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Purpose of this talk 
 - This talk is prepared for students who want to measure neutrino cross-sections for their 
PhD theses. 
 
 - It is especially focusing on absolute flux-integrated topological differential cross section 
measurement [1]. The most important model-independent result to provide to the community. 
 
absolute:          normalization is specified 
flux-integrated: neutrino flux shape is not unfolded 
topological:       interaction is defined from final state particles 
differential:       cross section is function of measured kinematic variables 
 
 - MiniBooNE developed number of techniques necessary to measure these, and this talk 
covers technical aspects from the CCQE, NCEL, NC1πo, CC1π+, CC1πo, antiCCQE, 
antiNCEL. These are good reference but not the best, T2K should perform even better 
analyses!  
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PPD neutrino talk (2010), http://minerva-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5571 

[1] Can anybody invent a better name for this?	  
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Goal of neutrino cross section measurement 
 - Goal is to measure model-independent cross section as much as possible. This is what 
theorists want to study their models.  
 
Model-independent cross-section is 
 - absolute (flux is not tuned from own measurement) 
 - the dependence of signal channel MC is minimum 
 - detector efficiency must be corrected (so it is detector model-dependent) 
 - no assumption on kinematics (cf neutrino energy reconstruction with lepton kinematics 

 assume CCQE interaction and neutron at rest), which often means cross-section is 
 function of measured variables (differential cross-section) 

  
Formula of flux-integrated differential cross-section 
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CCQE (CC0π) 
PRD81(2010)092005 
FERIMILAB-THESIS-2008-64 
 
Signal definition: 1 µ + 0 π + N protons 
 
Why we measure 
 - Test CCQE models 
 
Why MiniBooNE measure 
 - Largest sample (~40%) to test detector efficiency, veto efficiency, event uniformity, timing, etc 
 - Best sample to study νeCCQE kinematics (=oscillation signal) 
 - νµCCQE to constraint νe from µ-decay in oscillation sample 
 
It is important to measure CCQE! 
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NCEL 
PRD82(2011)092005 
FERIMILAB-THESIS-2009-47 
 
Signal definition: 0 µ + 0 π + N protons 
 
Why we measure 
 - Additional test of CCQE models 
 - Measurement of Δs 

 - value is still controversial  
 - connection of form factor (elastic) and PDF (inelastic) 

	

Why MiniBooNE measure 
 - NCEL to constrain oil optical property 

 oil optical property is the largest detector systematics. NCEL was used to assign 
 variation. 

 
It is important to measure NCEL! 
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MiniBooNE collaboration, 
PRD82(2011)092005 
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NC1πo 

PRD81(2010)013005 
FERIMILAB-THESIS-2010-49 
 
Signal definition: 0 µ + 1 πο + N protons 
 
Why we measure 
 - The biggest misID background for νe appearance experiments 

 all oscillation experiments perform internal measurement to constrain 
 
Why MiniBooNE measure 
 - πo mass peak for energy calibration 
 - measured πo kinematics is used to correct simulation 
 
It is important to measure NC1πo! 
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MiniBooNE collaboration, 
PRD81(2010)013005 

by Colin Anderson 
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CC1π+ 

PRD83(2011)052007 
FERIMILAB-THESIS-2009-27 
 
Signal definition: 1 µ + 1 π+ + N protons 
 
Why we measure 
 - The biggest misID background for νµ disappearance experiments 
 - kinematic distortion by this background must be understood 
 
Why MiniBooNE measure 
 - highest purity channel (~90%) 

 Michel electron tagging achieve extremely pure sample 
 - Constrain wrong sign background in anti-neutrino mode 

 CC1π+ in anti-ν mode is definitely from ν-contamination 
 
It is important to measure CC1π+! 
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MiniBooNE collaboration, 
PRD83(2011)052007 

by Mike Wilking 
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CC1πo 

PRD83(2011)052009 
FERIMILAB-THESIS-2010-9 
 
Signal definition: 1 µ + 1 πο + N protons 
 
Why we measure 
 - There is no coherent channel, so it is useful to understand coherent/resonance Δ 

 production  
  
Why MiniBooNE measure 
 - The last possibly measurable channels, by this, MiniBooNE measure 90% of interaction 

 cross sections in ν-mode 
 
It is important to measure CC1πo! 
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MiniBooNE collaboration, 
PRD83(2011)052009 

by Bob Nelson 
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anti-CCQE 

PRD88(2013)032001 
FERIMILAB-THESIS-2013-14 
 
Signal definition: 1 µ + 0 π + N protons 
 
Why we measure 
 - Additional test of CCQE models  
 - necessary measurement for CPV measurement 
  
Why MiniBooNE measure 
 - To understand anti-νeCCQE interaction kinematics (oscillation signal） 
 - anti-νµCCQE constraint for anti-νe from µ-decay 
 - Tune wrong sign components in anti-ν mode beam 
 
It is important to measure antiCCQE! 
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MiniBooNE collaboration, 
PRD88(2013)032001 

by Joe Grange 
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anti-NCEL 

arXiv:1309.7257 
FERIMILAB-THESIS-2012-29 
 
Signal definition: 0 µ + 0 π + N protons 
 
Why we measure 
 - Complete all 4 QE measurements (CCQE, NCEL, antiCCQE, antiNCEL) 
  
Why MiniBooNE measure 
 - test beam-dump mode run (dark matter search)  

 anti-ν mode beam was used to test MiniBooNE dark matter sensitivity. antiNCEL was the 
 biggest background. 

