
1. n-interaction
2. SIS and DIS
3. Hadronization
4. Conclusion

2017/04/18 1Teppei Katori, Queen Mary University of London

Teppei Katori
Queen Mary University of London

IPPP-NuSTEC workshop, IPPP, Durham, Apr. 18, 2017 

SIS and DIS Neutrino Interactions
TK, Martini, arXiv:1611.07770 (JPhysG focus issue)

Subscribe “NuSTEC News”
http://nustec.fnal.gov/

like “@nuxsec” or “NuSTEC-News” on Facebook 
Twitter hashtag #nuxsec



1. n-interaction
2. SIS and DIS
3. Hadronization
4. Conclusion

2017/04/18 2Teppei Katori, Queen Mary University of London

Teppei Katori
Queen Mary University of London

IPPP-NuSTEC workshop, IPPP, Durham, Apr. 18, 2017 

SIS and DIS Neutrino Interactions
TK, Martini, arXiv:1611.07770 (JPhysG focus issue)

outline 
1. Beyond CCQE and 1 pion production
2. Shallow inelastic scattering (SIS) and DIS
3. Neutrino hadronization
4. Conclusion 

Subscribe “NuSTEC News”
http://nustec.fnal.gov/

like “@nuxsec” or “NuSTEC-News” on Facebook 
Twitter hashtag #nuxsec



1. n-interaction
2. SIS and DIS
3. Hadronization
4. Conclusion

2017/04/18

Bubble Chamber Cup 2017, April 9, Sheffield 
(IoP HEP annual meeting football match)

Teppei Katori, Queen Mary University of London 3

Queen Mary 0-2 Sheffield
Queen Mary 0-1 Manchester B
Queen Mary 0-∞ Birmingham A
Queen Mary 2-2 Liverpool B
Queen Mary 1-4 Manchester A

Liverpool A (again) won the game
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1. Flux-integrated differential cross-section
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We want to study the cross-section model, but we don’t want to implement every 
models in the world in our simulation…

We want theorists to use our data, but flux-unfolding (model-dependent process) lose 
details of measurements…

Now, all modern experiments publish flux-integrated differential cross-section
à Detector efficiency corrected event rate
à Flux and FSI are convoluted
à Theorists can reproduce the data with neutrino flux tables from experimentalists
à Minimum model dependent, useful for nuclear theorists

These data play major roles to study/improve neutrino interaction models by theorists

Teppei Katori, Queen Mary University of London
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PDG2016 Section 50 “Neutrino Cross-Section Measurements”

T2K

ArgoNeuT

MiniBooNE

Various type of flux-integrated differential cross-section data are available from 
all modern neutrino experiments. 
à Now PDG has a summary of neutrino cross-section data! (since 2012) 

MINERvA
Teppei Katori, Queen Mary University of London
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PDG2016 Section 50 “Neutrino Cross-Section Measurements”
TK, Martini, arXiv:1611.07770

Theorists

Experimentalists

Various type of flux-integrated differential cross-section data are available from 
all modern neutrino experiments. 
à Now PDG has a summary of neutrino cross-section data! (since 2012) 

Teppei Katori, Queen Mary University of London

flux-integrated differential cross-section data allow theorists and 
experimentalists talk first time in neutrino interaction physics history
(cf, fiducial cross-section measurement in LHC)
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1. Topology-based cross section

Teppei Katori, Queen Mary University of London

Flux-integrated differential cross section also use topology-based cross-section

e.g.) CC0p cross section definition
- Complexity increase dramatically for multi-hadron final states 
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1. FSI and pion data
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MiniBooNE,PRD83(2011)052009
Lalakulich et al,PRC87(2013)014602
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Teppei Katori, Queen Mary University of London

Final state interaction
- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation

Interpretation of 1 pion production is already very complicated. Multi-
hadron final state measurements by higher energy processes (SIS, DIS) 
is the completely new world for neutrino oscillation community!

