Analysis techniques of neutrino cross-
section measurements in MiniBooNE

| !

Quee

ValenC|aN/
Unlver3| o al

. } -.

\ TORGIE .
/‘ i os/02/ 1



1. Introduction

2. Overview of MiniBooNE analysis
3. Neutrino cross section measurements

4. Conclusion

+
%Q)f Queen Mary oo

University of London



PPD neutrino talk (2010), http://minerva-docdb.fnal.gov/cgi-bin/ShowDocument?docid=5571
1. Introduction

Purpose of this talk
- This talk is prepared for students who want to measure neutrino cross-sections for their

PhD theses.

- It is especially focusing on absolute flux-integrated topological differential cross section
measurement [1]. The most important model-independent result to provide to the community.

absolute: normalization is specified

flux-integrated: neutrino flux shape is not unfolded

topological: interaction is defined from final state particles
differential: cross section is function of measured kinematic variables

- MiniBooNE developed number of techniques necessary to measure these, and this talk
covers technical aspects from the CCQE, NCEL, NC1x°, CC1x*, CC12°, antiCCQE,
These are good reference but not the best, T2K should perform even better

analyses!

[1] Can anybody invent a better name for this?
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1. Introduction

Goal of neutrino cross section measurement
- Goal is to measure model-independent cross section as much as possible. This is what
theorists want to study their models.

Model-independent cross-section is

- absolute (flux is not tuned from own measurement)

- the dependence of signal channel MC is minimum

- detector efficiency must be corrected (so it is detector model-dependent)

- no assumption on kinematics (cf neutrino energy reconstruction with lepton kinematics
assume CCQE interaction and neutron at rest), which often means cross-section is
function of measured variables (differential cross-section)

Formula of flux-integrated differential cross-section
2 Ui(d; b))
do ]
dx).  &(®T)AX,

el
%Qf Queen Mary -

University of London



2. Overview of MiniBooNE analysis
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2. Overview of MiniBooNE xs measurements

CCQE (CCOn) VoD —pu

PRD81(2010)092005 u

FERIMILAB-THESIS-2008-64 (v +7C = X+u)
u

Signal definition: 1 uw + 0  + N protons

Why we measure
- Test CCQE models

Why MiniBooNE measure

- Largest sample (~40%) to test detector efficiency, veto efficiency, event uniformity, timing, etc
- Best sample to study v,CCQE kinematics (=oscillation signal)

- v,CCQE to constraint v, from u-decay in oscillation sample

It is important to measure CCQE!

CCQE
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by Denis Perevalov

2. Overview of MiniBooNE xs measurements

NCEL vV +p—=vVv +p

PRD82(2011)092005 3 3

FERIMILAB-THESIS-2009-47 v, tN—=v +n m
MiniBooNE collaboration,

Signal definition: 0 uw + 0 w + N protons PRD82(2011)092005

Why we measure

- Additional test of CCQE models 1 _ s 2

- Measurement of As fo dxAs(x)=As =G, (Q" =0)
- value is still controversial
- connection of form factor (elastic) and PDF (inelastic)

Why MiniBooNE measure
- NCEL to constrain oil optical property
oil optical property is the largest detector systematics. NCEL was used to assign

variation.

It is important to measure NCEL!

CCQE | | NCEL
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by Colin Anderson

2. Overview of MiniBooNE xs measurements

NC1m° 0 0

PRD81(2010)013005 Vot N=v, +4 =y, +3\I+“

FERIMILAB-THESIS-2010-49 V,+tA—=v +A+m e Y \
” MiioNE collaboration,

Signal definition: O u + 1 «® + N protons PRD81(2010)013005

Why we measure
- The biggest misID background for v, appearance experiments
all oscillation experiments perform internal measurement to constrain

Why MiniBooNE measure
- t° mass peak for energy calibration
- measured m° kinematics is used to correct simulation

It is important to measure NC17°!

CCQE | | NCEL | | NC1mo
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by Mike Wilking

2. Overview of MiniBooNE xs measurements

CClx v, +p(n) —u+A"" s u+pmn)+a’
PRD83(2011)052007 A —> A .\
FERIMILAB-THESIS-2009-27 v, + W+ A+

Signal definition: 1 w + 1 x* + N protons PRD83(2011)052007

Why we measure
- The biggest misID background for v, disappearance experiments
- kinematic distortion by this background must be understood

Why MiniBooNE measure
- highest purity channel (~90%)
Michel electron tagging achieve extremely pure sample
- Constrain wrong sign background in anti-neutrino mode
CC1x* in anti-v mode is definitely from v-contamination

It is important to measure CC1x*!