 
It is important to measure antiNCEL! 

04/02/14	  

 2. Overview of MiniBooNE xs measurements 

Teppei	  Katori	  

MiniBooNE collaboration, 
arXiv:1309.7257 

by Ranjan Dharmapalan 
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To be published 
 - CC inclusive cross section  
 - 1 µ + 0 π +1 proton (2 track CCQE) 
 
Possibly measured in T2K, but not in MiniBooNE 
NC1π+ (0 µ + 1 π+ + N protons) 
 - another resonance only channel 
1 µ + 1 π+ + 1 proton  
 - 3 track CC1π+, high pure Δ++ measurement 
1 µ + 0 π + 2 protons 
 - high pure MEC? 
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i  :true index 
j  : reconstructed index 
 
3.1 Signal definition 
3.2 Background removing 
3.3 Unsmearing 
3.4 Efficiency correction 
3.5 Flux correction 
3.6 Target number correction 
3.7 Binning 
3.8 Systematic errors 
3.9 Data format 

Absolute flux-integrated topological differential cross section formula 

bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 
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Reconstructions and cuts 
 - You have good reconstruction and all cuts to select your data sample, congratulations, you 
are ready to measure cross sections!  
(you can spend another year in grad school from there!) 
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Reconstructions and cuts 
 - You have good reconstruction and all cuts to select your data sample, congratulations, you 
are ready to measure cross sections!  
(you can spend another year in grad school from there!) 
 
Good sample 
 - depends 
 - reasonable statistics to make few bins 
 - measure distributions as many as possible 
 - Purity ~ 50% or more (improving purity à improving systematics) 
 
Before you start systematics analysis, you should know rough total final error. 
 - lose/tight cuts  
 - change bin size 
 - sideband constraint 
 - which differential cross section to measure 
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Reconstructions and cuts 
 - You have good reconstruction and all cuts to select your data sample, congratulations, you 
are ready to measure cross sections!  
(you can spend another year in grad school from there!) 
 
Good sample 
 - depends 
 - reasonable statistics to make few bins 
 - measure distributions as many as possible 
 - Purity ~ 50% or more (improving purity à improving systematics) 
 
Before you start systematics analysis, you should know rough total final error. 
 - lose/tight cuts  
 - change bin size 
 - sideband constraint 
 - which differential cross section to measure 
 
We don’t expect more statistics in near future, and most of analyses will be ~ 10-20% error. 
Any cross section data from T2K are unique and precious. WE SHOULD PUBLISH ASAP!  
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Topological cross section 
ex) CC1πo = “ 1 µ + 1 πο + N protons” 
 i. This definition includes πo production by final state interactions (FSIs).  
 ii. This definition excludes CC1πo interaction when πo is lost by FSIs. 
 
This is the necessary definition for the theorists to understand final state interactions (FSIs) 
without biases. Don’t rely on the definition given by your interaction generator. “Signal” 
needs to be added to signal MC, and “Not signal” needs to be removed from signal MC. By 
this definition, FSI error of pion shouldn’t be big, but detector pion absorption is part of final 
error.  
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NCQE gamma measurement 
 - signal is defined to be gamma from 
NCQE interactions. 
 - gamma ray from FSI is not signal. 
 
Alternatively, any gammas from any NC 
interaction can be defined 
“signal” (topological cross section), in this 
way, most of FSI error is gone (smaller 
systematics), signal statistics is higher, and 
data is less biased. Drawback is now 
theorist need to calculate FSI by 
themselves. 

T2K, ArXiv:1403.3140 
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Topological signal definition 
 1. Statistics is higher 
You have more signal, so statistics is higher 
 
 2. Systematic error is lower 
Nuclear effect is now signal, not error. Likewise, signal channel model error should be 
large. 
 
 3. Less biased 
There is no cross-section model dependent selection nor correction. Data is less biased 
and preferred by theorists.  
 
Theorists want to find how much MEC from our data using their state-of-the-art nuclear 
models. We are responsible to provide unbiased data containing these information.  
 
If we use MEC model in our simulation for the selection of events, this mean we try to 
find how much MEC in our data based on our knowledge. This has 2 bad consequences, 
 1. theorists lose jobs 
 2. result is wrong 
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NCQE gamma measurement 
 - signal is defined to be gamma from 
NCQE interactions. 
 - gamma ray from FSI is not signal. 
 
