Physics of Neutrino Interactions around 1-10 GeV

Teppei Katori

Queen Mary University of London

Modelling Neutrino-Nucleus Interactions, ECT*, Trento, Italy, July 9, 2018

outline

- 1. IceCube neutrino observatory
- 2. IceCube low energy physics
- 3. DIS-hadronization systematic errors
- 4. DIS quark-hadron duality error
- 5. DIS differential cross section error
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- **10. Conclusions**

Subscribe "NuSTEC News"

E-mail to listserv@fnal.gov, Leave the subject line blank, Type "subscribe nustec-news firstname lastname"

(or just send e-mail to me, <u>katori@FNAL.GOV</u>)

like "@nuxsec" on Facebook page, use hashtag #nuxsec

Physics of Neutrino Interactions around X 2-10 GeV

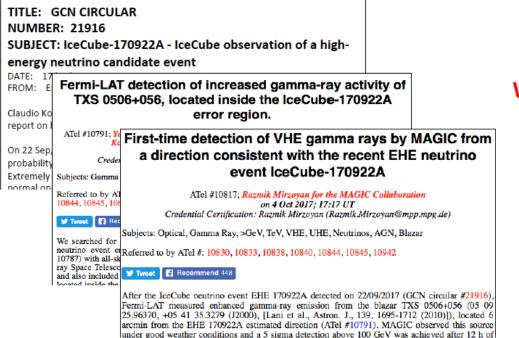
Teppei Katori

Queen Mary University of London

Modelling Neutrino-Nucleus Interactions, ECT*, Trento, Italy, July 9, 2018

outline

- 1. IceCube neutrino observatory
- 2. IceCube low energy physics
- 3. DIS-hadronization systematic errors
- 4. DIS quark-hadron duality error
- 5. DIS differential cross section error
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- **10. Conclusions**


Subscribe "NuSTEC News"

E-mail to listserv@fnal.gov, Leave the subject line blank, Type "subscribe nustec-news firstname lastname"

(or just send e-mail to me, <u>katori@FNAL.GOV</u>)

like "@nuxsec" on Facebook page, use hashtag #nuxsec

IceCube-170922A & TXS 0506+056

Work on-going

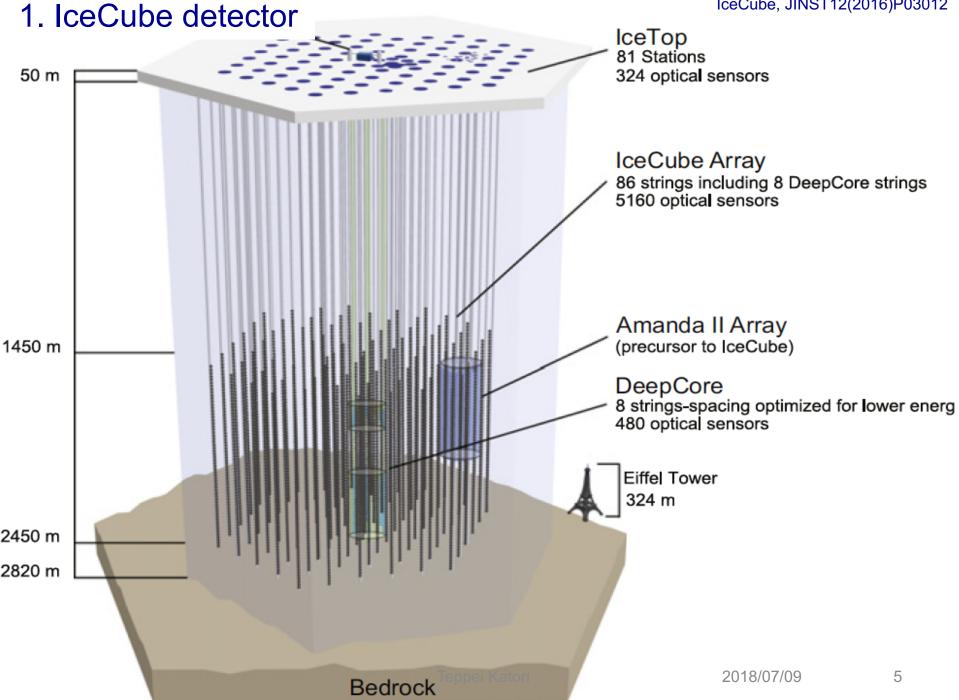
September 22, 2017: a neutrino alert issued by IceCube Fermi and MAGIC identify a spatially coincident flaring blazar (TXS 0506+056) Very active multi-messenger follow-up from radio to γ-rays

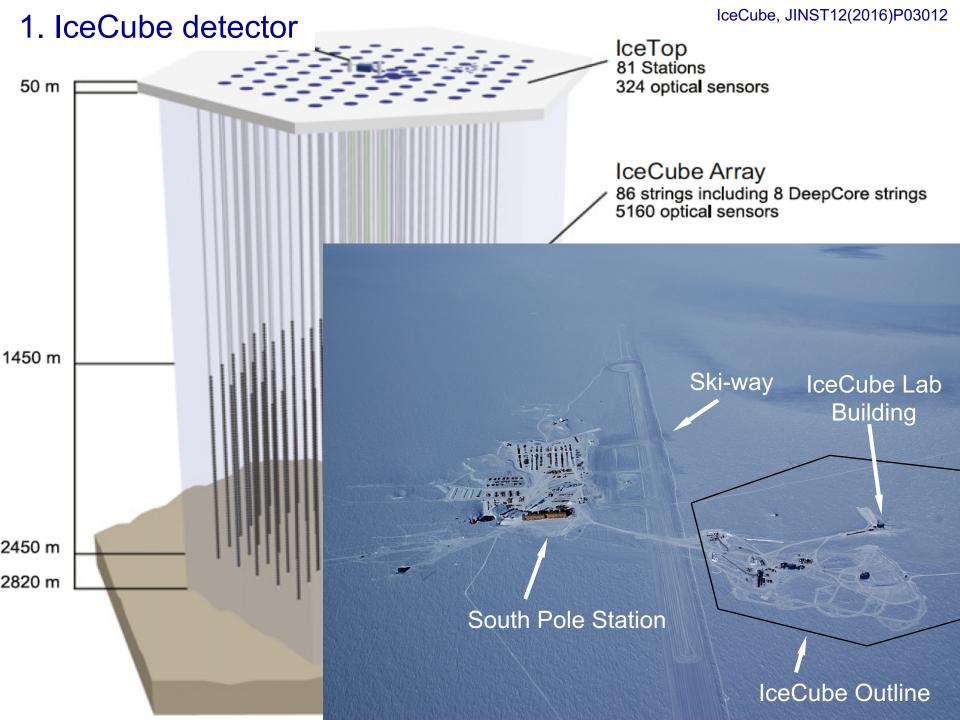
Taboada (Georgia Tech), Neutrino 2018

https://charge.wisc.edu/icecube/wipac_store.aspx

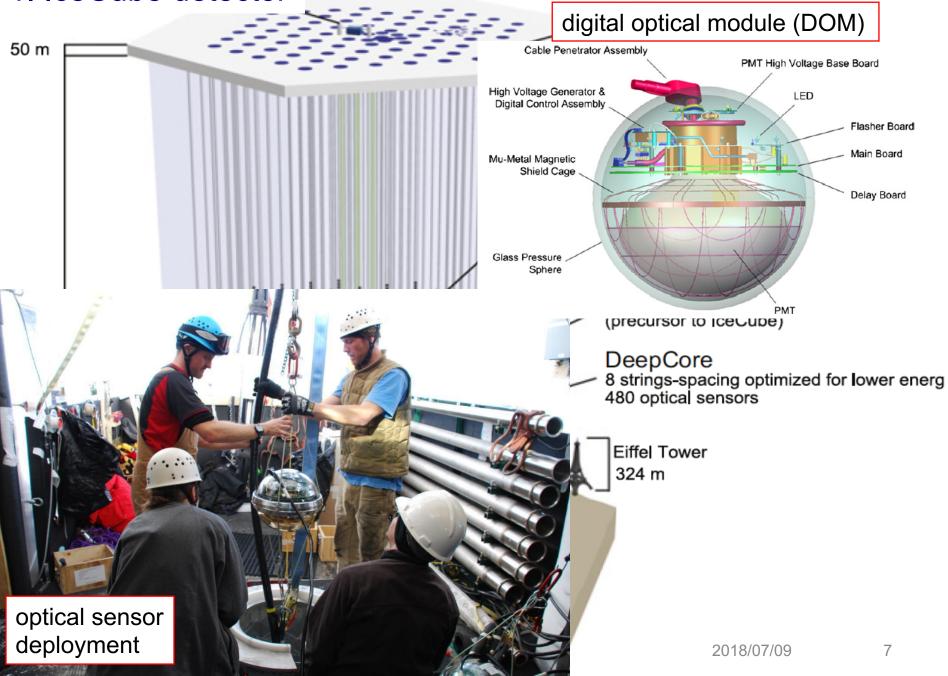
IceCube ICI70922 t-shirt (Crew-Neck) \$18.00

The front side features an image of "IC170922" and the IceCube logo on the back Heathered navy, crewneck, rinspun cotton/polyester, Available in unisex sizes S-2XL. Runs small.


Teppei

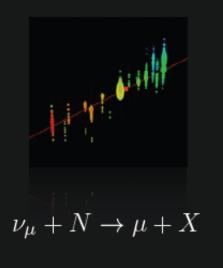

1. IceCube neutrino observatory

- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- **10. Conclusions**


IceCube, JINST12(2016)P03012

IceCube, JINST12(2016)P03012

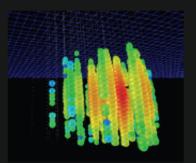
1. IceCube detector



1. IceCube detector

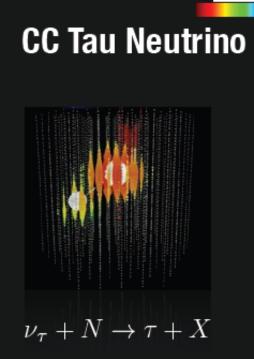
Topology

- Track = muon ($\sim v_{\mu}CC$)
- Shower (cascade) = electron, tau, hadrons (~, v_eCC , $v_\tau CC$, NC)


CC Muon Neutrino

track (data)

factor of ≈ 2 energy resolution < 1° angular resolution

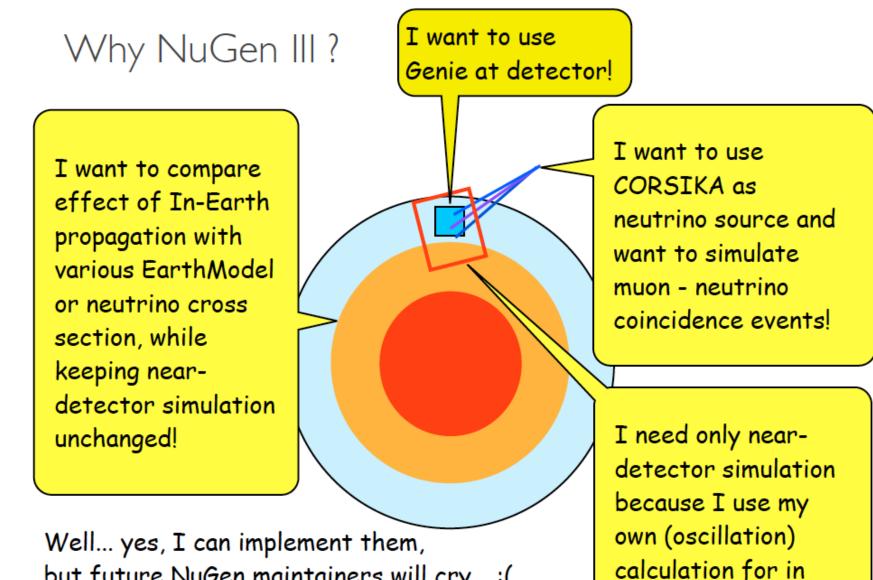

Neutral Current / Electron Neutrino

 $\nu_{e} + N \rightarrow e + X$ $\nu_{x} + N \rightarrow \nu_{x} + X$

cascade (data)

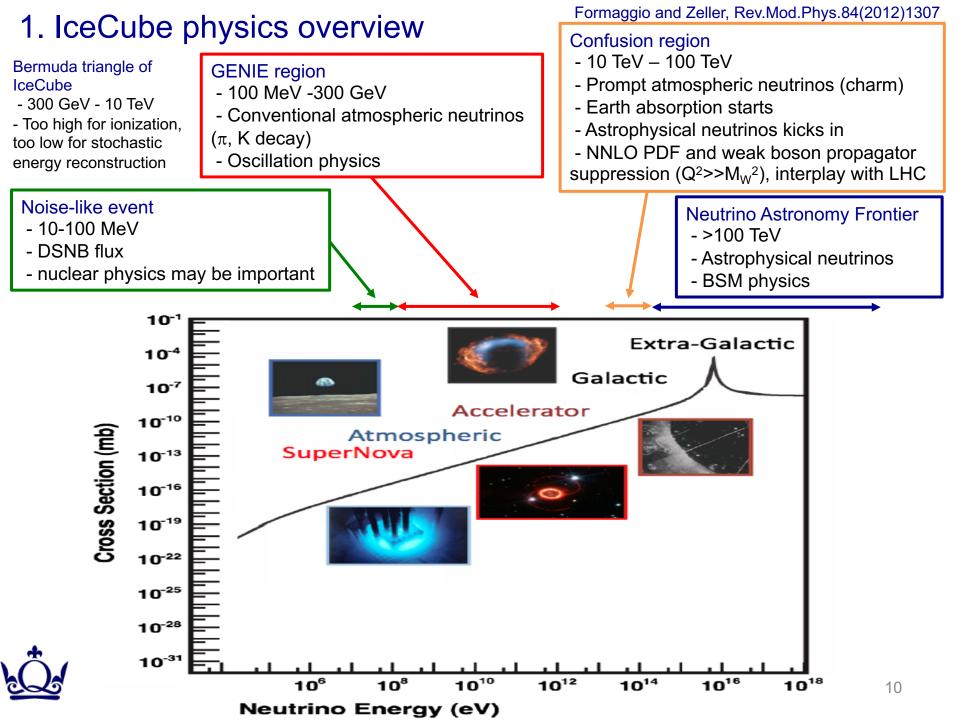
 $\approx \pm 15\%$ deposited energy resolution $\approx 10^{\circ}$ angular resolution (at energies ≥ 100 TeV)

time


"double-bang" and other signatures (simulation)

(not observed yet) Hill, Neutrino 2014

1. IceCube physics overview

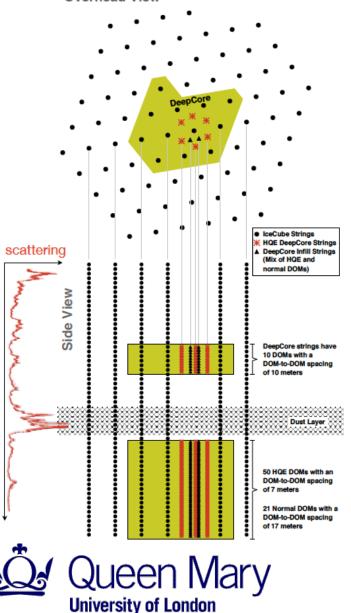

Few MeV (supernova neutrinos) to PeV (VHE astrophysical neutrinos)

Earth propagation !

but fut (NuGen

Well... yes, I can implement them, but future NuGen maintainers will cry... :((NuGen is complicated enough already!)