CCQE | | NCEL | | NC1m° | | CC1x*
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by Bob Nelson

2. Overview of MiniBooNE xs measurements

CC1mn°
PRD83(2011)052009

e t s 0
FERIMILAB-THESIS-2010.9  Yu TR ZU+A —u+p+m

: e MiniBooNE collaboration,
Signal definition: 1 u + 1 «® + N protons PRD83(2011)052009

Why we measure
- There is no coherent channel, so it is useful to understand coherent/resonance A

production

Why MiniBooNE measure

- The last possibly measurable channels, by this, MiniBooNE measure 90% of interaction
cross sections in v-mode

It is important to measure CC1x°!

CCQE | | NCEL | [NC1ne | | CC1x* | | CC1n©
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by Joe Grange
2. Overview of MiniBooNE xs measurements

anti-CCQE VM +p—=n+u’
PRD88(2013)032001 _
FERIMILAB-THESIS-2013-14 (vM + C—=X+u")
Signal definition: 1 w+ 0x + N protons (V. + H—=>n+u") MiniBooNE collaboration,
" PRD88(2013)032001
Why we measure
- Additional test of CCQE models
- necessary measurement for CPV measurement
Why MiniBooNE measure
- To understand anti-v,CCQE interaction kinematics (oscillation signal)
- anti-v,CCQE constraint for anti-v, from u-decay
- Tune wrong sign components in anti-v mode beam
It is important to measure antiCCQE!
anti
CCQE | | NCEL | | NCAme | | CC1x* CC1n° | | ccqE
+
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by Ranjan Dharmapalan
2. Overview of MiniBooNE xs measurements

_ s
V. +P—V +D

<l

TN VM +n
Signal definition: O uw + 0  + N protons MiniBooNE collaboration,
arXiv:1309.7257

Why we measure
- Complete all 4 QE measurements (CCQE, NCEL, antiCCQE, antiNCEL)

Why MiniBooNE measure

- test beam-dump mode run (dark matter search)
anti-v mode beam was used to test MiniBooNE dark matter sensitivity. antiNCEL was the
biggest background.

It is important to measure antiNCEL!

.
CCQE | NCEL | [NCime | |CCint | | CC1n0 | | ccaE
o
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2. Overview of MiniBooNE xs measurements

To be published
- CC inclusive cross section
-1 u+ 0 x +1 proton (2 track CCQE)

Possibly measured in T2K, but not in MiniBooNE
NC1x* (O uw + 1 t* + N protons)

- another resonance only channel
1u+1x"+1proton

- 3 track CC1x*, high pure A** measurement
1u+0mx+ 2 protons

- high pure MEC?

.
CCQE | NCEL | [NCime | |CCint | | CC1n0 | | ccaE
o
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3. Neutrino cross section measurements
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3. Neutrino cross-section measurements

Absolute flux-integrated topological differential cross section formula

i :true index U; :unsmearing matrix
j :reconstructed index

b, :predicted background

3.1 Signal definition
3.2 Background removing v /
3.3 Unsmearing
3.4 Efficiency correction E Uij(djébj)\
(do) 9 d, :data vector

3.5 Flux correction

3.6 Target number correction dx ) _
3.7 Binning ! A
3.8 Systematic errors
3.9 Data format

AX; :bin width

g, :efficiency T :integrated target number

® :integrated v-flux
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3.1 Signal definition

U; :unsmearing matrix

b, :predicted background

v
Euu(djébj)\
do) 5 d, :data vector
dx)  &(PT)AX
A \
AX; :bin width
g, :efficiency T :integrated target number

® :integrated v-flux
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3.0 Before you start cross section analysis...

Reconstructions and cuts

- You have good reconstruction and all cuts to select your data sample, congratulations, you
are ready to measure cross sections!

(you can spend another year in grad school from there!)
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3.0 Event selection

Reconstructions and cuts

- You have good reconstruction and all cuts to select your data sample, congratulations, you
are ready to measure cross sections!

(you can spend another year in grad school from there!)

Good sample

- depends

- reasonable statistics to make few bins

- measure distributions as many as possible

- Purity ~ 50% or more (improving purity = improving systematics)

Before you start systematics analysis, you should know rough total final error.
- loseltight cuts

- change bin size

- sideband constraint

- which differential cross section to measure

+
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3.0 Event selection

Reconstructions and cuts

- You have good reconstruction and all cuts to select your data sample, congratulations, you
are ready to measure cross sections!

(you can spend another year in grad school from there!)

