Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment

arXiv:1805.12028

outline

- **1. MiniBooNE neutrino experiment**
- 2. Booster Neutrino Beamline (BNB)
- 3. MiniBooNE detector
- 4. Oscillation candidate search
- **5. Discussion**

Teppei Katori for the MiniBooNE collaboration Queen Mary University of London HEP seminar, UCL, UK, June 14, 2018

1. MiniBooNE 2. Beam 3. Detector 4. Oscillation

Discussion

1. MiniBooNE neutrino experiment

2. Booster Neutrino Beamline (BNB)

3. MiniBooNE detector

4. Oscillation candidate search

Action

Talk To A Scientist

Comment Rules

Thursday, May 31, 2018

Home

New results confirm old anomaly in neutrino data

The collaboration of a neutrino experiment called MiniBooNe just published their new result

Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment MiniBooNE Collaboration arXiv:1805.12028 [hep-ex]

It's a rather unassuming paper, but it deserves a signal boost because for once we have ar anomaly that did not vanish with further examination. Indeed, it actually increased in significance, now standing at a whopping 6.1σ .

ABSTRACTIONS BLOG

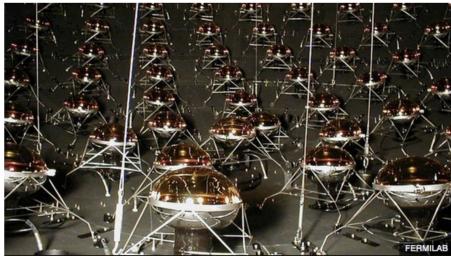
Evidence Found for a New Fundamental Particle

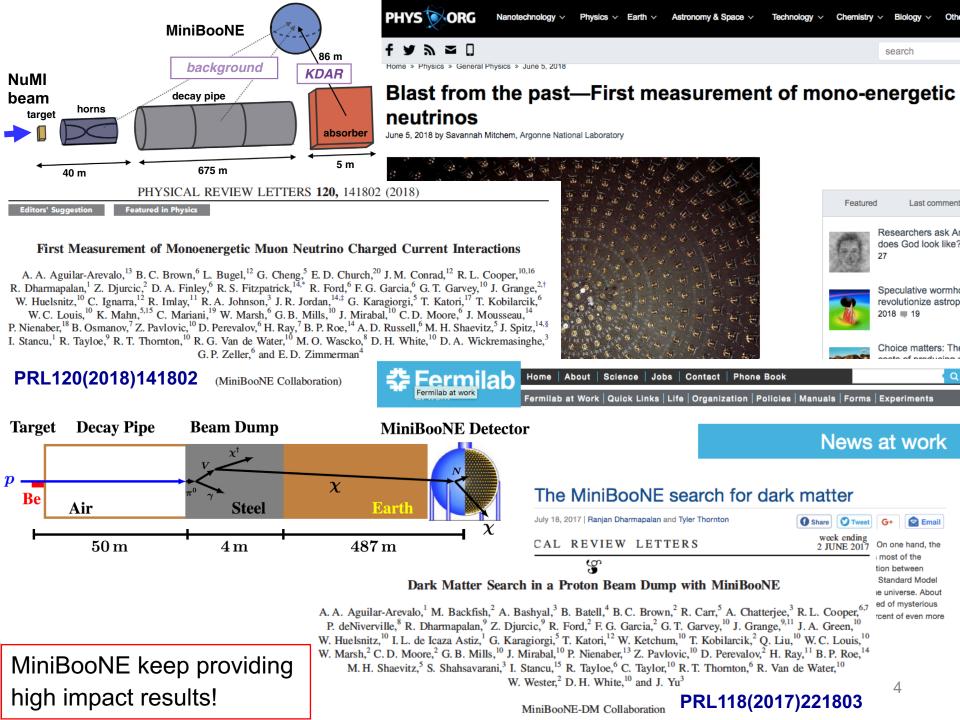
An experiment at the Fermi National Accelerator Chicago has detected far more electron neutrino a possible harbinger of a revolutionary new elen called the sterile neutrino, though many physicis

GIZMODO

VIDEO SPLOID PALEOFUTURE IO9 SCIENCE REVIEW FIELD GUIDE DESIGN

PHYSICS


About

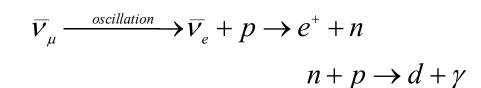

Physicists Are Excited About Fresh Evidence for a New 'Sterile' Fundamental Particle

Ryan F. Mandelbaum 6/04/18 3:20pm • Filed to: NEUTRINOS ~

LSND, PRD64(2002)112007

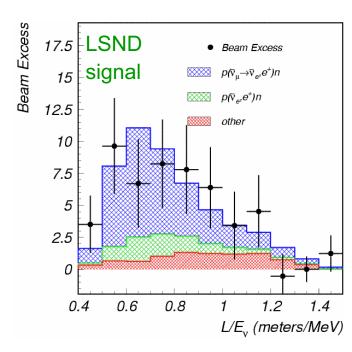
1. LSND experiment

LSND experiment at Los Alamos observed excess of anti-electron neutrino events in the anti-muon neutrino beam.


$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}2\theta \sin^{2}\left(1.27\Delta m^{2}\frac{L}{E}\right)$$

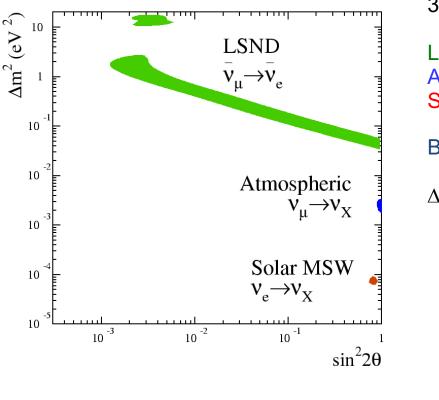
1. MiniBooNE

2. Beam

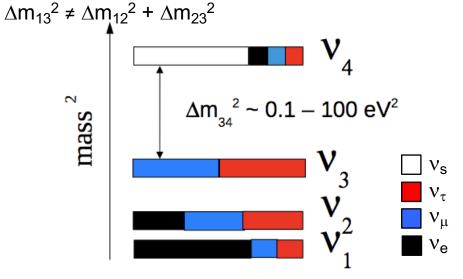

- 3. Detector
- 4. Oscillation

Discussion

$87.9 \pm 22.4 \pm 6.0$ (3.8. σ)


ueen Mary

University of London


5

1. LSND experiment

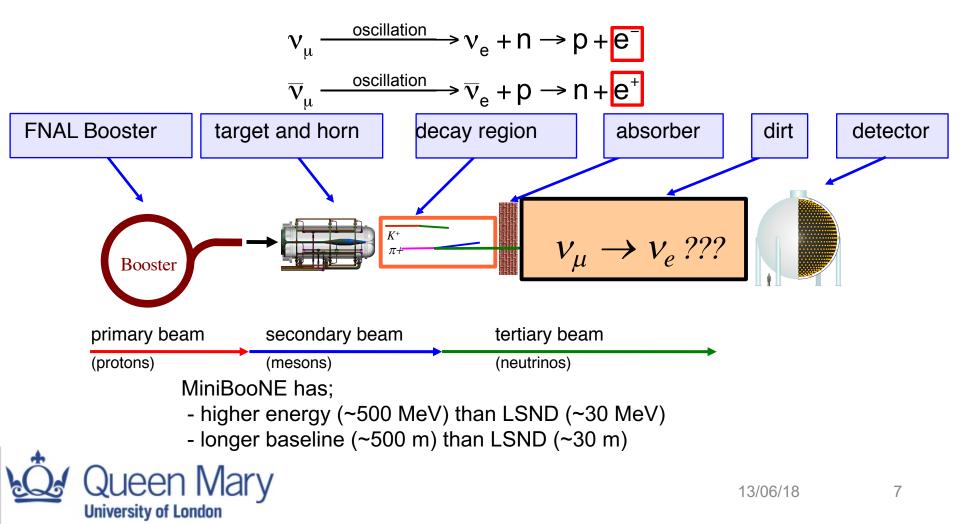
3 types of neutrino oscillations are found:

But we cannot have so many $\Delta m2!$

LSND signal indicates 4th generation neutrino, but we know there is no additional flavor from Z-boson decay, so it must be sterile neutrino MiniBooNE is designed to have same L/E~500m/500MeV~1 to test LSND $\Delta m^2 \sim 1 eV^2$

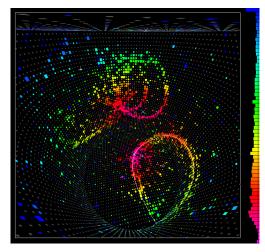
1. MiniBooNE

4. Oscillation 5. Discussion


2. Beam 3. Detector

1. MiniBooNE experiment
$$P(\nu_{\mu} \rightarrow \nu_{e}) = sin^{2}2\theta sin^{2}\left(1.27\Delta m^{2}\frac{L}{E}\right)$$

MiniBooNE
 Beam
 Detector
 Oscillation
 Discussion


Keep L/E same with LSND, while changing systematics, energy & event signature;

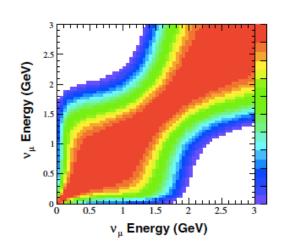
MiniBooNE is looking for the single isolated electron like events, which is the signature of v_e events

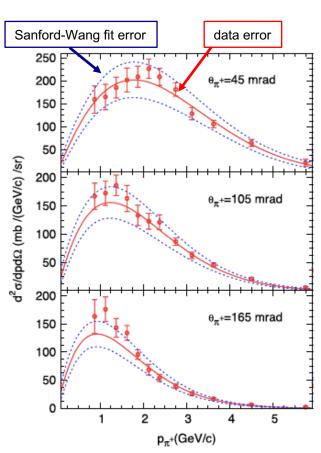
1. MiniBooNE is extremely influential! - Tools

fitQun: MiniBooNE: NIMA608(2009)206 Likelihood-based Cherenkov ring fitter, the main reconstruction used by Super-Kamiokande (LSND→MiniBooNE→SuperK).

Online remote shift:

- <1 event per minute
- Even ACNET became web interface after this!

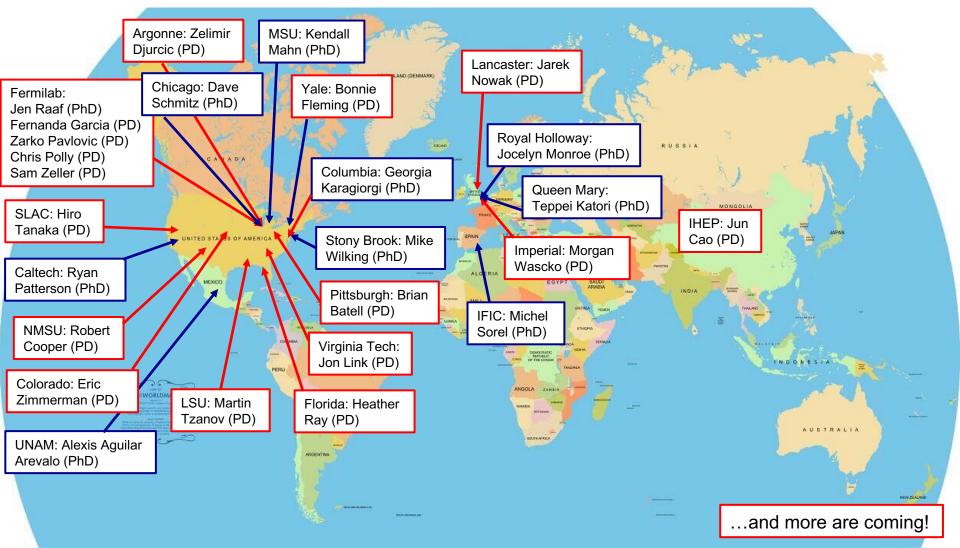

- Almost all neutrino experiments at Fermilab adapted online remote shift, including NOvA, MicroBooNE, MINERvA, etc



Flux systematic error: MiniBooNE: PRD79(2009)072002

- Errors are derived directly from hadron production data (spline fit), not any flux model.

- Event weighted with multiverse simulation to make a smooth covariance matrix with taking account all correlations correctly.

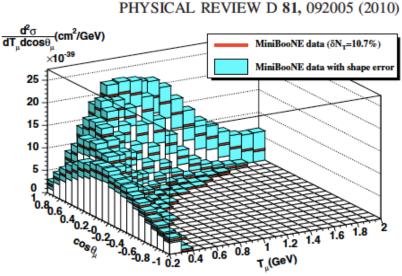

1. MiniBooNE 2. Beam 3. Detector

Oscillation
 Discussion

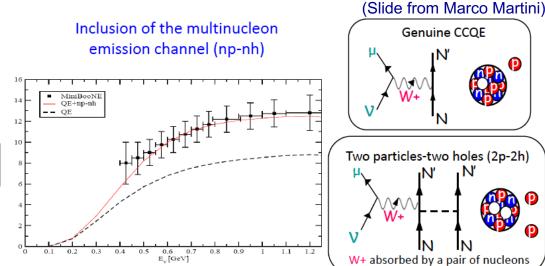
1. MiniBooNE is extremely influential! – Offsprings

1. MiniBooNE

- 2. Beam
- 3. Detector
- 4. Oscillation
- 5. Discussion


9

MiniBooNE: PRD81(2010)092005 Martini et al,PRC80(2009)065501


1. MiniBooNE is extremely influential! - Cross Sections

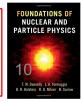
Flux-integrated differential cross section:

A new concept to measure, and report neutrino cross section data, now the standard of the community.