e.g.) Giessen BUU transport model
- Developed for heavy ion collision, 
and now used to calculate final state 
interactions of pions in nuclear media 
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1. FSI tuning from pion data

11

MINERvA,PRD94(2016)052005

Teppei Katori, Queen Mary University of London

FSI and MINERvA pion production data
- this moment, there is no clear directionality to tune MC…

nµCC1p+ data has 
better shape 
agreement with GENIE

anti-nµCC1po data has 
better normalization  
agreement with GENIE
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1. Next generation neutrino oscillation experiments

Teppei Katori, Queen Mary University of 
London 12

Neutrino oscillation experiments
- Past to Present: K2K, MiniBooNE, MINOS, T2K, DeepCore, Reactors
- Present to Future: T2K, NOvA, PINGU, ORCA, Hyper-Kamiokande, DUNE

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

nµCC cross section per nucleon 

Pµ→e(L / E) = sin
2 2θ sin2 1.27Δm2 (eV 2 ) L(km)
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1. Next generation neutrino oscillation experiments

Teppei Katori, Queen Mary University of London 15

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307
TK and Martini, ArXiv:1611.07770

Energy > 2 GeV is important
- T2K, NOvA, DUNE event rate per channel 

NOvA, CCQE=28%, RES=40%, DIS=32%
DUNE, CCQE=10%, RES=17%, DIS=73%

GENIE v2.8.6
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Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307
TK and Martini, ArXiv:1611.07770

Energy > 2 GeV is important
- T2K, NOvA, DUNE event rate per channel 

NOvA, CCQE=28%, RES=40%, DIS=32%
DUNE, CCQE=10%, RES=17%, DIS=73%

In order to reconstruct  
the neutrino energy, we 
need to add all “bits”

Yun-Tse Tsai (SLAC), NuPhys16

GENIE v2.8.6
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1. Introduction, summary

Teppei Katori, Queen Mary University of London

Beyond CCQE and 1 pion production processes

Current and future oscillation experiments have significant amount of higher 
energy processes with nuclear target

1. Flux-integrated differential cross-sections
- Flux and FSI are integrated
- topology-based cross-section

2. Final state interactions (FSIs)
- In general, we cannot access to primary vertex processes directly

3. Multi-hadron final state measurements
- Important for processes beyond CCQE and 1 pion production processes
- Theory, simulation, and measurement are all very premature
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2. SIS region physics

Teppei Katori, Queen Mary University of London

3 ingredients 
- D(1232)-resonance
- higher resonances
- non-resonant background

Nakamura et al.,Rep.Prog.Phys.80(2017)056301

D(1232) higher resonances

non-resonant background
GENIE v2.8.6

w, q0 (GeV)
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2. Tuning SIS region model

20

MINERvA,PRD94(2016)052005

Teppei Katori, Queen Mary University of London

nµCC1p+ data has 
better shape 
agreement with GENIE

anti-nµCC1po data has 
better normalization  
agreement with GENIE

Non-resonant background and MINERvA pion production data
- this moment, there is no clear directionality to tune MC…
- Tuning down non-resonant background may be a solution to satisfy 2 data sets (?)
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2. Tuning SIS region model

Teppei Katori, Queen Mary University of London

Bubble chamber data reanalysis
- non-resonant background is tuned down

Rodrigues,Wilminson,McFarland,EPJC76(2016)474 
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2. GENIE SIS model

Teppei Katori, Queen Mary University of London

Cross section
W2<2.9 GeV2 : RES
W2>2.9 GeV2 : DIS
Hadronization
W2<5.3GeV2 : KNO scaling based model
2.3GeV2<W2<9.0GeV2 : transition 
9.0GeV2<W2 : PYTHIA6

W2 distribution for H2O target with atmospheric-n flux (GENIE)

Non-resonance 
background 
(low W DIS)

DIS

AGKY, EPJC63(2009)1
TK and Mandalia,JPhysG42(2015)115004

There are 2 kind of “transitions” in SIS region
- cross-section
- hadronization

GENIE v2.8.0
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2. NEUT SIS model

