Neutrino Interactions with Nucleons and Nuclei

Ulrich Mosel

Based on work with T. Leitner, O. Lalakulich and K. Gallmeister

Institut für Theoretische Physik

Motivation

 Neutrino properties can be extracted from Long Baseline Experiments only if energy is known

Both calorimetry and QE-based energy reconstruction methods require understanding of the full event

Theory has to be able to describe the full final states of all particles, inclusive X-sections are not sufficient

Neutrino-nucleon cross section

Neutrino-Nucleon Cross Sections

Neutrino Beams

Neutrinos do not have fixed energy:

Have to reconstruct energy from final state of reaction

Observable Oscillation Parameters

$$P(
u_{\mu}
ightarrow
u_{e}) = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2} L}{4E_{\nu}} \right)$$

$$\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$$

Neutrino Oscillations

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}} \\ - \alpha \sin 2\theta_{13} \xi \sin \delta \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \\ + \alpha \sin 2\theta_{13} \xi \cos \delta \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \\ + \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(\hat{A}\Delta)}{\hat{A}^{2}} \\ \equiv O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .$$

$$Dappearance probability$$

$$Vacuum oscillation depends on difference of (squared) masses only$$

$$CETUP^+ 07/2014$$

$$Dappearance probability$$

$$Dappearance probability$$

Oscillation Signal Dependence on Hierarchy and Mixing Angle

Energy has to be known better than 50 MeV Shape sensitive to hierarchy and sign of D. mixing angle CETUP* 07/2014

Fig. 2. $\mathcal{P}_{\mu\varepsilon}$ in matter versus neutrino energy for the T2K experiment. The blue curves depict the normal hierarchy, red the inverse hierarchy. Solid curves depict positive θ_{13} , dashed curves negative θ_{13}

D.J. Ernst et al., arXiv:1303.4790 [nucl-th]

LBNE, δ_{CP} sensitivity

proton energy

Need energy within 100 MeV to distinguish between different δ_{CP}

Energy Reconstruction by QE

In QE scattering on nucleon at rest, only *l* +*p*, 0 π, is outgoing. lepton determines neutrino energy:

$$E_{\nu} = \frac{2M_{N}E_{\mu} - m_{\mu}^{2}}{2(M_{N} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Trouble: all presently running exps use nuclear targets
 Nucleons are Fermi-moving
 Final state interactions may hinder correct event identification

CETUP* 07/2014

Institut für Theoretische Physik

FSI in Nuclear Targets

Complication to identify QE, entangled with π production Both must be treated at the same time Nuclear Targets (K2K, MiniBooNE, T2K, MINOS, Minerva,LBNE)

CETUP* 07/2014

Institut für Theoretische Physik

GiBUU : Theory and Event Simulator
 based on a BM solution of Kadanoff-Baym equations

 Physics content and details of implementation in:
 Buss et al, Phys. Rept. 512 (2012) 1- 124

 Code available from gibuu.hepforge.org

Mine of information on theoretical treatment of potentials, collision terms, spectral functions and cross sections, useful for any generator

Transport Equation

 Kadanoff-Baym equation for space-time development of one particle spectral phase space density *F* (*Wigner Function*) after gradient expansion

$$\mathcal{D}F(x,p) + \operatorname{tr}\left\{\operatorname{Re}\tilde{S}^{\operatorname{ret}}(x,p), -\mathrm{i}\tilde{\Sigma}^{<}(x,p)\right\}_{\operatorname{pb}} = C(x,p).$$

F = spectral phase-space density:

$$F(x, p) = -2f(x, p) \operatorname{tr}[\operatorname{Im}(\tilde{S}^{\operatorname{ret}}(x, p))\gamma^{0}],$$

$$\mathcal{D}F = \{p_0 - H, F\}_{pb}$$
 with $H = E^*(x, p) - \operatorname{Re} \tilde{\Sigma}_V^0(x, p)$.

