Neutrino Interaction Physics

Lecture 1: Introduction of neutrino interactions

- 1. Overview
- 2. Neutrino lepton scattering
- 3. Neutrino DIS physics
- 4. Neutrino nucleus reactions

Lecture 2: Neutrino interactions for long baseline oscillation experiments

- 1. Overview
- 2. CCQE interaction
- 3. Baryonic resonances
- 4. DIS and hadronization
- 5. Simulation, systematics

Teppei Katori Queen Mary University of London Nov. 14, 2017

Subscribe "NuSTEC News"

E-mail to listserv@fnal.gov, Leave the subject line blank, Type "subscribe nustec-news firstname lastname"

(or just send e-mail to me, <u>katori@FNAL.GOV</u>)

like "@nuxsec" on Facebook page, use hashtag #nuxsec

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

1. Next generation neutrino oscillation experiments

Neutrino oscillation experiments

- Past to Present: K2K, MiniBooNE, MINOS, T2K, DeepCore, Reactors
- Present to Future: T2K, NOvA, PINGU, ORCA, Hyper-Kamiokande, DUNE

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

1. Next generation neutrino oscillation experiments

Neutrino oscillation experiments

- Past to Present: K2K, MiniBooNE, MINOS, T2K, DeepCore, Reactors
- Present to Future: T2K, NOvA, PINGU, ORCA, Hyper-Kamiokande, DUNE...

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

1. Next generation neutrino oscillation experiments

Neutrino oscillation experiments

- Past to Present: K2K, MiniBooNE, MINOS, T2K, DeepCore, Reactors
- Present to Future: T2K, NOvA, PINGU, ORCA, Hyper-Kamiokande, DUNE...

1. Next generation neutrino oscillation experiments

Neutrino oscillation experiments

- Past to Present: K2K, MiniBooNE, MINOS, T2K, DeepCore, Reactors
- Present to Future: T2K, NOvA, PINGU, ORCA, Hyper-Kamiokande, DUNE...

Most of data are from muon neutrino beam, why?

- create by π -DIF (pion decay-in-flight)

Mary

- $\Phi(\nu_{\mu}) > \Phi(\bar{\nu}_{\mu})$: more π^+ than π^- (because they are made by protons)

- d_{CP} study need electro-neutrino cross-section (v_e appearance) and anti-neutrino cross-section (CP violation)

Nuclear physics sucks

University of London

- Simple extrapolation may be broken due to nuclear physics
- We are not good at nuclear physics because we are not nuclear physicists
- Nuclear physics = non-perturbative QCD (many models, no theory)
- Particle physics is developed by avoiding nuclear physics...

Teppei Katori $P_{\mu \to e}(L/E) = \sin^2 2\theta \sin^2 \left(1.27\Delta m^2 (eV^2) \frac{L(km)}{E(GeV)}\right)$

Benhar, Day, Sick, Rev. Mod. Phys. 80(2008) 189 Nakamura et a;, Rep. Prog. Phys. 80(2017) 056301

1. Neutrino cross-section overview

Particle physics (neutrino physics) Interactions are classified in Q^2 (4momentum transfer) and v (energy transfer) or W^2 (invariant mass)

Teppei Katori, Quee

Nuclear physics

Interactions are classified in q (3-momnetum transfer) and ω (energy transfer)

1. Neutrino cross-section formula

Cross-section

- product of Leptonic and Hadronic tensor

$$d\sigma \sim L^{\mu\nu}W_{\mu\nu}$$

Hadronic tensor \rightarrow nuclear physics (hard)

Teppei Katori, Queen Mary University of London 2017/11/14

1. Neutrino cross-section formula

Cross-section

- product of Leptonic and Hadronic tensor

$$d\sigma \sim L^{\mu\nu}W_{\mu\nu}$$

Leptonic tensor → the Standard Model (easy)

Hadronic tensor → nuclear physics (hard)

All complication of neutrino cross-section is how to model the hadronic tensor part

2. Charged Current Quasi-Elastic scattering (CCQE)

The simplest and the most abundant interaction around ~1 GeV.