Teppei Katori, Queen Mary University of London

Cross section
W2<4 GeV2 : RES
W2>4 GeV2 : DIS
Hadronization
W2<4GeV2 : KNO scaling based model
4GeV2<W2 : PYTHIA5

There are 2 kind of “transitions” in SIS region
- cross-section
- hadronization

Christophe 
Bronner
(IPMU)

W2 distribution for H2O target with atmospheric-n flux (NEUT)

RES  DIS

DIS

Non-resonance 
background 
(low W DIS)

KNO   PYTHIA5
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RES  DIS
KNO   PYTHIA5

2. GENIE vs. NEUT
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2. SIS cross section model

Teppei Katori, Queen Mary University of London

Cross section
- Higher baryonic resonance
- low Q2, low W DIS
- Nuclear dependent DIS
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2. SIS cross section model

Teppei Katori, Queen Mary University of London

Cross section
- Higher baryonic resonance
- low Q2, low W DIS
- Nuclear dependent DIS

DCC model
- Total amplitude is conserved
- Channels are coupled (pN, ppN, etc)
- 2 pion productions ~10% at 2 GeV 

Nakamura et al,Rep.Prog.Phys.80(2017)056301
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2. SIS cross section model

Teppei Katori, Queen Mary University of London

Bodek and Yang, AIP.Conf.Proc.670(2003)110,Nucl.Phys.B(Proc.Suppl.)139(2005)11

𝐾BCDEFGE 𝑄) = [1 − 𝐺K)(𝑄))] M
𝑄) + 𝐶B)
𝑄) + 𝐶B:

𝜉 =
2𝑥

1 + 1 + 4𝑥
)𝑀)

𝑄)
�

Nachtmann 
variable

𝐾TEC 𝑄) =
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2𝑥 1 +

𝑀W) + 𝐵
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1 + 1 + 4𝑥
)𝑀)
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Proton F2 function GRV98-BY correction vs. data

Cross section
- Higher baryonic resonance
- low Q2, low W DIS
- Nuclear dependent DIS

GRV98 LO PDF + Bodek-Yang correction
- GRV98 for low Q2 DIS
- Bodek-Yang correction for QH-duality
- 20 years old, out-of-dated
- not sure how to implement systematic errors
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2. SIS cross section model

Teppei Katori, Queen Mary University of London

Bodek and Yang, AIP.Conf.Proc.670(2003)110,Nucl.Phys.B(Proc.Suppl.)139(2005)11
NuTeV, PRD74(2006)012008

150 GeV

NuTeV n-Fe and antin-Fe differential cross section (x, y, En)

GENIE-NuTeV comparison
- GENIE use GRV98+BY correction
- GENIE can describe NuTeV data except 

very low x region
- Impact of data-MC low x disagreement is 

~2% on total cross section in 30<E<360 
GeV

Shivesh Mandalia
(Queen Mary) Cross section

- Higher baryonic resonance
- low Q2, low W DIS
- Nuclear dependent DIS

GRV98 LO PDF + Bodek-Yang correction
- GRV98 for low Q2 DIS
- Bodek-Yang correction for QH-duality
- 20 years old, out-of-dated
- not sure how to implement systematic errors

Model is verified with iron target, 
how about oxygen and argon? 
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2. SIS cross section model

Teppei Katori, Queen Mary University of London

Cross section
- Higher baryonic resonance
- low Q2, low W DIS
- Nuclear dependent DIS

Schienbein et al, PRD80(2009)094004

Nuclear PDF 
- Shadowing, EMC effect, Fermi motion
- Theoretical origin is under debate
- Various models describe charged lepton data

l±-Fe nuclear correction factor

shadowing 
EMC effect 

Fermi motion

Jorge Morfin
(Fermilab)

Sorry for my 
absence…
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2. SIS cross section model

Teppei Katori, Queen Mary University of London

Cross section
- Higher baryonic resonance
- low Q2, low W DIS
- Nuclear dependent DIS

Schienbein et al, PRD80(2009)094004

Nuclear PDF 
- Shadowing, EMC effect, Fermi motion
- Theoretical origin is under debate
- Various models describe charged lepton data
- Neutrino data look very different

l±-Fe nuclear correction factor

shadowing 
EMC effect 

Fermi motion no shadowing? 