Transport Equation

Collision term

$$\mathcal{D}F(x,p) + \operatorname{tr}\left\{\operatorname{Re}\tilde{S}^{\operatorname{ret}}(x,p), -\mathrm{i}\tilde{\Sigma}^{<}(x,p)\right\}_{pb} = C(x,p).$$

$$\frac{\operatorname{Drift term}}{\left(1 - \frac{\partial H}{\partial p_{0}}\right)\frac{\partial}{\partial t} + \frac{\partial H}{\partial \mathbf{p}}\frac{\partial}{\partial \mathbf{x}} - \frac{\partial H}{\partial \mathbf{x}}\frac{\partial}{\partial \mathbf{p}} + \frac{\partial H}{\partial t}\frac{\partial}{\partial p^{0}} + \operatorname{KB term}\left[F(x,p)\right]$$

$$= -\operatorname{loss term} + \operatorname{gain term}$$

Kadanoff-Baym equation

- LHS: drift term + backflow (KB) terms
- RHS: collision term = loss + gain terms

Collision term

$$C^{(2)}(x,p_{1}) = C^{(2)}_{\text{gain}}(x,p_{1}) - C^{(2)}_{\text{loss}}(x,p_{1}) = \frac{S_{1'2'}}{2p_{1}^{0}g_{1'}g_{2'}} \int \frac{\mathrm{d}^{4}p_{2}}{(2\pi)^{4}2p_{2}^{0}} \int \frac{\mathrm{d}^{4}p_{1'}}{(2\pi)^{4}2p_{1'}^{0}} \int \frac{\mathrm{d}^{4}p_{2'}}{(2\pi)^{4}2p_{2'}^{0}} \\ \times (2\pi)^{4}\delta^{(4)} \left(p_{1} + p_{2} - p_{1'} - p_{2'}\right) \overline{|\mathcal{M}_{12 \to 1'2'}|^{2}} [F_{1'}(x,p_{1'})F_{2'}(x,p_{2'})\overline{F}_{1}(x,p_{1}) \\ \times \overline{F}_{2}(x,p_{2}) - F_{1}(x,p_{1})F_{2}(x,p_{2})\overline{F}_{1'}(x,p_{1'})\overline{F}_{2'}(x,p_{2'})]$$

with

$$F(x,p) = 2\pi g A(x,p) f(x,p)$$

$$\overline{F}(x,p) = 2\pi g A(x,p) \left[1 - f(x,p)\right]$$

More complicated expressions for 3-body interactions (e.g. pion absorption)

CETUP* 07/2014

Institut für Theoretische Physik

BM Simplification

Problem: ,backflow' term does not directly depend on F

Botermans-Malfliet simplification for equilibrium, correction terms are of higher order in gradients

$$\begin{split} \tilde{\Sigma}_{eq}^{<}(x,p) &= i\Gamma_{eq}(x,p)f_{eq}(x,p), \\ \tilde{\Sigma}_{eq}^{>}(x,p) &= -i\Gamma_{eq}(x,p)[1-f_{eq}(x,p)] \\ \Gamma(x,p) &= -2\mathrm{Im}\tilde{\Sigma}^{ret}(x,p) \end{split}$$

$$\mathcal{D}F(x,p) - \operatorname{tr}\left\{\Gamma f, \operatorname{Re} \tilde{S}^{\operatorname{ret}}(x,p)\right\}_{\operatorname{pb}} = C(x,p).$$

BM term now ~ Γ , controls off-shell transport

CETUP* 07/2014

Institut für Theoretische Physik

Spectral Function

 $F(x, p) = -2f(x, p)\operatorname{tr}[\operatorname{Im}(\tilde{S}^{\operatorname{ret}}(x, p))\gamma^{0}],$

$$A(x,p) := \frac{1}{g} \operatorname{tr}[\hat{A}(x,p)\gamma^{0}] = -\frac{1}{g\pi} \operatorname{tr}[\operatorname{Im}(\tilde{S}^{\operatorname{ret}}(x,p))\gamma^{0}],$$

$$F(x, p) = 2\pi gf(x, p)A(x, p).$$

"Spectral Phase Space Density" = Product of phase-space density *f* and spectral function *A*

GiBUU and MC Event Generators

Phase-space distribution f is solved by a testparticle method, well known in numerical fluid dynamics Care is taken to respect relativity and detailed balance GiBUU reduces to MC event generators if All particles on shell No potentials present No in-medium effects

Theoretical Basis of GiBUU

Kadanoff-Baym equation (1960s) full equation can not be solved yet - not (yet) feasible for real world problems Boltzmann-Uehling-Uhlenbeck (BUU) models Boltzmann equation as gradient expansion of Kadanoff-Baym equations, in Botermans-Malfliet representation (1990s): GiBUU Cascade models (typical event generators, NUANCE, GENIE, NEUT,..)