Alternatively, anay gamma from NC 
interaction can be defined 
“signal” (topological cross section), in this 
way, most of FSI error is gone (smaller 
systematics), signal statistics is higher, and 
data is less biased. Drawback is now 
theorist need to calculate FSI by 
themselves. 

T2K, ArXiv:1403.3140 
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 3.1 Signal definition 
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Tracker CCQE analysis 
 - signal is defined from NEUT channel 
number. 
 
Alternatively, signal can be defined “1 
muon-like track”. You can measure total 
cross section by this way, too. Error should 
be smaller because any processes making 
“1 muon-like track” becomes signal. Total 
cross section has reconstruction bias so it’s 
still harder for theorists to get info of MEC 
from this shape of this. 

T2K, TN147 
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Primary channel cross section 
By subtracting CC1π+ without pion background distribution (from MC with sideband 
correction), “pure” CCQE cross section is published (which is not, due to 2p-2h). Pure 
channel cross section is helpful for some theorists who cannot simulate whole set of cross 
sections.    

CCQE 
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Primary channel cross section 
Pure channel cross section is also useful to compare with other data (especially most of old 
data are published in pure channel cross section).  

CC1π+/CCQE 

CC1π+/CCQE topological cross section ratio CC1π+/CCQE primary chnnel cross section ratio 
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 3.1 Signal definition 
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Mixed target 
Cross section result from mixed target is complicated. In NCEL, differential cross section is 
interpreted ν+N, which means sum of ν+p (carbon), ν+p (hydrogen), and ν+n (carbon).  

NCEL 

Forward folding 
Migration matrices (Tptrue and 
Tprecon) are provided for ν+p 
(carbon), ν+p (hydrogen), and ν+n 
(carbon), with and without FSI, so 
that theorists can fold their xsec 
models to compare with measured 
Tp. 
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Mixed target 
Cross section result from mixed target is complicated. In NCEL, differential cross section is 
interpreted ν+N, which means sum of ν+p (carbon), ν+p (hydrogen), and ν+n (carbon).  

NCEL 

Efficiency difference 
The efficiency difference of each 
interaction is provided to 
reproduce differential cross section 
from microscopic modes. 
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Function of measured variables 
Differential cross section results with function of measured variables (momentum, direction, 
etc) has no reconstruction bias and preferred.  
 
Function of reconstructed variables 
Cross section results of reconstructed variables (especially Q2 and Eν) are model-dependent. 
However, flux-unfolded total cross section function (function of true neutrino energy) is the only 
way to compare results with other experiments. 

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 

CCQE 
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 
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Background subtraction method 
 - It is preferred because signal doesn’t depend on signal MC explicitly. 
 - Normalization of background must be known. 
 
 
Purity correction method 
 - Signal explicitly depends on signal MC (=bad), potentially shape is distorted by signal to be 

 measured (depending on size of error). 
 - However, if you don’t know the normalization of background, this may be justified? 

di −bi di ×
si

si +bi

Background subtraction Purity correction 

Background subtraction vs Purity correction 

Bkgd subtract 
Signal frac 

CCQE 

For high purity CCQE 
sample (77%), difference 
is only large at lowQ2, 
where background is 
~30% 

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 



32	  04/02/14	  

 3.2 Background removing 

Teppei	  Katori	  

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL Background subtraction method 

 - It is preferred because signal doesn’t depend on signal MC explicitly. 
 - Normalization of background must be known. 
 
 
Purity correction method 
 - Signal explicitly depends on signal MC (=bad), potentially shape is distorted by signal to be 

 measured (depending on size of error). 
 - However, if you don’t know the normalization of background, this may be justified? 
 
 
Hybrid 
 - External background (=cosmic rays) are measured from sideband (=known normalization), 

 and subtracted. 
 - Internal background (=NC1π+ where pion is below detection threshold) is removed by purity 

 correction. 

di −bi di ×
si

si +bi

Background subtraction Purity correction 

NCEL anti 
NCEL 

(di-ei) x 
s'i

s'i+bi
External background (measured)	   Internal background 

(no constraint) 
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CCQE NCEL CC1π+ CC1πo anti 
CCQE 

anti 
NCEL Data driven correction 

 - Almost all analyses use sideband data to correct background distribution in signal boxes 
 
External background measurement 
 - NCEL analysis measure amount of background coming from outside, with function of R and 
Z, to extrapolate background in fiducial volume 

NCEL 

NCEL 

External background enhanced sample 
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CCQE NCEL CC1π+ CC1πo anti 
CCQE 

anti 
NCEL Data driven correction 

 - Almost all analyses use sideband data to correct background distribution in signal boxes 
 
