Fun Timely Intellectual Adorable!

References

Quarks and Leptons (Halzen and Martin)

- classic
- show many calculations
- solutions for all exercises

Weak interactions of Leptons and Quarks (Commins and Bucksbaum)

- classic
- show more details of weak interaction calculations
- too many typos

Physics of Neutrinos (Fukugita and Yanagida)

- modern
- very intense
- from solar neutrinos to SUSY

Neutrino astrophysics (Bahcall)

- more likely a novel, honorable mentioning

References

Foundation of Nuclear and Particle Physics (2017)

FOUNDATIONS OF

- Authors: Donnelly, Formaggio, Holstein, Milner, Surrow
- one and only one textbook on this subject
- buy if your PhD thesis topic is about neutrino cross section
"From eV to EeV: Neutrino cross sections across energy scales"
- Authors: Formaggio and Zeller (MicroBooNE spokesperson)
- Rev.Mod.Phys.84(2012)1307, arXiv:1305.7513
- very good summary of neutrino cross sections
"Neutrino-Nucleus Cross Sections for Oscillation Experiments"
- Authors: Katori (me) and Martini (Martini model)
- my paper, a review both theoretical and experimental views
- cite and give me citation number!
"NuSTEC News"
- http://nustec.fnal.gov/
- subscribe mailing list, "like" facebook page, use\#nuxsec

Dark age of neutrino interaction physics

(1) Measure interaction rate
(2) Divide by known cross section to obtain flu)
(3) use this flux, measure cross-section from measured rate

What you get? OF COURSE the cross section you assume!

Phys. Rev. D
The distribution of events in neutrino energy for the 3C $v d \rightarrow \mu^{-} p p_{s}$ events is shown in Fig. 4 together with the quasielastic cross section $\sigma\left(v n \rightarrow \mu^{-} p\right)$ calculated using the standard $V-A$ theory with $M_{A}=1.05 \pm 0.05 \mathrm{GeV}$ and $M_{V}=0.84$ GeV . The absolute cross sections for the CC interactions have been measured using the quasielastic events and its known cross section. ${ }^{4}$

Queen Mary

Ankowski,Benhar,Farina,PRD82(2010)013002
Impulse Approximation is broken at low Q^{2} (or low $|q|$)
$1 / q<d$

FIG. 6 (color online). Comparison of the MiniBooNE parametrization of the data (dotted line), labeled as the κ fit, to the spectral function calculation (dashed line). The solid line depicts the contribution to the latter from the region where the IA is expected to be valid. The SF results are multiplied by a factor 1.12 to make them match the κ fit.

亩 Queen Mary University of London

Nuclear decomposition

FIG. 4. (Color online) The proton momentum distribution in ${ }^{4} \mathrm{He}$ is shown by the red circles; the $t p$ cluster distribution is shown by the blue triangles and the $d d$ cluster distribution is shown by the magenta squares.

FIG. 10. (Color online) The proton momentum distributions in all $T=0$ nuclei from $A=2-12$.

Alvarez-Ruso, NuSTEC15 lecture
Form factor

Fourier transformation charge distribution $\leftrightarrow \rightarrow$ form factor

1. Neutrino cross-section formula

Cross-section

- product of Leptonic and Hadronic tensor

$$
d \sigma \sim L^{\mu \nu} W_{\mu \nu}
$$

Leptonic tensor
\rightarrow the Standard Model (easy)
Hadronic tensor
\rightarrow nuclear physics (hard)

1. Neutrino cross-section formula

Cross-section

- product of Leptonic and Hadronic tensor

$$
\mathrm{d} \sigma \sim \mathrm{~L}^{\mu \nu} \mathrm{W}_{\mu \nu}
$$

Leptonic tensor
\rightarrow the Standard Model (easy)
Hadronic tensor
\rightarrow nuclear physics (hard)

All complication of neutrino cross-section is how to model the hadronic tensor part

2. MiniBooNE phase space

Experiment measure the interaction rate R ,

$$
R \sim \int \Phi \times \sigma \times \varepsilon
$$

- Φ : neutrino flux
$-\sigma$: cross section
- ε : efficiency

When do you see data-MC disagreement, how to interpret the result?