EMC effect at x~0.1? 
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2. SIS cross section model

Teppei Katori, Queen Mary University of London

MINERvA DIS target ratio data (C, Fe, Pb)
- MINERvA data reveal shadowing effect on 

neutrino may be larger than expected

We care all nuclear targets
- Neutrino beam is like a “shower”, and it interacts 

with all materials surrounding the vertex detector.
MC needs to simulate neutrino interactions (and 
particle propagations) for all inactive materials. 

MINERvA,PRD93(2016)071101

Cross section
- Higher baryonic resonance
- low Q2, low W DIS
- Nuclear dependent DIS

12C

56Fe

208Pb

neutrino 
detector

Neutrino 
beam n-Si

n-Al n-Pb
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2. SIS cross section, summary

Teppei Katori, Queen Mary University of London

Three important physics beyond CCQE and 1 pion production

1. higher baryon resonance and how to compute the total amplitude

2. low Q2 DIS and how to model resonance à DIS transition

3. nuclear dependent DIS
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3. Neutrino low W hadronization model

Teppei Katori, Queen Mary University of 
London 34

Averaged charged hadron multiplicity <nch>
- Parameters extracted from data are used to model hadronization process
- The bubble chamber data are not consistent  

AGKY, EPJC63(2009)1
Connolly, PhD thesis (U-Washington, Seattle, 2014)

< nch >= a+ bLog(W
2 )

Averaged charged hadron multiplicity 

n
µ-

p-
p+

p

charged 
hadron 
multiplicity

averaged charged hadron multiplicity 
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3. Neutrino low W hadronization model

Teppei Katori, Queen Mary University of 
London 35

Averaged charged hadron multiplicity <nch>
- Parameters extracted from data are used to model hadronization process
- The bubble chamber data are not consistent  

AGKY, EPJC63(2009)1
Connolly, PhD thesis (U-Washington, Seattle, 2014)

Averaged charged hadron multiplicity KNO scaling law of charged hadron multiplicity 
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3. Neutrino high W hadronization model

Teppei Katori, Queen Mary University of 
London 36

Kuzmin-Naumov fit
- They systematically analysed all bubble chamber data

- Difference of hydrogen and deuterium data
- Presence of kinematic cuts
- Better parameterization

Kuzmin and Naumov, PRC88(2013)065501

NuWro
GENIE
GiBUU

All PYTHIA-based models 
underestimate averaged charged 
hadron multiplicity data
(GiBUU, GENIE, NuWro, NEUT)

Average charged hadron multiplicity with function of W2
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3. HERMES tuned PYTHIA6

Teppei Katori, Queen Mary University of 
London 37

TK and Mandalia,JPhysG42(2015)115004 
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KNO scaling PYTHIA6

transition
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3. Hadron multiplicity

Teppei Katori, Queen Mary University of London

Bubble chamber topological cross section data 
Although averaged charged hadron multiplicity makes continuous curve, topological cross 
sections are discontinuous, because multiplicity dispersion by PYTHIA6 is much narrower 
than bubble chamber data.  
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3. Hadronization, summary

Teppei Katori, Queen Mary University of London

Two important processes

1. Low W hadronization process based on empirical model (KNO scaling)

2. High W hadronization process from particle physics (PYTHIA, etc)

… and how to connect them
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Tremendous amount of activities, new data, new theories…

Teppei Katori, Queen Mary University of London
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NuSTEC (Neutrino Scattering Theory-Experiment Collaboration)

NuSTEC promotes the collaboration and coordinates efforts between 
- theorists, to study neutrino interaction problems
- experimentalists, to understand nu-A and e-A scattering problems
- generator builders, to implement, validate, tune, maintain models