Flux error double counting? 
 - For background dominant sample, background subtraction makes flux error larger. 
 - Way to avoid is to define background excursion after removing normalization correlated with 
signal (shape-only background subtraction) 
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CCQE NCEL CC1π+ CC1πo anti 
CCQE 

anti 
NCEL Data driven correction 

 - Almost all analyses use sideband data to correct background distribution in signal boxes 
 
Cross section error 
 - Main xsec error is the error assigned on background models 
 - Xsec models, such as FSIs?, change true-recon relationship for hadrons (smearing)  
 - Xsec models kinematics, i.e., cuts (=efficiency) 
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bj :predicted background 
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T :integrated target number 

Φ :integrated ν-flux 
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Unfolding 
 - The process removing the detector effects, mainly smearing and detector cut, is called 
unfolding. It is often easier to think by separating unfolding process to 2 parts,  unsmearing 
and efficiency correction. We focus on unsmearing here. 
 
Detector error 
 - Detector model affect smearing. 
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 3.3 Unsmearing 
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Inverse response matrix method 
- Inverse response matrix method is the bias-free unfolding method, but this method doesn’t 
work for anybody. Typically, it makes rapid oscillated solution (Gibb’s phenomenon). Say, 
response matrix R gives the smearing and detector cut of true distribution a to measured 
distribution b in MC, it’s inverse can be used to unfold data b to true distribution a 
 

None 

CCQE 

fake data 
Bayesian unsmearing (next) 
Inverse response matrix method 

  

€ 

βi = Rijα j → aj = (R)ji
−1bi

Inverse response matrix method is very 
sensitive with MC statistics. It doesn’t 
work for sparse matrix,  it cannot handle 
large number of bins, it cannot deal 
histogram with zero-event bins. But all 
these are features for differential cross 
section! 
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Tikhonov regularization method 
 - The regularization term from the prior knowledge of distribution (e.g., how smooth is) can 
stabilize inverse response matrix. The bias is introduced through the linear operator L and τ. 
 
 
 
Regularization parameter τ should be chosen  with care. 
 - too small τ doesn’t regulate matrix inversion 
 - too large τ too much smooth out response matrix R 
 
Solution is, 

NC1πo	  	  

βi =Rijα j → aj = (R)ji
−1bi → (Ra−b)TV(b)−1(Ra−b)+ τ(La)T(La) ~ 0

U' = [R + τV ⋅RT−1(LTL)]
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Höcker, Kartvelishvili  
NIM.A372(1996)469 
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Iterative Bayesian method 
 - Unsmearing is based on the Bayesian statistics, so bias is introduced from MC knowledge 
 
 - Efficiency ε is defined by true distribution after cut µ to true distribution before cut α. 
M-matrix gives transformation from measured distribution to true distribution after cut. It give 
the true distribution after cut µ on projection on one axis. 
 
 
 
 
 
Now, define U-matrix by normalizing  
M-matrix with other axis, 
 
 
 
So, background subtracted data d0th can be unsmeared and efficiency corrected to obtain 
unfolded cross section d1th 
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Iterative Bayesian method 
 - Unsmearing is based on the Bayesian statistics, so bias is introduced from MC knowledge  
 
 - It is based on Bayes’ theorem 

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 
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Iterative Bayesian method 
 - Unsmearing is based on the Bayesian statistics, so bias is introduced from MC knowledge 
 
If initial guess µ (=prior probability of Bayesian statistics) is not so close to nature, we can 
improve U-matrix by assuming d1th is close to nature 
 
 
 
 
 
 
 - This iteration process usually converge <5 times. 0th iteration is not bad at all. 
 - Signal model dependence will become systematic error, this is done by varying M-matrix by 
changing systematics. So signal cross error is part of final error, but shape only. 
 - This method also fails if M-matrix is highly non-diagonal. 
 - 0th and 1st iteration difference of data is also included as systematic error (?). 
  
Iterative Bayesian method works for, any number of bins, including zeros, sparse matrix, MxN 
matrix, background non-subtracted sample etc... 

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 
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D’Agostini,  
NIM.A362(1995)487 
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How to construct M-matrix? Measured variables 
 - It is desired to present differential cross section with function of measured quantities, such 
as muon energy, pion angle, etc, because they are not biased by reconstruction.  
 
i. It is straightforward if you measure lepton kinematics.  
True lepton kinematics are the true information for M-matrix. 
 
 
ii. If you measure hadronic events (e.g., πo momentum),  
your “true” kinematics is after FSI,  
i.e., particle exiting the nuclei. 