1. IceCube neutrino observatory

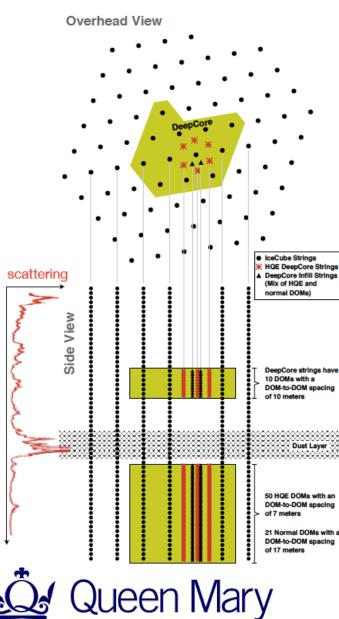

2. IceCube low energy physics

- 3. DIS-Hadronization systematic errors
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions

2. DeepCore

Overhead View

IceCube: 78 string, 125m string separation, 17m vertical DOM separation.


DeepCore: 8 new strings, ~75m separations, with 7m vertical DOM separation.

Teppei Katori

DeepCore is designed for low energy physics (<300 GeV). It can also push the threshold as low as 6 GeV, but this depends location of vertex and direction of events.

20 GeV	Track	Cascade
ΔE	24%	29%
$\Delta \theta$	10°	16°

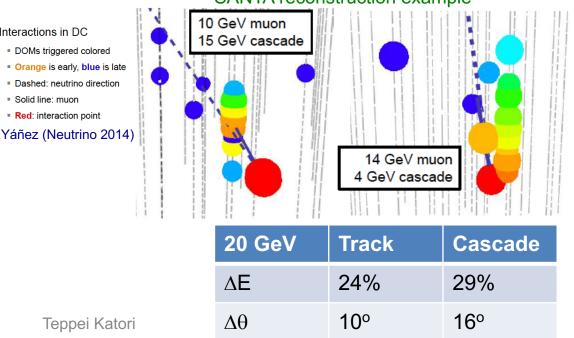
2. DeepCore

University of London

Information is very sparse for low energy neutrino reconstruction in IceCube

SANTA (2014 oscillation result)

- Simple algorithm based on Cherenkov profile
- less model dependent, only works for high angle events

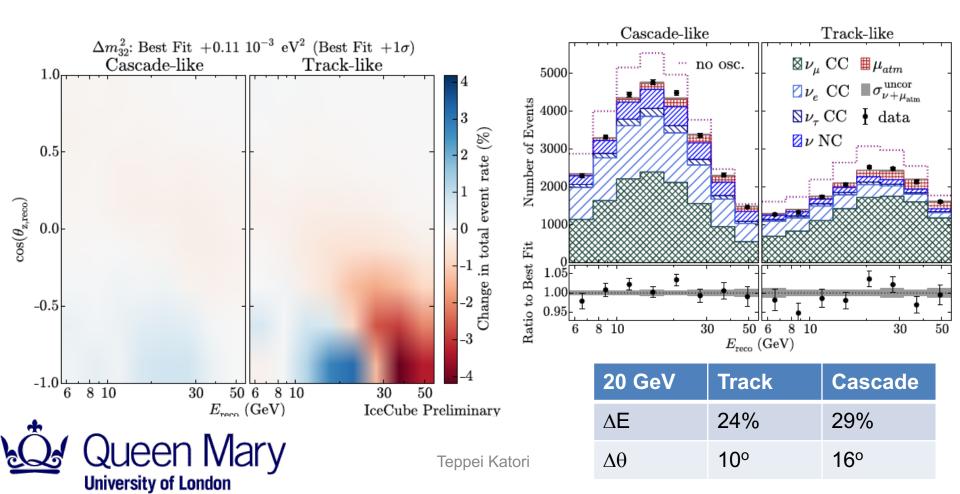

Multinest (2017 oscillation result)

- High-level algorithm based on photon table
- highly model dependent (?)

Interactions in DC

Solid line: muon

Red: interaction point



SANTA reconstruction example

2. DeepCore oscillation analysis

Oscillation fit is dominated around ~30 GeV neutrinos

- majority of events, > 10 GeV
- event peak around 15 -25 GeV

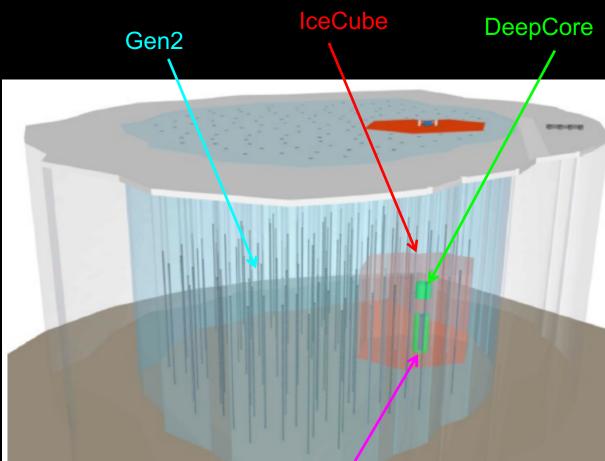
2. DeepCore oscillation analysis

Oscillation fit is dominated around ~30 GeV neutrinos

- majority of events, > 10 GeV
- event peak around 15 -25 GeV

Systematic errors are mostly flux and detectors.

Future PINGU experiment (>2 GeV) will
be sensitive to neutrino interaction
systematics.


From here, I will discuss neutrino interaction systematics of future 2-10 GeV experiments (NOvA, DUNE, HyperK, PINGU, ORCA, INO, etc)

		Best fit	
Parameters	Priors	NO	Ю
Flux and cross-section	ion parameters	5	
Neutrino event rate [% of nominal]	No prior	85	85
$\Delta \gamma$ (spectral index)	0.00 ± 0.10	-0.02	-0.02
M_A (resonance) [GeV]	1.12 ± 0.22	0.92	0.93
$\nu_e + \bar{\nu}_e$ relative normalization [%]	100 ± 20	125	125
NC relative normalization [%]	100 ± 20	106	106
Hadronic flux, energy dependent $[\sigma]$	0.00 ± 1.00	-0.56	-0.59
Hadronic flux, zenith dependent $[\sigma]$	0.00 ± 1.00	-0.55	-0.57
Detector para	ameters		
Overall optical efficiency [%]	100 ± 10	102	102
Relative optical efficiency, lateral $[\sigma]$	0.0 ± 1.0	0.2	0.2
Relative optical efficiency, head-on [a.u.]	No prior	-0.72	-0.66
Backgrou	und		
Atm. μ contamination [% of sample]	No prior	5.5	5.6

IceCube-Gen2, JPhysG44(2017)054006, arXiv:1412.5106

2. IceCube-Gen2 and PINGU

Bigger lceCube and denser DeepCore can push their physics

High Energy Extension

Larger string separations to cover larger area

PINGU

Smaller string separation to achieve lower energy threshold for neutrino mass hierarchy measurement

PINGU

PINGU E_{th} ~2 GeV (6 GeV for MSW oscillation max for mass hierarchy

Jueen Marv

University of London

Teppei Katori, Queen Mary University of London

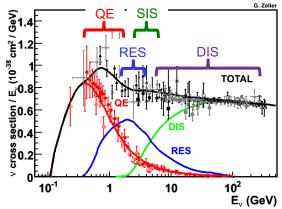
18/06/22

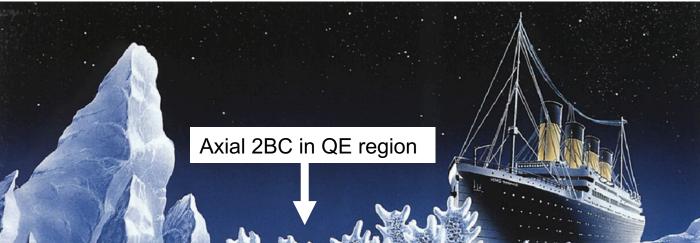
2. PINGU

Oscillation fit is dominated around ~30 GeV neutrinos

- majority of events, > 10 GeV
- event peak around 15 -25 GeV

17

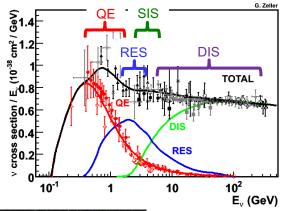

- 1. IceCube neutrino observatory
- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions

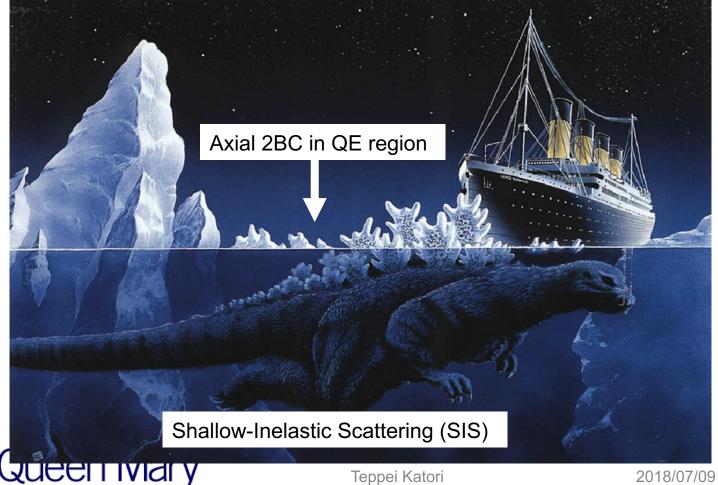


18

3. Beyond QE peak

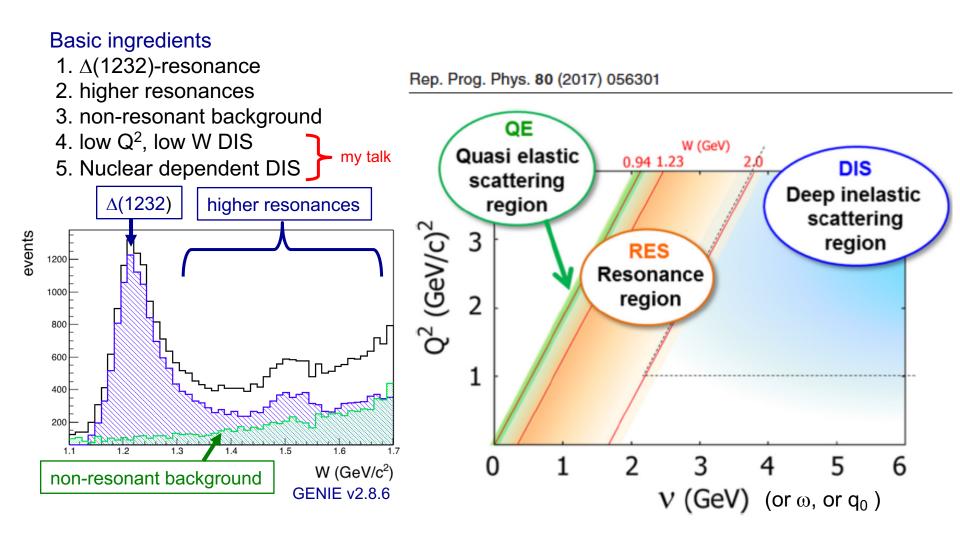
Axial 2-body current in QE region may be a tip of the iceberg...




