt (free), and astrophysical (free)
- spectrum index : primary cosmic ray (2%) and astrophysical neutrinos (25%)
- $\pi/K$  ratio for conventional flux (10%)
- Ice model : negligible
- DOM efficiency : constrained



# 5. Analysis method

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

400 GeV<E<18 TeV ("conventional") Angle, -1<cosθ<0 ("through up-going")

## Simulation

- atmospheric neutrinos from MCEq <a href="https://github.com/afedynitch/MCEq">https://github.com/afedynitch/MCEq</a>
- simple power law astrophysical neutrinos
- DIS cross section from Cooper-Sarkar-Sarkar (CSS) paper
- Analytic oscillation formula

## Systematics (6 nuisance parameters)

- normalization of flux : conventional (40%), prompt (free), and astrophysical (free)
- spectrum index : primary cosmic ray (2%) and astrophysical neutrinos (25%)
- $\pi/K$  ratio for conventional flux (10%)
- Ice model : negligible
- DOM efficiency : constrained

## Fit methods

- Frequentist Wilk's theorem (main results)
- Bayesian Markov Chain Monte Carlo (MCMC)

http://dan.iel.fm/emcee/current/



#### emcee: The MCMC Hammer



Te DANIEL FOREMAN-MACKEY,<sup>1</sup> DAVID W. HOGG,<sup>1,2</sup> DUSTIN LANG,<sup>3,4</sup> AND JONATHAN GOODMAN<sup>5</sup> Received 2013 January 09; accepted 2013 January 30; published 2013 February 25





# 1. Neutrino oscillation as a probe of new physics

Neutrino oscillation is an interference experiment (cf. double slit experiment)



If 2 neutrino Hamiltonian eigenstates,  $v_1$  and  $v_2$ , have different phase rotation, they cause quantum interference.



# 1. Neutrino oscillation as a probe of new physics

Neutrino oscillation is an interference experiment (cf. double slit experiment)

If 2 neutrino Hamiltonian eigenstates,  $v_1$  and  $v_2$ , have different phase rotation, they cause quantum interference.

If  $v_1$  and  $v_2$ , have different coupling with new physics field, neutrinos also oscillate. The sensitivity of "neutrino interferometer" can beyond precise atomic/optical interferometers. - Longer propagation length (LIGO = 4km, Atmospheric neutrino = 12700 km)

- Higher energy (Gamma ray ~ 100 GeV, Astrophysical neutrino ~ 1 PeV)



# 1. Neutrino oscillation as a probe of new physics



Neutrino oscillation is an interference experiment (cf. double slit experiment)

If 2 neutrino Hamiltonian eigenstates,  $v_1$  and  $v_2$ , have different phase rotation, they cause quantum interference.

If  $v_1$  and  $v_2$ , have different coupling with new physics field, neutrinos also oscillate. The sensitivity of "neutrino interferometer" can beyond precise atomic/optical interferometers. - Longer propagation length (LIGO = 4km, Atmospheric neutrino = 12700 km)

- Higher energy (Gamma ray ~ 100 GeV, Astrophysical neutrino ~ 1 PeV)