CC1π+	  	   CC1πo	  	  NC1πo	  	  

ν	


π	


p	  

rescaJering	  

not	  true	  pion	  
momentum	  	  

true	  pion	  
momentum	  	  

CCQE 

NCEL ν	
 p	  

all	  kind	  
of	  FSI	  

not	  true	  nucleon	  
momentum	  	  

true	  nucleon	  
momentum	  	  

p	  

n	   n	  
p	  

p	  

iii.“true” momentum is defined by sum of 
all outgoing nucleons, because that is  
the observables.   

anti 
CCQE 

anti 
NCEL 

D’Agostini,  
NIM.A362(1995)487 
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CCQE 
anti 
CCQE NCEL 

anti 
NCEL 

CC1π+	  	   CC1πo	  	  

CCQE NC1πo CC1π+ CC1πo anti 
CCQE 

How to construct M-matrix? Reconstructed variables 
- The definition of true kinematics is tricky, because you have choices.  
 
i. True Q2 is defined by reconstructed Q2 from true kinematics 
For example, CCQE, true Q2 is defined “reconstructed Q2 from true muon energy and angle”, 
and we call it “Q2

QE” to remind people this is reconstructed under QE assumption.   
 
ii True Q2 is defined by true Q2 in MC 
This may be useful to compare with old data, only presented by this way 
 
iii True Eν is defined by true Eν in MC 
For example, CCQE, Eν is called “EνQE,RFG”  
to remind people this is reconstructed  
under QE assumption then  
unfolded by assuming RFG  
model.  
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No unsmearing 
 - If you know smearing is weak and statistics is low, no unsmearing may be the best option.  
 
So what is the criteria? 
 
 
 

NC1πo	  	  
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No unsmearing 
 - If you know smearing is weak and statistics is low, no unsmearing may be the best option.  
 
So what is the criteria? 
 
Bias of unsmearing 
 - There is no perfect unfolding, unfolding method can be different depending on your 
distribution. Biases may be one of criteria. 
 
i. Inverse response matrix method: 
No bias, but it only works for very few bin histogram  
 
ii. Tikhonov regularization 
Bias is introduced from linear function and  
regularization parameter. It also requires a fair amount of events. 
 
iii. Iterative Bayesian method 
Bias is introduced from prior knowledge of  
MC. It works for any distribution. 
 
iv. No unsmearing 

NC1πo	  	  

Cowan,   
“Statistical Data Analysis” 

  

€ 

BTikhonov = " U ⋅ (Ra −b)[ ]i
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BInverse = 0
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πo kinematics 
 - Comparing biases and histograms by eyes, πo-kinematics are unfolded by 3 different methods. 
Pπ(ν)             : Tikhonov regularization 
cosθπ(ν)        : Iterative Bayesian 
Pp(anti-ν)      : Iterative Bayesian 
cosθπ(anti-ν) : No unsmearing 

NC1πo	  	  

No	  unsmear	  
inversion	  
Bayesian	  
Tikhonov	  reg.	  

No	  unsmear	  
inversion	  
Bayesian	  
Tikhonov	  reg.	  
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 
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 3.1 Signal definition 
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 3.3 Unsmearing 
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 3.5 Flux correction 

 3.6 Target number 

 3.7 Binning 

 3.8 Systematic errors 

 3.9 Data format 
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CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 

Looks straightforward, no? 
 - The efficiency is defined as true distribution after cut µ divided by that before cut α. 
Because of the nature of ratio, ε is insensitive with many systematic variations common for 
numerator and denominator such as flux error and cross section error. The detector error is 
important.  
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CCQE Muon energy unfolding 
 - Because of the resolution of muon 
energy, it is possible to recover events 
outside of kinematic cut by unfolding 
process (detector model dependent) 
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CCQE Muon energy unfolding 
 - Because of the resolution of muon 
energy, it is possible to recover events 
outside of kinematic cut by unfolding 
process (detector model dependent) 
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 
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Integral region of flux 
 - Flux is integrated and removed. There are many ways how to introduce flux error.  
 
i. Flux is integrated in all spectrum region and it’s variation is the flux error. 
This choice gives rather large flux error (e.g., ~12% for NC1πo). 
 
 
ii. Cutoff for flux integration 
Flux is integrated in [0.5-2.0] GeV, and error is  
variation of that. In this way, you can avoid flux  
variation at low energy which don’t contribute to  
the channel. Error is smaller, ~7%. 
 
 
 
iii. Flux is integrated all region, but flux error is calculated separately 
Flux variation is calculated by variation of numerator of efficiency term (rate).  
In this way, flux variation is automatically limited within the region relevant to cross section 
measurement. Both normalization and shape flux error are taken into account.  
Error is smaller, ~8%. 

Flux fractional uncertainty  

NC1πo 

CCQE NCEL 
anti 
CCQE 

anti 
NCEL 

CC1πo 
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Integral region of flux 
 - Flux is integrated and removed. There are many ways how to introduce flux error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
iii. Flux is integrated all region, but flux error is calculated separately 
Flux variation is calculated by variation of numerator of efficiency term (rate).  
In this way, flux variation is automatically limited within the region relevant to cross section 
measurement. Both normalization and shape flux error are taken into account.  
Error is smaller, ~8%. 