Teppei Katori

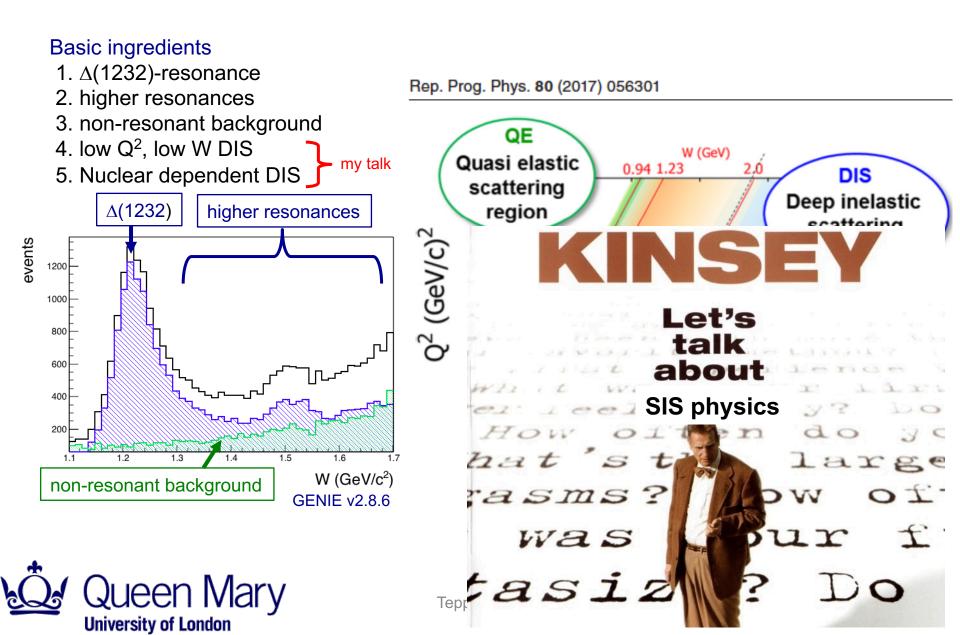
3. Beyond QE peak

University of London


Axial 2-body current in QE region may be a tip of the iceberg..., or maybe a tip of gozilla!

traditionally called "transition" region

3. Sallow Inelastic Scattering (SIS) physics



21

traditionally called "transition" region

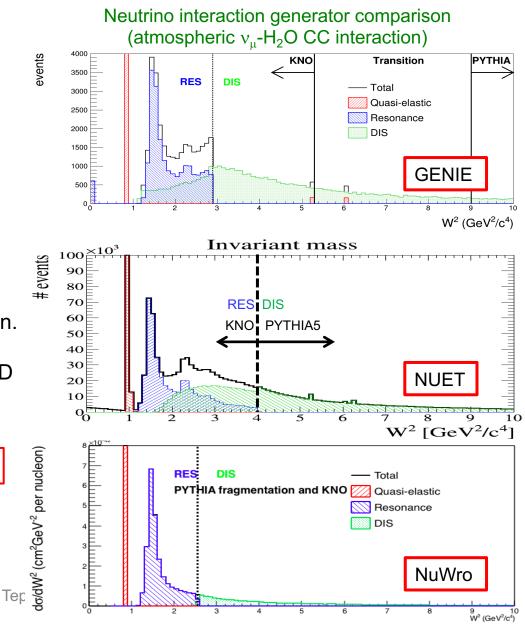
3. Sallow Inelastic Scattering (SIS) physics

3. Sallow Inelastic Scattering (SIS) physics, summary

my talk

Basic ingredients

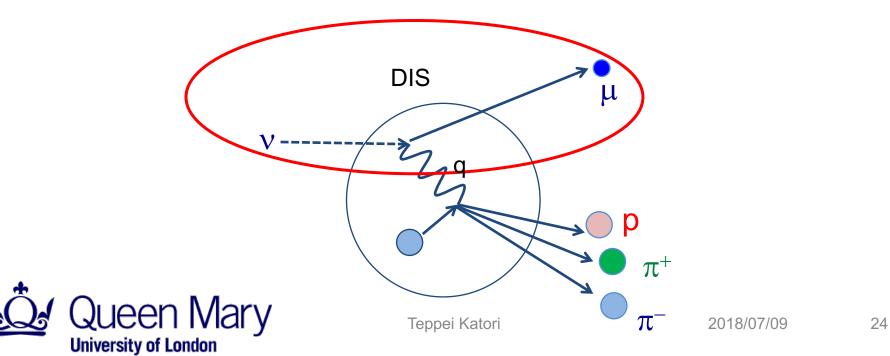
- 1. Δ (1232)-resonance
- 2. higher resonances
- 3. non-resonant background
- 4. low Q², low W DIS
- 5. Nuclear dependent DIS 🦵


Generators show large disagreement for SIS models, also none of them look right

This talk will discuss potential errors of DIS and hadronization at 2-10 GeV region.

Most of studies are done by Shivesh (PhD student) and master students

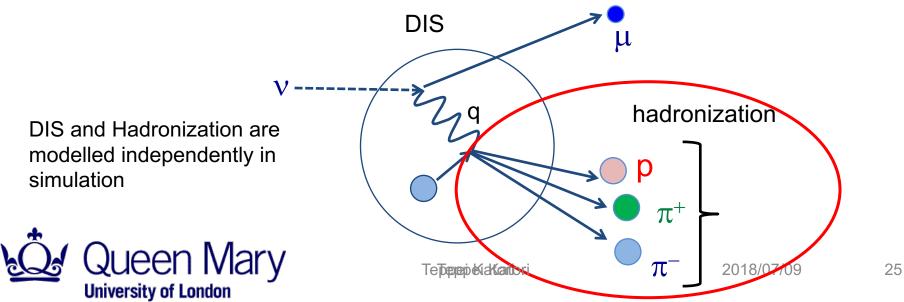
SIS is the home of Frankenstein models!



3. Neutrino cross section overview

Deep Inelastic Scattering (DIS)

- a process to scatter a charged lepton by an incident lepton with given energy
- DIS differential cross section is function of x and y
- DIS total cross section is function of E_{ν} , integrated in x and y


3. Neutrino cross section overview

Deep Inelastic Scattering (DIS)

- a process to scatter a charged lepton by an incident lepton with given energy
- DIS differential cross section is function of x and y
- DIS total cross section is function of E_{ν} , integrated in x and y

Hadronization

- Hadronization is a process to generate hadrons from given Q² and W
- number of hadrons (multiplicity) and hadrons kinematics are computed.

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

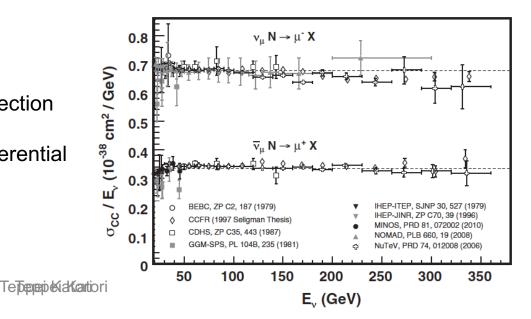
3. Neutrino cross section overview

Deep Inelastic Scattering (DIS)

- a process to scatter a charged lepton by an incident lepton with given energy
- DIS differential cross section is function of x and y
- DIS total cross section is function of E_{ν} , integrated in x and y

Hadronization

- Hadronization is a process to generate hadrons from given Q² and W
- number of hadrons (multiplicity) and hadrons kinematics are computed.


 $-\sigma(v)/E = 0.677 \pm 0.014 \times 10^{-38} (cm^2/GeV)$

DIS total cross section error ~ 2%?

- This is the error of CCDIS total cross section at 30 to 200 GeV

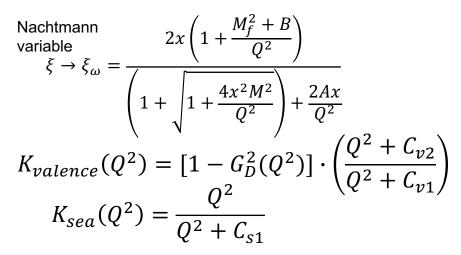
- Most of our analyses need errors of differential cross section error

3. DIS-hadronization error check list

- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant for DeepCore oscillation analysis (?)

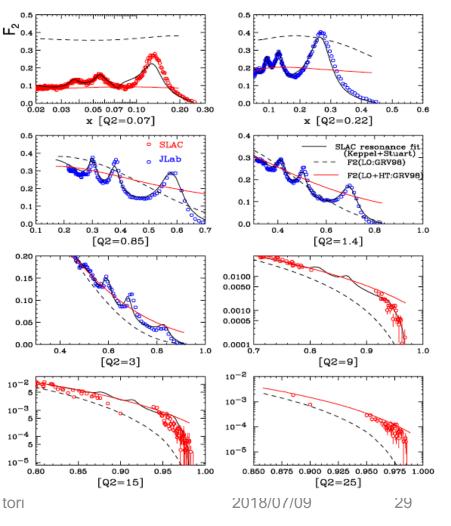
DIS or Hadronization	type of error	approach	size
DIS	quark-hadron duality	play with Bodek-Yang parameters (by eyes)	???
DIS	differential xs	NuTeV-GENIE comparison (bottom-up)	???
DIS	A-scaling	MINERvA-GENIE (bottom-up)	???
DIS	PDF	From nuclear PDF, CT10? nCTEQ? (top-down)	???
Hadronization	low W averaged charged hadron multiplicity	play with KNO parameters (by eyes)	???
Hadronization	high W averaged charged hadron multiplicity	bubble chamber-PYTHIA comparison (bottom-up)	???

- 1. IceCube neutrino observatory
- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions


28

Bodek and Yang, AIP.Conf.Proc.670(2003)110, Nucl.Phys.B(Proc.Suppl.)139(2005)11

4. Bodek-Yang correction for low Q² DIS


GRV98 is a PDF designed for low Q2 region. Bodek-Yang correction makes GRV98 to work even lower Q2, or "duality" region by adding higher twist effect

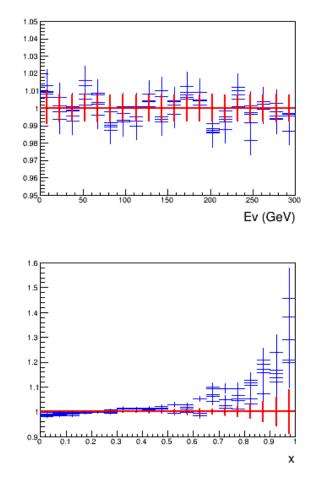
- A: high order twist correction
- B: quark transverse momentum
- Cvu1, Cvu2: valence u-quark PDF correction
- Cvd1, Cvd2: valence d-quark PDF correction
- Cs1u, Cs1d: sea u- and d-quark PDF correction
- x0, x1, x2: d(x)/u(x) correction

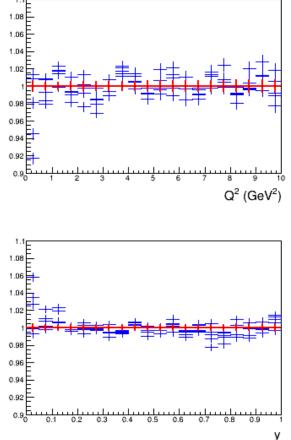
		Name	nominal value	uncertainty (%)
	PINGU Lol	M_A^{CCQE}	0.99	-15, +25
	variations	M_A^{RES}	1.120	± 20
		A_{HT}^{BY}	0.538	± 25
$\tilde{\nabla}$		B_{HT}^{BY}	0.305	± 25
ずしむ	UJUEEN	C_{V1u}^{BY}	0.291	± 30
	University of Lo	C_{V2u}^{BY}	0.189	± 30

Proton F2 function GRV98-BY correction vs. data

4. Systematic errors of Bodek-Yang correction parameters

BY parameter variation make small variations in Ev. Q2, x, y.


- Ev: <2% variation in all region
- Q2: ~8% variation at Q2=0.5 GeV2
- x: ~50% variation at x~1
- y: ~6% variation at y~0


Errors of parameters are quoted without any correlations.

Variations can be large by assuming correlations on these parameters.

Jueen Mary

University of London

4. DIS quark-hadron duality error, summary

Lack of correlations between BY parameters make impossible to estimate meaningful error \rightarrow First of all, we need to update Bodek-Yang correction with a modern PDF.

DIS or Hadronization	type of error	approach	size
DIS	quark-hadron duality	play with Bodek-Yang parameters (by eyes)	maybe large?
DIS	differential xs	NuTeV-GENIE comparison (bottom-up)	????
DIS	A-scaling	MINERvA-GENIE (bottom-up)	????
DIS	PDF	From nuclear PDF, CT10? nCTEQ? (top-down)	????
Hadronization	low W averaged charged hadron multiplicity	play with KNO parameters (by eyes)	????
Hadronization	high W averaged charged hadron multiplicity	bubble chamber-PYTHIA comparison (bottom-up)	????

- 1. IceCube neutrino observatory
- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- 5. DIS differential cross section error
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions

32

NuTeV, PRD74(2006)012008

GENIE v2.10.6

Shivesh Mandalia (Queen Mary)

5. GENIE-NuTeV comparison

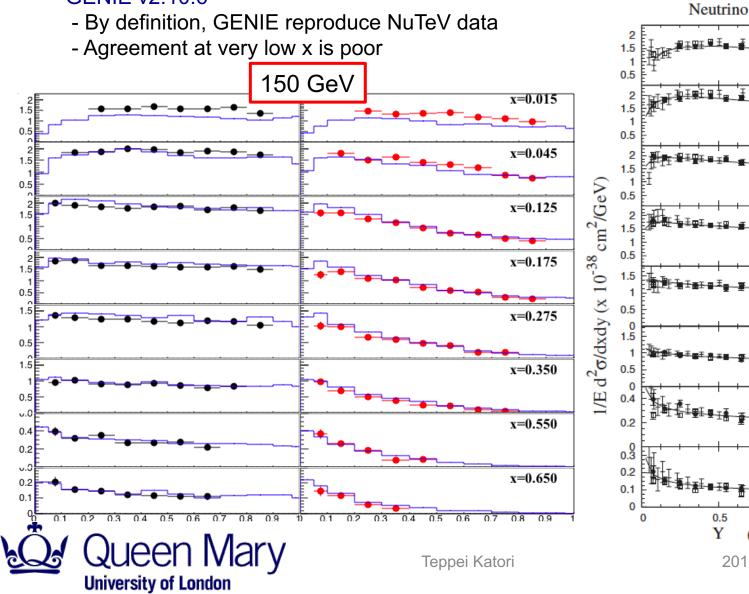
NuTeV v-Fe and antiv-Fe differential cross section (x, y, Ev)

Antineutrino

x=0.015

x=0.045

 $\dot{x}=0.125$


x=0.175

x=0.275

x=0.350

x=0.550

x=0.650

33

0.5

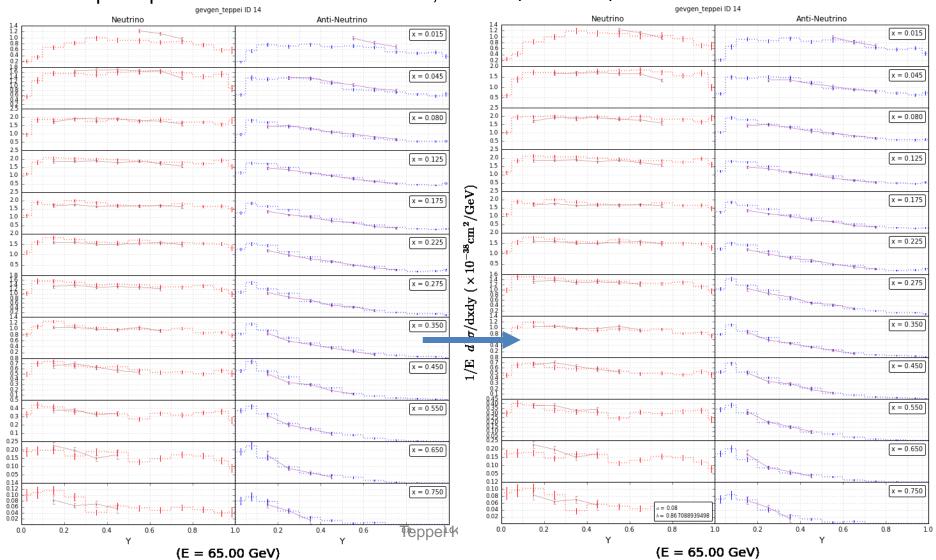
Y

0.5

Y

(E = 150 GeV)

2018/07/09

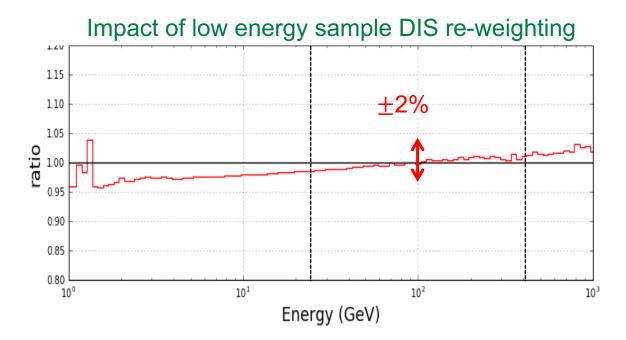

NuTeV, PRD74(2006)012008

5. DIS differential cross section error

$$F(x,y) = bx^{-a}$$

GENIE-NuTeV comparison

- simple 2-parameter model with a= 0.08, b=0.87 (for a trial)


NuTeV, PRD74(2006)012008

5. DIS differential cross section error

$$F(x,y) = bx^{-a}$$

GENIE-NuTeV comparison

- simple 2-parameter model with a= 0.08, b=0.87 (for a trial)
- it has 2-3% shift of energy spectrum in 30-200 GeV
- However, the shift (~error) is larger than ±2% at <10GeV and >300 GeV

5. DIS differential cross section error, summary

There may be ~3% energy scale error on DIS cross section below 10 GeV and negligible effect on current IceCube analysis. This error looks safe for any iron target experiments.

