

Shivesh Mandalia (Queen Mary)• Teppei Katori (Queen Mary)

Carlos Argüelles (MIT) • Spencer Axani (MIT) • Janet Conrad (MIT) • Marjon Moulai (MIT) • Perry Sandstrom (WIPAC)

Fermilab

- \rightarrow Discovery of the bottom/top quark
- \rightarrow Observation of direct CP violation in kaon decays
- \rightarrow Observation of tau neutrino (DONUT)
- Headquarters for DUNE \rightarrow

Institute of

Technology

Fermilab Keeneyville

Headquarters for DUNE

Wilson Hall

Fermilab

University of London

One of the beams at Fermilab is available to users.

Fermilab Test Beam Facility (FTBF) From the website: "The FTBF program provides flexible, equal, and open access to test beams for all detector tests, with relatively low bureaucratic overhead and a guarantee of safety, coordination, and oversight."

Institute of Technology

See backup for schematic of tank

- → PMT enclosure must be made water-tight
- → Penetrator was closed up by using grey RTV glue

Jeen Marv

University of London

Massachusetts

Institute of Technology

→ PMT enclosure must be made water-tight

THE UNIVERSITY

- → Penetrator was closed up by using grey RTV glue
- → Used a 55-gallon drum filled with distilled water to test this

- → DOM is very buoyant!
- → For stability we made a foam structure which houses the DOM - "floating island"

S. Mandalia Radiation Detectors - 2018-02-09

Setup

- → Use a well-defined LED pulses to test DOM is operational and produces the expected signal waveform
- → FPGA board allows dynamic control of the LED

- → Use a well-defined LED pulses to test DOM is operational and produces the expected signal waveform
- → FPGA board allows dynamic control of the LED
- \rightarrow We couple the LED light pulse to an optical fiber

IIRF

OUTH POLE NEUTRINO OBSERVATOR

- → We can monitor the **gain** of the PMT by using the LED
 - Fit the charge distribution to a gaussian
 - Using poisson statistics, the number of PE hits and gain can be calculated
- → This is useful to test the degradation of the water over the days when we have beam
 - Degradation of distilled water (i.e. changes in the water transparency) will affect the gain we measure on the PMT

Massachusetts Institute of Technology

- → Delivered to FTBF
- → Wrong colour! We were expecting a black tank

- → Delivered to FTBF
- → Wrong colour! We were expecting a black tank

MADISON

 \rightarrow We coated the inside and outside layers of the tank in a

black Tedlar film

Wires get fed through hole in the lid

Jueen Marv

University of London

Technology

SOUTH POLE NEUTRINO OBSERVATORY

S. Mandalia Radiation Detectors - 2018-02-09

Setup

- Tank was filled with ~ 700 gallons
 of distilled water
- → DOM was placed at the centre of the tank using ropes

F	B	F

Beam details:

- → Using the secondary beamline at "MTest"
 - (120 GeV: Protons primary beam from Main Injector)
 - **8 60 GeV**: Pions, (some protons possible)
 - 1 32 GeV: Pions, electrons, kaons, or broadband muons
- → 4 second spill every 60 seconds
- → Tunable rate (100 Hz 100,000 Hz), beam available 24/7
- → At 4GeV pions make up ~30% of the beam
 - This fraction gets smaller as energy is decreased
- \rightarrow Full details can be found:
 - <u>http://ftbf.fnal.gov/beam-overview/</u>

S. Mandalia Radiation Detectors - 2018-02-09

MTest Beam line Instrumentation

Triggering

University of London

SOUTH POLE NEUTRIND OBSERVATOR

Technology

MADISON

Triggering

Massachusetts Institute of Technology

Triggering

→ The Cherenkov counter is used for a PID trigger

Massachusetts

Institute of Technology

- We trigger on the Cherenkov counter to select electrons
- → We can also do an anti-coincidence to trigger on everything but electrons i.e. MIPs
- → We use this in (anti-) coincidence with the 4 scintillators for the final trigger

Beam Profile

- For the incoming beam we focused on the following configurations: \rightarrow
 - 8 GeV electrons, MIPs

4 GeV - electrons, MIPs

RF

6 GeV - electrons, MIPs

2 GeV - electrons

Beam Profile

- \rightarrow For the incoming beam we focused on the following configurations:
 - 8 GeV electrons, MIPs