Simplicity

no mean-fields, primary interactions and FSI not consistent

Practical Basis: GiBUU

- one transport equation for each particle species (61 baryons, 21 mesons)
- coupled through the potential in H and the collision integral C
- W < 2.5 GeV: Cross sections from resonance model (PDG and MAID couplings), consistent with electronuclear physics
- W > 2.5 GeV: particle production through string fragmentation (PYTHIA), with smoothened transition
- GiBUU: Only `Neutrino Event Generator' that has widely been tested with various hadronic and em reactions, NO TUNING to nuclear data (except 2p2h)

GiBUU Ingredients: ISI

- In-medium corrected primary interaction cross sections, boosted to rest frame of moving bound nucleon in local Fermigas
- Includes spectral functions for baryons and mesons (binding + collision broadening)
- Hadronic couplings for FSI taken from PDG (Manley anal.)
- Vector couplings taken from electro-production (MAID)
- Axial couplings modeled with PCAC

Reaction Types

- 2 major reaction types relevant:
- 1. QE scattering
 - true QE (single particle interaction)
 - many-particle interactions (RPA + 2p2h + spectral functions)
- 2. Pion production
 - through nucleon resonances (W < 2 GeV)
 - through DIS (W > 2 GeV)
- All reaction types are entangled: final states may look the same

Quasielastic Scattering

- Vector form factors from *e*-scattering
- axial form factors
 - $F_A \Leftrightarrow F_P$ and $F_A(0)$ via PCAC dipole ansatz for F_A with

 M_A = 1 GeV:

$$F_A(Q^2) = \frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}$$

Axial Formfactor of the Nucleon neutrino data agree with electro-pion production data

M_A ≅ 1.02 GeV world average M_A ≅ 1.07 GeV world average Dipole ansatz is simplification, not good for vector FF

Spectral Functions

Single particle spectral functions absorb effects of interactions in particle properties
 Free Fermi gas (in generators):

$$P_h(\mathbf{p}, E) = \Theta(\mathbf{p}_F - \mathbf{p}) \,\delta(E + T_p)$$

spiky E-dep. leads to artifacts in response
 Now: dress particle with interactions, mean field and/or additional interactions → quasiparticles

Spectral Function in GiBUU

$$P_h(\mathbf{p}, E) = \int_{NV} \mathrm{d}^3 x \left[\Theta(p_F(\mathbf{x}) - \mathbf{p}) \,\delta\left(E + T_p + V(\mathbf{x}, \mathbf{p})\right)\right]$$

Two essential features:

1. Local TF momentum distribution removes artifacts of sharp cut at p_F

2. Particles bound in momentum- and coordinate-dependent potential, integration removes delta-function spikes in energy

Spectral function in GiBUU contains interactions in mean field

Nuclear Groundstate the same for all processes!

From: Alvarez-Ruso, Hayato, Nieves

Also *E*-dependence is different from Global Fermi Gas: momentum and x-dependent otential leads to smooth behavior

GiBUU uses Local Fermi Gas + Nukleon mean field potential

2p-2h in Generators

- Mandatory: same nuclear ground state for 1p-1h and 2p-2h processes
 - Generators: free Fermi gas
 - Nieves 2p-2h model: dressed Fermi gas in mean field potential
- Nieves model cannot be simply added to simple generators: inconsistent → inconclusive

2p-2h and spectral functions

Cross section= sum over amplitudes squared

CETUP* 07/2014

M.B. Barbaro et al,

2011

2p-2h and spectral functions

- Part of 2p-2h interactions is contained in spectral function
- Another part is missing!