An explanation of this puzzle

Discovery of nucleon correlation in neutrino scattering:

- Significant enhancement of cross section (10-30%)
- modify lepton kinematics and final state hadrons
- the hottest topic for T2K, MINERvA, MicroBooNE, etc


Particle Data Group

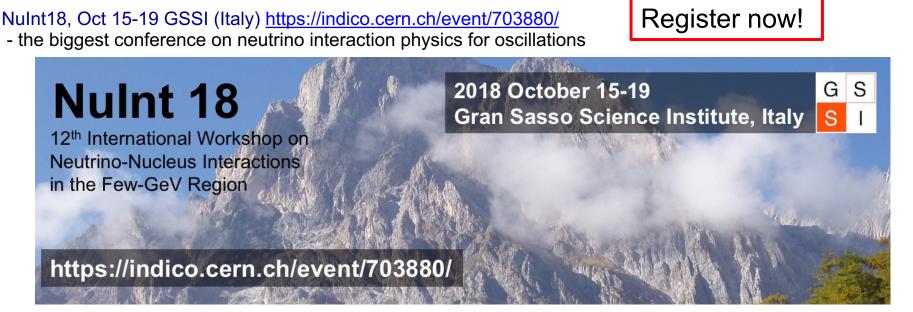
- Section 42, "Monte Carlo Neutrino Generators" (Hugh Gallagher, Yoshinari Hayato)
- Section 50, "Neutrino Cross-Section Measurements" (Sam Zeller)

On going effort from MiniBooE initiative!

The first textbook of neutrino interaction physics! "Foundation of Nuclear and Particle Physics" - Cambridge University Press (2017), ISBN:0521765110 - Authors: Donnelly, Formaggio, Holstein, Milner, Surrow

1. MiniBooNE

2. Beam


3. D

5. I

1. MiniBooNE

- 2. Beam
- 3. Detector
- . Oscillation
- 5. Discussion

1. NuInt18 and nuS&DIS workshop, GSSI, Italy

Neutrino Shallow and Deep-Inelastic scattering, Oct 11-13 GSSI (Italy) <u>http://nustec.fnal.gov/nuSDIS18/</u> - a dedicated workshop for physics related to DUNE, NOvA, etc

1. MiniBooNE 2. Beam 3. Detector

4. Oscillation

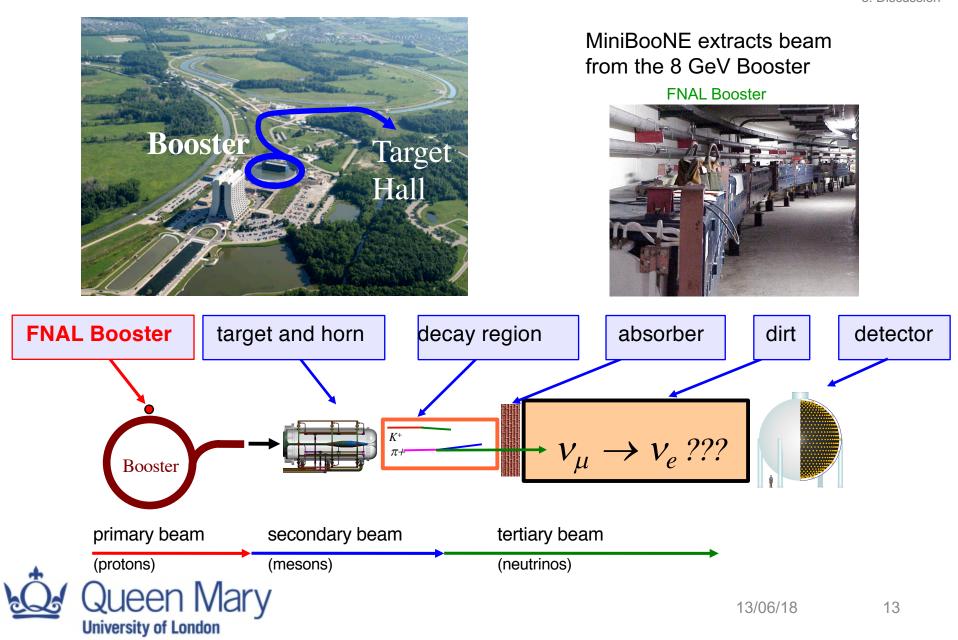
5. Discussion

1. MiniBooNE neutrino experiment

2. Booster Neutrino Beamline (BNB)

3. MiniBooNE detector

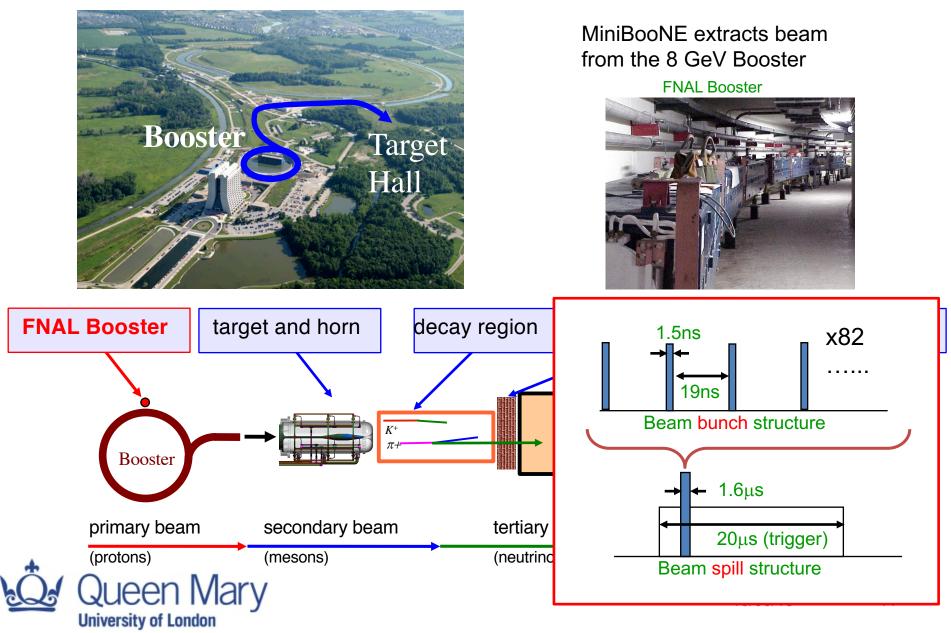
4. Oscillation candidate search



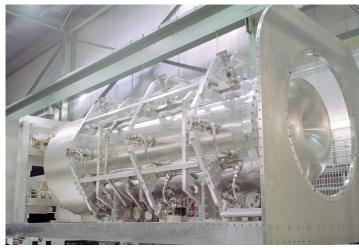
MiniBooNE, PRD79(2009)072002

2. Neutrino beam

MiniBooNE
 Beam
 Detector

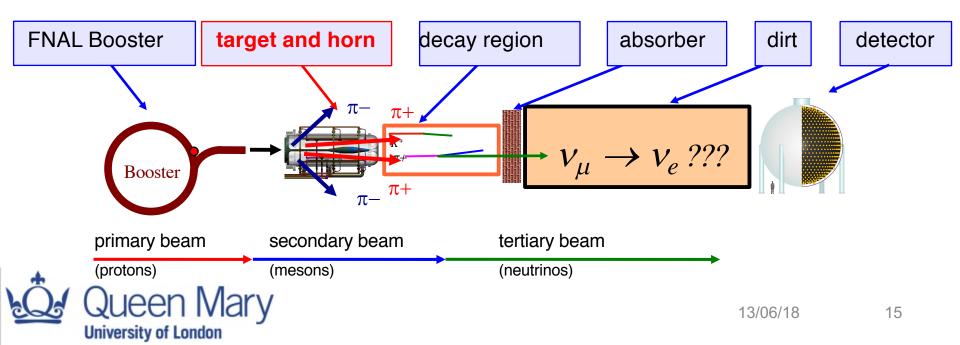

4. Oscillation 5. Discussion

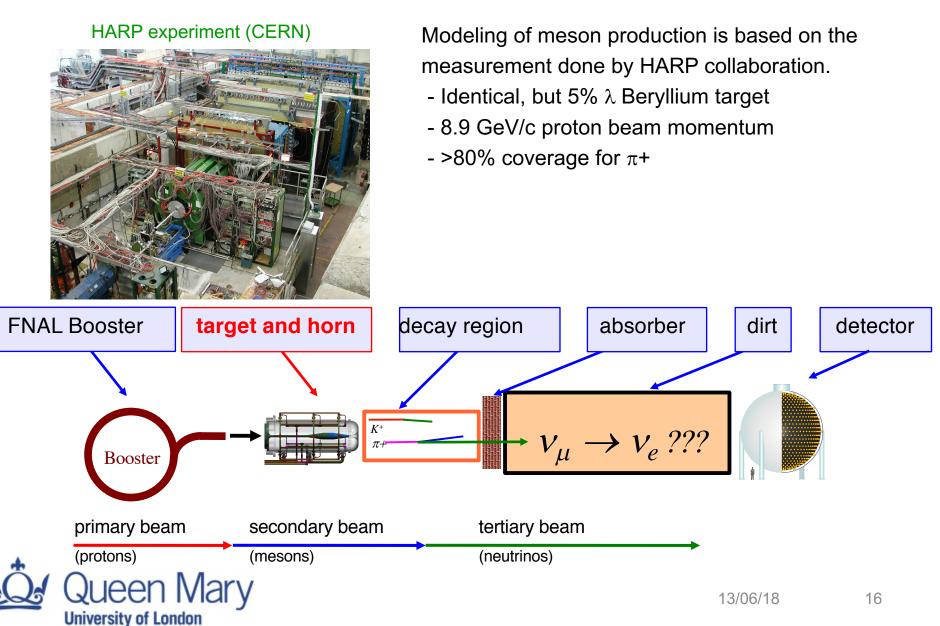
MiniBooNE, PRD79(2009)072002


2. Neutrino beam

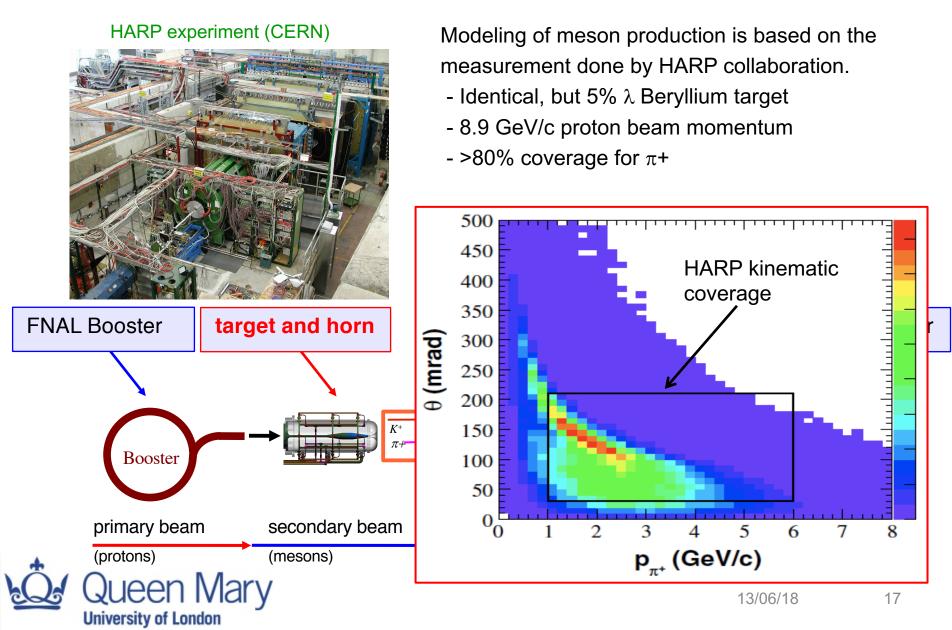
- 1. MiniBooNE 2. Beam
- 3. Detector
- 4. Oscillation
- 5. Discussion

2. Neutrino beam

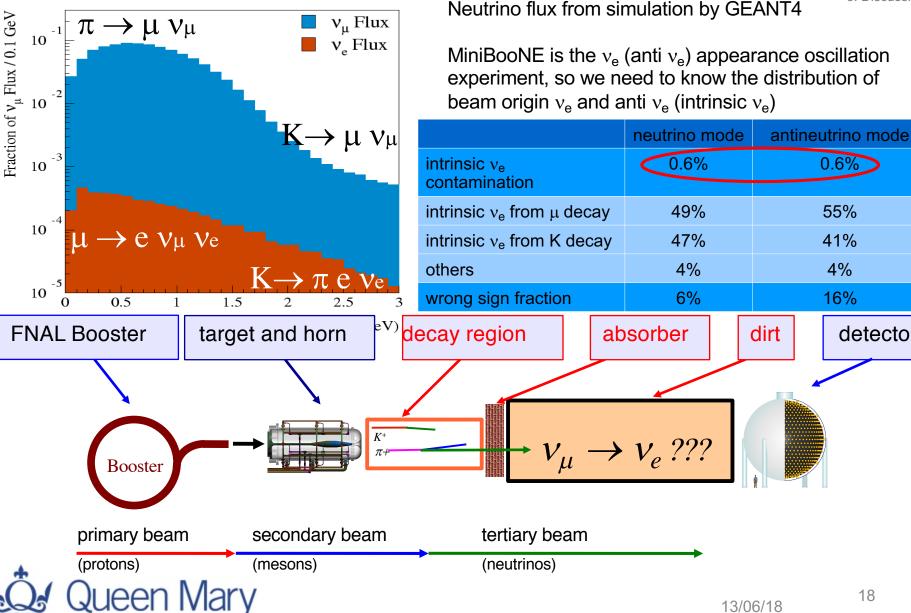

Magnetic focusing horn


8GeV protons are delivered to a 1.7 λ Be target

within a magnetic horn (2.5 kV, 174 kA) that increases the flux by \times 6


By switching the current direction, the horn can focus either positive (neutrino mode) or negative (antineutrino mode) mesons.