$$\nu_{\mu} + n \rightarrow p + \mu^{-} \quad (\nu_{\mu} + X \rightarrow X' + \mu^{-})$$

 $d\sigma \sim L_{\mu\nu} T^{\mu\nu}$ $L_{\mu\nu} \sim J_{\mu} J_{\nu}$: Lepton tensor $W_{\mu\nu} = \int f(\vec{k}, \vec{q}, \omega) T_{\mu\nu} dE$: hadronic tensor $f(\vec{k}, \vec{q}, \omega)$: nucleon phase space $T_{\mu\nu} = T_{\mu\nu}(F_1, F_2, F_A, F_P)$: form factors

Form factors can be parameterize with dipole form

Teppei Katori, Queen Mary Universit

Quasi Elastic

 W^+

Quasi Elastic

2. Form factors

University of London

2. Charged Current Quasi-Elastic scattering (CCQE)

The simplest and the most abundant interaction around ~1 GeV.

$$v_{\mu} + n \rightarrow p + \mu^{-} \quad (v_{\mu} + X \rightarrow X' + \mu^{-})$$

Neutrino energy is reconstructed from the observed lepton kinematics

n

Teppei Katori, Queen Mary University of London2017/11/1411

μ

p

W

2. Charged Current Quasi-Elastic scattering (CCQE)

The simplest and the most abundant interaction around ~1 GeV.

$$v_{\mu} + n \rightarrow p + \mu^{-} \quad (v_{\mu} + X \rightarrow X' + \mu^{-})$$

Neutrino energy is reconstructed from the observed lepton kinematics "QE assumption"

X

- 1. assuming neutron at rest
- 2. assuming interaction is CCQE

12

Quasi Elastic

2. Basic nuclear physics in nucleus

Fermi motion

University of London

- Nucleons move with ~200 MeV/c momentum in the nucleus.
 - \rightarrow This smear neutrino energy reconstruction.

Quasi Elastic w+

2. Basic nuclear physics in nucleus

Fermi motion

- Nucleons move with ~200 MeV/c momentum in the nucleus.

 \rightarrow This smear neutrino energy reconstruction.

Pauli blocking

- Nucleon Fermi sea is occupied.

 \rightarrow Low momentum transfer transition (<200 MeV/c) is forbidden.

Neutrino energy is reconstructed from the observed lepton kinematics

"QE assumption"

1. assuming neutron at rest

2. assuming interaction is CCQE

2. Basic nuclear physics in nucleus

S

Fermi motion

- Nucleons move with ~200 MeV/c momentum in the nucleus.
 - \rightarrow This smear neutrino energy reconstruction.

Pauli blocking

- Nucleon Fermi sea is occupied.
 - \rightarrow Low momentum transfer transition (<200 MeV/c) is forbidden.

Even if you have a perfect measurement of CCQE, measured neutrino energy doesn't represent the true neutrino energy due to Fermi motion.

2. CCQE puzzle

CCQE interaction on nuclear targets are precisely measured by electron scattering - Lepton universality → precise prediction for neutrino CCQE cross-section

Simulation disagree with many modern accelerator based neutrino experiment data (K2K, MiniBooNE, MINOS, T2K, etc), neither shape (low Q² and high Q²) nor normalization (CCQE puzzle).

2. CCQE puzzle

Jueen

University of London

Nuclear correlation

- two particle two hole (2p-2h) effect to enhance cross section
- long range correlation to distort shape (suppress low Q²)

An explanation of this puzzle

All neutrino baryonic resonance processes have ~30% errors **Var** CCQE process also have ~30% error

Martini et al,PRC80(2009)065501;PRC90(2014)025501 T2K, PRD87(2013)092003

2. CCQE puzzle

Nuclear correlation

- two particle-two hole (2p-2h) effect to enhance cross section
- long range correlation to distort shape (suppress low Q²)

University of London

Martini et al,PRC80(2009)065501;PRC90(2014)025501 T2K, PRD87(2013)092003

2. CCQE puzzle

Nuclear correlation

- two particle-two hole (2p-2h) effect to enhance cross section
- long range correlation to distort shape (suppress low Q²)