2. MiniBooNE phase space

CCQE kinematic space ($\mathrm{T}_{\mu}-\cos \theta_{\mu}$ plane) in MiniBooNE Since observables are muon energy $\left(T_{\mu}\right)$ and angle $\left(\cos \theta_{\mu}\right)$, these 2 variables completely specify the kinematic space.

MiniBooNE collaboration,PRL.100(2008)032301

2. MiniBooNE phase space

Without knowing flux, you cannot modify cross section model

2. MiniBooNE phase space

Without knowing flux, you cannot modify cross section model

$$
R\left(E_{v}, Q^{2}\right) \sim \int \Phi\left(E_{v}\right) \times \sigma\left(Q^{2}\right)
$$

MiniBooNE collaboration,PRL.100(2008)032301

2. MiniBooNE phase space

Without knowing flux, you cannot modify cross section model

$$
R\left(E_{v}, Q^{2}\right) \sim \int \Phi\left(E_{v}\right) \times \sigma\left(Q^{2}\right)
$$

After tuning cross section parameters, data and MC agree.

$$
\frac{\mathrm{d} \sigma^{2}}{\mathrm{dEd} \Omega} \sim \frac{\mathrm{~d} \sigma^{2}}{\mathrm{dEd}(\cos \vartheta)}
$$

2. Smith-Moniz formalism

Nucleus is described by the collection of incoherent Fermi gas particles.
$\left(W_{\mu \nu}\right)_{a b}=\int_{\text {Elo }}^{\text {Ehi }} \mathrm{f}(\overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{q}}, \mathrm{w}) \mathrm{T}_{\mu \nu} \mathrm{dE}$: hadronic tensor
$\left(\mathrm{W}_{\mu \nu}\right)_{\mathrm{ab}}=\int_{\text {Elo }}^{\text {Ehi }} \mathrm{f}(\overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{q}}, \mathrm{w}) \mathrm{T}_{\mu \nu} \mathrm{dE}$: hadronic tensor
$f(\vec{k}, \vec{q}, w)$: nucleon phase space distribution
$T_{\mu \nu}=T_{\mu \nu}\left(F_{1}, F_{2}, F_{A}, F_{P}\right)$: nucleon form factors
$F_{A}\left(Q^{2}\right)=g_{A} /\left(1+Q^{2} / M_{A}{ }^{2}\right)^{2}$: Axial vector form factor
Ehi : the highest energy state of nucleon
Elo : the lowest energy state of nucleon

Although Smith-Moniz formalism offers variety of choice, one can solve this equation analytically if the nucleon space is simple.

© ENERCY.cov

PUBLIC SERVICES SCIENCE \& INNOVATION ENERGY SAVER ABOUT ENE

Home » Dr. Ernest Moniz
ABOUT US
DR. ERNEST MONIZ - SECRETARY OF ENERGY

Teppei Katori, Queen Mary University

2. Relativistic Fermi Gas (RFG) model

Nucleus is described by the collection of incoherent Fermi gas particles.
$\left(W_{\mu \nu}\right)_{a b}=\int_{\text {Elo }}^{\text {Ehi }} \mathrm{f}(\overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{q}}, \mathrm{w}) \mathrm{T}_{\mu \nu} \mathrm{dE}$: hadronic tensor
$f(\vec{k}, \vec{q}, w)$: nucleon phase space distribution
$T_{\mu \nu}=T_{\mu \nu}\left(F_{1}, F_{2}, F_{A}, F_{P}\right)$: nucleon form factors
$F_{A}\left(Q^{2}\right)=g_{A} /\left(1+Q^{2} / M_{A}^{2}\right)^{2}$: Axial vector form factor
Ehi : the highest energy state of nucleon $=\sqrt{\left(p_{F}^{2}+M^{2}\right)}$
Elo : the lowest energy state of nucleon $=\kappa\left(\sqrt{\left(p_{F}^{2}+M^{2}\right)}-\omega+E_{B}\right)$