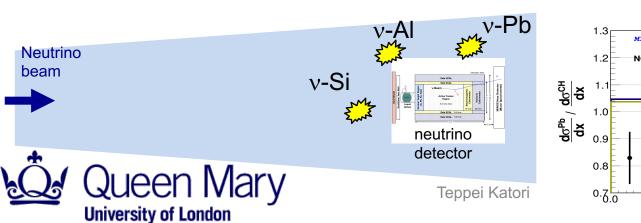
DIS or Hadronization	type of error	approach	size
DIS	quark-hadron duality	play with Bodek-Yang parameters (by eyes)	maybe large?
DIS	differential xs	NuTeV-GENIE comparison (bottom-up)	3% by GENIE study
DIS	A-scaling	MINERvA-GENIE (bottom-up)	????
DIS	PDF	From nuclear PDF, CT10? nCTEQ? (top-down)	????
Hadronization	low W averaged charged hadron multiplicity	play with KNO parameters (by eyes)	????
Hadronization	high W averaged charged hadron multiplicity	bubble chamber-PYTHIA comparison (bottom-up)	????

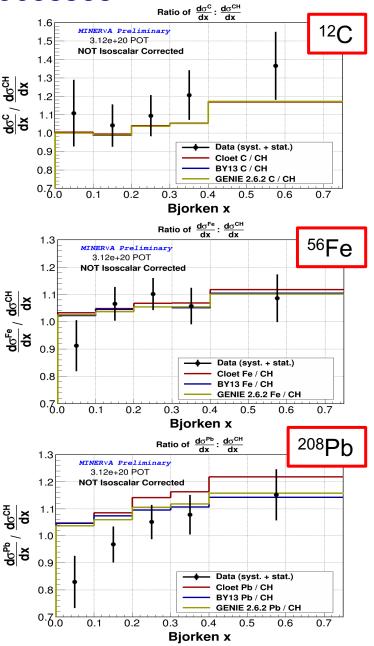
- **1. IceCube neutrino observatory**
- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions

37

MINERvA,PRD93(2016)071101 HKN,PRC76(2007)065207, EPS,JHEP04(2009)065, FSSZ,PRD85(2012)074028 ,nCTEQ, PRD80(2009)094004

6. Neutrino nuclear-dependent DIS processes


Basic ingredients

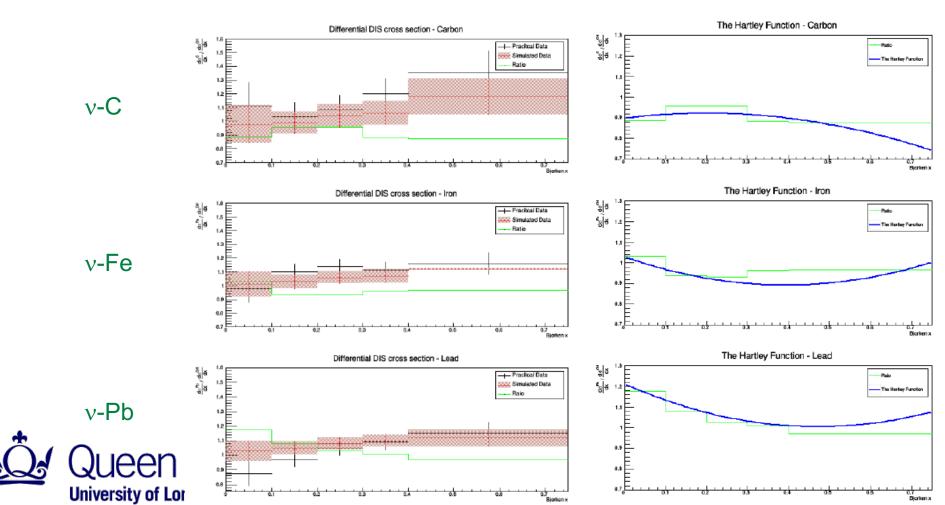

- 1. Δ (1232)-resonance
- 2. higher resonances
- 3. non-resonant background
- 4. low Q², low W DIS
- 5. Nuclear dependent DIS

MINERvA DIS target ratio data (C, Fe, Pb)

- Neutrino nuclear-dependent DIS effects may be different from charged lepton sector

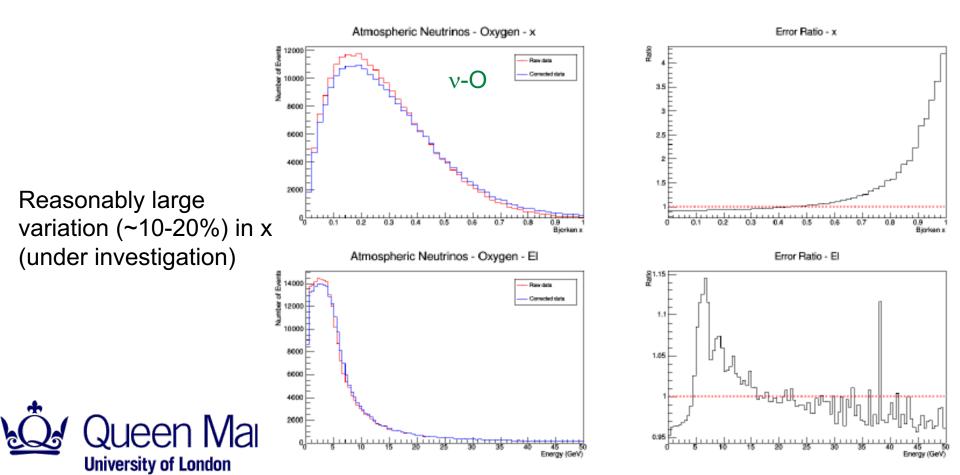
- Neutrino beam is like a "shower", and it interacts with all materials surrounding the vertex detector. MC needs to simulate all neutrino interactions for all inactive materials.

MINERvA, PRD93(2016)071101


6. DIS A-dependent error

$\frac{d\sigma^A}{dx} / \frac{d\sigma^{CH}}{dx} = \frac{10A}{(-0.0084A^2 + 9.9A + 16)} + \frac{0.95(15 - A)}{A}x + \frac{0.95(A - 13.25)}{(A - 10)}x^2$

- Make a polynomial scaling function in A from data-MC ratio.
- Weight GENIE with function of x
- Bottom-up A-dependent DIS correction in x


MINERvA, PRD93(2016)071101

6. DIS A-dependent error

$$\frac{d\sigma^A}{dx} / \frac{d\sigma^{CH}}{dx} = \frac{10A}{(-0.0084A^2 + 9.9A + 16)} + \frac{0.95(15 - A)}{A}x + \frac{0.95(A - 13.25)}{(A - 10)}x^2 + \frac{10A}{(A - 10)}x^2 + \frac{10A}{($$

GENIE-MINERvA comparison

- Make a polynomial scaling function in A from data-MC ratio.
- Weight GENIE with function of x
- Bottom-up A-dependent DIS correction in x
- Make prediction of correction in any targets, for example oxygen

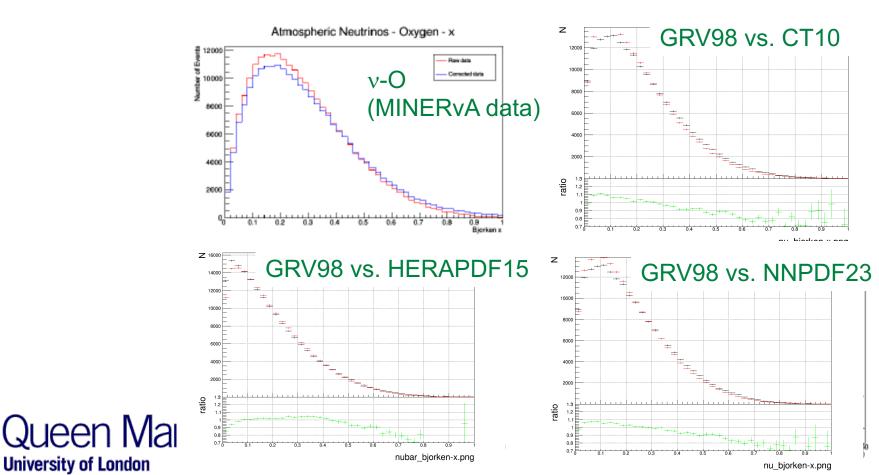
6. DIS A-dependent error

- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

DIS or Hadronization	type of error	approach	size
DIS	quark-hadron duality	play with Bodek-Yang parameters (by eyes)	maybe large?
DIS	differential xs	NuTeV-GENIE comparison (bottom-up)	3% by GENIE study
DIS	A-scaling	MINERvA-GENIE (bottom-up)	maybe large?
DIS	PDF	From nuclear PDF, CT10? nCTEQ? (top-down)	????
Hadronization	low W averaged charged hadron multiplicity	play with KNO parameters (by eyes)	????
Hadronization	high W averaged charged hadron multiplicity	bubble chamber-PYTHIA comparison (bottom-up)	????

- **1. IceCube neutrino observatory**
- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions

Shivesh Mandalia (Queen Mary)


7. DIS PDF error

We tried to use couple of PDF from LHA PDF

- CT10 (NLO)
- HERAPDF15 (NLO)
- NNPDF23 (NLO)

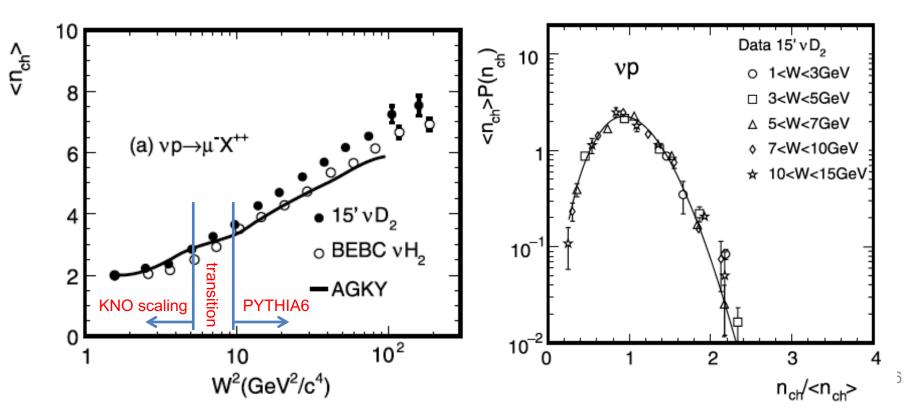
These PDFs give different results from GRV98, which one is right?

7. DIS PDF error

- Goal is to make event weight with function of Ev, x, y, etc, for IceCube oscillation program
- All errors are expected to be unimportant (?)

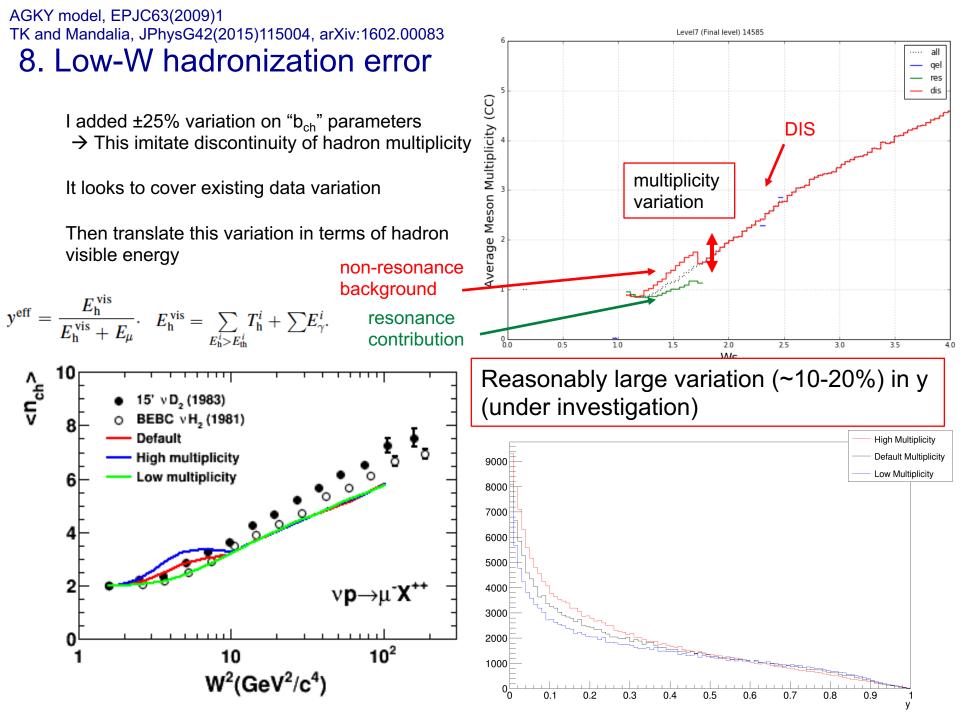
DIS or Hadronization	type of error	approach	size
DIS	quark-hadron duality	play with Bodek-Yang parameters (by eyes)	maybe large?
DIS	differential xs	NuTeV-GENIE comparison (bottom-up)	3% by GENIE study
DIS	A-scaling	MINERvA-GENIE (bottom-up)	maybe large?
DIS	PDF	From nuclear PDF, CT10? nCTEQ? (top-down)	maybe large?
Hadronization	low W averaged charged hadron multiplicity	play with KNO parameters (by eyes)	????
Hadronization	high W averaged charged hadron multiplicity	bubble chamber-PYTHIA comparison (bottom-up)	????