MiniBooNE, PRD79(2009)072002 HARP, Eur.Phys.J.C52(2007)29 **2. Neutrino beam**



MiniBooNE, PRD79(2009)072002 HARP, Eur.Phys.J.C52(2007)29 **2. Neutrino beam**

2. Neutrino beam

University of London

1. MiniBooNE 2. Beam

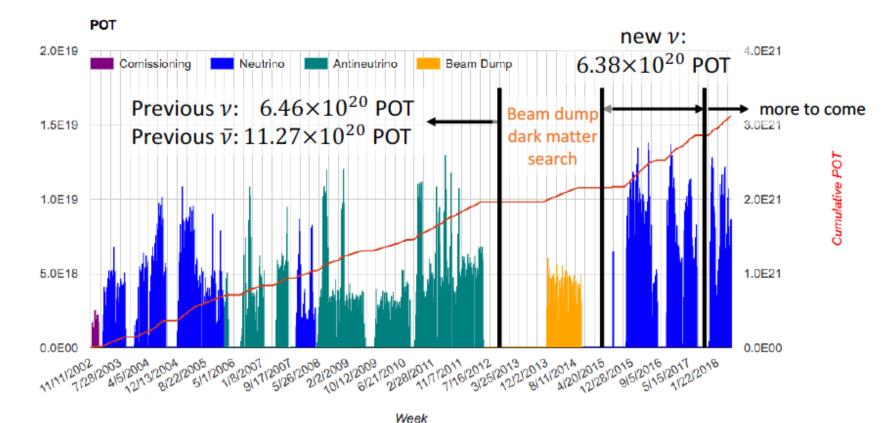
0.6%

55%

41%

4%

16%


detector

- 3. Detector
- Oscillation 5. Discussion

Huang, Neutrino 2018

3. Data taking

- 15+ years of running in neutrino, antineutrino, and beam dump mode. More than 30×10²⁰ POT to date.
- Result of a combined 12.84×10^{20} POT in ν mode + 11.27×10^{20} POT in $\bar{\nu}$ mode is presented in this talk

1. MiniBooNE 2. Beam 3. Detector 4. Oscillation

5. Discussion

1. MiniBooNE neutrino experiment

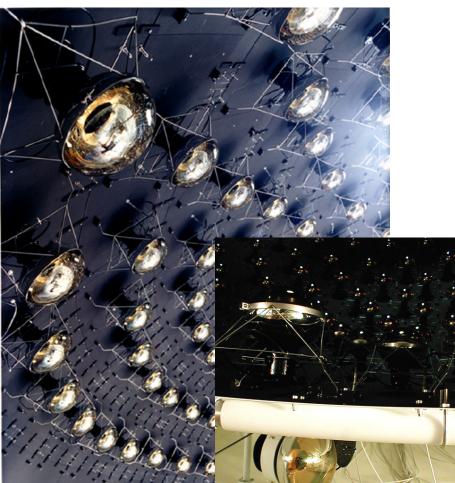
2. Booster Neutrino Beamline (BNB)

3. MiniBooNE detector

4. Oscillation candidate search

The MiniBooNE Detector

- 541 meters downstream of target
- 12 meter diameter sphere
 (10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂)
 - (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes



The MiniBooNE Detector

- 541 meters downstream of target
- 12 meter diameter sphere(10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂) (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

MiniBooNE
 Beam
 Detector
 Oscillation
 Discussion

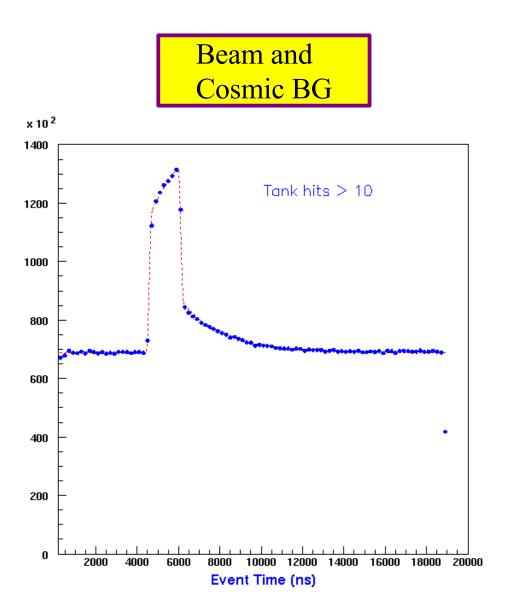
Queen Mary

University of London

The MiniBooNE Detector

- 541 meters downstream of target
- 12 meter diameter sphere
 - (10 meter "fiducial" volume)
- Filled with 800 t of pure mineral oil (CH₂)
 (Fiducial volume: 450 t)
- 1280 inner phototubes,
- 240 veto phototubes

MiniBooNE, NIM. A599(2009)28


3. Events in the Detector

Times of hit-clusters (subevents) Beam spill (1.6μs) is clearly evident simple cuts eliminate cosmic backgrounds

Neutrino Candidate Cuts <6 veto PMT hits Gets rid of muons

> >200 tank PMT hits Gets rid of Michels

Only neutrinos are left!

1. MiniBooNE

- 2. Beam
- 3. Detector
- 4. Oscillation

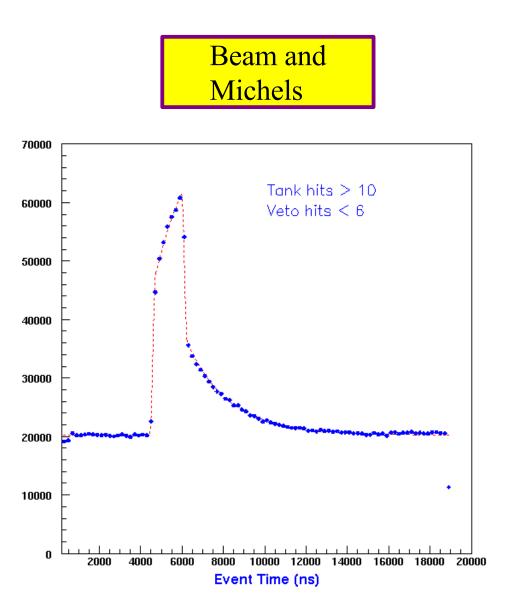
5. Discussion

Queen Mary

MiniBooNE, NIM. A599(2009)28

3. Events in the Detector

Times of hit-clusters (subevents) Beam spill (1.6µs) is clearly evident simple cuts eliminate cosmic backgrounds


Neutrino Candidate Cuts <6 veto PMT hits Gets rid of muons

> >200 tank PMT hits Gets rid of Michels

Only neutrinos are left!

Queen Mary

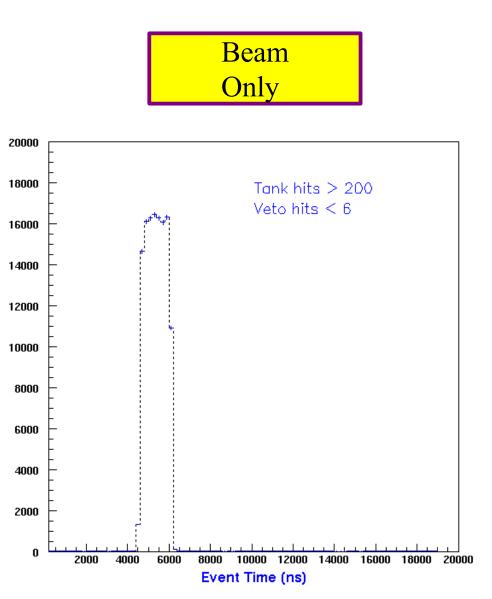
University of London

1. MiniBooNE

- 2. Beam
- 3. Detector
- 4. Oscillation

MiniBooNE, NIM. A599(2009)28

3. Events in the Detector


Times of hit-clusters (subevents) Beam spill (1.6µs) is clearly evident simple cuts eliminate cosmic backgrounds

Neutrino Candidate Cuts <6 veto PMT hits Gets rid of muons

> >200 tank PMT hits Gets rid of Michels

Only neutrinos are left!

1. MiniBooNE

2. Beam

3. Detector

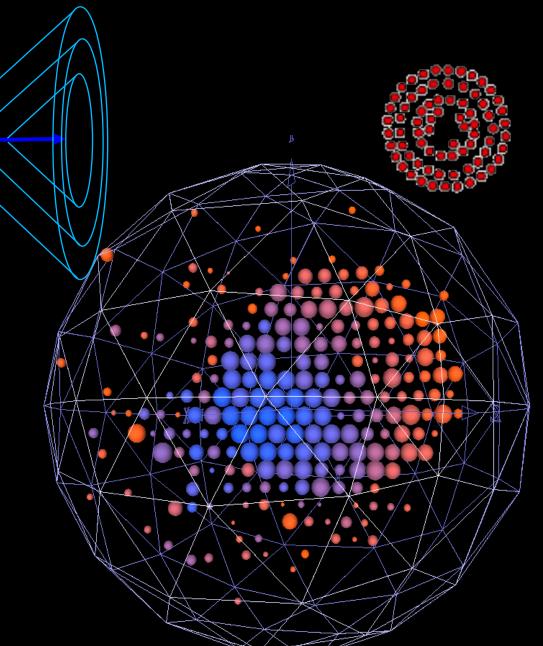
4. Oscillation

3. Events in the Detector

MiniBooNE collaboration, NIM.A599(2009)28

Muons

- Long strait tracks
 - \rightarrow Sharp clear rings


Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

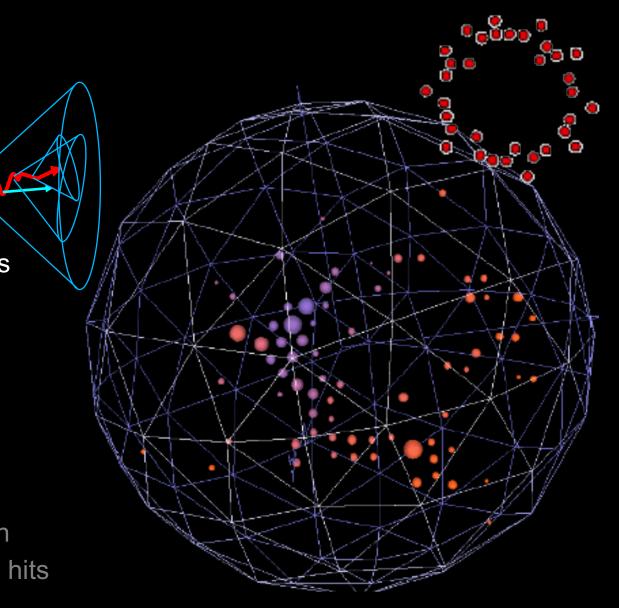
- Decays to 2 photons
 - \rightarrow Double fuzzy rings

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

MiniBooNE collaboration, NIM.A599(2009)28

Muons

- Long strait tracks
 - \rightarrow Sharp clear rings


Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

MiniBooNE collaboration, NIM.A599(2009)28

Muons

- Long strait tracks
 - \rightarrow Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings

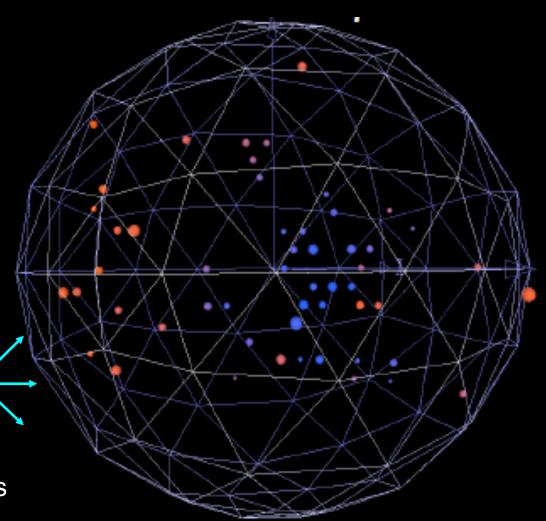
- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

MiniBooNE collaboration, NIM.A599(2009)28

 \mathbb{Z}

Muons

- Long strait tracks
 - \rightarrow Sharp clear rings


Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings,

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

MiniBooNE: PRL100(2008)032301

3. QE kinematics based energy reconstruction

Event reconstruction from Cherenkov ring profile for PID

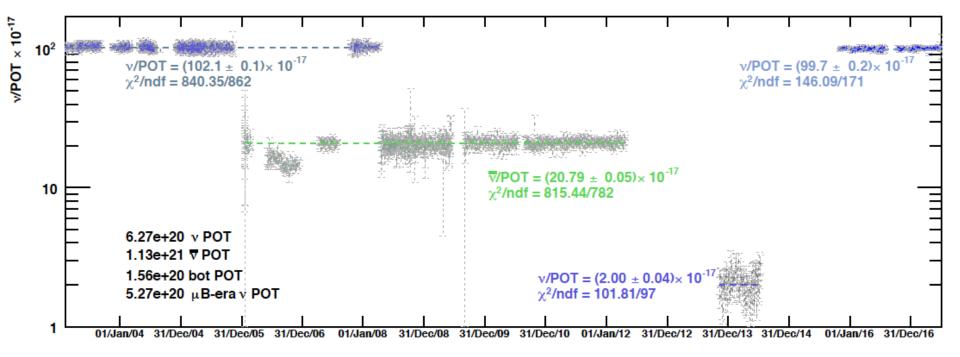
- scattering angle $\boldsymbol{\theta}$ and kinetic energy of charged lepton T are estimated

Charged Current Quasi-Elastic (CCQE) interaction

The simplest and the most abundant interaction around ~1 GeV. Neutrino energy is reconstructed from the observed lepton kinematics "QE assumption" 1. assuming neutron at rest v_{i} .