University of London

INT2013 workshop QE+2p-2h+RPA kills three birds with one stone 1st bird = bigb O^2 problem

- 1^{st} bird = high Q² problem
- 2nd bird = normalization
- 3^{rd} bird = low Q² problem

high 22 low 22

normalization

Juan Nieves

ZE + Zp-Zh + RPA Kills three birds with one stone

12/12/13

Neutrino energy is reconstructed from the observed lepton kinematics "QE assumption"

- 1. assuming neutron at rest
- 2. assuming interaction is CCQE

Typical neutrino detector

- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost (not great detector to measure hadrons)

21

charged lepton

neutrino

RESonance

w+

40m

non-QE background → shift spectrum

Typical neutrino detector

- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost (not great detector to measure hadrons)

Teppei Katori, Queen Mary University of London 2017/11/14

RESonance

22

non-QE background → shift spectrum

Typical neutrino detector

- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost (not great detector to measure hadrons)

RESonance

 W^+

23

non-QE background \rightarrow shift spectrum

v_l $l^$ p Δ^{++} p

RESonance

RESonance Coloma et al, PRL111(2013)221802 Mosel et al, PRL112(2014)151802 3. non-QE background (resonance pion production) W^+ Λ^{++} DUNE true vs. reconstructed Ev spectrum Pion production for v_{μ} $\partial_{CP} = +\pi/2$ disappearance search 0.02 0π - Source of mis-reconstruction of 0.015 neutrino energy Event distribution/A (10⁻³⁸ cm²/GeV) pion absorption 0.01 0.005 Ζ δ_{CP}=-π/2 Ν Ν 0 0.02 Neutral pion production in v_e $0\pi + 1p + Xn$ appearance search 0.015 - Source of misID of electron 0.01 $NC\pi^{o}$ + asymmetric decay 0.005 π^{o} Ζ 2 3 5 6 Ν Ν E_v (GeV)

Queen Mary Tepp University of London

Understanding of neutrino baryonic resonance meson production is important for oscillation experiments

MiniBooNE,PRD83(2011)052009 Lalakulich et al,PRC87(2013)014602

3. Neutrino Baryonic resonance data

Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation

MiniBooNE π° momentum vs simulation

RESonance

26

MiniBooNE,PRD83(2011)052009 Lalakulich et al,PRC87(2013)014602

3. Neutrino Baryonic resonance data

RESonance

27

Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation

MiniBooNE π° momentum vs simulation

MiniBooNE,PRD83(2011)052009 Lalakulich et al,PRC87(2013)014602

3. Neutrino Baryonic resonance data

RESonance

28

Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation

MiniBooNE, PRD83(2011)052009 Lalakulich et al, PRC87(2013)014602

3. Neutrino Baryonic resonance data

RESonance

 W^+

29

Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation

University of London

3. LArTPC

Exclusive neutrino interaction measurements?

- Neutrino energy can be reconstructed using total hadron energies
- Inefficiencies of hadron measurements (neutrons) cause energy mis-reconstruction
- Fermilab SBN programs will provide a lot of new information

http://venu.physics.ox.ac.uk/ Teppei Ka

- smart phone app to take a look MicroBooNE data

4. Shallow Inelastic Scattering (SIS)

Cross section

- Higher resonances and hadron dynamics
- low Q², low W DIS
- Nuclear dependent DIS

4. Shallow Inelastic Scattering (SIS) DCC model vs. electro-pionpro

Cross section

- Higher resonances and hadron dynamics
- low Q², low W DIS
- Nuclear dependent DIS

DCC model

- Total amplitude is conserved
- Channels are coupled (πN , $\pi \pi N$, etc)
- 2 pion productions ~10% at 2 GeV

DIS

Bodek and Yang, AIP.Conf.Proc.670(2003)110, Nucl.Phys.B(Proc.Suppl.)139(2005)11

4. Shallow Inelastic Scattering (SIS)

Cross section

- Higher resonances and hadron dynamics
- low Q², low W DIS
- Nuclear dependent DIS