Good sample

- depends

- reasonable statistics to make few bins

- measure distributions as many as possible

- Purity ~ 50% or more (improving purity = improving systematics)

Before you start systematics analysis, you should know rough total final error.
- loseltight cuts

- change bin size

- sideband constraint

- which differential cross section to measure

We don’t expect more statistics in near future, and most of analyses will be ~ 10-20% error.
Any cross section data from T2K are unique and precious. WE SHOULD PUBLISH ASAP!
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3.1 Signal definition

Topological cross section

ex) CC1n°=“1u+ 1 xn° + N protons” CC1
I. This definition includes w° production by final state interactions (FSls).

ii. This definition excludes CC1n° interaction when x° is lost by FSls.

This is the necessary definition for the theorists to understand final state interactions (FSIs)
without biases. Don’t rely on the definition given by your interaction generator. “Signal”
needs to be added to signal MC, and “Not signal” needs to be removed from signal MC. By
this definition, FSI error of pion shouldn’t be big, but detector pion absorption is part of final
error.

Not signal

Signal

'\/ —————————
absorp
in nucl

" Signal

S A v vV__

Signal
Q TT tooNow energy
prod to detec
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T2K, ArXiv:1403.3140

3.1 Signal definition

NCQE gamma measurement
- signal is defined to be gamma from

Illllllllllllllllllllllll-'

.
NCQE interactions. § 12 —4— RUN1-3 data
- gamma ray from FSl is not signal. S NCQE

v 10¢ FE NC non-QE
Alternatively, any gammas from any NC 8 [ B3 cc
interaction can be defined 'é 8 Beam-unrelated
“signal” (topological cross section), in this =
way, most of FSI error is gone (smaller Z o

systematics), signal statistics is higher, and
data is less biased. Drawback is now
theorist need to calculate FSI by
themselves.

1llllllllllllllllllllllll

The systematic uncertainty on primary ~-ray produc- Reconstructed energy (MeV)
tion in signal (and the QE component of the CC back-
ground) comes from several sources. The largest con-
tribution is from final-state nuclear interactions: NEUT
assumes that the de-excitation v-ray production is the
same whether the final state contains a single nucleon
or multiple nucleons. We estimate the systematic uncer-

04/02/14 21



3.1 Signal definition

Topological signal definition
1. Statistics is higher
You have more signal, so statistics is higher

2. Systematic error is lower

Nuclear effect is now signal, not error. Likewise, signal channel model error should be
large.

3. Less biased

There is no cross-section model dependent selection nor correction. Data is less biased
and preferred by theorists.

Theorists want to find how much MEC from our data using their state-of-the-art nuclear
models. We are responsible to provide unbiased data containing these information.

If we use MEC model in our simulation for the selection of events, this mean we try to

find how much MEC in our data based on our knowledge. This has 2 bad consequences,
1. theorists lose jobs

2. result is wrong
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T2K, ArXiv:1403.3140

3.1 Signal definition

NCQE gamma measurement
- signal is defined to be gamma from

Illllllllllllllllllllllll-'

.
NCQE interactions. § 12 —4— RUN1-3 data
- gamma ray from FSl is not signal. S NCQE

v 10¢ FE NC non-QE
Alternatively, anay gamma from NC 8 [ B3 cc
interaction can be defined 'é 8 Beam-unrelated
“signal” (topological cross section), in this =
way, most of FSI error is gone (smaller Z o

systematics), signal statistics is higher, and
data is less biased. Drawback is now
theorist need to calculate FSI by
themselves.

1llllllllllllllllllllllll

The systematic uncertainty on primary ~-ray produc- Reconstructed energy (MeV)
tion in signal (and the QE component of the CC back-
ground) comes from several sources. The largest con-
tribution is from final-state nuclear interactions: NEUT
assumes that the de-excitation v-ray production is the
same whether the final state contains a single nucleon
or multiple nucleons. We estimate the systematic uncer-
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3.1 Signal definition

Tracker CCQE analysis

- signal is defined from NEUT channel

number.

Alternatively, signal can be defined “1
muon-like track”. You can measure total

o(E) [10%¥cm?|

cross section by this way, too. Error should
be smaller because any processes making
“1 muon-like track” becomes signal. Total
cross section has reconstruction bias so it's
still harder for theorists to get info of MEC
from this shape of this.

parameter

nominal value

fitted value

T2K, TN147

N
™)
T

—e—

[
III

p—
o0
III

ND280 stat
ND280 stat+syst
NEUT MC
NEUT (binned)

_j'___._

IIIIIlIIII IIIIIIIIIIlIIIIIIIl I

1

III|III|III|III|II[I II‘| llIIIIlIIlIIIIlIIlIIII

Om

CClm norm E1
CClm norm E2
MG
M5
CC Other Shape

NC17% norm

PF

1.63 £0.43
1.00 = 0.40
1.21 £0.20
1.11+0.11
0.00 £ 0.40
1.19+0.43
217.00 £ 30.38

1.341‘§;§43
1.061L8;llg
1.387%:
0.02+0:40
1037040
234.901 1487

0.5 1

Pp—cos(6,, )bins

—2In\(0) = 2 )

i=1
mq(d)