2. assuming interaction is CCQE

CCQE is the most important channel of neutrino oscillation physics for MiniBooNE, T2K, microBoonE, SBND, etc (also important for NOvA, Hyper-Kamiokande, DUNE, etc)


1. MiniBooNE

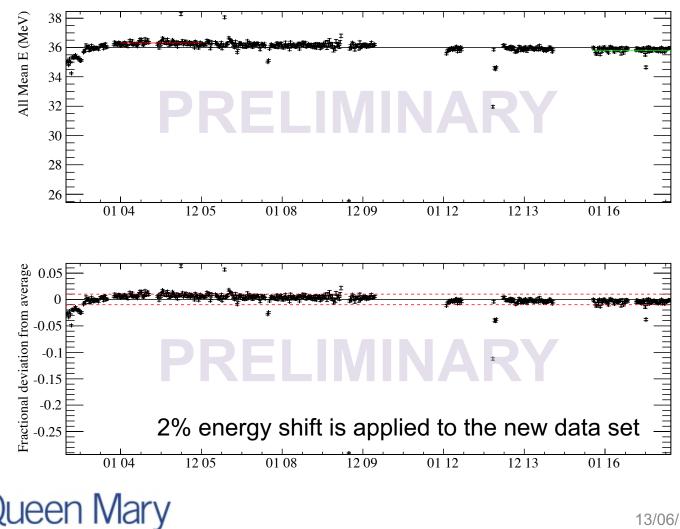
- 2. Beam
- Detector
 Oscillation

3. Detector stability

Event rate look consistent from expectations

- Antineutrino mode (factor 5 lower event rate)
- factor ~2 lower flux
- factor ~2-3 lower cross section
- Dark matter mode (factor 50 lower event rate) MiniBooNE, PRL118(2017)221803
 - factor ~40 lower flux

MiniBooNE
 Beam
 Detector

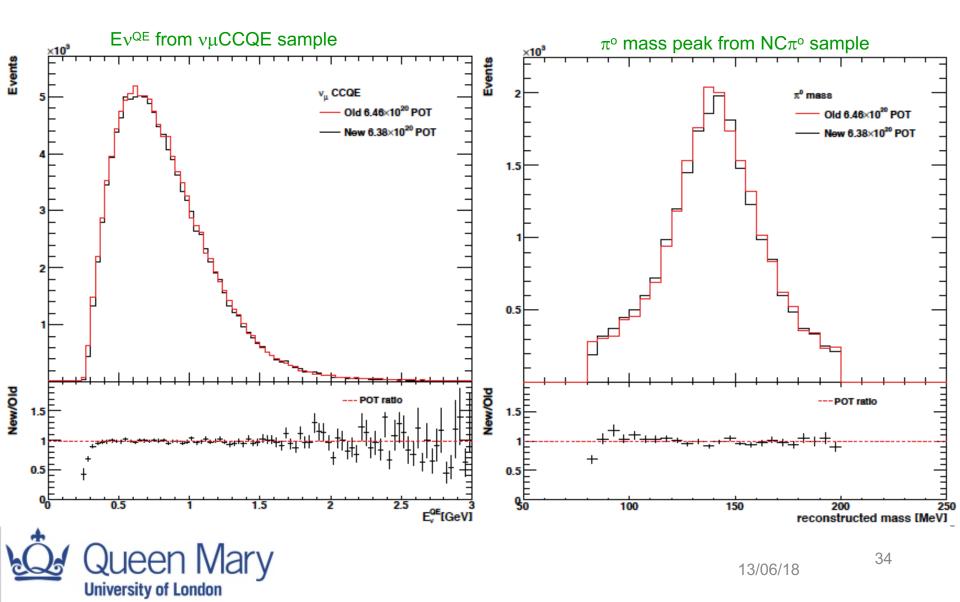

4. Oscillation

3. Detector stability

University of London

Old and new data agree within 2% over 8 years separation.

Michel electron spectrum peak



3. Detector

4. Oscillation

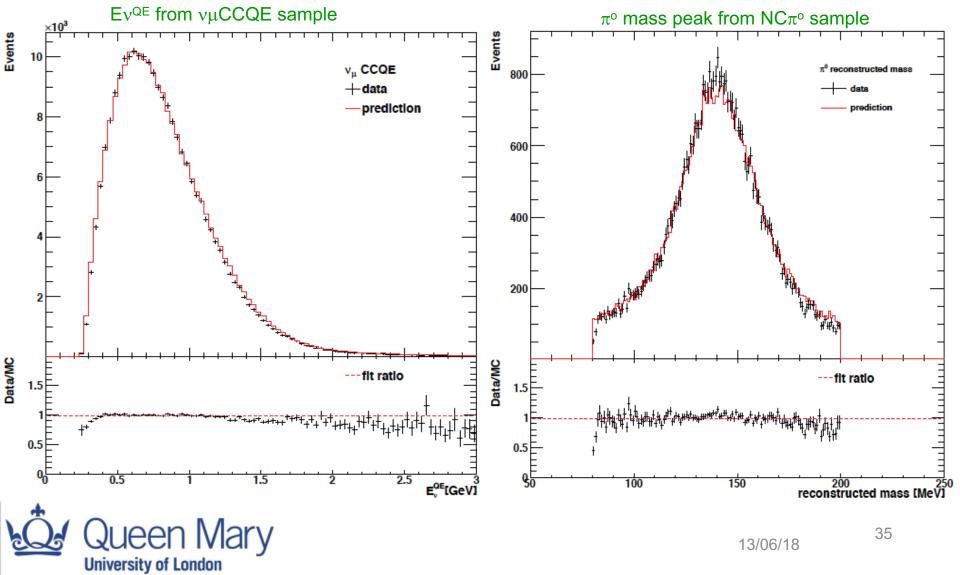
3. Detector stability

Old and new data agree within 2% over 8 years separation.

1. MiniBooNE 2. Beam

- 3. Detector
- 4. Oscillation

MiniBooNE
 Beam


- 3. Detector
- 4. Oscillation

5. Discussion

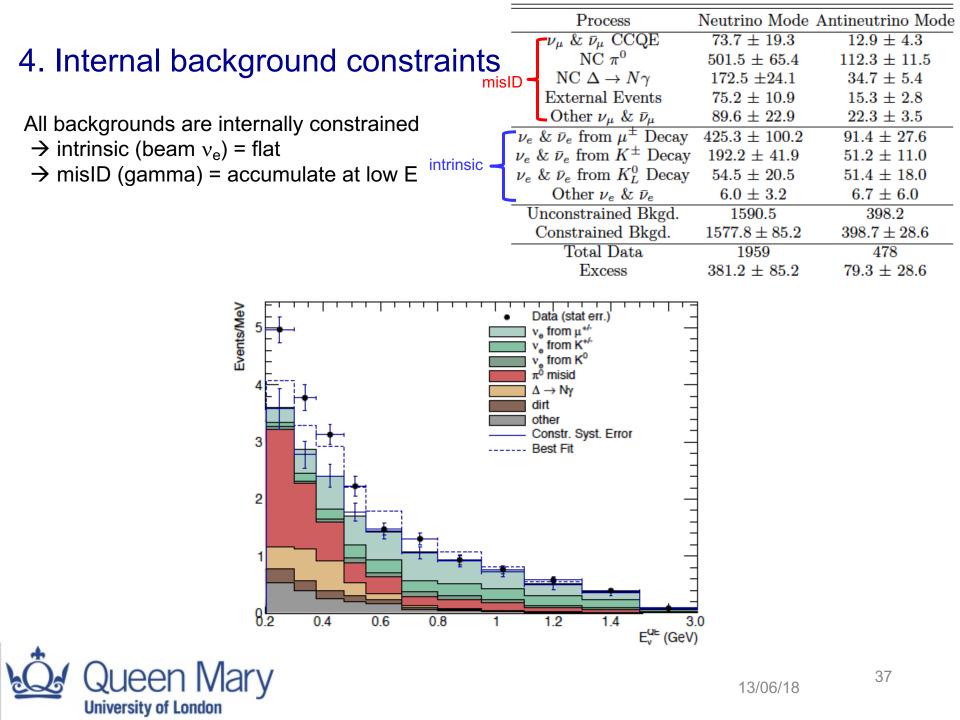
3. Data-Simulation comparison

Old and new data agree within 2% over 8 years separation.

- Excellent agreements with MC.

1. MiniBooNE 2. Beam 3. Detector 4. Oscillation

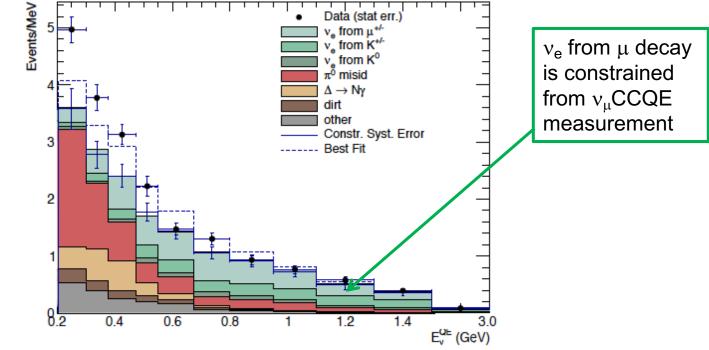
5. Discussion


1. MiniBooNE neutrino experiment

2. Booster Neutrino Beamline (BNB)

3. MiniBooNE detector

4. Oscillation candidate search

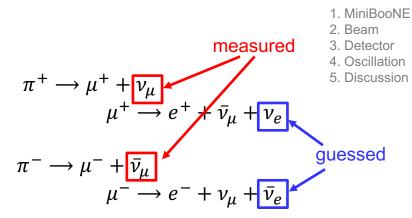


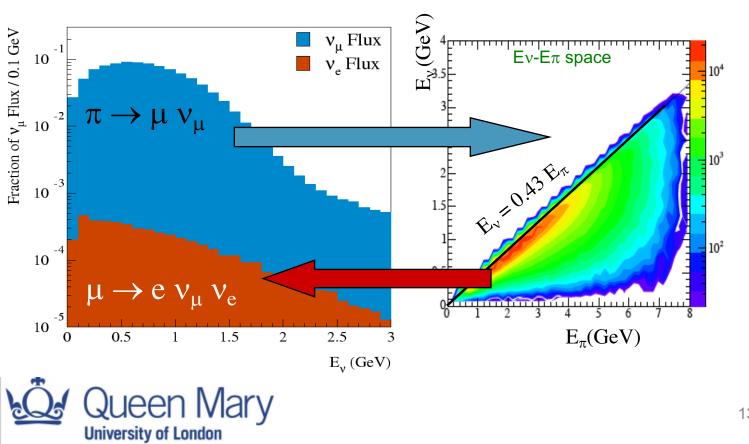
4. ν_e from $\mu\text{-decay constraint}$

All backgrounds are internally constrained

- \rightarrow intrinsic (beam v_e) = flat
- \rightarrow misID (gamma) = accumulate at low E

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} CCQE$	73.7 ± 19.3	12.9 ± 4.3
NC π^0	501.5 ± 65.4	112.3 ± 11.5
NC $\Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6




4. ν_e from $\mu\text{-decay constraint}$

All backgrounds are internally constrained

- \rightarrow intrinsic (beam v_e) = flat
- \rightarrow misID (gamma) = accumulate at low E

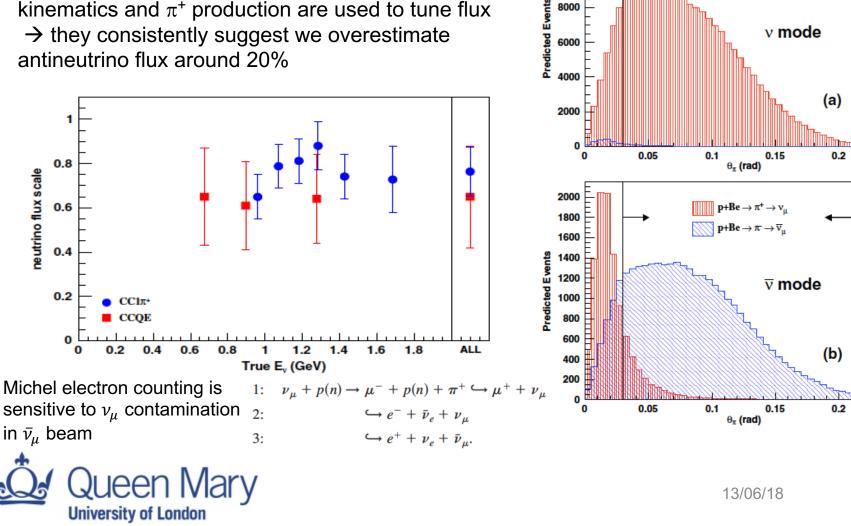
They are large background, but we have a good control of $v_e \& \bar{v}_e$ background by joint $v_e \& v_\mu (\bar{v}_e \& \bar{v}_\mu)$ fit for oscillation search.