GRV98 LO PDF + Bodek-Yang correction

- GRV98 for low Q² DIS
- Bodek-Yang correction for QH-duality
- 20 years old, out-of-dated

- not sure how to implement systematic errors

0.4 U

0.2

0.1

0.5

0.4

0.03

Nachtmann $\xi = \frac{2x}{\left(1 + \left(1 + \frac{4x^2M^2}{O^2}\right)\right)}$

0.05 0.07 0.10

x [Q2=0.07]

Proton F2 function GRV98-BY correction vs. data

0.20 0.30

SLAC

JLab

0.5

0.1

0.3

0.1

0.2

0.3

x [Q2=0.22]

0.4

0.6

0.5

Keppel+Stuart

2(LO:GRV98)

HKN,PRC76(2007)065207, EPS,JHEP04(2009)065, FSSZ,PRD85(2012)074028 nCTEQ, PRD80(2009)094004

4. Shallow Inelastic Scattering (SIS)

Cross section

- Higher resonances and hadron dynamics
- low Q², low W DIS
- Nuclear dependent DIS

Nuclear PDF

- Shadowing, EMC effect, Fermi motion
- Theoretical origin is under debate
- Various models describe charged lepton data
- Neutrino data look very different

Conclusion

Neutrinos interact by weak force

v-I scattering : test of weak theory Neutrino-electron scattering Muon decay

v-q scattering : test of weak theory, test of quark model DIS cross sections Di-muon production Paschos-Wolfenstein ratio

v-A scattering :

Neutrino nuclear capture by CI and Ga, important for solar neutrinos Neutrino coherent scattering, important for supernova (first observation, Aug. 2017)

Conclusion

Neutrinos interact by weak force

v-N scattering : important reactions for long baseline neutrino oscillation experiment (T2K, NOvA, DUNE, Hyper-Kamiokande)

CCQE: charged-current quasi-elastic, around 1 GeV RES: baryonic resonance, around 2 GeV DIS: deep inelastic scattering, 3 GeV to higher

- Nuclear physics sucks
- Fermi motion: nucleon motion smears kinematic reconstruction
- Pauli blocking: It limits low momentum transfer reaction
- Baryonic resonance: if you fail to tag outgoing mesons, get incorrect neutrino energy
- Nucleon correlation: Physics between v-N and v-A interaction
- Quark-Hadron duality: Physics between v-q and v-N interaction
- Nuclear dependent PDF: quarks inside of nucleons depend on nucleus

Currently, ~30% error is acceptable for many processes... (future experiments will be systematically limited)

References

Foundation of Nuclear and Particle Physics (2017)

- Authors: Donnelly, Formaggio, Holstein, Milner, Surrow
- one and only one textbook on this subject
- buy if your PhD thesis topic is about neutrino cross section

"From eV to EeV: Neutrino cross sections across energy scales"

- Authors: Formaggio and Zeller (MicroBooNE spokesperson)
- Rev.Mod.Phys.84(2012)1307, arXiv:1305.7513
- very good summary of neutrino cross sections

"Neutrino-Nucleus Cross Sections for Oscillation Experiments"

- Authors: Katori (me) and Martini (Martini model)
- my paper, a review both theoretical and experimental views
- cite and give me citation number!

"NuSTEC News"

- http://nustec.fnal.gov/

University of London

- subscribe mailing list, "like" facebook page, use#nuxsec

Jon Link, Fermilab Wine & Cheese seminar (2005)

1. Dark age of neutrino interaction physics

(1) Measure interaction rate

(2) Divide by known cross section to obtain flux(3) use this flux, measure cross-section from measured rate

What you get? OF COURSE the cross section you assume!

Phys. Rev. D

The distribution of events in neutrino energy for the 3C $vd \rightarrow \mu^- pp_s$ events is shown in Fig. 4 together with the quasielastic cross section $\sigma(vn \rightarrow \mu^- p)$ calculated using the standard V - Atheory with $M_A = 1.05 \pm 0.05$ GeV and $M_V = 0.84$ GeV. The absolute cross sections for the CC interactions have been measured using the quasielastic events and its known cross section.⁴