+ln Td (d:??Snal )
™

+111 ﬂ-f(fiominal)
()

+ln7rl‘(:'noiinal)

[ Aripredicted ( 0) . N;)bserved

p\rpbserved

observed i
+Ni ln Ariprealctea (9) ]



3.1 Signal definition

CCQE

Primary channel cross section

By subtracting CC1x* without pion background distribution (from MC with sideband

correction), “pure” CCQE cross section is published (which is not, due to 2p-2h). Pure

channel cross section is helpful for some theorists who cannot simulate whole set of cross

sections.
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3.1 Signal definition

Primary channel cross section

CC1n*/CCQE

Pure channel cross section is also useful to compare with other data (especially most of old
data are published in pure channel cross section).

CC1x*/CCQE topological cross section ratio

2 1.8 2.2
= e MiniBooNE t,i
= 1.6 o 2
o | e MC g
o 1.8
_ 1.4(° —
=) = 1.6
120 =
= l 1.4
| ey Ll
S | B 1.2
= 0.8 I'—l—" fi a 1
© . (detre]
0.6 Lttt 0.8
- BERY 0.6
0.4 it
- ial 0.4
0.2_ F‘jr« 0.2
o red [ P |
% 0.5 1 1.5 2 2.5 0
E, (GeV)

‘eQ_s’ Queen Mary

University of London

Teppei Katori

CC1x*/CCQE primary chnnel cross section ratio

= MiniBooNE
e K2K
« ANL
I
- ISOSCALAR TARGET CORRECTED I
s T
F T|l<‘ J
T ’
- J;‘#‘
- 1*'{.‘\\\\|| [ L1 |
0.5 1 1.5 2 2.5 3
E, (GeV)
04/02/14
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3.1 Signal definition

Mixed target NCEL
Cross section result from mixed target is complicated. In NCEL, differential cross section is
interpreted v+N, which means sum of v+p (carbon), v+p (hydrogen), and v+n (carbon).

Forward folding

Migration matrices (Tpte and m S Data with total error
Tprecon) are provided for v+p 3000 — Total MC
(carbon), v+p (hydrogen), and v+n - PN 0000 T S
(carbon), with and without FSI, so _ 2500 uewmmin NCE-like backgrounds
" . ’ -~ — -- Dirt backgrounds
that theorists can fold their xsec 3 = . 9
. s — | === Other backgrounds
models to compare with measured g, 2000 _—!'
Tp. T EFf
2 1500 .
c — 1
[«¥] — "
g F
1000 ||
- |
500 E_gl_.'"'\---.-._._.- gruwtinaEEng,,,, -
i - '.'lﬂ'-rﬂ-l'.-_l'-------‘---u.---l""'
oMImr 1 [ bk UL T )
100 200 300 400 500 600

T (MeV)
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3.1 Signal definition

Mixed target NCEL
Cross section result from mixed target is complicated. In NCEL, differential cross section is
interpreted v+N, which means sum of v+p (carbon), v+p (hydrogen), and v+n (carbon).

Efficiency difference
The efficiency difference of each

x10*
|nteraCt|0n IS_ prOVIC!ed tO ) % E III MiniBooNE NCE cross-section with total error
reproduce differential cross section Lask .
from miCFOSCOpiC mOdeS. § E n  Monte Carlo NCE-like background
s %t
do,N—uN 1 d(fz/p—vvp H % =8 .
# = 7Cvp.H(QéE) T V]) C(QQE) 23 -
2 *
% dfxp—vzpC vn—uwvn,C — .
—ag 70 C‘QQE)T' 1sE
(B6) - .
0.5 t.
oL m Ty mL--mlmpuu1..Jllrmt‘l'“"I"""l"""["":"":""'I"'"l“""'“"“l"lllhrmnnnltnnnqﬁuvpMpm?nnﬂum-ﬂmg-glﬂn
0.4 0.6 0.8 1 1.2 1.4 1.6

Q2. (GeV?)

+
\?%_Q_f)l Queen Mary Teppei Katori 04/02/14 28

University of London



3.1 Measured variables

CCQE || NCEL || NC1xe || cC1n* || cC1ro érg'QE

Function of measured variables
Differential cross section results with function of measured variables (momentum, direction,
etc) has no reconstruction bias and preferred.

Function of reconstructed variables

Cross section results of reconstructed variables (especially Q2 and Ev) are model-dependent.
However, flux-unfolded total cross section function (function of true neutrino energy) is the only
way to compare results with other experiments.