2. Relativistic Fermi Gas (RFG) model

Nucleus is described by the collection of incoherent Fermi gas particles.
$\left(W_{\mu \nu}\right)_{a b}=\int_{\text {Elo }}^{\text {Ehi }} f(\vec{k}, \vec{q}, w) T_{\mu \nu} d E$: hadronic tensor
$f(\vec{k}, \vec{q}, w)$: nucleon phase space distribution
$T_{\mu \nu}=T_{\mu \nu}\left(F_{1}, F_{2}, F_{A}, F_{P}\right)$: nucleon form factors
$F_{A}\left(Q^{2}\right)=g_{A} /\left(1+Q^{2} / M_{A^{2}}\right)^{2}$: Axial vector form factor
Ehi : the highest energy state of nucleon $=\sqrt{\left(\mathrm{p}_{\mathrm{F}}^{2}+\mathrm{M}^{2}\right)}$
Elo : the lowest energy state of nucleon $=\kappa\left(\sqrt{\left(p_{F}^{2}+M^{2}\right)}-\omega+E_{B}\right)$

MiniBooNE tuned following 2 parameters using Q^{2} distribution by least χ^{2} fit;
$\mathrm{M}_{\mathrm{A}}=$ effective axial mass
$\kappa=$ effective Pauli blocking parameter
MiniBooNE tuned their axial mass to 1.3 GeV !

2. Charged Current Quasi-Elastic scattering (CCQE)

CCQE interaction on nuclear targets are precisely measured by electron scattering - Lepton universality \rightarrow precise prediction for neutrino CCQE cross-section

Simulation disagree with many modern accelerator based neutrino experiment data, neither shape (low Q^{2} and high Q^{2}) nor normalization. By tuning axial mass $\left(\mathrm{M}_{\mathrm{A}}\right)$ 1.21.3 GeV , simulations successfully reproduce data both shape and normalization.

Problem: we know $\mathrm{M}_{\mathrm{A}}=1 \mathrm{GeV}$ from electron scattering experiments (CCQE puzzle).
$10^{\mathbf{- 3 9}}$ MiniBooNE vs. NOMAD v_{μ} CCQE cross section on ${ }^{12} \mathrm{C}$ target (per nucleon)

2. The solution of CCQE puzzle

Presence of 2-body current

- Martini et al showed $2 p-2 h$ effect can add up $30-40 \%$ more cross section!

2. The solution of CCQE puzzle

Presence of 2-body current

- Martini et al showed $2 p-2 h$ effect can add up $30-40 \%$ more cross section!
- consistent result is obtained by Nieves et al

What experimentalists
call "CCQE" is not call "CCQE" is no
genuine CCQE!

Inclusion of the multinucleon emission channel (np-nh)
Marco Martini (Saclay)

INT2013 workshop
QE+2p-2h+RPA kills three birds with one stone
$-1^{\text {st }}$ bird $=$ high Q^{2} problem

- $2^{\text {nd }}$ bird $=$ normalization
- 3 rd bird = low Q^{2} problem

Juan Nieves

normalization
 three binds with one stone

2. The solution of CCQE puzzle

Presence of 2-body current

- Martini et al showed $2 p-2 h$ effect can add up $30-40 \%$ more cross section!
- consistent result is obtained by Nieves et al
- The model can explain T2K data simultaneously

2. The solution of CCQE puzzle

Presence of 2-body current

- Martini et al showed $2 p-2 h$ effect can add up $30-40 \%$ more cross section!
- consistent result is obtained by Nieves et al
- The model can explain T2K data simultaneously

Wiring et al, PRC51(1997)38, Peeper et al, PRC64(2001)014001 Lovato et al,PRL112(2014)182502, arXiv:1501.01981

2. The solution of CCQE puzzle

Ab initio calculation

- Green's function Monte Carlo (GFMC)
- Predicts energy levels of all light nuclei
- Consistent result with phenomenological models
- neutron-proton short range correlation (SRC)

2N potential 3 N potential (Av18)

Ab initio calculation

- Green's function Monte Carlo (GFMC)
- Predicts energy levels of all light nuclei
- Consistent result with phenomenological models
- neutron-proton short range correlation (SRC)

$$
\begin{aligned}
& \left|\Psi_{V}\right\rangle=\mathcal{S} \prod_{i<j}^{A}\left[1+U_{i j}+\sum_{k \neq i, j}^{A} \tilde{U}_{i j k}^{T N I}\right]\left|\Psi_{J}\right\rangle \mid
\end{aligned}
$$