CCQE NCEL 
anti 
CCQE 

anti 
NCEL 
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CC1π+ 

Integral region of flux 
 - Flux is integrated and removed. There are many ways how to introduce flux error. 
 
iv. cross sections are function of neutrino energy 
In this way, integrated flux in Eν bin is unfolded in each bin of measured variables (e.g., pion 
kinetic energy), then flux error only relevant Eν region apply to measured variables. This 
minimizes flux error at many region. 

Pion kinetic energy- neutrino energy 2-dimentional cross section  
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 
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What is the real fiducial volume? 
 - Fiducial cut is made based on reconstructed vertices.  
 - Fiducial volume is based on true dimension.  
 
In MiniBooNE, fiducial cut is smaller than fiducial volume, to take account possible vertex 
mis-reconstruction. 
i. MiniBooNE is ~600cm radius sphere.  
ii. MC is generated within 550cm sphere.  
iii. The fiducial cut is 500cm sphere. 
In this way, we can guarantee cross section is calculated in the region where we believe 
uniform. 
 
- In general, data-MC agreement is not enough for absolute cross section measurement. 
Even data and MC perfectly agree in reconstructed spectrum, you need to worry the 
absolute calibration of vertex, target volume, and density. 
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 
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CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL Statistics 

Bin width is finer at high statistics region, and coarser at low statistics region. 
 
Systematics 
Too fine bins with large shape systematic make no sense? 
 
Reconstruction bias 
For CCQE analysis, reconstruction bias was added to bin resolution. 

resolution + reconstruction bias 

total cross section before rebinning 

CCQE 
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 
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 3.8 Systematic errors 

Systematic error is 
calculated from the 
difference of systematics 
varied cross section result 
and central value cross 
section result. 
 
 
 
 
4 parts are related with 
systematic error. Don’t vary 
all of them with all 
systematics! You need to 
think about the effect of 
each term 
3.8.1 background 
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3.8.5 Target number  
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 

  

€ 

dσ
dx

# 

$ 
% 

& 

' 
( 

i

=

Uij(dj −bj)
j

∑

εi(ΦT)Δxi

 3.8 Systematic errors 

Systematic error is 
calculated from the 
difference of systematics 
varied cross section result 
and central value cross 
section result. 
 
 
 
 
4 parts are related with 
systematic error. Don’t vary 
all of them with all 
systematics! You need to 
think about the effect of 
each term 
3.8.1 background 
3.8.2 U-matrix 
3.8.3 Efficiency 
3.8.4 Flux term 
3.8.5 Target number  

  

€ 

Eij=
dσ
dx( )

i
−

dσs

dx
$ 
% 
& ' 

( 
) 

i

* 
+ , 

- 
. / 

dσ
dx( )

j
−

dσs

dx
$ 
% 
& ' 

( 
) 

j

* 

+ , 
- 

. / 

dσ
dx

"

#
$

%

&
'
i

s

≠

Uij
s (d j − bj

s )
j
∑

εi
s (ΦsTs )Δxi



63	  04/02/14	  Teppei	  Katori	  

bj :predicted background 
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To reduce cross section error 
 - higher purity 
 - sideband (then error is measurement) 
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bj :predicted background 
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To reduce flux error 
 - use cancellation with signal MC  
   - purity correction method 
   - shape-only background subtraction method  
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The error is dominated by detector error (flux error 
cancels). For Bayesian unfolding, signal MC gives 
error here, too. 

Uij	  :unsmearing	  matrix	  
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Detector error goes here (flux and 
xsec error cancel).   

Efficiency variation 
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Integrated flux variation 

Flux normalization error is here. You may need to 
apply cutoff to remove flux variation irrelevant for 
cross section measurement, to avoid 
overestimation of error. 
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Total target number 

Precise definition of active volume may 
remove the bias of target number. 
(this is not simulated effect, i.e., incorrect 
fiducial volume just give wrong answer) 



69	  04/02/14	  Teppei	  Katori	  

 3.8.6 Systematics error matrix production 

Unisim 
 
The error matrix can be made by changing one of systematics and calculate differential 
cross section (dσs/dx), then take a difference with differential cross section calculated with 
central value MC (dσ/dx).  
 
 
 
 
 
Multisim 
 
If there is a correlation between systematics (input error matrix), it should propagate 
correctly. In this case, number of dσs/dx with different set of systematics drawn from input 
error matrix make many error matrices. Then, we take average of them to construct 
output error matrix. 
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 3.8.6 Multisim 

cross section error for EνQE  

repeat this exercise many times to create 
smooth error matrix for EνQE 

1st  cross section model 
2nd cross section model 
3rd cross section model 
                 ... 

n1  n2  n3  n4  n5  n6  n7  n8       EνQE (GeV) 

Q
E	  σ	  norm

	  	  

MA	  

cross	  secBon	  
parameter	  space	  

Minput (xs) =

var(MA) cov(MA,Elo ) 0

cov(MA,Elo ) var(Elo ) 0

0 0 var(σ − norm)

#

$

%
%
%
%

&

'