MiniBooNE, PRD84(2011)072005

0.8

0.6

0.4


0.2

0

neutrino flux scale

4. Anti-neutrino mode flux tuning

 $\bar{v}_e \& \bar{v}_\mu$ flux are harder to predict due to larger wrong sign ($v_e \& v_\mu$) background, and measured lepton kinematics and π^+ production are used to tune flux \rightarrow they consistently suggest we overestimate antineutrino flux around 20%

12000

10000

1. MiniBooNE

2. Beam

PHYSICAL REVIEW D 84, 072005 (2011)

- 3. Detector
- Oscillation

0.25

0.25

40

5. Discussion

4. v_e from

All background

 \rightarrow intrinsic (b

Fraction of v_{μ} Flux / 0.1 GeV 01 01 01 01

10 -1

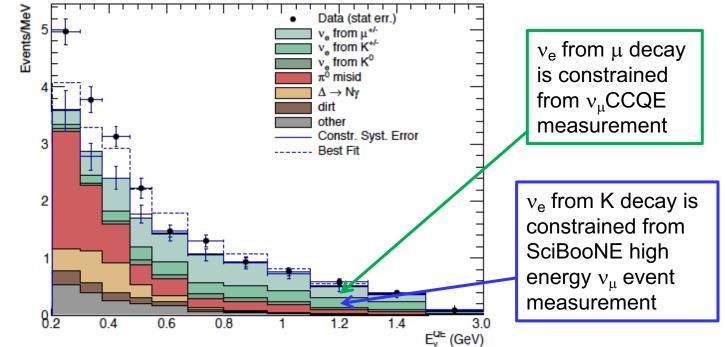
-2

10 -3

10 -4

 $10 \begin{array}{c} -5 \\ 0 \end{array}$

→ misID (gan

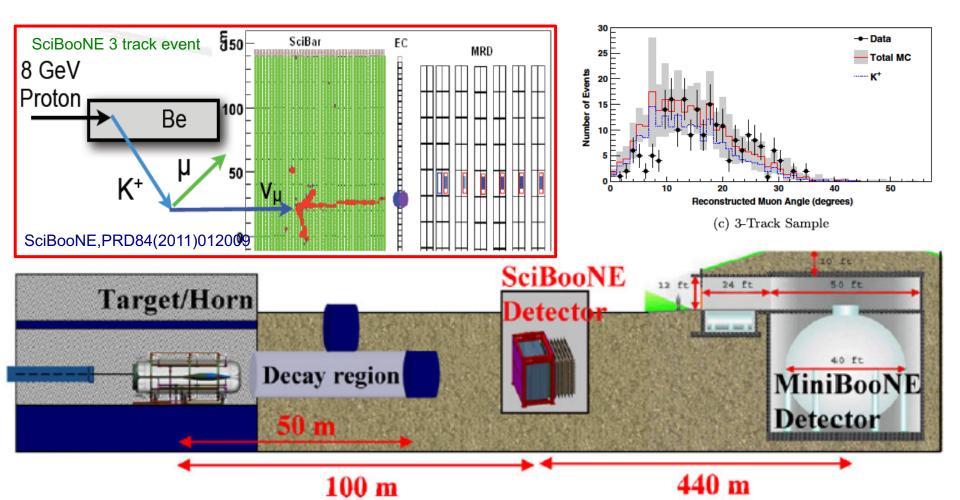

trinsic (beam v_e) = flat hisID (gamma) = accumulate at low E $v_e \ k \ v_e \ from \ \mu^- \ Decay \ 425.3 \pm 100.2 \ 91.4 \pm v_e \ k \ v_e \ from \ K^+ \ Decay \ 192.2 \pm 41.9 \ 51.2 \pm v_e \ k \ v_e \ k \ v_e \ k \ v_e \ from \ K^- \ Decay \ 54.5 \pm 20.5 \ 51.4 \pm v_e \ k \ v$	4.3 11.5 5.4 2.8 3.5 27.6 11.0 18.0 6.0 .2 28.6
$ \begin{array}{c} \text{from } \mu \text{-decay constraint} \\ \text{ackgrounds are internally constrained} \\ \text{trinsic (beam } v_{e}) = \text{flat} \\ \text{isID (gamma)} = \text{accumulate at low E} \end{array} \begin{array}{c} NC \ \pi^{0} & 501.5 \pm 65.4 & 112.3 \pm NC \ \Delta \rightarrow N\gamma & 172.5 \pm 24.1 & 34.7 \pm External Events & 75.2 \pm 10.9 & 15.3 \pm Other \ \nu_{\mu} \ \& \ \overline{\nu}_{\mu} & \& \ \overline{\nu}_{\mu} & \& 9.6 \pm 22.9 & 22.3 \pm Other \ \nu_{\mu} \ \& \ \overline{\nu}_{\mu} & \& \ \overline{\nu}_{e} & from \ \mu^{\pm} & Decay & 425.3 \pm 100.2 & 91.4 \pm V_{e} \ \& \ \overline{\nu}_{e} & from \ K^{\pm} & Decay & 192.2 \pm 41.9 & 51.2 \pm V_{e} \ \& \ \overline{\nu}_{e} & from \ K^{\pm} & Decay & 192.2 \pm 41.9 & 51.2 \pm V_{e} \ \& \ \overline{\nu}_{e} & \& \ \overline{\nu}_{e} & from \ K^{\pm} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & from \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & from \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & from \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & from \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & from \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & from \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & from \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & From \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & From \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & From \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \nu_{e} \ \& \ \overline{\nu}_{e} & From \ K^{D} & Decay & 54.5 \pm 20.5 & 51.4 \pm Other \ \overline{\nu}_{e} \ \& \ From \ K^{D} & Excess & 381.2 \pm 85.2 & 398.7 \pm Other \ From \ K^{D} & Excess & 381.2 \pm 85.2 & 79.3 \pm Other \ From \ K^{D} & Excess & 381.2 \pm 85.2 & 79.3 \pm Other \ From \ K^{D} & Excess & 381.2 \pm 85.2 & 79.3 \pm Other \ From \ K^{D} & From \ $	211.5 5.4 2.8 3.5 27.6 11.0 18.0 6.0 .2 28.6
$\frac{1}{\pi \rightarrow \mu \nu_{\mu}} \sqrt{\frac{\nu_{\mu} Flux}{\nu_{e} Flux}} \sqrt{\frac{\nu_{\mu} Flux}{\nu_{e} Flu$	27.6 11.0 18.0 6.0 28.6
External Events 75.2 ± 10.9 15.3 ± 0 Other $\nu_{\mu} \& \bar{\nu}_{\mu}$ 89.6 ± 22.9 22.3 ± 100.2 91.4 ± 100.2	2.8 3.5 27.6 11.0 18.0 6.0 .2 28.6
$\frac{\nu_{e} \& \bar{\nu}_{e} \text{ from } \mu^{\pm} \text{ Decay } 425.3 \pm 100.2 91.4 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 192.2 \pm 41.9 51.2 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 192.2 \pm 41.9 51.2 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm 0 \text{ Other } \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm 0 \text{ Other } \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 398 \text{ Constrained Bkgd. } 1590.5 398 \text{ Constrained Bkgd. } 1590.5 398 \text{ Constrained Bkgd. } 1577.8 \pm 85.2 398.7 \pm 100.2 91.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm 0 \text{ Other } \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm 0 \text{ Other } \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 398 \text{ Constrained Bkgd. } 1590.5 398.7 \pm 100.2 100.5 1$	27.6 11.0 18.0 6.0 .2 28.6
$\frac{\nu_{e} \& \bar{\nu}_{e} \text{ from } \mu^{\pm} \text{ Decay } 425.3 \pm 100.2 91.4 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 192.2 \pm 41.9 51.2 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 192.2 \pm 41.9 51.2 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm 0 \text{ Other } \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm 0 \text{ Other } \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 398 \text{ Constrained Bkgd. } 1590.5 398 \text{ Constrained Bkgd. } 1590.5 398 \text{ Constrained Bkgd. } 1577.8 \pm 85.2 398.7 \pm 100.2 91.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm 0 \text{ Other } \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 51.4 \pm 0 \text{ Other } \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 54.5 \pm 20.5 398 \text{ Constrained Bkgd. } 1590.5 398.7 \pm 100.2 100.5 1$	11.0 18.0 6.0 .2 28.6
$\frac{\nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm} \text{ Decay } 192.2 \pm 41.9 \qquad 51.2 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \text{ from } K^{\pm}_{L} \text{ Decay } 54.5 \pm 20.5 \qquad 51.4 \pm \nu_{e} \& \bar{\nu}_{e} \& \bar{\nu}_{e$	18.0 6.0 .2 28.6
$\begin{array}{c} Other \nu_{e} \& \bar{\nu}_{e} & 6.0 \pm 3.2 & 6.7 \pm \\ \hline Unconstrained Bkgd. & 1590.5 & 398 \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Total Data & 1959 & 476 \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 398.7 \pm \\ \hline Unconstrained Bkgd. & 1577.8 \pm 85.2 & 79.3 \pm \\ $	6.0 .2 28.6
$\pi \rightarrow \mu \nu_{\mu}$ $\frac{\nu_{\mu} \operatorname{Flux}}{\nu_{e} \operatorname{Flux}}$ $\frac{\nu_{e} \operatorname{Flux}}{\nu_{e} \operatorname{Flux}}$.2 28.6
$\pi \rightarrow \mu \nu_{\mu}$ v_{μ} v_{ν} v_{ν} v_{ν} v_{ν} v_{ν} v_{ν} $Flux$	-28.6
$ \begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	
$\pi \rightarrow \mu \nu_{\mu}$ $ \begin{array}{c} \nu_{\mu} \operatorname{Flux} \\ \nu_{\nu} \operatorname{Flux} \\ \mu^{2} \end{array} \xrightarrow{5} E_{\nu} = E_{\pi} \xrightarrow{10^{4}} E_{\pi} \xrightarrow{5} E_{\nu} = E_{\pi} \xrightarrow{10^{4}} E_{\pi} \xrightarrow{5} E_{\nu} = E_{\pi} \xrightarrow{10^{4}} \xrightarrow{5} E_{\nu} = E_{\nu} = E_{\mu} \xrightarrow{10^{4}} \xrightarrow{5} E_{\nu} = E_{\nu} = E_{\mu} \xrightarrow{10^{4}} \xrightarrow{5} E_{\nu} = E_{\nu} = E_{\nu} \xrightarrow{10^{4}} \xrightarrow{5} E_{\nu} = E_{\nu} \xrightarrow{10^{4}} \xrightarrow{5} E_{\nu} \xrightarrow{10^{4}} \xrightarrow{10^{4}} \xrightarrow{5} \underbrace{10^{4}} \xrightarrow{10^{4}} $	0
$\pi \rightarrow \mu \nu_{\mu}$ $\nabla_{3.5} = E_{\nu} - E_{\pi}$ $\Sigma_{3.5} = E_{\nu} - E_{\pi}$	
	28.6
25 3 \bullet Data (stat err.) -	
• Data (stat err.) • v_e from $\mu^{*/*}$ • v_e from $\mu^{*/*}$ • v_e from $\mu^{*/*}$	У
$\square \Delta \rightarrow N\gamma \qquad \neg \qquad \text{from } \gamma \text{ CCOF}$	
$E_{\pi}(\text{GeV})$ Constr. Syst. Error	
E _v (GeV) Best Fit	
0.2 0.4 0.6 0.8 1 1.2 1.4 3.0	
E _v ^{QE} (GeV)	
Queen Mary 41	
Queen Mary 13/06/18 41	
University of London	