Physics of SRC

- neutrino interaction
- $0 v \beta \beta$
- astrophysics
- EMC effect
- etc

p n

Queen Mary

2. Nucleon correlations

Short Range Correlation (SRC)
$\sim 20 \%$ of all nucleons in heavy elements ($A>4$)
$\sim 90 \%$ are neutron-proton ($\mathrm{n}-\mathrm{p}$) pair
~nucleon pair have back-to-back momentum
\sim momentum can be beyond Fermi sea

NNSRC~quasi deuteron

2. Nucleon correlations

Short Range Correlation (SRC)
$\sim 20 \%$ of all nucleons in heavy elements ($A>4$) $\sim 90 \%$ are neutron-proton ($\mathrm{n}-\mathrm{p}$) pair ~nucleon pair have back-to-back momentum
\sim momentum can be beyond Fermi sea

Missing Momentum [GeV/c]
Fig. 2. The fractions of correlated pair combinations in carbon as obtained from the (e,e'pp) and (e,e'pn) reactions, as well as from previous ($\mathrm{p}, 2 \mathrm{pn}$) data. The results and references are listed in table S1.

FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) ${ }^{4} \mathrm{He}$, (b) ${ }^{12} \mathrm{C}$, and (c) ${ }^{56} \mathrm{Fe}$ to ${ }^{3} \mathrm{He}$ as a function of x_{B} for $Q^{2}>$ $1.4 \mathrm{GeV}^{2}$. The horizontal dashed lines indicate the $N N(1.5<$ $\left.x_{B}<2\right)$ and $3 N\left(x_{B}>2.25\right)$ scaling regions.

2. Electron scattering vs. Neutrino scattering

Electron scattering

- well defined energy, well known flux
\rightarrow reconstruct energy-momentum transfer
\rightarrow kinematics is completely fixed

Neutrino scattering

- Wideband beam
\rightarrow observables are inclusive

2. Electron scattering vs. Neutrino scattering

Electron scattering

- well defined energy, well known flux
\rightarrow reconstruct energy-momentum transfer
\rightarrow kinematics is completely fixed

Neutrino scattering

- Wideband beam
\rightarrow observables are inclusive

2. Summary of CCQE for oscillation physics

Community is converged: the origin of CCQE puzzle is multi-nucleon correlation - Valencia MEC model is available in NEUT

- being implemented in GENIE, officially ready for GENIE v2.12

This moment...
Valencia MEC model does not fit T2K (and Super-K) data very well, people are working very hard to understand what is going on

$$
\text { large } \mathrm{M}_{\mathrm{A}} \text { error } \rightarrow \text { large 2p2h error }
$$

It is crucial to have correct CCQE, MEC, pion production models to understand MiniBooNE, MINERvA, T2K data simultaneously. Otherwise M_{A} error stays around 20-30\%.

We have good theorists who make models, and good experimentalists who measure data, but we are still lacking people between them.

3. Open question of neutrino interaction physics

CCQE puzzle

ANL-BNL puzzle

- Normalization difference between ANL and BNL bubble chamber pion data

Coherent pion puzzle

- Is there charged current coherent pion production?

Pion puzzle

- MiniBooNE and MINERvA pion kinematic data are incompatible under any models

Baryon resonance, pion production by neutrinos

3. non-QE background

non-QE background \rightarrow shift spectrum

Typical neutrino detector

- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost (not great detector to measure hadrons)

3. non-QE background

non-QE background \rightarrow shift spectrum

Typical neutrino detector

- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost (not great detector to measure hadrons)

3. non-QE background

non-QE background \rightarrow shift spectrum

Typical neutrino detector

- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost (not great detector to measure hadrons)

3. non-QE background

non-QE background \rightarrow shift spectrum

3. non-QE background

Understanding of neutrino pion production is important for oscillation experiments

Pion production for v_{μ} disappearance search

- Source of mis-reconstruction of neutrino energy

Neutral pion production in v_{e} appearance search

- Source of misID of electron

DUNE true vs. reconstructed Ev spectrum

3. Open question of neutrino interaction physics

CCQE puzzle
The new data raised doubts in the areas well understood. The list of new puzzles is quite long and

- Low Q2 suppression, high Q2 enhancement, high normalization
- Normalization difference between ANL and BNL bubble chamber pion data

Coherent pion puzzle

- Is there charged current coherent pion production?