(
(
(
(

 MAQE               6% 
 Elosf                  2% 
 QE σ norm      10% 

ex) cross section uncertainties 

correlated 

uncorrelated 
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 3.8.6 Multisim 

cross section error for EνQE  

repeat this exercise many times to create 
smooth error matrix for EνQE 

1st  cross section model 
2nd cross section model 
3rd cross section model 
                 ... 

n1  n2  n3  n4  n5  n6  n7  n8       EνQE (GeV) 

  

€ 

Moutput (xs) =

var(n1) cov(n1,n2 ) cov(n1,n3) !
cov(n1,n2 ) var(n2 ) cov(n2,n3) !
cov(n1,n3) cov(n2,n3) var(n3) !
" " " #

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

€ 

Moutput (xs)[ ]ij ≈
1
S

Ni
k (xs)−Ni

MC( )
k

S

∑ Nj
k (xs)−Nj

MC( )

Output cross section error matrix for EνQE 
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 3.8.7 Statistics error 

Statistical error propagation 
Due to unfolding, there is data statistical error on off-diagonal term of error matrix. The 
diagonal statistical error can be propagated through Jacobian. It is weakened, and smoothly 
migrate to off diagonal. MC statistics can be transferred by similar way if it is large. 
 
 
 
 
 
Statistical error through Multisim 
Fake data set is made by applying fluctuation on data within data statistics. Then statistics 
multisim output error matrix is made from fake data set. 
 
 
Statisical error through detector error matrix 
Detector error multisim MC set is made with data statistics (MiniBooNE historic reason), so 
the multisim output error matrix has ~data statistical error, too. 

CCQE 

NCEL 

NC1πo 

CC1π+ 

CC1πo 

anti 
CCQE 

anti 
NCEL 

  

€ 

Vij
dσ
dx

# 

$ 
% 

& 

' 
( = Vij

U(d− b)∑
ε(ΦT)Δx

# 

$ 

% 
% 

& 

' 

( 
( 

=
∂ U(d−b)∑

ε(ΦT)Δx[ ]
∂d

/ 

0 
1 
1 

2 

3 
4 
4 
ki

Vkm[d]
∂ U(d−b)∑

ε(ΦT)Δx[ ]
∂d

/ 

0 
1 
1 

2 

3 
4 
4 
mj
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 3.8.8 Correlated systematic errors between samples  

Correlated errors between T2K cross section results 
T2K used many MiniBooNE cross section results for the global fit, however, MiniBooNE 
data errors should be correlated because all of them are measured by the same beamine 
and the detector. 
 
To avoid same mistake, we should provide correlated errors? For example 
 1. flux normalization 
 2. π/K ratio (Mark H.) 
Providing these 2 numbers could reduce over all errors dramatically for the global fit. 
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bj :predicted background 

dj :data vector 

Uij	  :unsmearing	  matrix	  

T :integrated target number 

Φ :integrated ν-flux 

εi :efficiency 

Δxi :bin width 

  

€ 

dσ
dx

# 

$ 
% 

& 

' 
( 

i

=

Uij(dj −bj)
j

∑

εi(ΦT)Δxi

 3.1 Signal definition 

 3.2 Background removing 

 3.3 Unsmearing 

 3.4 Efficiency correction 

 3.5 Flux correction 

 3.6 Target number 

 3.7 Binning 

 3.8 Systematic errors 

 3.9 Data format 
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 3.9 Data format  

Tables on MiniBooNE data release website 
 - In MiniBooNE, all cross section tables, as well as flux table, are released in website 
http://www-boone.fnal.gov/for_physicists/data_release/ 
 
Cross section format 
 - Flux-integrated double differential cross section 
  
 - Flux integrated single differential cross section 
 
 - Flux-unfolded total cross section 
 
Additional tables 
 - signal-like background tables are presented, so that people can use either exclusive 
cross section or effective cross section. 
 
 - response matrix R is presented so that people can calculate MiniBooNE  
observed energy spectrum 

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 
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 3.9 Data format  

Tables on MiniBooNE data release website 
 - In MiniBooNE, all cross section tables, as well as flux table, are released in website 
http://www-boone.fnal.gov/for_physicists/data_release/ 
 
Cross section format 
 - Flux-integrated double differential cross section 
  
 - Flux integrated single differential cross section 
 
 - Flux-unfolded total cross section 
 
Additional tables 
 - signal-like background tables are presented, so that people can use either exclusive 
cross section or effective cross section. 
 
 - response matrix R is presented so that people can calculate MiniBooNE  
observed energy spectrum 

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 
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 3.9 Data format  

Tables on MiniBooNE data release website 
 - In MiniBooNE, all cross section tables, as well as flux table, are released in website 
http://www-boone.fnal.gov/for_physicists/data_release/ 
 
Cross section format 
 - Flux-integrated double differential cross section 
  
 - Flux integrated single differential cross section 
 
 - Flux-unfolded total cross section 
 
Additional tables 
 - signal-like background tables are presented, so that people can use either exclusive 
cross section or effective cross section. 
 