- **1. IceCube neutrino observatory**
- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions



AGKY model, EPJC63(2009)1 TK and Mandalia, JPhysG42(2015)115004, arXiv:1602.00083 8. Low-W hadronization model

In AGKY model, hadronization model is a combination of 2 models.


KNO-scaling based model (low W hadronization)

- Data-driven model (agree with bubble chamber data, by construction) $\langle n_{ch} \rangle = a_{ch} + b_{ch} \cdot \ln(W^2)$
- Averaged charged hadron multiplicity <n_{ch}> is chosen from data, with empirical function
- Averaged neutral hadron multiplicity is chosen from isospin.
- Then variance of multiplicity is chosen from KNO-scaling law.

$$\langle n \rangle \cdot P(n) = \frac{2e^{-c}c^{cn/\langle n \rangle + 1}}{\Gamma(cn/\langle n \rangle + 1)}$$

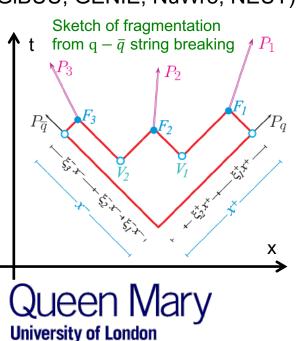
5. Low-W hadronization error, summary

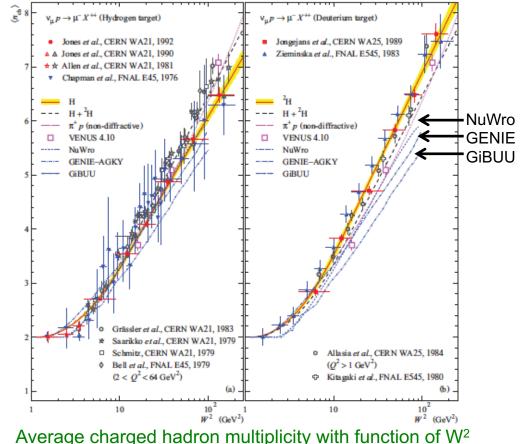
This error may or may not be important for current and future oscillation experiments. \rightarrow There is interplay with resonance region (baryonic resonant and non-resonant background models).

DIS or Hadronization	type of error	approach	size
DIS	quark-hadron error	play with Bodek-Yang parameters (by eyes)	maybe large?
DIS	differential xs	NuTeV-GENIE comparison (bottom-up)	3% by GENIE study
DIS	A-scaling	MINERvA-GENIE (bottom-up)	maybe large?
DIS	PDF	From nuclear PDF, CT10? nCTEQ? (top-down)	maybe large?
Hadronization	low W averaged charged hadron multiplicity	play with KNO parameters (by eyes)	maybe large?
Hadronization	high W averaged charged hadron multiplicity	bubble chamber-PYTHIA comparison (bottom-up)	????

- 1. IceCube neutrino observatory
- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions

49

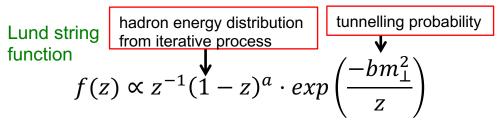

Kuzmin and Naumov, PRC88(2013)065501 Gallmeister and Falter, PLB630(2005)40


9. High-W hadronization model

Kuzmin-Naumov fit

- They systematically analysed all bubble chamber data
 - Difference of hydrogen and deuterium data
 - Presence of kinematic cuts
 - Better parameterization

All PYTHIA-based models underestimate averaged charged hadron multiplicity data (GiBUU, GENIE, NuWro, NEUT)



Sjostrand, Lonnblad, and Mrenna, hep-ph/0108264 Gallmeister and Falter, PLB630(2005)40, TK and Mandalia, JPhysG42(2015)115004

9. High-W hadronization model

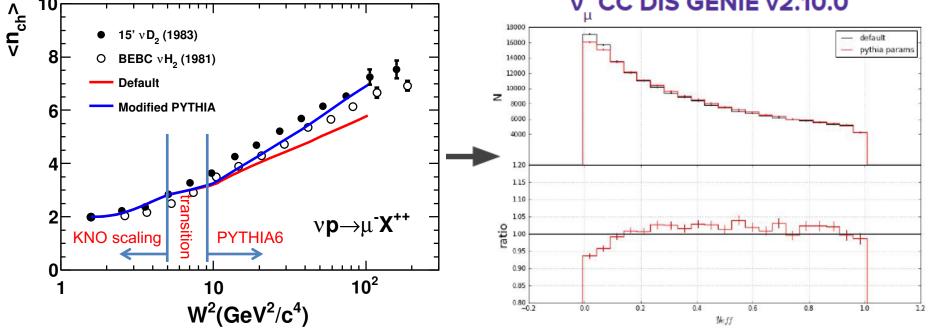
Averaged charged hadron multiplicity <n_{ch}>

- PYTHIA6 with tuned Lund string function can reproduce $< n_{ch} >$ data both neutrino and antineutrino.

Neutrino average charged hadron multiplicity

10

Shivesh Mandalia (Queen Mary)

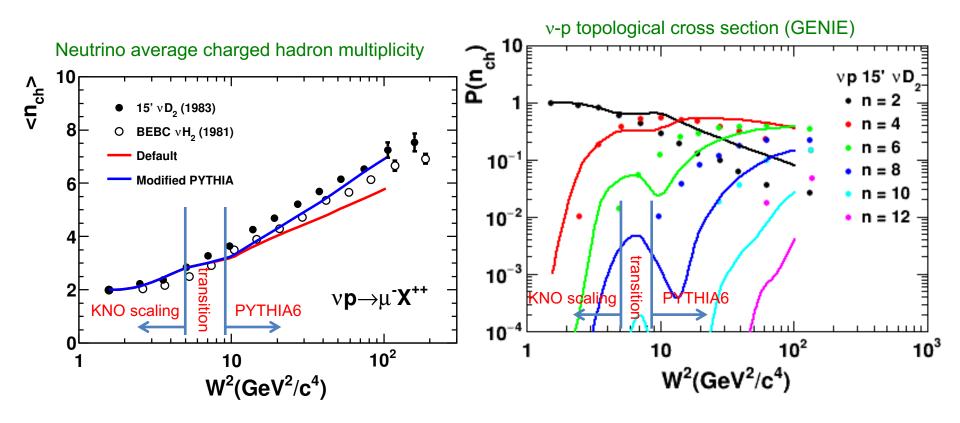

$$E_{\mathrm{h}}^{\mathrm{vis}} = \sum_{E_{\mathrm{h}}^{i} > E_{\mathrm{h}}^{i}} T_{\mathrm{h}}^{i} + \sum E_{\gamma}^{i}.$$

 $y^{\mathrm{eff}} = rac{E_{\mathrm{h}}^{\mathrm{vis}}}{E_{\mathrm{h}}^{\mathrm{vis}} + E_{\mu}}.$

Hadronization error propagation

- Difference of averaged charged hadron multiplicity is translated to visible hadron energy, then effective inelasticity. Impact of hadronization error is small for experiments which only measure hadron shower.

v_u CC DIS GENIE v2.10.0


TK and Mandalia,JPhysG42(2015)115004 Zieminska et al (Fermilab 15'),PRD27(1993)47

9. High-W hadronization dispersion error?

Bubble chamber topological cross section data

Although averaged charged hadron multiplicity makes continuous curve, topological cross sections are discontinuous, because multiplicity dispersion by PYTHIA6 is much narrower than bubble chamber data.

If the experiment is sensitive to exclusive hadron channels (T2K, DUNE, etc), you need to rethink how to propagate hadronization error...

Shivesh Mandalia (Queen Mary)

9. High-W hadronization error, summary

This error gives negligible effect for current IceCube analysis.

 \rightarrow We can evaluate averaged charged hadron multiplicity error. But evaluations of any other errors are difficult (averaged neutral hadron multiplicity, dispersions, topological cross sections).

DIS or Hadronization	type of error	approach	size
DIS	quark-hadron duality	play with Bodek-Yang parameters (by eyes)	maybe large?
DIS	differential xs	NuTeV-GENIE comparison (bottom-up)	3% by GENIE study
DIS	A-scaling	MINERvA-GENIE (bottom-up)	maybe large?
DIS	PDF	From nuclear PDF, CT10? nCTEQ? (top-down)	maybe large?
Hadronization	low W averaged charged hadron multiplicity	play with KNO parameters (by eyes)	maybe large?
Hadronization	high W averaged charged hadron multiplicity	bubble chamber-PYTHIA comparison (bottom-up)	few % by GENIE study JPhysG42(2015)1150

- 1. IceCube neutrino observatory
- 2. IceCube low energy physics
- **3. DIS-Hadronization systematic errors**
- 4. DIS quark-hadron duality error
- **5. DIS differential cross section error**
- 6. DIS A-scaling error
- 7. DIS PDF error
- 8. Low-W hadronization error
- 9. High-W hadronization error
- 10. Conclusions

54

Conclusions

This moment, neutrino interaction systematics are not important for IceCube oscillation programs.

For future 2-10 GeV oscillation experiments (NOvA, DUNE, Hyper-K, PINGU, ORCA, INO, etc), we investigate 6 new systematics on DIS and hadronization processes.

- 1. DIS quark-hadron duality error
- 2. DIS double differential cross section error
- 3. DIS A-scaling error
- 4. DIS PDF error
- 5. Low-W hadronization error
- 6. High-W hadronization error

(2) and (6) are evaluated to be small and have been used in IceCube. (1), (3), (4), (5) are potentially large and they need further investigation.

This list is not exhaustive.

Subscribe "NuSTEC News" E-mail to <u>listserv@fnal.gov</u>, Leave the subject line blank, Type "subscribe nustec-news firstname lastname" (or just send e-mail to me, <u>katori@FNAL.GOV</u>) like "@nuxsec" on Facebook page, use hashtag #nuxsec

Neutrino Shallow and Deep-Inelastic scattering, GSSI, Oct 11-13

S

http://nustec.fnal.gov/nuSDIS18/

A dedicated workshop for physics related to DUNE, NOvA, HyperK, etc

- generator developments, impact on oscillation analyses
- higher resonance and non-resonance contributions
- low Q2 low W DIS
- nuclear modifications and nuclear-dependent PDFs
- neutrino hadronization problem

2018 October 11-13GGran Sasso Science Institute, ItalyS

Nulnt18, GSSI, Oct. 15-19 https://indico.cern.ch/event/7038

vS&DIS workshop

The state

Neutrino Shallow- and Deepinelastic Scattering workshop

nustec.fnal.gov/nuSDIS18

Subscribe "NuSTEC News" E-mail to listserv@fnal.gov, Leave the subject line blank, Type "subscribe nustec-news firstname lastname" (or just send e-mail to me, <u>katori@FNAL.GOV</u>) like "@nuxsec" on Facebook page, use hashtag #nuxsec

IceCube-Gen2 collaboration

Thank you for your attention!

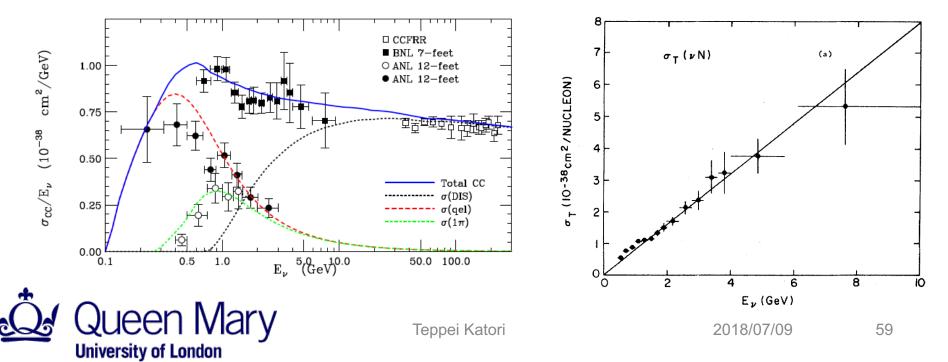
Subscribe "NuSTEC News"

E-mail to <u>listserv@fnal.gov</u>, Leave the subject line blank, Type "subscribe nustec-news firstname lastname" (or just send e-mail to me, <u>katori@FNAL.GOV</u>) like "@nuxsec" on Facebook page, use hashtag #nuxsec

Teppei Katori

Jon Link, Fermilab Wine & Cheese seminar (2005)

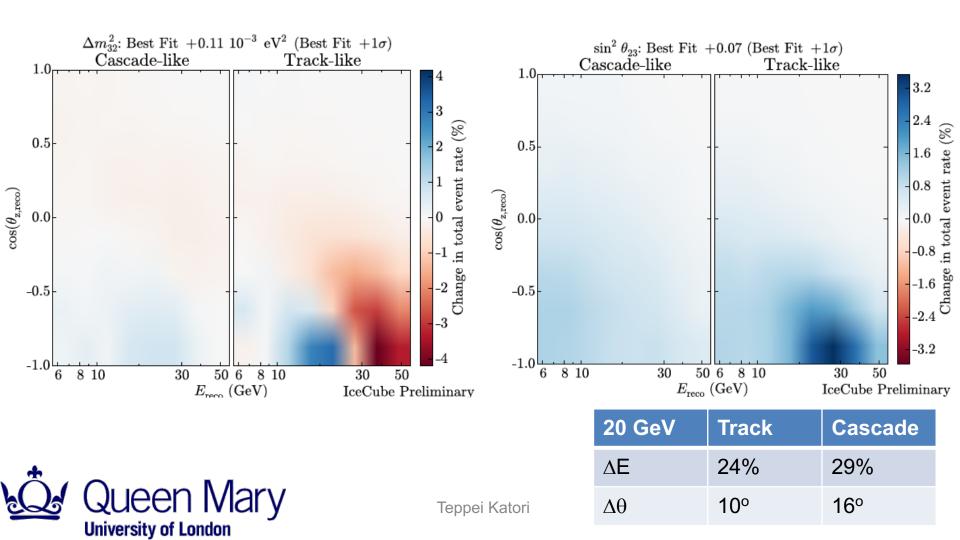
2. Dark age of neutrino interaction physics


(1) Measure interaction rate

(2) Divide by known cross section to obtain flux(3) use this flux, measure cross-section from measured rate

What you get? OF COURSE the cross section you assume!