>_<1 0-39

——%—— NOMAD data with total error
CCQ E —4—— LSND data with total error

s (em?)
— e —
oONPOOONPAD

-

o
N

-

——a—— MiniBooNE data with total error
------- RFG model with M*"=1.03 GeV, k=1.000

RFG model with M:“A“=l.35 GeV, k=1.007
Free nucleon with I\L=l.03 GeV

R

+
\e‘_Q_s’ Queen Mary Teppei Katori 04/02/14 29

University of London



3.2 Background removing

U; :unsmearing matrix

b, :predicted background

v
Euij(dj&bi)\
do) 5 d, :data vector
dx)  &(PT)AX
A ‘\
AX; :bin width
g, :efficiency T :integrated target number

® :integrated v-flux
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3.2 Background removing
CCQE || NCEL || NC1xe || CCAn* || CC1n0 ‘gg'QE

Background subtraction method
- It is preferred because signal doesn’t depend on signal MC explicitly.
- Normalization of background must be known.

Background subtraction Purity correction

S.

_ . d, - b, d x—
Purity correction method S +b.

- Signal explicitly depends on signal MC (=bad), potentially shape is distorted by signallto be
measured (depending on size of error).
- However, if you don’t know the normalization of background, this may be justified?

Background subtraction vs Purity correction CCQE
For high purity CCQE o™ i | Bkgd subtract, & L
sample (77%), difference = Signal frac G
is only large at lowQ?, oo = 3] 5o
where background is - 1 k-
~30% - 1
- 1. - L
I 7 S T 3 B B PR R R %MWWW
Enu (GeV) Q? (GeV?)
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3.2 Background removing
CCQE || NCEL || NC1we || CC1n* || CCH ?%'QE

Background subtraction method
- It is preferred because signal doesn’t depend on signal MC explicitly.
- Normalization of background must be known.

Background subtraction Purity correction

S.

. . d, - b, d x—
Purity correction method S +b.

- Signal explicitly depends on signal MC (=bad), potentially shape is distorted by signallto be
measured (depending on size of error).
- However, if you don’t know the normalization of background, this may be justified?

NCEL

Hybrid

- External background (=cosmic rays) are measured from sideband (=known normalization),
and subtracted.

- Internal background (=NC1x* where pion is below detection threshold) is removed by purity
correction.

S.
(d-e)x —
- — s'+b
bl Internal background
External background (measured)

(no constraint)

+
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3.2 Background removing

CCQE

R anti

Data driven correction

- Almost all analyses use sideband data to correct background distribution in signal boxes

External background measurement | NCEL

- NCEL analysis measure amount of background coming from outside, with function of R and
Z, to extrapolate background in fiducial volume

External background enhanced sample

150 MeV<T<178 MeV mmmmm Data with stat error
600 | — . == Total MC before the fit
: beees ——— Total MC after the fit
500 - = m » m Dirt backgrounds templat

In-tank template

Events{0.24 m)
8

Z(m)

W) Jueen Viary

University of London

— Fit from Z
= Fit from R

——— Fit from energy

TTT T T T 1711
1

f |

LI L L L LN

Lo oo b v by oo by ooy by

50 100 150 200 250

T (MeV)

04/02/14
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3.2 Background removing

R anti

Data driven correction
- Almost all analyses use sideband data to correct background distribution in signal boxes

Flux error double counting?

- For background dominant sample, background subtraction makes flux error larger.

- Way to avoid is to define background excursion after removing normalization correlated with
signal (shape-only background subtraction)

do _Zuij(dj

dx)  &(PT)Ax

+
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3.2 Background removing

anti

Data driven correction
- Almost all analyses use sideband data to correct background distribution in signal boxes

Cross section error

- Main xsec error is the error assigned on background models

- Xsec models, such as FSls?, change true-recon relationship for hadrons (smearing)
- Xsec models kinematics, i.e., cuts (=efficiency)

do _Zuij(dj

dx)  &(PT)Ax

el
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3.3 Unsmearing

U; :unsmearing matrix

b, :predicted background

JUdeb)
do) 5 d, :data vector
dx)  &(PT)AX
A \
AX; :bin width
g, :efficiency T :integrated target number

® :integrated v-flux
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3.3 Unsmearing

Unfolding
- The process removing the detector effects, mainly smearing and detector cut, is called

unfolding. It is often easier to think by separating unfolding process to 2 parts, unsmearing
and efficiency correction. We focus on unsmearing here.