4 GeV - electrons, MIPs

6 GeV - electrons, MIPs

- 2 GeV electrons
- → We also have 2 configurations for SC4 a forward and backward configuration

Beam Profile

S. Mandalia Radiation Detectors - 2018-02-09

Queen Mary

University of London

MWPC 2

profile1_exp_20170621112751

RMS x 8.936

RMS y 9.693

3.5

Entries 724 Mean x 58.37

Meany 74.72

- → Data taking completed from June14th June 27th!
- → Waveforms for each configuration obtained, example:

- → Data taking completed from June14th June 27th!
- → Waveforms for each configuration obtained, example (for forward configuration):

→ Data taking completed from June14th - June 27th!

→ Charge plots:

- → Data taking completed from June14th June 27th!
- → Charge plots:

- → Data taking completed from June14th June 27th!
- → Charge plots:

University of London

 \rightarrow

Data taking completed from June14th - June 27th! \rightarrow

PMT gain plot using LED:

- 5 <u>le</u>7 180 160 Gain stable at ~2e7 Δ 140 120 3 100 gain Ы # 80 2 60 40 1 20 12 0 2 6 8 10 14 6 8 10 12 14 0 2 4 Day Day
- Number of photoelectrons plot: \rightarrow

LED was misbehaving for the first 4 days (the condensation from the water made it damp)

Next steps

- → Simulations of the beamtest
 - Build experiment setup in Geant4
 - Simulate the beamline (using the MWPC profile as input)
 - Simulate the waveforms from the number of PMT hits
- → Decommission the equipment at the FTBF
 - Need to get water tested before we dispose of it
 - Tank will be left at the FTBF can be used for future DOM beamtests!
- → The result will be published in NIM or JINST

S. Mandalia Radiation Detectors - 2018-02-09

Thanks to Chris Wendt!

- → "Wintery_Mix"
- → Main board has been removed
- → Bypass the DOMHub

S. Mandalia https://github.com/wcsim/ tectors - 2018-02-09

1. WCSim

WCSim for DUSEL \rightarrow Hyper-K

- Developed by Duke
- Water Cherenkov detector simulators
- Classes are pre-defined (PMT geometries, noises)
- Widely used by accelerator-based neutrino experimentalists

1. WCSim

Simulation setup

- run 1000 events (→2000 events for real experiment)
- Measure true total PE distribution (no efficiency yet)
- π⁺, π⁻, μ⁻, e⁻ beams

2 GeV beam

Jueen Marv

University of London

- clear e vs MIP separation

Queen Mai

University of London

- All MIPs look same

Facility Instrumentation (MTest)

- 2 Cerenkov Detectors
- 1 Pixel Telescope
- 4 MWPC Tracking Chambers
- Lead Glass Calorimeters
- Assorted Trigger scintillators

Facility Manager/Coordinator at the FTBF

‡Fermilab

Hardware tests

We tested the DOM and DDC2

Massachusetts

Institute of Technology

DDC2 conclusions (more details found in gen2-hw talks)

- → DDC2 was tested with a pulse generator
 - Response at varying frequencies, amplitude and pulse widths verified
- → Input impedance found to be **150** Ω
- → LSB found to be **0.312mV** (needs to be re-calculated)
- → AC Dropoff (knee) frequency at 10MHz, however
- To preserve waveform shape we extended the dropoff by removing the low-pass filter
- → Past talks:
 - https://docushare.icecube.wisc.edu/dsweb/Get/Document-79234/SM gen2-hw 170209.pdf
 - https://docushare.icecube.wisc.edu/dsweb/Get/Document-79549/SM gen2-hw 170323.pdf

Big thanks to Bunheng Ty!

THE UNIVERSITY

Hardware tests

We tested the DOM and DDC2

Massachusetts

Institute of Technology

DOM conclusions

- → SPE peak plot from noise
- → Use an LED to test the DOM response:

→ Details of setup in the last ice-cal talk:

THE UNIVERSITY

Wiscons

- https://docushare.icecube.wisc.edu/dsweb/Get/Document-79086/SM_icecal_170120.pdf
- → Updated: now using a pulser board to control LED
 - (pic in backup slides)

Big thanks to Bunheng Ty!

Trigger from LED pulser board

S. Mandalia Radiation Detectors - 2018-02-09