4. ν_e from K⁺-decay constraint

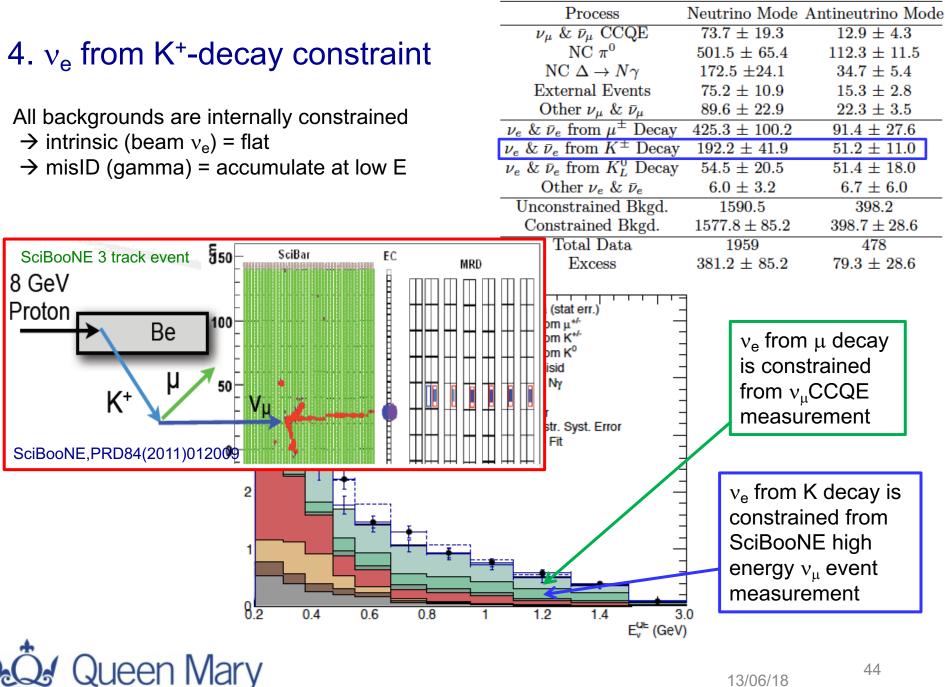
All backgrounds are internally constrained

- \rightarrow intrinsic (beam v_e) = flat
- \rightarrow misID (gamma) = accumulate at low E

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} CCQE$	73.7 ± 19.3	12.9 ± 4.3
$ m NC \ \pi^0$	501.5 ± 65.4	112.3 ± 11.5
NC $\Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6
	7	
 Data (stat err.) 	-	



SciBooNE, PRD84(2011)012009


4. ν_e from K⁺-decay constraint

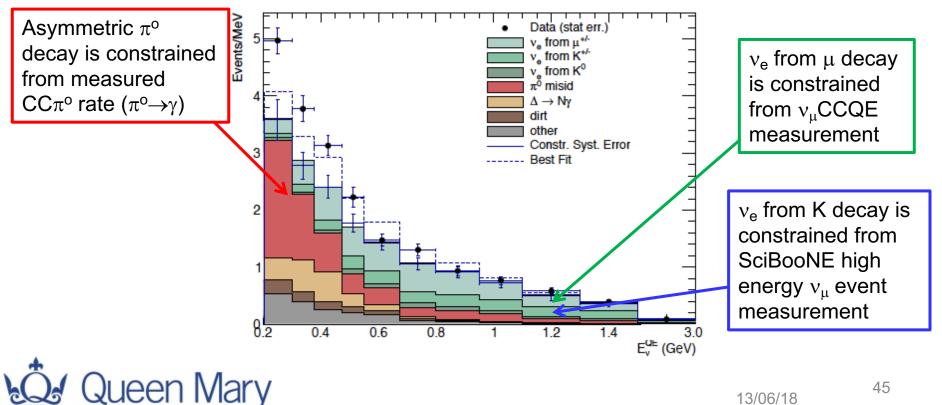
SciBooNE is a scintillator tracker located on BNB (detector hall is used by ANNIE now)

- neutrinos from kaon decay tend to be higher, and tend to make 3 tracks
- from 3 track analysis, kaon decay neutrinos are constrained (0.85 ± 0.11 , prior is 40% error)

MiniBooNE
 Beam
 Detector
 Oscillation
 Discussion

University of London

4. v_e from K⁺-decay constraint


All backgrounds are internally constrained

 \rightarrow intrinsic (beam v_e) = flat

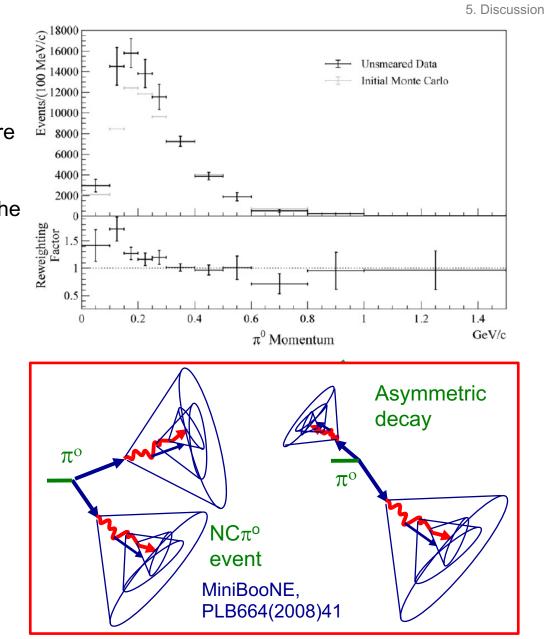
University of London

 \rightarrow misID (gamma) = accumulate at low E

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} CCQE$	73.7 ± 19.3	12.9 ± 4.3
NC π^0	501.5 ± 65.4	112.3 ± 11.5
NC $\Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6

MiniBooNE, PLB664(2008)41

4. γ from π^{o} constraint


 $\pi^{o} \not\rightarrow \gamma \gamma$

- not background, we can measure $\pi^{o} \rightarrow \gamma$

- misID background, we cannot measure

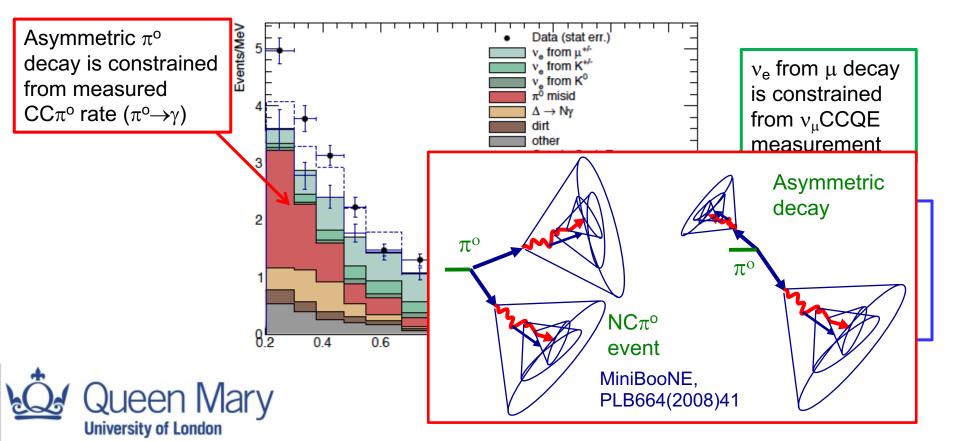
The biggest systematics is production rate of π^{o} , because once you find that, the chance to make a single gamma ray is predictable.

We measure po production rate, and correct simulation with function of π^{o} momentum

1. MiniBooNE

Oscillation

Beam
 Detector

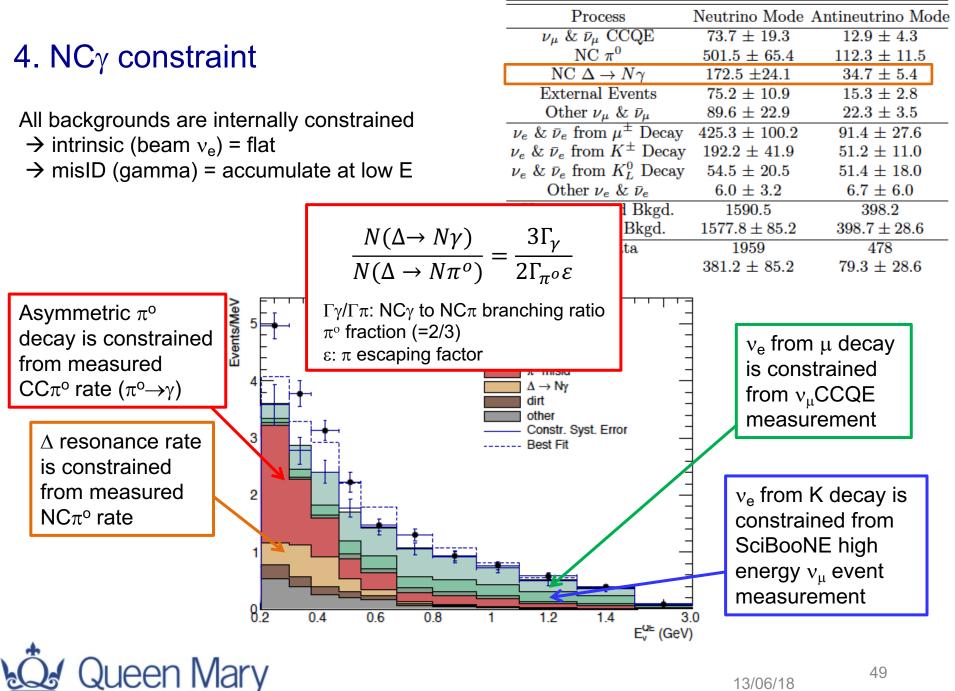


4. γ from π^{o} constraint

All backgrounds are internally constrained

- \rightarrow intrinsic (beam v_e) = flat
- \rightarrow misID (gamma) = accumulate at low E

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} CCQE$	73.7 ± 19.3	12.9 ± 4.3
NC π^0	501.5 ± 65.4	112.3 ± 11.5
NC $\Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6

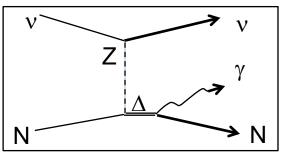


Process Neutrino Mode Antineutrino Mode $\nu_{\mu} \& \bar{\nu}_{\mu} CCQE$ 12.9 ± 4.3 73.7 ± 19.3 4. NC γ constraint NC π^0 501.5 ± 65.4 112.3 ± 11.5 NC $\Delta \rightarrow N\gamma$ 172.5 ± 24.1 34.7 ± 5.4 External Events 75.2 ± 10.9 15.3 ± 2.8 Other $\nu_{\mu} \& \bar{\nu}_{\mu}$ 89.6 ± 22.9 22.3 ± 3.5 All backgrounds are internally constrained $\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$ 425.3 ± 100.2 91.4 ± 27.6 \rightarrow intrinsic (beam v_e) = flat $\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay 192.2 ± 41.9 51.2 ± 11.0 \rightarrow misID (gamma) = accumulate at low E $\nu_e \& \bar{\nu}_e$ from K_L^0 Decay 54.5 ± 20.5 51.4 ± 18.0 Other $\nu_e \& \bar{\nu}_e$ 6.0 ± 3.2 6.7 ± 6.0 Unconstrained Bkgd. 1590.5398.2Constrained Bkgd. 1577.8 ± 85.2 398.7 ± 28.6 Total Data 1959 478 Excess 381.2 ± 85.2 79.3 ± 28.6 Events/Me/ Asymmetric π^{o} Data (stat err. v, from μ* decay is constrained v_e from μ decay from K** from K⁰ from measured is constrained τ⁰ misid $CC\pi^{o}$ rate $(\pi^{o} \rightarrow \gamma)$ $\Delta \rightarrow N_V$ from $v_{\mu}CCQE$ dirt other measurement Constr. Syst. Error Λ resonance rate Best Fit is constrained from measured v_e from K decay is 2 NC π^{o} rate constrained from SciBooNE high energy v_{μ} event measurement 8.2 0.4 0.6 0.8 1.4 12 3.0 E^{QE} (GeV)

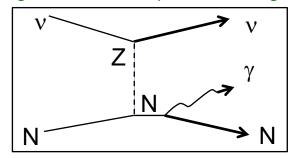
ueen Mary

University of London

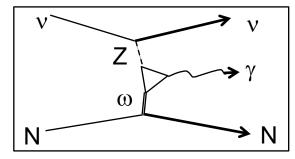
13/06/18


University of London

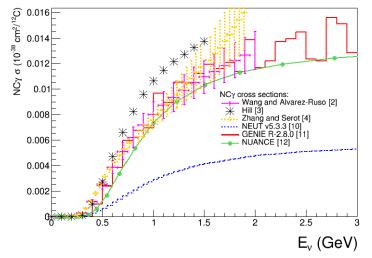
Lasorak, arXiv:1602.00084 T2K, to be published (2018) **4. Neutrino NC single gamma production**