Detector error
- Detector model affect smearing.

di_bi)
_

do
dx)  &(®T)AX

el
%Qf Queen Mary -

University of London
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3.3 Unsmearing

None

Inverse response matrix method
- Inverse response matrix method is the bias-free unfolding method, but this method doesn’t
work for anybody. Typically, it makes rapid oscillated solution (Gibb’s phenomenon). Say,
response matrix R gives the smearing and detector cut of true distribution a to measured
distribution b in MC, it’s inverse can be used to unfold data b to true distribution a

P = Rijaj —a; = (R)j_ilbi

, , 220007
Inverse response matrix method is very E -
o . . , 20000~ CCQE
sensitive with MC statistics. It doesn'’t 180005
work for sparse matrix, it cannot handle 16000! -
large number of bins, it cannot deal 14000\
histogram with zero-event bins. But all 12000
these are features for differential cross 10000 -
section! 8000~

6000L -t ke data

4000_- Bayesian unsmearing (next)
2000/

0 i b b b e T b b L L
0 0.2 04 06 0.8 1 12 14 16 1.8 2

Enu (GeV)
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Hocker, Kartvelishvili
NIM.A372(1996)469

3.3 Unsmearing

Tikhonov regularization method | NC1st®
- The regularization term from the prior knowledge of distribution (e.g., how smooth is) can
stabilize inverse response matrix. The bias is introduced through the linear operator L and .

B,=R,a, —~a =(R).'b, ~ (Ra-b)'V(b)"(Ra-b)+(La)'(La) ~ 0

Regularlzatlon parameterr should be chosen with care.
- too small T doesn’t regulate matrix inversion
- too large Tt too much smooth out response matrix R

TS U b+ D H1-U) b} |
“[R+V -IR“ (L"L)]
E [UVR™],
E [UVR™],
‘*Qs’ Queen I\/Iary — .
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D’Agostini,
_ NIM.A362(1995)487
3.3 Unsmearing

;
CCQE || NCEL || NC1w® || CClx* || CC1n || doaE

lterative Bayesian method
- Unsmearing is based on the Bayesian statistics, so bias is introduced from MC knowledge

- Efficiency ¢ is defined by true distribution after cut u to true distribution before cut a.
M-matrix gives transformation from measured distribution to true distribution after cut. It give
the true distribution after cut u on projection on one axis.

n
i — 1 =
g =" M; =W = go,
o =1
Now, define U-matrix by normalizing oth Mij
M-matrix with other axis, Uij =

XM
k=1

So, background subtracted data d°" can be unsmeared and efficiency corrected to obtain

unfolded cross section d'th
n

dilst _ lE Ui(j)thd?th
Si i
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D’Agostini,
_ NIM.A362(1995)487
3.3 Unsmearing

;
CCQE || NCEL || NC1w® || CClx* || CC1n || doaE

lterative Bayesian method
- Unsmearing is based on the Bayesian statistics, so bias is introduced from MC knowledge

- It is based on Bayes’ theorem

M; = P(reconj | true, )P(true;)

P(recon; | true; )P(true; ) M; Lot
=U;

EP(reconj | true, )P(true, ) ) E My
Kk Kk

P(true; | recon;) =

n

dilst _ lEUi(j)thd?th
€ i

+
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D’Agostini,
_ NIM.A362(1995)487
3.3 Unsmearing

;
CCQE || NCEL || NC1w® || CClx* || CC1n || doaE

lterative Bayesian method
- Unsmearing is based on the Bayesian statistics, so bias is introduced from MC knowledge

If initial guess u (=prior probability of Bayesian statistics) is not so close to nature, we can
improve U-matrix by assuming d'" is close to nature

Ist
T
(Dlst ~ di ij n d2nd EulstdOth
i 1st
o E((Dk Mkj)

k=1
- This iteration process usually converge <5 times. 0t iteration is not bad at all.
- Signal model dependence will become systematic error, this is done by varying M-matrix by
changing systematics. So signal cross error is part of final error, but shape only.
- This method also fails if M-matrix is highly non-diagonal.
- 0 and 1st iteration difference of data is also included as systematic error (?).

lterative Bayesian method works for, any number of bins, including zeros, sparse matrix, MxN
matrix, background non-subtracted sample etc...
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D’Agostini,
NIM.A362(1995)487

3.3 Unsmearing

How to construct M-matrix? Measured variables
- It is desired to present differential cross section with function of measured quantities, such
as muon energy, pion angle, etc, because they are not biased by reconstruction.

anti

. It is straightforward if you measure lepton kinematics. CCQE | ccak

True lepton kinematics are the true information for M-matrix.

NC1me || CC1x* | CC1
ii. If you measure hadronic events (e.g., m® momentum),

not true pion

) . o momentum
your “true” kinematics is after FSI, _
i.e., particle exiting the nuclei. S A true pion

momentum
not true nucleon
momentum
S A Q Q _ NCEL
. ~>F iii.“true” momentum is defined by sum of
all kingd true nucleon : :
n all outgoing nucleons, because that is
Of FS| momentum
D the observables.