Pion puzzle

- MiniBooNE and MINERvA pion kinematic data are incompatible under any models

Alvarez-Ruso et al,NewJ.Phys.16(2014)075015, Morfin et al, AHEP(2012)934597

3. Open question of neutrino interaction physics

CCQE puzzle
The new data raised doubts in the areas well understood. The list of new puzzles is quite long and

- Low Q2 suppression, high Q2 enhancement, high normalization
\rightarrow presence of short and long range nucleon correlations
- Normalization difference between ANL and BNL bubble chamber pion data

Coherent pion puzzle

- Is there charged current coherent pion production?

Pion puzzle

- MiniBooNE and MINERvA pion kinematic data are

3. Open question of neutrino interaction physics

CCQE puzzle
The new data raised doubts in the areas well understood. The list of new puzzles is quite long and

- Low Q2 suppression, high Q2 enhancement, high normalization
\rightarrow presence of short and long range nucleon correlations
- Normalization difference between ANL and BNL bubble chamber pion data

Coherent pion puzzle

- Is there charged current coherent pion production?

Pion puzzle

- MiniBooNE and MINERvA pion kinematic data are incompatible under any models

3. ANL-BNL puzzle

Deuteron target bubble chamber data are used to tune resonance models for nuclear target. However, 2 data set from Argonne (ANL) and Brookhaven (BNL) disagree their normalization $\sim 25 \%$.
\rightarrow this propagates to every interactions with baryon resonance

ANL vs. BNL

3. ANL-BNL puzzle

Deuteron target bubble chamber data are used to tune resonance models for nuclear target. However, 2 data set from Argonne (ANL) and Brookhaven (BNL) disagree their normalization $\sim 25 \%$.
\rightarrow this propagates to every interactions with baryon resonance
Reanalysis by Sheffield-Rochester group found a normalization problem on BNL
ANL vs. BNL

Remained task, was nuclear effect correctly taken into account to extract these data? (Wu. et al)

3. Open question of neutrino interaction physics

CCQE puzzle

- Low Q2 suppression, high Q2 enhancement, high normalization
\rightarrow presence of short and long range nucleon correlations
- Normalization difference between ANL and BNL bubble chamber pion data
\rightarrow After correcting BNL normalization, ANL and BNL data agree
Coherent pion puzzle
- Is there charged current coherent pion production?

Pion puzzle

- MiniBooNE and MINERvA pion kinematic data are incompatible under any models

3. Open question of neutrino interaction physics

CCQE puzzle

- Low Q2 suppression, high Q2 enhancement, high normalization
\rightarrow presence of short and long range nucleon correlations
- Normalization difference between ANL and BNL bubble chamber pion data
\rightarrow After correcting BNL normalization, ANL and BNL data agree
Coherent pion puzzle
- Is there charged current coherent pion production?

Pion puzzle

- MiniBooNE and MINERvA pion kinematic data are incompatible under any models

3. Coherent pion puzzle

K2K and SciBooNE data show CC coherent pion production is consistent with zero.

3. Coherent pion puzzle

K2K and SciBooNE data show CC coherent pion production is consistent with zero.

ArgoNeuT, T2K, and MINERvA discovered nonzero CC coherent pion production, but details of kinematics are not understood.

MINERvA muon neutrino CC coherent pion production differential cross-section

T2K (on-axis): Suzuki, NuFact2014 MINERvA: PRL113(2014)261802 ArgoNeuT: PRL114(2015)039901 T2K (off-axis): PRL117(2016)192501

3. Open question of neutrino interaction physics

CCQE puzzle

- Low Q2 suppression, high Q2 enhancement, high normalization
\rightarrow presence of short and long range nucleon correlations
- Normalization difference between ANL and BNL bubble chamber pion data
\rightarrow After correcting BNL normalization, ANL and BNL data agree
Coherent pion puzzle
- Is there charged current coherent pion production?
\rightarrow yes it is, but details of kinematic need to be studied more
Pion puzzle
- MiniBooNE and MINERvA pion kinematic data are incompatible under any models

3. Open question of neutrino interaction physics

CCQE puzzle The new data raised doubts in the areas well
understood. The list of new puzzles is quite long and
seems to be expanding...