Phys. Rev. D


The distribution of events in neutrino energy for the 3C $vd \rightarrow \mu^- pp_s$ events is shown in Fig. 4 together with the quasielastic cross section $\sigma(vn \rightarrow \mu^- p)$ calculated using the standard V - Atheory with $M_A = 1.05 \pm 0.05$ GeV and $M_V = 0.84$ GeV. The absolute cross sections for the CC interactions have been measured using the quasielastic events and its known cross section.⁴

IceCube, PRL120(2018)071801

2. DeepCore oscillation analysis

Oscillation fit is dominated around ~30 GeV neutrinos.

IceCube, PRL120(2018)071801

2. DeepCore oscillation analysis

Majority of events are 10-30 GeV

University of London

- 3-year data

	1.0			Cas	sca	de-	like	e	Bes	st F	lit	Tı	rac	k-li	ke				1000	
	1.0	31	93	241	371	394	334	222	137	32	85	143	186	208	179	119	67		1000	
	0.5	103	218	402	537	541	430	284	172	66	101	162	223	271	276	230	147		800	
	0.5	208	382	587	685	644	513	346	219	119	150	216	288	355	366	310	211			\mathbf{nts}
z,reco)	0.0	365	534	731	780	718	571	398	264	179	193	266	356	431	440	401	295		600	of Eve
$\cos(heta_{ m z,reco})$	0.0	472	631	751	780	696	538	382	249	248	240	291	353	440	468	445	332	-	400	Number of Events
	0 5	492	611	688	673	573	434	303	195	252	236	260	279	338	343	347	262			IUN
	-0.5	404	483	551	527	447	327	216	148	218	192	211	206	220	215	218	186	-	200	
	1.0	272	344	404	405	333	242	158	104	182	197	206	206	171	137	128	113		0	
	-1.0	6	8 1	.0			3(50		8 1	.0			30		50		0	
								E_{r}	reco	(Ge	V)				Ice	Cub	e P	reli	minar	y
ueen M	lar	y						Терр	bei K	ator	i							201	8/07/0	9

3. Physics of Δ resonance

Basic ingredients

- 1. Δ (1232)-resonance
- 2. higher resonances
- 3. non-resonant background
- 4. low Q^2 , low W DIS

events

1200

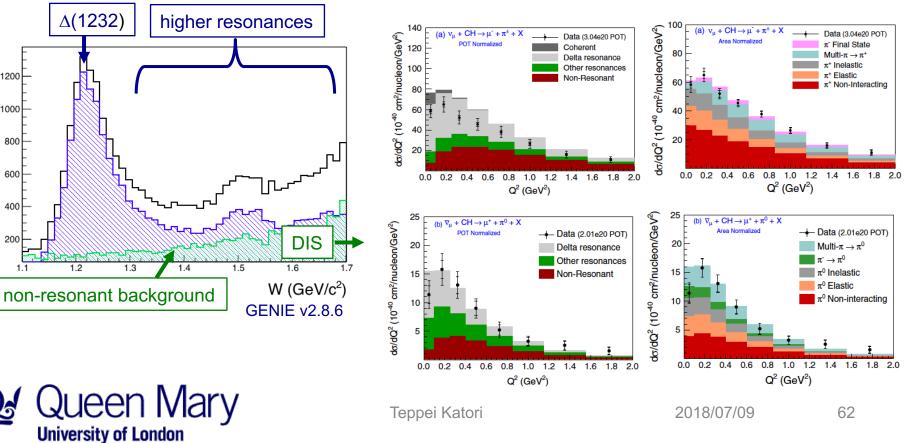
1000

800

600

400

200


1.1

1.2

5. Nuclear dependent DIS

MINERvA vCC1 π^+ and $\bar{\nu}$ CC1 π^o data simultaneous study

- Interaction channels and FSIs are studied within GENIE
- this moment, there is no clear way to tune MC for Δ
- $\bar{\nu}CC1\pi^{-}$ and $\nu CC1\pi^{0}$ will be added (Ramirez, NuInt2017)

3. Physics of higher resonances

Basic ingredients

1. Δ (1232)-resonance

2. higher resonances

- 3. non-resonant background
- 4. low Q^2 , low W DIS
- 5. Nuclear dependent DIS

DCC model

- Total amplitude is conserved
- Channels are coupled (pN, ppN, etc)
- 2 pion productions ~10% at 2 GeV

Role of high W resonances in neutrino experiments is not understood (and probably modelled incorrectly). GENIE highW events are usually tuned down in MINERvA hadron analyses

DCC model vs. electro-pionproduction data

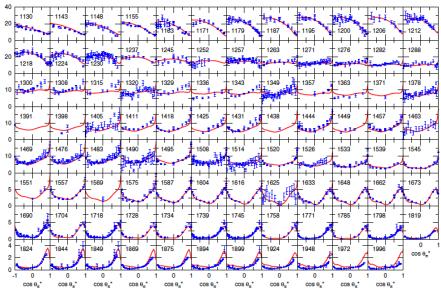
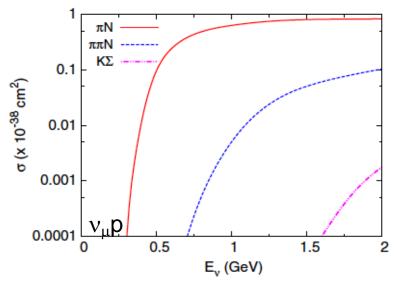
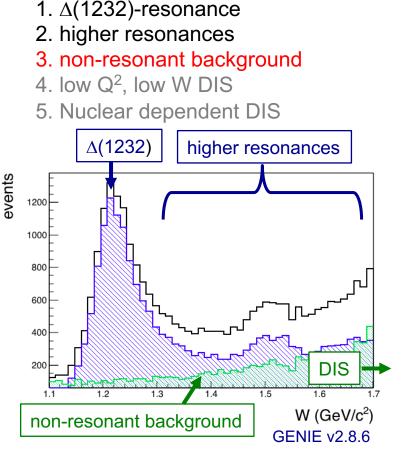



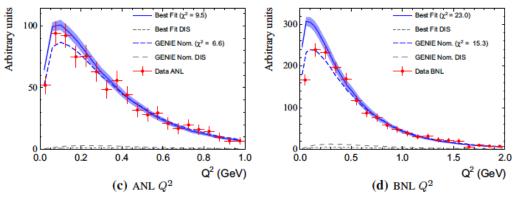
FIG. 8 (color online). Unpolarized differential cross sections, $d\sigma/d\Omega_{\pi}^*$ (μ b/sr), for $\gamma n \rightarrow \pi^- p$. The data are from Refs. [55–78].



63

Rodrigues, Wilkinson, McFarland, EPJC76 (2016) 474

Basic ingredients


3. Physics of non-resonant background

Non-resonant component and resonances are incoherently added (=wrong, but easy to simulate).

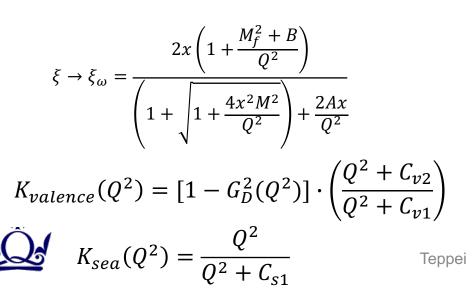
Non-resonant background is identified to be DIS at higher W.

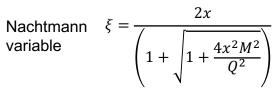
Non-resonant background in GENIE needs to be reduced more than 50%.

But by doing this hadronization would make large discontinuity.

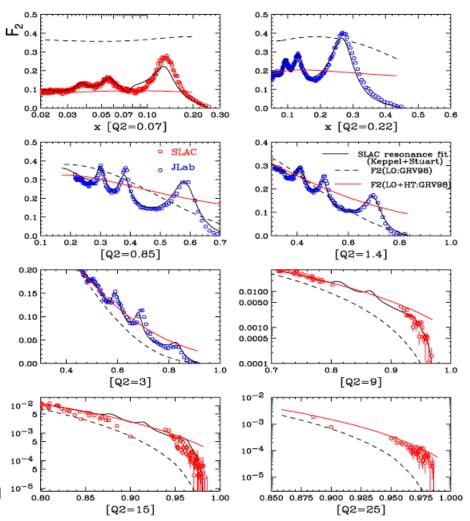
64

Bloom and Gilman, PRL25(1970)1140 Graczyk et al,NPA781(2007)227, Lalakulich et al, PRC75(2007)015202


3. Quark-Hadron Duality


Basic ingredients

- 1. Δ (1232)-resonance
- 2. higher resonances
- 3. non-resonant background
- 4. low Q^2 , low W DIS
- 5. Nuclear dependent DIS

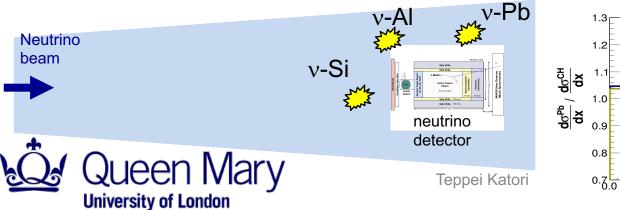

GRV98 LO PDF + Bodek-Yang correction

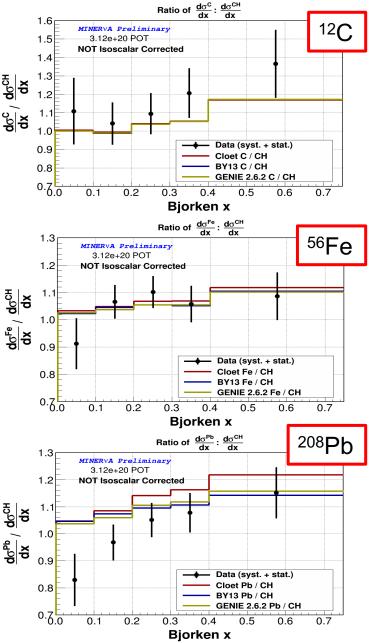
- GRV98 for low Q^2 DIS
- Bodek-Yang correction for QH-duality
- 20 years old, outdated
- not sure how to implement systematic errors

Proton F2 function GRV98-BY correction vs. data

MINERvA,PRD93(2016)071101 HKN,PRC76(2007)065207, EPS,JHEP04(2009)065, FSSZ,PRD85(2012)074028 ,nCTEQ, PRD80(2009)094004

3. Neutrino nuclear-dependent DIS processes

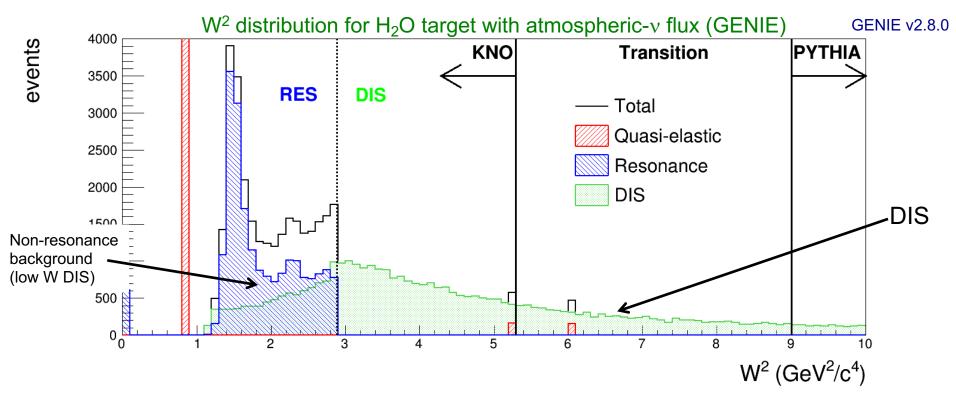

Basic ingredients


- 1. Δ (1232)-resonance
- 2. higher resonances
- 3. non-resonant background
- 4. low Q², low W DIS
- 5. Nuclear dependent DIS

MINERvA DIS target ratio data (C, Fe, Pb)

- Neutrino nuclear-dependent DIS effects may be different from charged lepton sector

- Why we care? Because neutrino beam is like a "shower", and it interacts with all materials surrounding the vertex detector. MC needs to simulate neutrino interactions (and particle propagations) for all inactive materials.