—

+
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3.3 Unsmearing

How to construct M-matrix? Reconstructed variables
- The definition of true kinematics is tricky, because you have choices.

anti

i. True Q2 is defined by reconstructed Q2 from true kinematics | CCQE NCEL | cCQE
For example, CCQE, true Q? is defined “reconstructed Q2 from true muon energy and angle”,
and we call it “Q?,” to remind people this is reconstructed under QE assumption.

i True Q2 is defined by true Q2 in MC | CC 17" | CC1
This may be useful to compare with old data, only presented by this way

iii True Ev is defined by true Ev in MC ccak nete |ccte | cotme || 2t
For example, CCQE, Ev is called “EvQE.RFG” T T " || CCQE

to remind people this is reconstructed

under QE assumption then 16510-

. — ———— NOMAD data with total
unfolded by assuming RFG  "E 14E  (b) . LSND data with total error
model. - 12E ~

© 10E sy g ok

o by et
= ——s—— MiniBooNE data with total error

6 e S aeeeem- RFG model with .wf;f=1.03 GeV, k=1.000

4 - ————— RFG model with M¥"=1.35 GeV, k=1.007

2E Free nucleon with l\'iA=l.03 GeV

OE_,=_._._. Ll . | . e

QE,RFG
10 1 10 E; (GeV)

. T
\?%_Q_f)l Queen Mary Teppei Katori 04/02/14 44

University of London



3.3 Unsmearing

No unsmearing | NC1n°
- If you know smearing is weak and statistics is low, no unsmearing may be the best option.

So what is the criteria?

+
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Cowan,
“Statistical Data Analysis”

3.3 Unsmearing

No unsmearing | NC1n°
- If you know smearing is weak and statistics is low, no unsmearing may be the best option.

So what is the criteria?

Bias of unsmearing

- There is no perfect unfolding, unfolding method can be different depending on your
distribution. Biases may be one of criteria.

i. Inverse response matrix method:

\ | o Blnverse =0
No bias, but it only works for very few bin histogram =
ii. Tikhonov regularization Tikhonov [ ', _ ]
Bias is introduced from linear function and B B E U (Ra b) i
regularization parameter. It also requires a fair amount of events. i
iii. lterative Bayesian method Boavesan _ E [M -(Ra - b)]
|

Bias is introduced from prior knowledge of
MC. It works for any distribution.

NoU
iv. No unsmearing BT E[(U -1)- b]i

wOd Queen Mary |

|
University of London



3.3 Unsmearing

n° kinematics NC1me
- Comparing biases and histograms by eyes, n°-kinematics are unfolded by 3 different methods.

P.(v) : Tikhonov regularization
coso_(v) . lterative Bayesian
P,(anti-v)  : Iterative Bayesian

cosf_(anti-v) : No unsmearing

Anti-y Mode NC ° Box NC 1x° Signal Rate _ v Mode NC x” Box NC 1x” Signal Rate
o ' ' ' ' e 1 & ¥ No U ; ]
a. 2000+ No Unsmearing —— - 8000 J‘:\:l nsmeamng ——
5 Inversion —— ] g + Inversion —
s No unsmear — ) | No unsmear —
b~ LT i i — 2 + inversion —_—
2 1500 i mvers.lon & 000l Y |
P T Bayesian — = e Bayesian —
l% | [== Tikhonov reg. == § + : Tikhonov reg. ===
w :
+
1000 T| |+ 4000
T + —
N -t
500 T 2000¢
—_—
f | —f— _—
. . , : : : Ot . : : - r————
0.).0 02 04 06 08 10 00 02 04 06 08 10 12 14
Unsmeared p_» (GeV/c) Unsmeared p_» (GeVic)

el
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U; :unsmearing matrix

3.4 Efficiency correction

b, :predicted background

v
Euij(dj&bi)\
do) 5 d, :data vector
dx)  &(PT)AX
A \
AX; :bin width
g, :efficiency T :integrated target number

® :integrated v-flux

+
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3.4 Efficiency correction

CCQE || NCEL || NC1xe || cC1xt || CC1 érg'QE

Looks straightforward, no?
- The efficiency is defined as true distribution after cut u divided by that before cut o.
Because of the nature of ratio, ¢ is insensitive with many systematic variations common for
numerator and denominator such as flux error and cross section error. The detector error is
important.