 - response matrix R is presented so that people can calculate MiniBooNE  
observed energy spectrum 

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 
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 3.9 Data format  

Tables on MiniBooNE data release website 
 - In MiniBooNE, all cross section tables, as well as flux table, are released in website 
http://www-boone.fnal.gov/for_physicists/data_release/ 
 
Cross section format 
 - Flux-integrated double differential cross section 
  
 - Flux integrated single differential cross section 
 
 - Flux-unfolded total cross section 
 
Additional tables 
 - signal-like background tables are presented, so that people can use either exclusive 
cross section or effective cross section. 
 
 - response matrix R is presented so that people can calculate MiniBooNE  
observed energy spectrum 

CCQE NCEL NC1πo CC1π+ CC1πo anti 
CCQE 

anti 
NCEL 

CCQE CC1π+ anti 
CCQE 

CCQE NCEL NC1πo CC1π+ CC1πo 

anti 
CCQE 

anti 
NCEL 

CCQE NC1πo CC1π+ CC1πo anti 
CCQE 

NCEL CCQE 

NCEL 
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 3.9 Data format  

MINERvA style table? 
 - In MINERvA, data tables are all in “supplemental material” and the papers only have 
cross section plots, to fit in PRL page limit. I think this is clever. 
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 3.9 Cross section errors  

Cross section error format 
 - Complete error matrix of differential cross sections 
 
 - Complete error matrix for reconstructed energy spectrum 
 
 - Diagonal term of shape only error matrix and total normalization error. 
Diagonal term of shape only error matrix has information of covariance of total error matrix, 
so this is a convenient way to show bin-bin correlation in 1-dimention 
 

NC1πo CC1π+ CC1πo 

anti 
CCQE CCQE 

NCEL 

  

€ 

δVi
total = Eii

  

€ 

δVi
shape = Eii − 2

Vi

N
Eki +

Vi
2

N2 Ekm
k,m

n

∑
k

n

∑



11/05/2010	  Teppei	  Katori,	  MIT	  
81	  

MiniBooNE flux-integrated 
differential cross section 
result gallery  
(over 800 citations) 

 3.9 Data format 

CCQE 

PRD81(2010)092005 

NCEL 
PRD82(2011)092005 

NCπo  

PRD81(2010)013005 PRD83(2011)052007 

CCπ+  

CCπo  
PRD83(2011)052009 

antiCCQE  

PRD88(2013)032001 

antiNCEL  
arXiv:1309.7257 
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Conclusion	  

Thank	  you	  for	  your	  a1en3on!	  

Cross section analysis requires all set of different techniques and ideas.  
 
Cross section analysis takes time. 
 
MiniBooNE developed lots of techniques and ideas, those are useful start points for T2K 
analysis 
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 3.2 Background removing 
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CCQE NCEL CC1π+ CC1πo anti 
CCQE 

anti 
NCEL Data driven correction 

 - Almost all analyses use sideband data to correct background distribution in signal boxes 
 
CCQE-CC1π+ box simultaneous fit 
 - CC1π+ box is >90% purity. Using this sample, background distribution in CCQE box is 
modified. 

CCQE 

External background enhanced sample 
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 3.2 Background removing 
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CC1π+ 
Cross section error of pion kinematics 
 - Purity is extremely high (~90%), so error from background is negligible. 
 - Signal is defined from pion in final state, so pion absorption is not systematic error. 

 à In general, FSI is small error for all analyses 
 - The pion absorption in the oil is error. 

 à Secondary scattering will be the largest error for hadron measurement. 
 
I think you revise all errors to think which is the important error etc. If you run analysis 
machinery with all errors on, you will over-estimate systematic errors. 
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 3.3 Unsmearing 
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How to construct M-matrix? Reconstructed variables 
- The definition of true kinematics is tricky, because you have choice.  
 
i. True Q2 is defined by reconstructed Q2 from true kinematics 
For example, CCQE, true Q2 is defined “reconstructed Q2 from true muon energy and angle”, 
and we call it “Q2

QE” to remind people this is reconstructed under QE assumption.   
 
ii True Q2 is defined by true Q2 in MC 
This may be useful to compare with old data, only presented by this way 
 
iii True Eν is defined by true Eν in MC 
For example, CCQE, Eν is called “EνQE,RFG” to  
remind people this is reconstructed under QE  
assumption then unfolded by assuming  
RFG model.  
 
Flux-unfolded total cross section 
 - it is important to unfold under RFG,  
otherwise reconstruction bias deviate  
cross section at the tail significantly. 
 
 

CCQE 
anti 
CCQE NCEL 

anti 
NCEL 

CC1π+	  	   CC1πo	  	  

CCQE NC1πo CC1π+ CC1πo anti 
CCQE 