AGKY, EPJC63(2009)1 TK and Mandalia, JPhysG42(2015)115004

3. GENIE SIS model

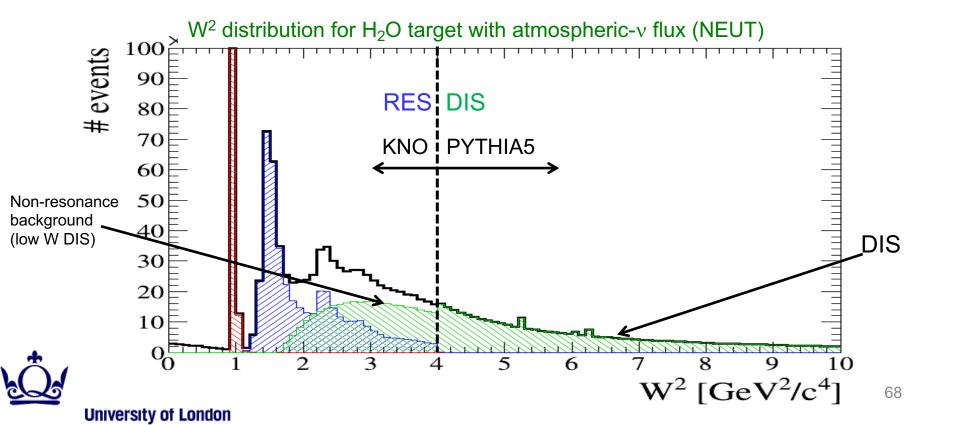
Cross section W²<2.9 GeV² : RES W²>2.9 GeV² : DIS Hadronization W²<5.3GeV² : KNO scaling based model 2.3GeV²<W²<9.0GeV² : transition 9.0GeV²<W² : PYTHIA6 GENIE is the most widely used neutrino interaction generator

There are 2 kind of "transitions" in SIS region

- cross-section
- hadronization

University of London

3. NEUT SIS model


NEUT is the generator used by all Japanese neutrino programs (T2K, SuperK, etc)

Cross section W²<4 GeV² : RES W²>4 GeV² : DIS Hadronization W²<4GeV² : KNO scaling based model 4GeV²<W² : PYTHIA5

There are 2 kind of "transitions" in SIS region

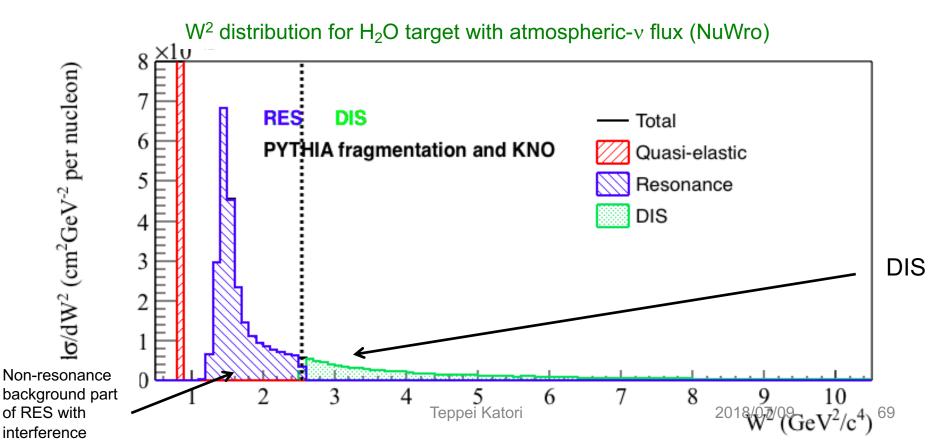
- cross-section
- hadronization

plot made by Christophe Bronner (IPMU)

3. NuWro SIS model

NuWro is often used for some studies because of user-friendly structure

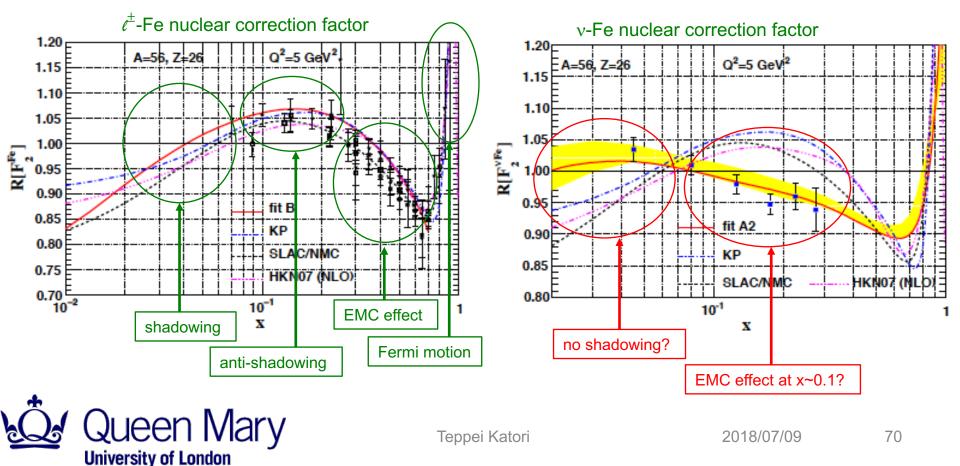
Cross section W²<2.5 GeV² : RES W²>2.5 GeV² : DIS Hadronization


- PYTHIA fragmentation
- KNO scaling

There are 2 kind of "transitions" in SIS region

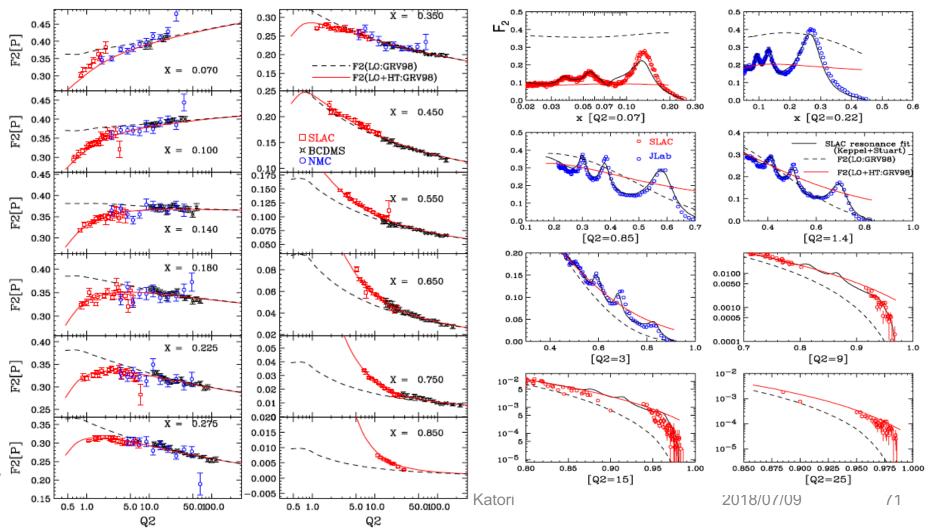
- cross-section
- hadronization

File made by Luke Pickering (MSU)


HKN,PRC76(2007)065207, EPS,JHEP04(2009)065, FSSZ,PRD85(2012)074028 nCTEQ, PRD80(2009)094004

3. Nuclear dependent DIS process

- 1. Δ (1232)-resonance
- 2. higher resonances
- 3. non-resonant background
- 4. low Q^2 , low W DIS
- 5. Nuclear dependent DIS


Nuclear PDF

- Shadowing, EMC effect, Fermi motion
- Theoretical origin is under debate
- Various models describe charged lepton data
- Neutrino data look very different

4. Bodek-Yang correction for low Q² DIS

GRV98 is a PDF designed for low Q2 region. Bodek-Yang correction makes GRV98 to work even lower Q2, or "duality" region by adding higher twist effect

Proton F2 function GRV98-BY correction vs. data

Bodek and Yang, AIP.Conf.Proc.670(2003)110,Nucl.Phys.B(Proc.Suppl.)139(2005)11

4. Bodek-Yang correction for low Q² DIS

In GENIE, there are 11 parameters to control "Bodek-Yang correction" on GRV98 LO PDF

- A: high order twist correction
- B: quark transverse momentum
- Cvu1, Cvu2: valence u-quark PDF correction
- Cvd1, Cvd2: valence d-quark PDF correction
- Cs1u, Cs1d: sea u- and d-quark PDF correction
- x0, x1, x2: d(x)/u(x) correction

leen Mary

University of London

		ir	npact (%	(j)
	parameter	1 year	3 year	5 year
	hierarchy	100.0	100.0	100.0
	Δm^2_{31}	38.8	37.9	37.6
	Energy scale	21.2	21.4	21.7
	A_{eff} scale	15.2	13.2	11.4
	$ heta_{23}$	3.4	4.8	5.7
	$\nu_{\rm e}/numu$ ratio	0.5	1.7	2.6
	$nu/\overline{\nu}$ ratio	0.5	1.2	2.3
	M_A^{RES}	1.2	2.0	1.7
	C_{V1u}^{BY}	0.1	0.3	0.3
	C_{V2u}^{BY}	0.0	0.0	0.2
DIS errors	θ_{13}	0.0	0.1	0.2
	A_{HT}^{BY}	0.0	0.0	0.0
	MACCQE	0.0	0.0	0.0
	B_{HT}^{BY}	0.0	0.0	0.0

 $\xi \to \xi_{\omega} = \frac{2x\left(1 + \frac{M_f^2 + B}{Q^2}\right)}{\left(1 + \sqrt{1 + \frac{4x^2M^2}{Q^2}}\right) + \frac{2Ax}{Q^2}}$ $K_{valence}(Q^2) = [1 - G_D^2(Q^2)] \cdot \left(\frac{Q^2 + C_{v2}}{Q^2 + C_{v1}}\right)$ $K_{sea}(Q^2) = \frac{Q^2}{Q^2 + C_{s1}}$

Nachtmann $\xi = \frac{2\pi}{\left(1 + \sqrt{1 + \frac{4x^2M^2}{Q^2}}\right)}$

	PINGU LoI variat	tions
Name	nominal value	uncertainty (%)
M_A^{CCQE}	0.99	-15, +25
M_A^{RES}	1.120	± 20
A_{HT}^{BY}	0.538	± 25
B_{HT}^{BY}	0.305	± 25
C_{V1u}^{BY}	0.291	± 30
C_{V2u}^{BY}	0.189	± 30

Bodek and Yang, AIP.Conf.Proc.670(2003)110, Nucl.Phys.B(Proc.Suppl.)139(2005)11

4. Bodek-Yang correction errors

Parameter variations are defined

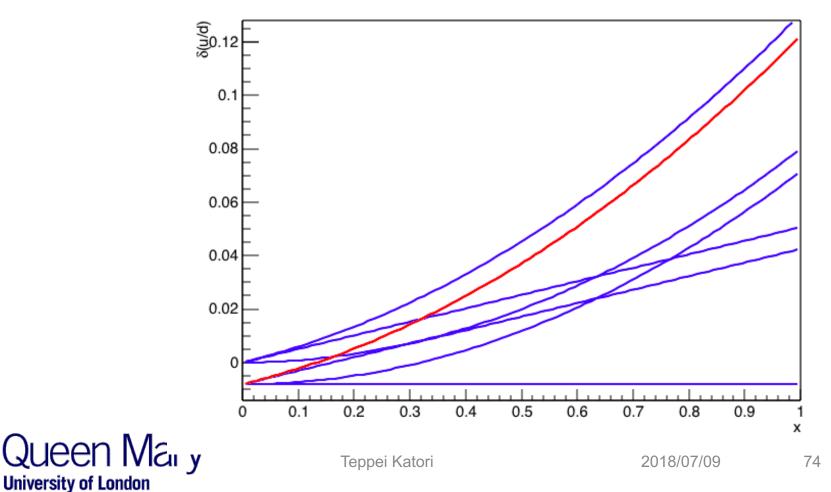
- errors A and B: I follow Joshua's choice
- errors on PDF correction: 30% for all
- errors on d(x)/u(x): next page

6

Since no correlations of parameters are available, 9 BY-systematic study samples are made to maximize of parameter variation effects

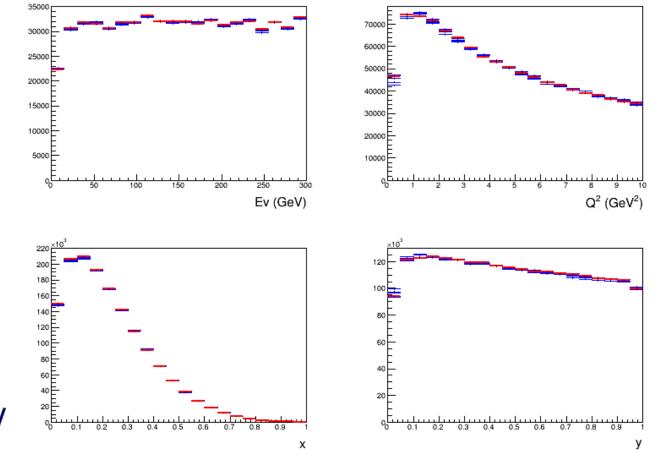
BY- parameters	CV	error	
А	0.538	±25%	
В	0.305	±25%	
CsU	0.363	±30%	
CsD	0.621	±30%	
Cv1U	0.291	±30%	
Cv2U	0.189	±30%	
Cv1D	0.202	±30%	
Cv2D	0.255	±30%	
X0	-0.00817	+0.00817	
X1	0.0506	-0.0506	
X2	0.0798	-0.0798	latori
University of	London		

sample	sample
1	default
2	Α+δΑ, Β-δΒ
3	A-δA, B+δB
4	CsU+ δ CsU, CsD- δ CsD
5	CsU- δ CsU, CsD+ δ CsD
6	$Cv1U+\delta Cv1U$, $Cv2U-\delta Cv2U$
7	$Cv1U-\delta Cv1U$, $Cv2U+\delta Cv2U$
8	Cv1D+δCv1D, Cv2D-δCv2D
9	$Cv1D-\delta Cv1D$, $Cv2D+\delta Cv2D$
10	X0=0, X1=0, X2=0


4. d(x)/u(x) variation study

$\delta(d(x)/u(x)) = X0 + X1^*x + X2^*x^2$

- 2nd order polynomial describe this error, ~10% effect at large x


- A reasonable choice of envelope is when the function is 0.

BY u/d ratio correction, 0.05<x<0.75

4. Results

BY parameter variation make small variations in Ev, Q2, x, y.