The main goal is to 
improve our 
understanding of 
neutrino interactions 
with nucleons and 
nuclei
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NuSTEC school

NuSTEC school 17, Fermilab (Nov. 2017, TBA)
- NuSTEC school is dedicated for students/postdocs 
to learn physics of neutrino interactions, both for 
theorists, and experimentalists

Lectures of NuSTEC school 15, Okayama, Japan (Nov. 8-14, 2015)
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Conclusion

Flux-integrated differential cross-sections play a major role for model tuning
- flux and FSI are integrated, topology-based cross-sections

Processes beyond CCQE and 1 pion production are important. We need to 
correctly connect and/or add correct models. 
1. higher baryonic resonance
2. low Q2 DIS
3. nuclear dependent DIS
4. low W hadronization
5. high W hadronization

Role of hadron simulation is getting more important.

We need models working in all kinematic region. Neutrino experiment is always 
“inclusive” comparing with electron scattering (nuclear physics) and collider 
physics (particle physics). Cross-section and hadronization processes should 
make sense in any Q2 and W region. 

Subscribe “NuSTEC News”
http://nustec.fnal.gov/

like “@nuxsec” or “NuSTEC-News” on Facebook 
Twitter hashtag #nuxsec
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Thank you for your attention!
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Teppei Katori, Queen Mary University of London

nuclear 
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problem

Spin physics

Subscribe “NuSTEC News”
http://nustec.fnal.gov/

like “@nuxsec” or “NuSTEC-News” on Facebook 
Twitter hashtag #nuxsec
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Backup 

47Teppei Katori, Queen Mary University of London
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3. non-QE background

Teppei Katori, Queen Mary University of London

non-QE background à shift spectrum

n n

Signal µ

Typical neutrino detector
- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost
(not great detector to measure hadrons)
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3. non-QE background

Teppei Katori, Queen Mary University of London

non-QE background à shift spectrum

n

p

n

Rejected
(not background) µ

n n

Signal µ

Typical neutrino detector
- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost
(not great detector to measure hadrons)
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3. non-QE background

Teppei Katori, Queen Mary University of London

non-QE background à shift spectrum

n

p

n

Rejected
(not background) µ

n
p

n

pion absorption
in nuclei

Not rejected
(background)

µ
n n

Signal µ

Typical neutrino detector
- Big and dense, to maximize interaction rate
- Coarsely instrumented, to minimize cost
(not great detector to measure hadrons)
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3. non-QE background

Teppei Katori, Queen Mary University of London

non-QE background à shift spectrum

n

p

n

Rejected
(not background) µ

n
p

n

pion absorption
in nuclei

Not rejected
(background)

µ

QE assumption 
reconstructed neutrino 
energy (EnQE)

T2K collabo.

sin22q23

Dm2
µt

Reconstructed neutrino energy (GeV)

T2K collabo.

n n

Signal µ
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3. non-QE background
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Coloma et al,PRL111(2013)221802
Mosel et al,PRL112(2014)151802

Pion production for nµ
disappearance search
- Source of mis-reconstruction of 
neutrino energy

Neutral pion production in ne
appearance search
- Source of misID of electron

DUNE true vs. reconstructed En spectrum 

Understanding of neutrino pion production 
is important for oscillation experiments

n

N

Z

N

µ

p
D

pion absorption

n

N

Z

N

n

po
D

NCpo + asymmetric decay

g

Teppei Katori, Queen Mary University of London

dCP=+p/2

dCP=-p/2
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1. FSI and pion data
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Final state interaction
- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation

MiniBooNE,PRD83(2011)052009
Lalakulich et al,PRC87(2013)014602

n

n

Z

p

µ
po

D

CC1po production

Teppei Katori, Queen Mary University of London

Ulrich 
Mosel

(Giessen)

For long baseline oscillation 
experiments, theory has to be 
able to describe the full final 

states of all particles!

ex) Giessen BUU transport model
- Developed for heavy ion collision, and 
now used to calculate final state 
interactions of pions in nuclear media 
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MiniBooNE,PRD83(2011)052009
Lalakulich et al,PRC87(2013)014602

n

n

Z

p

µ
po

D

CC1po production
pion scattering
p+N à p+N

Ulrich 
Mosel

(Giessen)

For long baseline oscillation 
experiments, theory has to be 
able to describe the full final 

states of all particles!