1. MiniBooNE

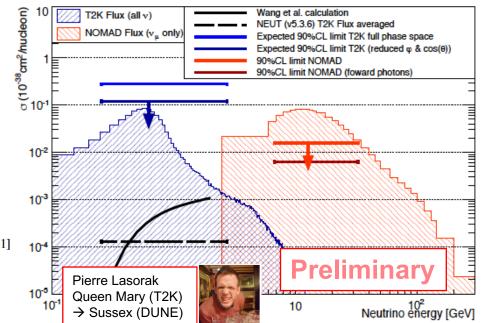
- 2. Beam
- 3. Detector
- 4. Oscillation
- 5. Discussion


radiative Δ -decay

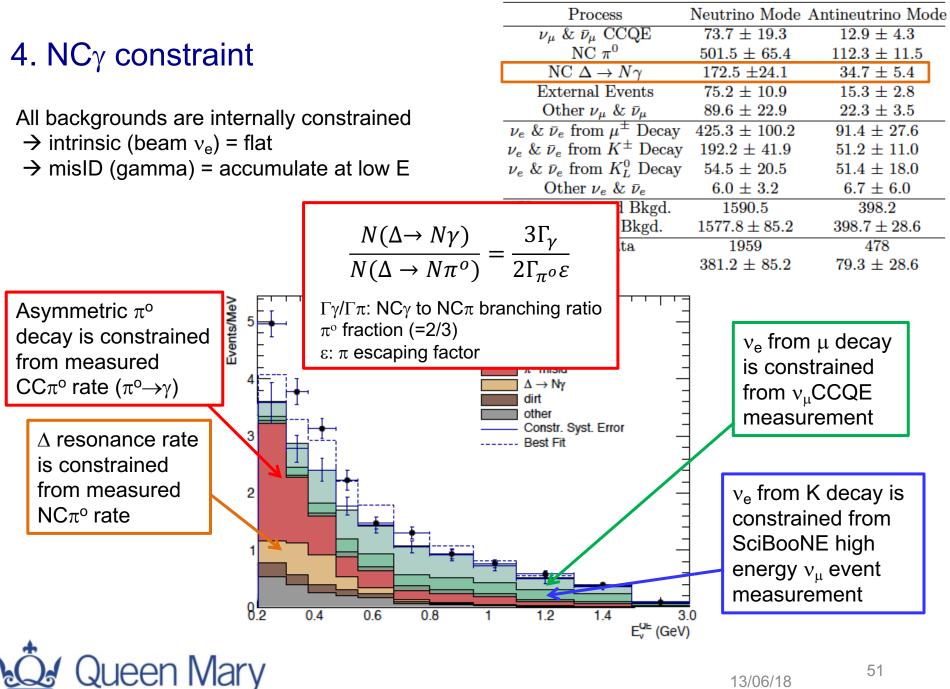
generalized Compton scattering



anomaly mediated triangle diagram


A lot of new calculations

- all theoretical models and generators more or less agree. NEUT has been fixed.


T2K near detector measurement

- T2K can only set a limit. Waiting Fermilab SBN to measure this channel.

[2] E. Wang, L. Alvarez-Ruso and J. Nieves, Phys.Rev. C89, (2014)015503 [arXiv:1311.2151]

- [3] R. J. Hill, Phys.Rev. D81, (2010)013008 [arXiv:0905.0291]
 [4] X. Zhang, B. D. Serot, Phys.Lett. B719, (2013)409 [arXiv:1210.3610]
- [10] Y. Hayato, Acta Phys.Polon. B40 (2009)2477
- [11] C. Andreopoulos et al. Nucl.Instrum.Meth. A614 (2010)87 [arXiv:0905.2517]
- [12] D. Casper, Nucl.Phys.Proc.Suppl. 112 (2002)161 [arXiv:0208030]


University of London

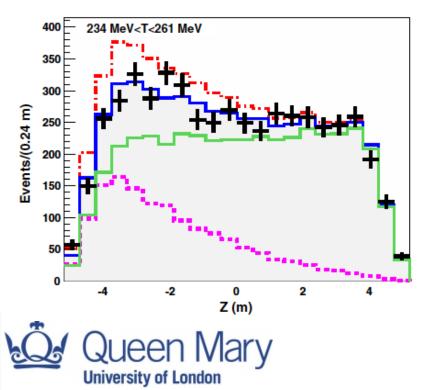
4. External γ constraint

All backgrounds are internally constrained

- \rightarrow intrinsic (beam v_e) = flat
- \rightarrow misID (gamma) = accumulate at low E

Process	Neutrino Mode	Antineutrino Mode
$\nu_{\mu} \& \bar{\nu}_{\mu} CCQE$	73.7 ± 19.3	12.9 ± 4.3
NC π^0	501.5 ± 65.4	112.3 ± 11.5
$_$ NC $\Delta \rightarrow N\gamma$	172.5 ± 24.1	34.7 ± 5.4
External Events	75.2 ± 10.9	15.3 ± 2.8
Other $\nu_{\mu} \& \bar{\nu}_{\mu}$	89.6 ± 22.9	22.3 ± 3.5
$\nu_e \& \bar{\nu}_e \text{ from } \mu^{\pm} \text{ Decay}$	425.3 ± 100.2	91.4 ± 27.6
$\nu_e \& \bar{\nu}_e$ from K^{\pm} Decay	192.2 ± 41.9	51.2 ± 11.0
$\nu_e \& \bar{\nu}_e$ from K_L^0 Decay	54.5 ± 20.5	51.4 ± 18.0
Other $\nu_e \& \bar{\nu}_e$	6.0 ± 3.2	6.7 ± 6.0
Unconstrained Bkgd.	1590.5	398.2
Constrained Bkgd.	1577.8 ± 85.2	398.7 ± 28.6
Total Data	1959	478
Excess	381.2 ± 85.2	79.3 ± 28.6

MniBooNE, PRD82(2010)092005


4. External γ constraint

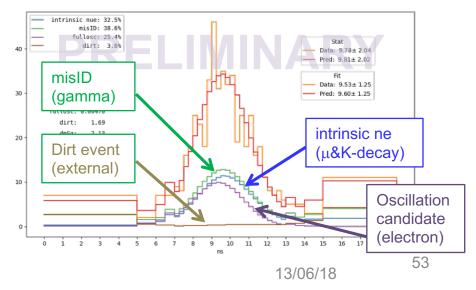
MiniBooNE detector has a simple geometry

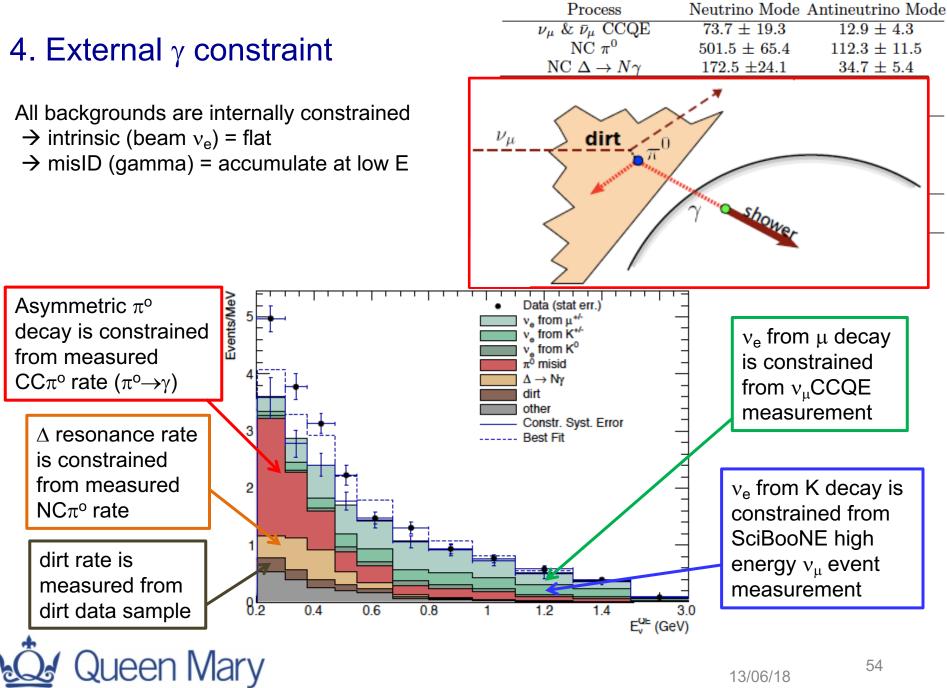
- Spherical Cherenkov detector

- Homogeneous, large active veto We have number of internal measurement to understand distributions of external events.

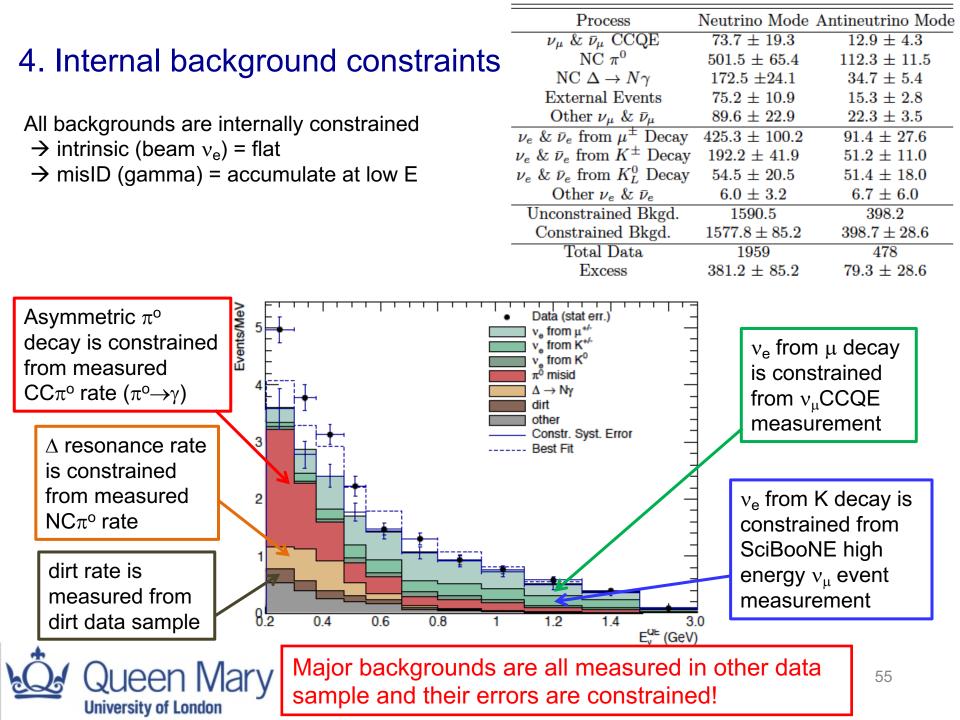
e.g.) NC elastic candidates with function of Z Mis-modelling of external background is visible

ν_{μ} dirt π^{0} γ shower


1. MiniBooNE


Oscillation
 Discussion

Beam
 Detector

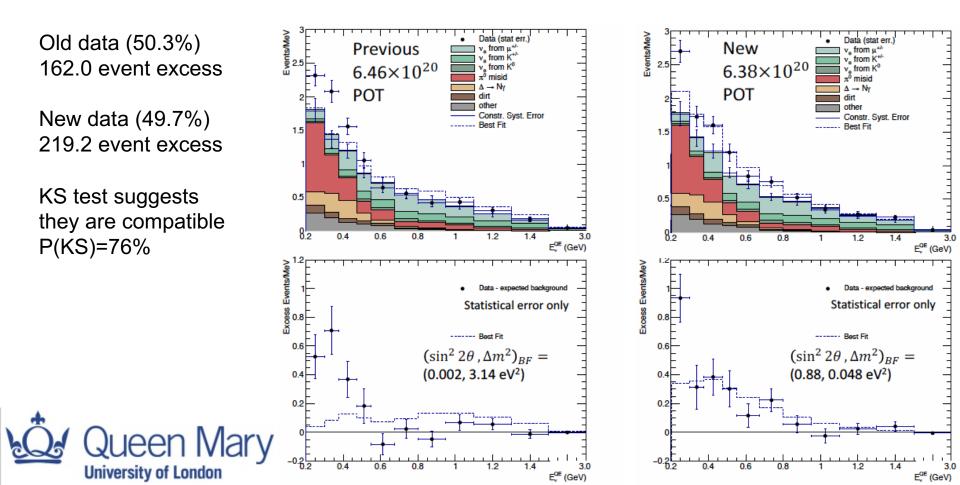

e.g.) Time of Flight

Dirt related events is consistent with ToF data including oscillation hypothesis

University of London

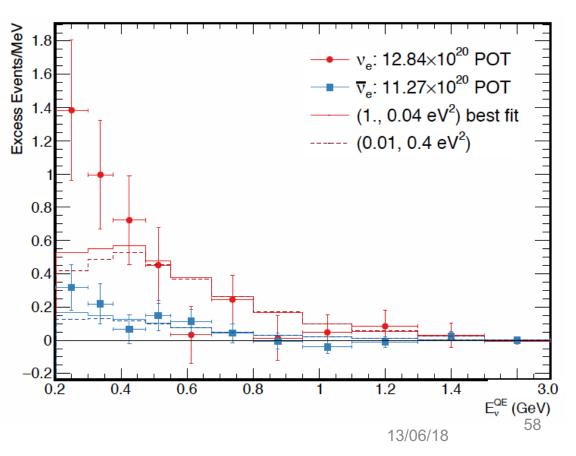
1. MiniBooNE 2. Beam 3. Detector

4. Oscillation 5. Discussion


- **1. MiniBooNE neutrino experiment**
- 2. Booster Neutrino Beamline (BNB)
- 3. MiniBooNE detector
- 4. Oscillation candidate search
- **5. Discussion**

5. Oscillation candidate event excess

$200 \leq E_V QE \leq 1250 \text{ MeV}$


- neutrino mode: Data = 1956 events Bkgd = 1577.8 \pm 39.7(stat) \pm 75.4(syst) \rightarrow 381.2 \pm 85.2 excess (4.5 σ)