- Low Q2 suppression, high Q2 enhancement, high normalization
\rightarrow presence of short and long range nucleon correlations
- Normalization difference between ANL and BNL bubble chamber pion data
\rightarrow After correcting BNL normalization, ANL and BNL data agree
Coherent pion puzzle
- Is there charged current coherent pion production?
\rightarrow yes it is, but details of kinematic need to be studied more
Pion puzzle
- MiniBooNE and MINERvA pion kinematic data are incompatible under any models

3. Pion puzzle

Data from MiniBooNE and MINERvA and simulation are all incompatible

Flux-integrated differential crosssection are not comparable (unless 2 experiments use same neutrino beam)

Two data set are related by a model (=GENIE neutrino interaction generator).

MINERvA data describe the shape well, but MiniBooNE data have better normalization agreement...

3. Pion puzzle

Data from MiniBooNE and MINERvA and simulation are all incompatible

Flux-integrated differential crosssection are not comparable (unless 2 experiments use same neutrino beam)

Two data set are related by a model (=GENIE neutrino interaction generator).

MINERvA data describe the shape well, but MiniBooNE data have better normalization agreement...

3. Pion puzzle

Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation mosel

ex) Giessen BUU transport model - Developed for heavy ion collision, and now used to calculate final state interactions of pions in nuclear media

3. Pion puzzle

Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation mosel

ex) Giessen BUU transport model - Developed for heavy ion collision, and now used to calculate final state interactions of pions in nuclear media

3. Pion puzzle

Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation Mosel

ex) Giessen BUU transport model - Developed for heavy ion collision, and now used to calculate final state interactions of pions in nuclear media

3. Pion puzzle

Final state interaction

- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation Mosel

To get right prediction, you need... 1. neutrino flux prediction
2. pion production model 3. final state interaction
ex) Giessen BUU transport model - Developed for heavy ion collision, and how used to calculate final state interactions of pions in nuclear media

3. Open question of neutrino interaction physics

CCQE puzzle The new data raised doubts in the areas well
understood. The list of new puzzles is quite long and
seems to be expanding...

- Low Q2 suppression, high Q2 enhancement, high normalization
\rightarrow presence of short and long range nucleon correlations
- Normalization difference between ANL and BNL bubble chamber pion data
\rightarrow After correcting BNL normalization, ANL and BNL data agree
Coherent pion puzzle
- Is there charged current coherent pion production?
\rightarrow yes it is, but details of kinematic need to be studied more
Pion puzzle
- MiniBooNE and MINERvA pion kinematic data are incompatible under any models
\rightarrow ???

3. Summary of resonance region for oscillation

Deuteron target bubble chamber data are used to tune resonance models for nuclear target. However, 2 data set from Argonne (ANL) and Brookhaven (BNL) disagree their normalization $\sim 25 \%$ (ANL-BNL puzzle).
\rightarrow origin of $20-30 \%$ error on M_{A} RES
Recent re-analysis found a normalization problem on BNL

Recent fit on re-analyzed ANL-BNL data shows on $\mathrm{CA}_{5}(0)$ error is 6%. This would give $\sim 6-10 \%$ error on M_{A} RES for experimentalist.
...However, Wu et al pointed out there might be significant contribution of nuclear effect in bubble chamber data. This mean, perhaps, cross section extracted by reanalyzed ANL-BNL would be underestimated?!
$M_{A}{ }^{R E S}$ imitates all normalization errors associated with SPP data $\left(C_{5}(0), M_{A}{ }^{R E S}\right.$, nuclear effect, etc). Unless all mysteries are solved (including MiniBooNEMINERvA tension, pion puzzle), $\mathrm{M}_{\mathrm{A}}{ }^{\text {RES }}$ error stays $\sim 20-30 \%$.

Conclusion

Tremendous amount of activities, new data, new theories... (Nulnt series)

Check slides from NuSTEC schools for further studies

1 to 10 GeV neutrino interaction measurements are crucial to successful nextgeneration neutrino oscillation experiments (DUNE, Hyper-K)

This moment, data from MiniBooNE, T2K, MINERvA, and ArgoNeuT play major roles to develop neutrino interaction models

Thank you for your attention!

Backup