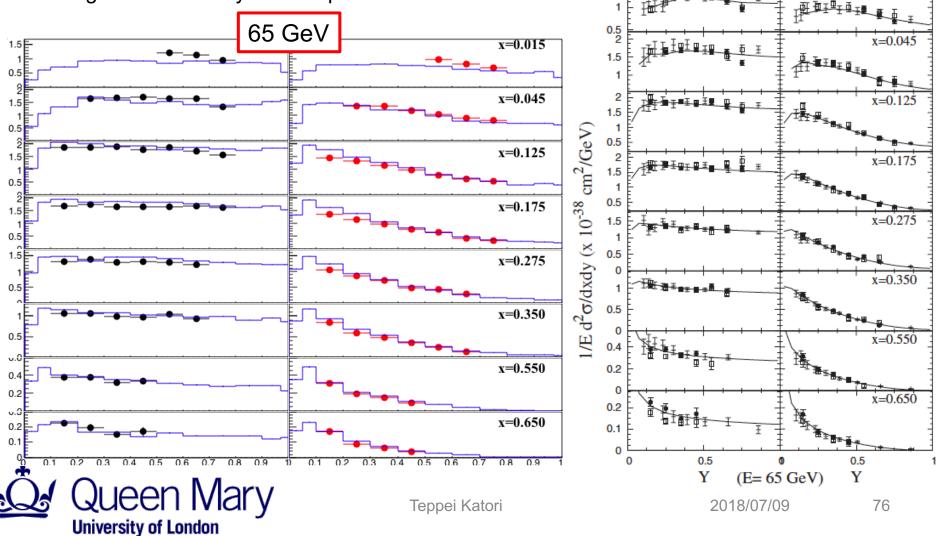
NuTeV, PRD74(2006)012008

Shivesh Mandalia (Queen Mary)

5. GENIE-NuTeV comparison

1.5

NuTeV v-Fe and antiv-Fe differential cross section (x, y, Ev)


Antineutrino

x = 0.015

Neutrino

GENIE v2.10.6

- By definition, GENIE reproduce NuTeV data
- Agreement at very low x is poor

NuTeV, PRD74(2006)012008

Shivesh Mandalia (Queen Mary)

5. GENIE-NuTeV comparison

a

1.5

NuTeV v-Fe and antiv-Fe differential cross section (x, y, Ev)

Neutrino

Antineutrino

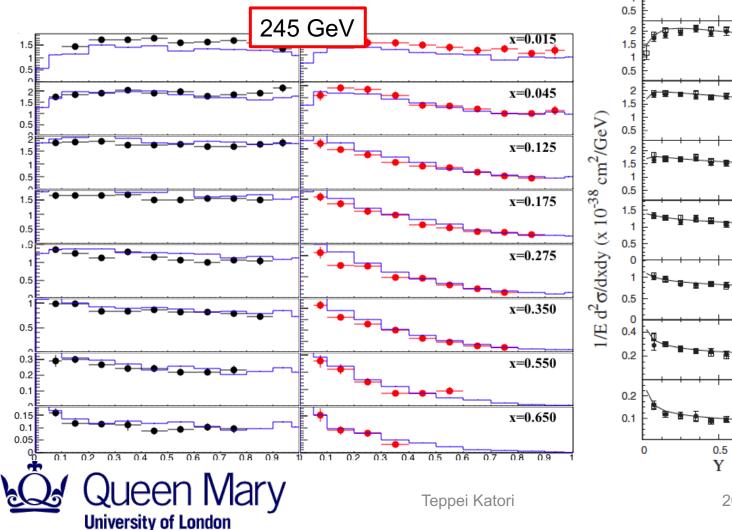
x=0.015

x=0.045

x=0.125

x=0.275

x=0.350


x=0.550

x=0.650

T

GENIE v2.10.6

- By definition, GENIE reproduce NuTeV data
- Agreement at very low x is poor

2018/07/09 77

n

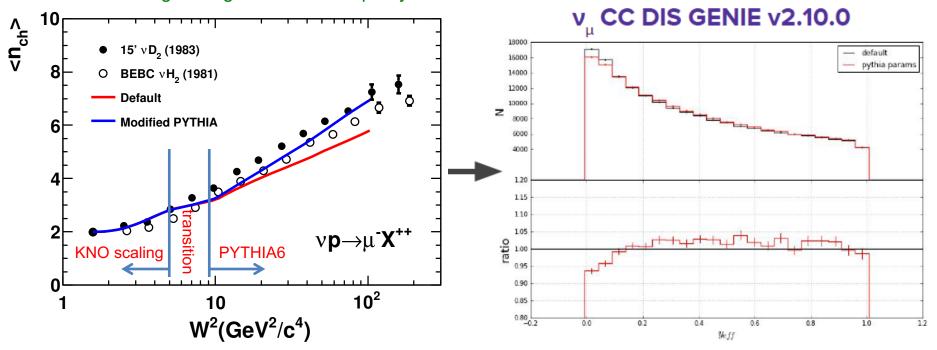
(E= 245 GeV)

0.5

Y

Sjostrand, Lonnblad, and Mrenna, hep-ph/0108264 Gallmeister and Falter, PLB630(2005)40, TK and Mandalia,JPhysG42(2015)115004

9. High-W hadronization model error


Averaged charged hadron multiplicity $< n_{ch} >$

- PYTHIA6 with tuned Lund string function can reproduce $< n_{ch} >$ data both neutrino and antineutrino.

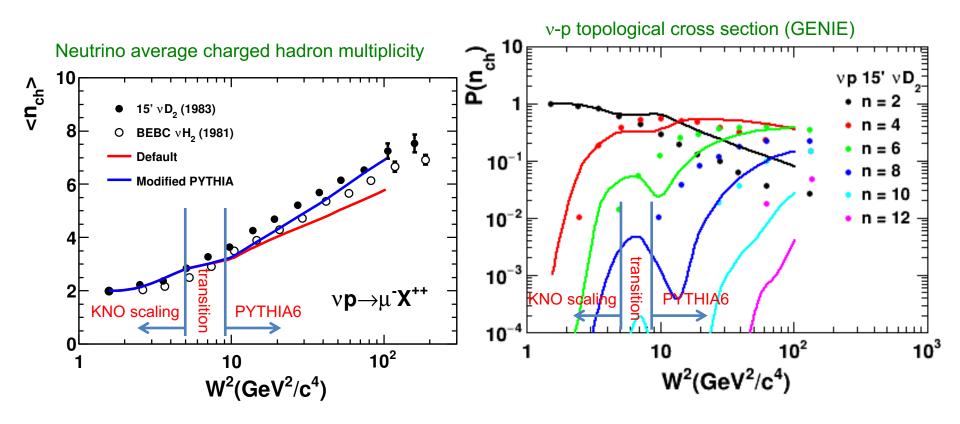
Hadronization error propagation

- Difference of averaged charged hadron multiplicity is translated to visible hadron energy, then effective inelasticity. This is applied to variation of inelasticity error in simulation. Impact of hadronization error is small for experiments which only measure hadron shower

Neutrino average charged hadron multiplicity

Shivesh Mandalia (Queen Mary)

 $E_{\mathbf{h}}^{\mathrm{vis}} = \sum_{E_{\gamma}^{i} > E_{\gamma}^{i}} T_{\mathbf{h}}^{i} + \sum E_{\gamma}^{i}.$ $y^{\rm eff} = \frac{E_{\rm h}^{\rm vis}}{E_{\rm h}^{\rm vis} + E_{\mu}}.$


TK and Mandalia, JPhysG42 (2015) 115004 Zieminska et al (Fermilab 15'),PRD27(1993)47

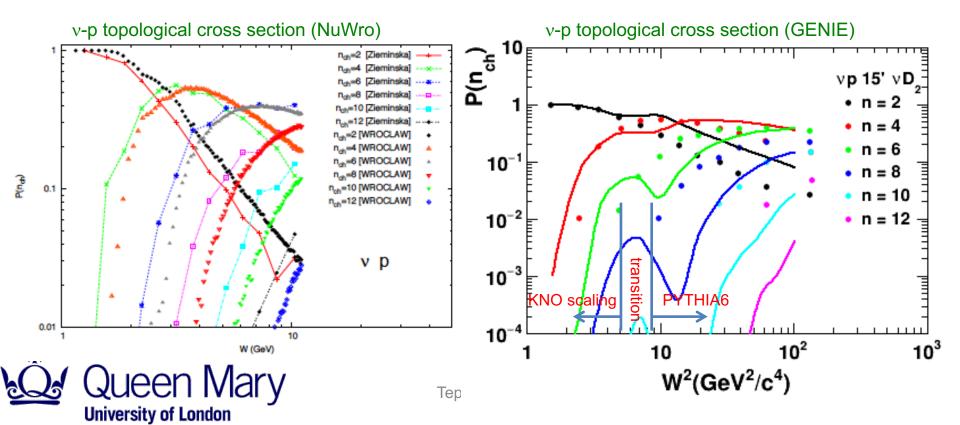
8. High-W hadronization dispersion error?

Bubble chamber topological cross section data

Although averaged charged hadron multiplicity makes continuous curve, topological cross sections are discontinuous, because multiplicity dispersion by PYTHIA6 is much narrower than bubble chamber data.

If the experiment is sensitive to hadron counting, you need to re-think how to propagate hadronization error...

(Queen Mary)


TK and Mandalia, JPhysG42(2015)115004 Zieminska et al (Fermilab 15'), PRD27(1993)47, Nowak, arXiv:hep-ph/0608108

8. High-W hadronization dispersion error?

Bubble chamber topological cross section data

Although averaged charged hadron multiplicity makes continuous curve, topological cross sections are discontinuous, because multiplicity dispersion by PYTHIA6 is much narrower than bubble chamber data.

If the experiment is sensitive to hadron counting, you need to re-think how to propagate hadronization error...

Shivesh Mandalia

(Queen Mary)

NuSTEC (Neutrino Scattering Theory-Experiment Collaboration)

<u>http://nustec.fnal.gov/</u>

NuSTEC promotes the collaboration and coordinates efforts between

- theorists, to study neutrino interaction problems
- experimentalists, to understand nu-A and e-A scattering problems
- generator builders, to implement, validate, tune, maintain models

Theorists

Luis Alvarez Ruso (co-spokesperson, IFIC, Spain) Mohammad Sajjad Athar (Aligarh Muslim University, India) Maria Barbaro (University of Turin, Italy) Omar Benhar (Sapienza University of Rome, Rome, Italy) Richard Hill (University of Kentucky and Fermilab, USA) Patrick Huber (Center for neutrino physics, Virginia Tech, USA) Natalie Jachowicz (Ghent University, Belgium) Andreas Kronfeld (Fermilab, USA) Marco Martini (IRFU Saclay, France) Toru Sato (Osaka, University, Japan) Rocco Schiavilla (Old Dominion Univ. and Jefferson Lab, USA) Jan Sobczyk (nuWro representative, University of Wroclaw, Poland)

Experimentalists Sara Bolognesi (CEA-IRFU, France) Steve Brice (Fermilab, USA) Raquel Castillo Fernández (Fermilab, USA) Dan Cherdack (Colorado State University, USA) Steve Dytman (University of Pittsburgh, USA) Andy Furmanski (University of Manchester, UK) Yoshinari Hayato (NEUT representative, ICRR, Japan) Teppei Katori (Queen Mary University of London, UK) Kendall Mahn (Michigan State University, USA) Camillo Mariani (Center for neutrino physics, VirginiaTech, USA) Jorge G. Morfin (co-spokesperson, Fermilab, USA) Ornella Palamara (Fermilab, USA) Jon Paley (Fermilab, USA) Roberto Petti (University of South Carolina, USA) Gabe Perdue (GENIE representative, Fermilab, USA) Federico Sanchez (IFAE, University of Barcelona, Spain) Sam Zeller (Fermilab, USA)

NuSTEC white paper

https://arxiv.org/abs/1706.03621

- It addresses all topics of neutrino-nucleus scattering around 1-10 GeV.

Progress in Particle and Nuclear Physics 100 (2018) 1–68

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

NuSTEC¹ White Paper: Status and challenges of neutrino-nucleus scattering

1

L. Alvarez-Ruso^a, M. Sajjad Athar^b, M.B. Barbaro^c, D. Cherdack^d, M.E. Christy^e, P. Coloma^f, T.W. Donnelly^g, S. Dytman^h, A. de Gouvêaⁱ, R.J. Hill^{J.f}, P. Huber^k, N. Jachowicz¹, T. Katori^m, A.S. Kronfeld^f, K. Mahnⁿ, M. Martini^o, J.G. Morfín^{f,*}, J. Nieves^a, G.N. Perdue^f, R. Petti^p, D.G. Richards^q, F. Sánchez^r, T. Sato^{s,t}, J.T. Sobczyk^u, G.P. Zeller^f

Executive Summary

	\mathbf{ntr}	oduction and Overview of the Current Challenges
2	2.1	Introduction: General Challenges
2	2.2	Challenges: The Determination of Neutrino Oscillation Parameters and Neutrino-Nucleus
		Interaction Physics (Section 3)
2	2.3	Challenges: Generators (Section 4)
2	2.4	Challenges: Electron-nucleus Scattering (Section 5)
2	2.5	Challenges: Quasielastic Peak Region (Section 6)
2	2.6	Challenges: The Resonance Region (Section 7)
2	2.7	Challenges: Shallow and Deep-Inelastic Scattering Region (Section 8)
2	2.8	Challenges: Coherent Meson Production (Section 9)

NuSTEC school

NuSTEC school, Fermilab, USA (Nov. 7-15, 2017 - NuSTEC school is dedicated for students/postdocs to

learn physics of neutrino interactions, both for theorists, and experimentalists

- 1. The Practical Beauty of Neutrino-Nucleus Interations (1 hour)
- 2. Introduction to electroweak interactions on the nucleon (3 hours)
- 3. Introduction to v-nucleus scattering (3 hours)
- 4. Strong and electroweak interactions in nuclei (3 hours)
- 5. Approximate methods for nuclei (I) (2 hours)
- 6. Approximate methods for nuclei (II) (2 hours)
- 7. Ab initio methods for nuclei (2 hours)
- 8. Pion production and other inelastic channels (3 hours)
- 9. Exclusive channels and final state interactions (3 hours)
- 10. Inclusive e- and v-scattering in the SIS and DIS regimes (3 hrs) Prof. Jeff Owens (Florida State University, FL)
- 11. Systematics in neutrino oscillation experiments (3 hours)
- 12. Generators 1: Monte Carlo methods and event generators (3 rs) Dr. Tomasz Golan (Univ. Wroclaw, Poland)
- 12. Generators 2: Nuisance (2 hours)

- Dr. Gabe Perdue (Fermilab)
- Prof. Richard Hill (University of Kentucky and Fermilab)
- Prof. Wally Van Orden (Old Dominion University&JLab, VA)
- Dr. Saori Pastore (Los Alamos National Lab., NM)
- Dr. Artur Ankowski (Virginia Tech, VA)
- Prof. Natalie Jachowicz (Ghent University, Belgium)
- Dr. Alessandro Lovato (Argonne National Lab, IL)
- Prof. Toru Sato (Osaka University, Japan)
- Dr. Kai Gallmeister (Goethe University Frankfurt, Germany)
- Dr. Sara Bolognesi (CEA Saclay, France)
- Dr. Patrick Stowell (Univ. Sheffield, UK)

FOUNDATIONS OF NUCLEAR AND PARTICLE PHYSICS

Foundation of Nuclear and Particle Physics

- Cambridge University Press (2017), ISBN:0521765110
 - Authors: Donnelly, Formaggio, Holstein, Milner, Surrow

Teppei Katori

- The first textbook on this subject!