Teppei Katori, Queen Mary University of London

ex) Giessen BUU transport model
- Developed for heavy ion collision, and 
now used to calculate final state 
interactions of pions in nuclear media 

Final state interaction
- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation
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MiniBooNE,PRD83(2011)052009
Lalakulich et al,PRC87(2013)014602

n

n

Z

p

µ
po

D

CC1po production
pion scattering
p+N à p+N

pion absorption
p+NàD+NàN+N

Ulrich 
Mosel

(Giessen)

For long baseline oscillation 
experiments, theory has to be 
able to describe the full final 

states of all particles!

Teppei Katori, Queen Mary University of London

ex) Giessen BUU transport model
- Developed for heavy ion collision, and 
now used to calculate final state 
interactions of pions in nuclear media 

Final state interaction
- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation
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1. FSI and pion data
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MiniBooNE,PRD83(2011)052009
Lalakulich et al,PRC87(2013)014602
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CC1po production
pion scattering
p+N à p+N

pion absorption
p+NàD+NàN+N

n

N

Z

N

µ
p+

D

CC1p+ production

charge exchange
p++nàpo+p

Ulrich 
Mosel

(Giessen)

For long baseline oscillation 
experiments, theory has to be 
able to describe the full final 

states of all particles!

Teppei Katori, Queen Mary University of London

ex) Giessen BUU transport model
- Developed for heavy ion collision, and 
now used to calculate final state 
interactions of pions in nuclear media 

Final state interaction
- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation
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MiniBooNE,PRD83(2011)052009
Lalakulich et al,PRC87(2013)014602
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CC1po production
pion scattering
p+N à p+N

pion absorption
p+NàD+NàN+N

n

N

Z
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D

CC1p+ production

charge exchange
p++nàpo+p

Ulrich 
Mosel

(Giessen)

For long baseline oscillation 
experiments, theory has to be 
able to describe the full final 

states of all particles!

Teppei Katori, Queen Mary University of London

Final state interaction
- Cascade model as a standard of the community
- Advanced models are not available for event-by-event simulation

Interpretation of 1 pion production is already very complicated. Multi-
hadron final state measurements by higher energy processes (SIS, DIS) 
is the completely new world for neutrino oscillation community!
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2. GENIE SIS model

Teppei Katori, Queen Mary University of London

Cross section
W2<2.9 GeV2 : RES
W2>2.9 GeV2 : DIS
Hadronization
W2<5.3GeV2 : KNO scaling based model
2.3GeV2<W2<9.0GeV2 : transition 
9.0GeV2<W2 : PYTHIA6

W2
recon distribution for H2O target with atmospheric-n flux (GENIE)

Non-resonance 
background 
(low W DIS)

DIS

AGKY, EPJC63(2009)1
TK and Mandalia,JPhysG42(2015)115004

There are 2 kind of “transitions” in SIS region
- cross-section
- hadronization

Reconstructed W spectrum
à measurable W distribution with 100% efficiency detector

GENIE v2.8.0
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2. SIS region physics

Teppei Katori, Queen Mary University of London

Bodek and Yang, AIP.Conf.Proc.670(2003)110,Nucl.Phys.B(Proc.Suppl.)139(2005)11
NuTeV, PRD74(2006)012008

150 GeV

NuTeV n-Fe and antin-Fe differential cross section (x, y, En)

GENIE-NuTeV comparison
- GENIE use GRV98 LO PDF +Bodek-Yang correction
- GENIE can describe NuTeV data except very low x region
- Impact of data-MC low x disagreement is ~2% on total 

cross section in 30<E<360 GeV

Shivesh Mandalia
(Queen Mary) 

±2% 