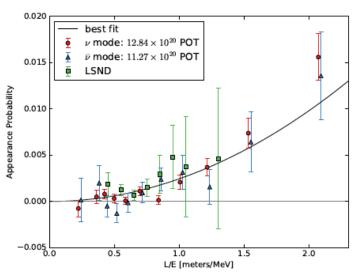
MiniBooNE
 Beam
 Detector
 Oscillation
 Discussion

5. Oscillation candidate event excess

200 < EvQE < 1250 MeV - neutrino mode: Data = 1959 events Bkgd = 1577.8 ± 39.7(stat) ± 75.4(syst) → 381.2 ± 85.2 excess (4.5 σ) - antineutrino mode: Data = 478 events Bkgd = 398.7 ± 20.0(stat) ± 20.3(syst) → 79.3 ± 28.6 excess (2.8 σ)

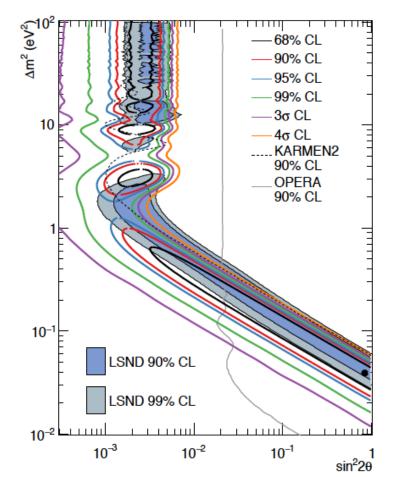
MiniBooNE
 Beam
 Detector

Oscillation
 Discussion



5. Oscillation candidate event excess

200 < EvQE < 1250 MeV


- neutrino mode: Data = 1959 events Bkgd = 1577.8 \pm 39.7(stat) \pm 75.4(syst) \rightarrow 381.2 \pm 85.2 excess (4.5 σ) - antineutrino mode: Data = 478 events Bkgd = 398.7 \pm 20.0(stat) \pm 20.3(syst) \rightarrow 79.3 \pm 28.6 excess (2.8 σ)

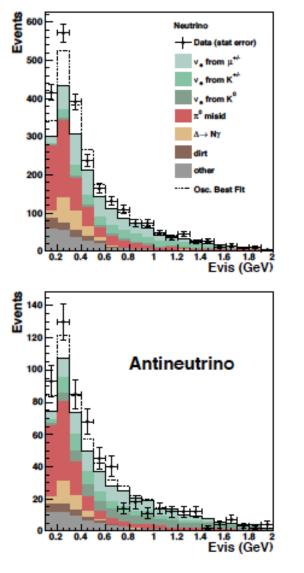
Compatible with LSND excess within 2-neutrino oscillation hypothesis

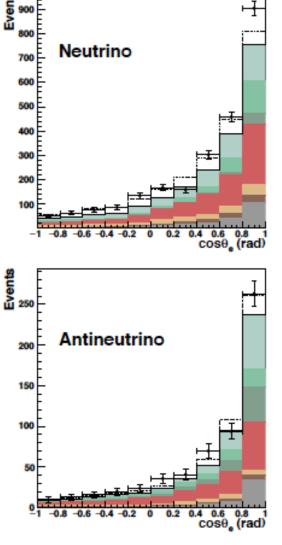
However, appearance and disappearance data have a strong tension (Maltoni, Neutrino 2018)

MiniBooNE
 Beam
 Detector
 Oscillation
 Discussion

1. MiniBooNE

- 2. Beam
- 3. Detector
- 4. Oscillation
- 5. Discussion

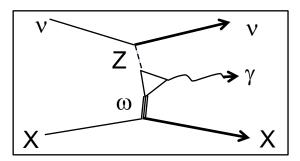

5. Alternative photon production models?

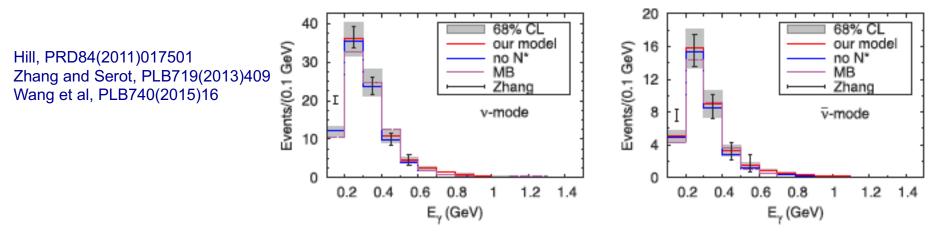

Excess look like more photons (misID) than electrons

- peaked forward direction
- shape match with π^{o} spectrum

Any misID background missing?

- Internal π°?
- external π°?
- New NCγ process?
- New γ production process?




Harvey, Hill, Hill, PRL99(2007)261601

5. Anomaly mediated γ production

A process within SM, but not considered.

Later study found the contribution is small.

Ν

omega meson

ω

It looks it's easy to forget any processes with $\sigma \sim 10^{-41} \text{ cm}^2$ (e.g., diffractive π° production $\sigma \sim 10^{-41} \text{ cm}^2$ was identified very recently by MINERvA)

MINERvA, PRL117(2016)111801

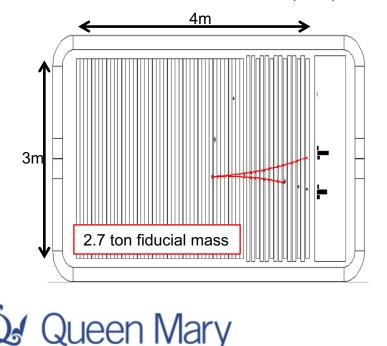
Z-boson

Photon

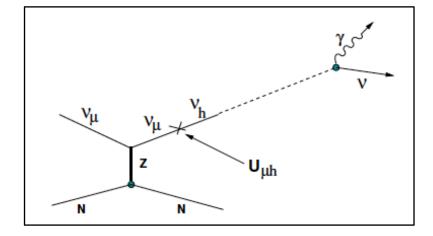
Particle Zoo, http://www.particlezoo.net/

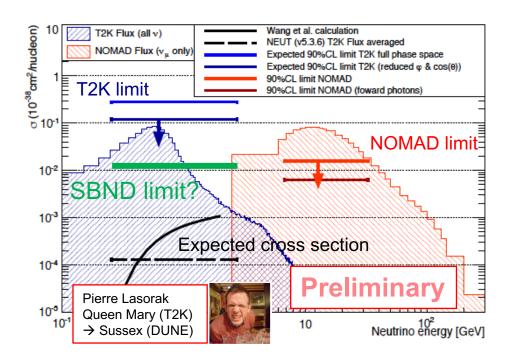
61

1. MiniBooNE


4. Oscillation 5. Discussion

2. Beam 3. Detector Gninenko, PRL103(2009)241802;PRD83(2011)015015


5. Heavy neutrino decay γ production


Carefully designed to avoid Karmen constraint. - The model works, but there are many "tricks" to avoid existing constraints, making the model bit artificial.

This model motivated NOMAD to look for such process. They didn't find it and set limit. But this limit is higher energy region and below 3 GeV is still unknown. NOMAD, PLB706(2012)268

University of London

1. MiniBooNE 2. Beam 3. Detector 4. Oscillation 5. Discussion

1. MiniBooNE TK,Kostelecky,Tayloe,PRD74(2006)105009 2. Beam Diaz and Kostelecky, PLB700(2011)25 3. Detector 5. Alternative neutrino oscillation model? Oscillation Discussion tandem model effective Hamiltonian e.g.) Lorentz violation motivated neutrino oscillation model $\begin{array}{rcl} \frac{4}{3}(c_L)_{ee}E & (a_L)_{e\mu} & (a_L)_{e\tau} \\ (a_L)_{\mu e} & 0 & (a_L)_{\mu\tau} \\ (a_L)_{\tau e} & (a_L)_{\tau\mu} & (m^2)_{\tau\tau}/2E \end{array}$ Making a new texture in Hamitonian to control oscillations. $h_{\rm eff}^{\nu}$ = - my "tandem" model reproduce all data and LSND at the time of 2006 \rightarrow not really reproduce details. puma model effective Hamiltonian $h_{\rm eff}^{\nu} = A \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + B \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + C \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$ Advanced "puma" model was proposed, but this doesn't reproduce long-baseline v_e appearance data. where $A(E) = m^2/2E$, $B(E) = a^2 E^2$, and $C(E) = c^2 E^5$ 0.8 MiniBooNE (v)MiniBooNE $(\bar{\nu})$ $\check{\nu}_e$ (b) (a) +Ve. 0.8 0.8 0.6 ٢, പ്പ് 0.4Solar **KamLAND** 0.20.20 0.1 60 80 100 2040 10 L/E (km/MeV) E (MeV) (c) P Atmospheric -0.2 0.2 10^{4} 10 10^{2} 10^{3} 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4 L/E (km/GeV)

Alternative oscillation models were popular in the beginning of oscillation physics time, but after Super-K's L/E oscillatory shape measurement (2004), possible phenomenological models are extremely limited and all survived models have lots of "tricks" to avoid all constraints.

E (GeV)

E (GeV)

Conclusion

MiniBooNE is the short-baseline neutirno oscillation experiments

After 15 years of running

- neutrino mode: $381.2 \pm 85.2 \text{ excess} (4.5\sigma)$

- antineutrino mode: 79.3 \pm 28.6 excess (2.8 σ)

MiniBooNE has many legacies in this community

- Many useful tools
- Many useful people
- Many new topics Neutrino cross section measurements

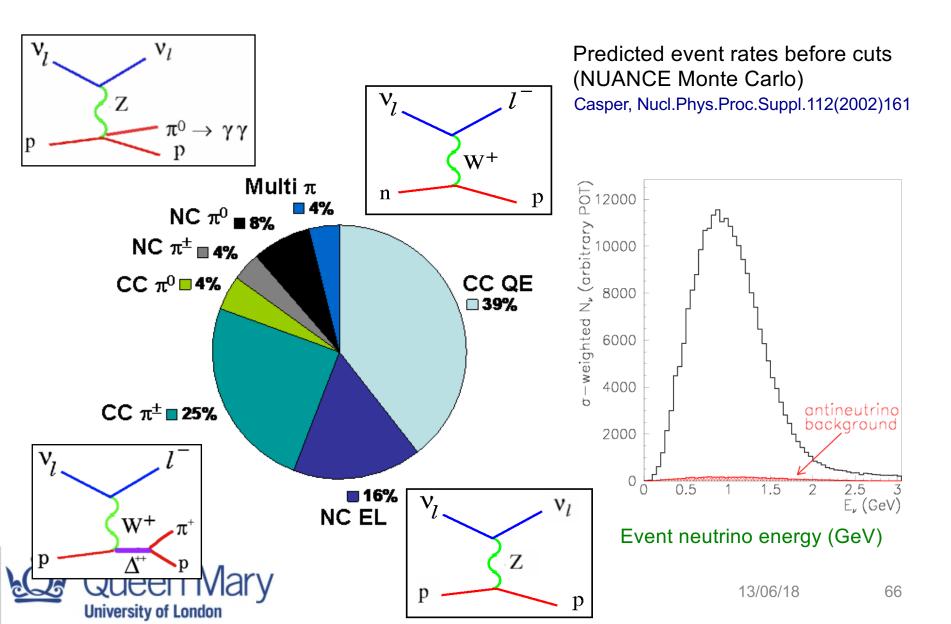
– Dark Matter production/detection search with neutrino detector

MiniBooNE, PRL118(2017)221803 (ongoing) But the biggest legacy is the short-baseline anomaly

Thank you for your attention!

MiniBooNE
 Beam

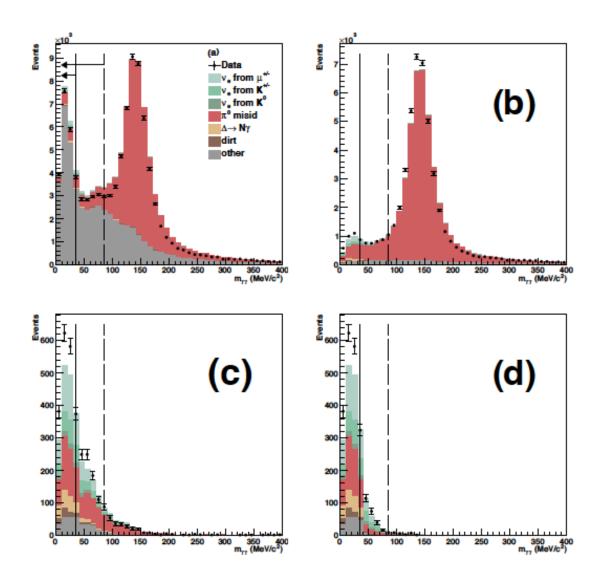
3. Detector


4. Oscillation

5. Discussion

backup

1. Cross section model


4. PID cuts Oscillation candidate events

4 PID cuts (a) Before PID cuts (b) After L(e/mu) cut (c) After L(e/π^{o}) cut (d) After $m_{\gamma\gamma}$ cut

Old and new data agree within 2% over 8 years separation.

Queen Mary

University of London

MiniBooNE
 Beam
 Detector

4. Oscillation 5. Discussion