

There are 2 types of backgrounds

• Internal background

- External background

We constrain backgrounds to set the upper limit of cross section of NC1y process

Internal background error estimation

- Single photon from π^{o} decay
- Use NUISANCE framework https://nuisance.hepforge.org/
- Use external data to constrain π^{o} production errors \bullet
- $\pm 15\%$ error

"Large axial anomaly contribution", PRL99(2007)261601 "Heavy neutrino decay", PRL103(2009)241802 "Dark photon conversion", PLB689(2010)149

External background error estimation

- Photon produced in dead materials
- CC inclusive data to understand dead material distribution
- MC to estimate photon propagation errors
- +23/-16% error (large asymmetry)

MC CC inclusive event vertex distribution

effective mean free path for photons from

Preliminary sensitivity study

NOMAD, PLB706(2012)268

From given total errors (+27/-22%) and signal fraction (0.2%), we estimate our sensitivity on NC1y production cross section at FGD1 is order 10⁻³⁹ cm²/nucleon with 90%CL at <600 MeV>. This is roughly factor 500 larger than the expected signal.

0.0

NOMAD set a limit on this channel as a cross-section ratio, i.e., $\sigma_{NCv}/\sigma_{CCincl} < 1.6 \times 10^{-4}$. From measured CC inclusive cross section, NOMAD limit is translated to $6 \times 10^{-41} \text{ cm}^2/\text{nucleon with } 90\% \text{CL at } <25 \text{ GeV}>.$

Although our limit may be worse than NOMAD, this analysis will set the first limit of this channel below 1 GeV.

Conclusions and Discussion

- To constrain internal background, π^{o} production rate should be measured internally \rightarrow need 4π acceptance detector
- To constrain external background, incoming background needs to be internally measured \rightarrow need large active veto and less dead materials Current and future experiments (MINERVA, MicroBooNE, SBND) may have better chance to nail down this exotic process.