2p-2p excitations and spectral functions

Can also be obtained by cutting selfenergy diagrams (Optical Theorem, Cutkosky rules)

2p-2p excitations and spectral functions

Interference term squared

Interference of ISI and FSI

GiBUU 2p2h

■ Model for $v + p_1 + p_2 \rightarrow p_3 + p_4 + \mu$ (no recoil)

$$\frac{d^2\sigma}{dE'_l d(\cos\theta')} \propto \frac{k'}{k} \int_{NV} d^3r \int \prod_{j=1}^2 \frac{d^3p_j}{(2\pi)^3 2E_j} f_1 f_2 \overline{|M|^2} (1-f_3)(1-f_4)\delta^4(p)$$

with flux averaged matrixelement

$$\overline{|M|^2} = \int \Phi(E_{\nu}) L_{\mu\nu} W^{\mu\nu} \,\mathrm{d}E_{\nu}$$

Flux smears out details in hadron tensor *W* W contains 2p-2h and poss. RPA effects

GiBUU 2p2h

- $W^{\mu\nu} = F(Q^2) P^{\mu\nu}_{T}(q)$
- Integration over initial states; final state phase space not integrated,
- Final state phase space calculated in 2p cm-system, then Lorentz-boosted to lab and Pauli-blocking applied

2p-2h Problems

Double Counting Problem for 2p2h Implementation in Generators

CETUP* 07/2014

Institut für Theoretische Physik

Only adhoc ,tune' in GiBUU

- Educated guess for 2p2h in GiBUU with tuned strength
- Big open question: up to which neutrino energies (or Q²,v) are models good?
 Compare with Lightbody-Bosted analysis

Pion Production

$$\begin{split} J^{\alpha\mu}_{\Delta} = & \left[\frac{C^V_3}{M_N} (g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu}) + \frac{C^V_4}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + \frac{C^V_5}{M_N^2} (g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu}) \right] \gamma_5 \\ & + \frac{C^A_3}{M_N} (g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu}) + \frac{C^A_4}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + C^A_5 g^{\alpha\mu} + \frac{C^A_6}{M_N^2} q^{\alpha} q^{\mu} \end{split}$$

- 13 resonances with W < 2 GeV, non-resonant single-pion background, DIS
- pion production dominated by P₃₃(1232) resonance:
- **C**^V from electron data (MAID analysis with CVC)
- C^A from fit to neutrino data (experiments on hydrogen/deuterium), so far only C^A₅ determined, for other axial FFs only educated guesses

Pions

Pion production amplitude = resonance contrib + background (Born-terms) Resonance contrib V determined from e-scattering (MAID) A from PCAC ansatz Background: Up to about Δ obtained from effective field theory Beyond Δ unknown

2 pi BG totally unknown

Pion Production

discrepancy between elementary data sets →impossible to determine 3 axial formfactors

π -N inv. Mass Distributions

(a)

(b)

(c)

1.8

2

BNL data

Lalakulich et al., Phys. Rev. D 82, 093001 (2010)

ANL data

Hadronization

Observables, Experiments

multiplicity ratio

$$R_M^h(z_h,\ldots) = \frac{\left(\frac{N_h(z_h,\ldots)}{N_e(\ldots)}\right)_A}{\left(\frac{N_h(z_h,\ldots)}{N_e(\ldots)}\right)_D}$$

hadronic:
$$z_h = \frac{E_h}{\nu}$$
, p_{\perp} , ...
photonic: ν , Q^2 , W , x_B , ...

Formation Times 29.10.07

Production and Formation Times from PYTHIA

All times in lab (nucleus) frame, from Falter & Gallmeister, Phys.Lett.B630:40-48,2005

Times at low (< 1 GeV) energies

Physics dominated by isolated nucleon resonances, e.g.:

 $(e, v) + N \rightarrow \Delta \rightarrow \pi + N$

 Lifetime of ∆ determines production time of pion, formation time is zero (because hadrons, are produced in their gs, due to phase-space limitation)

Times at Low Energies

Naive guess for production time:

 $\tau_p = 1/\Gamma_0$ ($\Gamma_0 = \text{free resonance width}$)

Educated guess:

 $\tau_{p} = 1/(\Gamma_{0} + \Gamma_{coll})$ with $\Gamma_{coll} = \rho \vee \sigma$

Attenuation: EMC and HERMES

 $\sigma_{\rm pre}$ =

const (0.5)

linear

quadratic

Attenuation Data are sensitive to details of prehadronic interactions!

Prehadronic Cross Section

From now on quantum diffusion model (Farrar et al.) $\sigma_{\text{eff}} = \sigma_{\text{hN}} \left[\left(\frac{\#}{Q^2} \left(1 - \frac{t}{t_f} \right) + \left(\frac{t}{t_f} \right) \Theta(t_f - t) \right. \\ \left. + \Theta(t - t_f) \right] \right]$

I/Q² dependence not essential, linear dependence on time is essential

Summary of Formation Times

Times

At low energies, resonance regime:

- t_f = lifetime of resonance $\rightarrow N$ + hadron
- At high energies, QCD regime,

 t_{f} from string-fragmentation

Interactions

- At low energies: collisional broadening of resonances
 - \rightarrow cross sections are density dependent!
- At high energies: nuclear attenuation

SIS – DIS by PYTHIA

Shallow Inelastic Scattering, interplay of different reaction mechanisms → Ambiguity to switch from one mechanism to the other

CETUP* 07/2014

Institut für Theoretische Physik

Code and Theory Checks

Check: protons

Curves: GiBUU

Proton transparency

Electrons as Benchmark for GiBUU

CETUP* 07/2014

No free parameters! no 2p-2h, contributes in dip region and under Δ

O. Benhar, spectral fctn

Institut für Theoretische Physik

Check: Pion Absorption

Pion potential essential, as well as Coulomb

Note: Pion absorption does not provide a sensitive test for fsi with nucleons

Check: pions in HARP

HARP small angle analysis 12 GeV protons

Curves: GiBUU

K. Gallmeister et al, NP A826 (2009)

Check: Pion DCE

Data: Wood et al, GiBUU: Buss et al, Phys.Rev. C74 (2006) 044610

Check: Pions in Nuclei

CETUP* 07/2014

$\gamma \rightarrow \pi^0$ on Pb

Photons illuminate the whole nucleus, test various pion mean free paths

Data: TAPS, Krusche et al

As in neutrino-induced reactions pions are produced inside the nucleus, more sensitive than pion absorption checks

Check: Pions in Nuclei

Data: TAPS Krusche et al

Target: Ca

JLAB *ρ* **Production**

CETUP* 07/2014

Exp: Hafidi et al, Hall B Phys.Lett. B712 (2012) 326-330

GiBUU: Gallmeister et al. Phys.Rev. C83 (2011)

Pion Production at JLAB

Exp: B. Clasie et al.,Hall C Phys. Rev. Lett. 99, 242502 (2007).

GiBUU: Kaskulov et al, Phys.Rev. C79 (2009) 015207

Pions from HERMES at 27 GeV

Data: Airapetian et al Curves: GiBUU Nucl.Phys. A801 (2008) 68-79

Double Hadron Attenuation

Glauber: fails at low z_{2} .

Low z hadrons show pile-up through final state interactions

Implication for (e,e'2p)?

HERMES@12 GeV

JLAB π^+ production

Data: W. Brooks et al., JLAB

Same parameters as for HERMES

Now to Neutrinos

Experimental Verification of 2p2h

Nucleon Knock-Out for various processes

Only true QE can be identified

Avalanching shadows Initial reaction

Nucleon Knock-out and 2p-2h

Nucleon Knock-out and 2p-2h

MB flux

Only 1pXn channel is reasonably close to true QE

MINERvA QE Analysis

QE is a small part of the X-section over a large X-section

Background identification depends on generator

→ QE signal generator-dependent

MINERvA Analysis

Mosel et al., PR D89 (2014) 093003

Flux cuts are dangerous: distort true distribution! Minerva cuts out (too?) large part Energy reconstruction strongly affected by *all* channels, not just 2p2h!

CETUP* 07/2014

Institut für Theoretische Physik

Minerva Q² Reconstruction

True Q² distribution, *all* events

CETUP* 07/2014

Institut für Theoretische Physik

MINERvA Q² Reconstruction

Only 0-pion events

Dramatic sensitivity to reconstruction in peak area:can be removed with generator, But: how good is your generator? accuracy of ,data'?? Mosel et al., PR D89 (2014) 093003

Nucleon Knock-out at MINERvA

Extremely strong fsi: fast initial proton becomes many low-energy nucleons Institut für

CETUP* 07/2014

Theoretische Physik

Pion Production

from: Phys.Rev. C87 (2013) 014602

1p-1h-1 π X-section:

$$\mathrm{d}\sigma^{\nu A \to \ell' X \pi} = \int \mathrm{d}E \int \frac{\mathrm{d}^3 p}{(2\pi)^3} P(\mathbf{p}, E) f_{\mathrm{corr}} \,\mathrm{d}\sigma^{\mathrm{med}} P_{\mathrm{PB}}(\mathbf{r}, \mathbf{p}) F_{\pi}(\mathbf{q}_{\pi}, \mathbf{r}) \ .$$

Pion fsi (scattering, absorption, charge exchange) handled by transport, Includes Δ transport, consisent width description

Pion Production in MB

Spectral shape determined by pi-N-Delta dynamics in nuclei, spectral disagreement due to choice of Bayes prior distributions???

Pion Production in MB

Flux renormalization (data x 0.9 (cf. Nieves QE analysis))

Pion Production

Upper line: BNL input Lower line: ANL input

Tendency for theory too low, more so for π +, at E > 1 GeV

DIS and higher resonances contribute for E > 1 GeV

Discrepancy mainly in tail of flux distributions (large uncertainty)

Pions at MB

Pions at MiniBooNE are compatible only with the (higher) BNL input

Pion FSI at MINERvA

CETUP* 07/2014

1/A d σ /dT $_{\pi}$ (10⁻³⁸ cm²/GeV)

MINERvA Pions

Data: Eberly et al

GiBUU preliminary

Pions at MINERvA compatible only with lower ANL data

CETUP* 07/2014

Institut für Theoretische Physik

MINERvA Pions

MINERvA cuts flux from 1.5 – 10 GeV
Generator Dependence

MINERvA cuts invariant mass W > 1.4 GeV
Generator Dependence

Effects of cuts

W distribution for Δ is significantly broadened due to Fermi-motion, Cut at 1.4 GeV cuts away 25% of total strength Note: $W^2 = M^2 + 2 M v - Q^2$.ne. $(p + q)^2$

Pions at various experiments

Multi π^+ , target: C for MB, T2K and MINERvA, Ar for LBNE

Kaons at MINOS and NOvA

Lalakulich et al, PR D86, 014607 (2012)

FSI increase the cross section! Semi-inclusive X-sections much larger than exclusive ones (1 order of magnitude, cf. Athar, Alvarez-Ruso)

MINERvA

Fsi are most important, but different, for pions and kaons Elementary kaon vertices ,shielded' by secondary production: $\pi + N \rightarrow K + \Lambda$

Coherent Pion Production

Coherent pion production: not really part of a MC generator, since coherent process.

Nakamura, Sato and Lee (PRC81 (2010) 035502) have given (nearly) correct theory. Supersedes oversimplified earlier models, but nowhere used. WHY???

Conclusions

- Elementary pion data still uncertain, MiniBooNE and MINERvA data show tension
- Kaons at higher energies are dominantly produced in DIS events, together with pions. Secondary kaon production large → elementary kaon production difficult in MINERvA

A plea to the experimentalists: show data with as little model (generator) dependence as possible. Flux cuts and W cuts introduce generator dependence into data.

Importance of Generators

- A good generator does not have to fit the data, provided it is right (meaning: theoretically correct and consistent)
- A good generator does not have to be right, provided it fits the data
- Let us strive for the right generator that is as much state-of-the-art as the experimental equipment!