U.(d. -Db.
do _2 (d,-b))
dx ) [e(®T)Ax
w. N.(AfterCut)

" o N(BeforeCut)

+
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3.4 Efficiency correction

CCQE

Muon energy unfolding
- Because of the resolution of muon
energy, it is possible to recover events
outside of kinematic cut by unfolding
process (detector model dependent)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

:1|1||1|l||1||1|l||1||1||||1||1||||1|l||l| 0
0 02 04 06 08 1 12 14 16 18 2

d -b ) True muon energy (GeV)
[t J
_ ®T)AX,
0.4F - MiniBooNE raw dat
- 30000—_ 1niboo raw aata
0.35 = Predicted background
0.3 E_ 25000 :_ Predicted irreducible background
0.25— 20000
0.2 -
- 15000
015 C
= 10000
0.1 C
0.05 5000
0: I|1Il||IlIlIlIlIlIlIlIlIlIlIlIlIl L :llllllllll[llll ‘Illlllllll
0 02 04 06 08 1 12 14 16 18 2 002 04 08 0 > 14 16 18 2
5

_ . 8 1 1
Efficiency of muon detection (GeVj~ """ 79 Ynuon energy (Ge(%l)



3.4 Efficiency correction

CCQE

Muon energy unfolding
- Because of the resolution of muon
energy, it is possible to recover events
outside of kinematic cut by unfolding
process (detector model dependent)

2
dTgﬁ(‘: m’/0.1/0.1GeV) s MiniBooNE data (3N,=10.7%)
B B

[ I:I MiniBooNE data with shape error

\\\\\\

16 1.8
1 ° 1 6oV
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U; :unsmearing matrix

b, :predicted background

3.5 Flux correction

v
Euij(dj&bi)\
do) 5 d, :data vector
dx ), E(@T)AX, —
AX; :bin width
g, :efficiency T :integrated target number

® :integrated v-flux
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3.5 Flux correction

Integral region of flux
- Flux is integrated and removed. There are many ways how to introduce flux error.

I. Flux is integrated in all spectrum region and it’s variation is the flux error.

This choice gives rather large flux error (e.g., ~12% for NC1x°). NC1z®

Flux fractional uncertainty

(b)

e
o

ii. Cutoff for flux integration cet

Flux is integrated in [0.5-2.0] GeV, and error is
variation of that. In this way, you can avoid flux
variation at low energy which don’t contribute to
the channel. Error is smaller, ~7%.

e
n

I Beam

e o
N oW

) fractional uncertainty
2 =

e I.IIIIIIIIIIIIIIIIIIIIIIIIIIII T

05 1 15 2 25 3

anti E, (GeV)
CCQE || NCEL CCQE

DE

iii. Flux is integrated all region, but flux error is calculated separately

Flux variation is calculated by variation of numerator of efficiency term (rate).

In this way, flux variation is automatically limited within the region relevant to cross section
measurement. Both normalization and shape flux error are taken into account.

Error is smaller, ~8%.
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3.5 Flux correction

Integral region of flux
- Flux is integrated and removed. There are many ways how to introduce flux error.

S HCIELY e YU, -bh)
] ]

do) _ , (49 _

dx i N g dx ; N*
after ((I)FT) AXi __after ((I)T)AXI
before /i before /;

anti
CCQE || NCEL CCQE

iii. Flux is integrated all region, but flux error is calculated separately

Flux variation is calculated by variation of numerator of efficiency term (rate).

In this way, flux variation is automatically limited within the region relevant to cross section
measurement. Both normalization and shape flux error are taken into account.

Error is smaller, ~8%.
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3.5 Flux correction

Integral region of flux
- Flux is integrated and removed. There are many ways how to introduce flux error.

CC1n*

iv. cross sections are function of neutrino energy

In this way, integrated flux in Ev bin is unfolded in each bin of measured variables (e.g., pion

kinetic energy), then flux error only relevant Ev region apply to measured variables. This
minimizes flux error at many region.

Pion kinetic energy- neutrino energy 2-dimentional cross section

‘(", " Queen Mary 600 800 1000 1200 1400 l

University of London Neutrino Energy (MeV)

= 06
B 3
m}
3 300 —os c;
~

o |~
2 =

2 = 04 I

x

5 200

2 03

02

01

0



U; :unsmearing matrix

b, :predicted background

v
oy DUdeb)
3.6 Target number J0) __]  :data vector
dx & (PT)AX,
A <\
AX; :bin width
g; :efficiency T :integrated target number

® :integrated v-flux
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3.6 Target number correction

What is the real fiducial volume?
- Fiducial cut is made based on reconstructed vertices.
- Fiducial volume is based on true dimension.

In MiniBooNE, fiducial cut is smaller than fiducial volume, to take account possible vertex
mis-reconstruction.

i. MiniBooNE is ~600cm radius sphere.

ii. MC is generated within 550cm sphere.

iii. The fiducial cut is 500cm sphere.

In this way, we can guarantee cross section is calculated in the region where we believe
uniform.

- In general, data-MC agreement is not enough for absolute cross section measurement.
Even data and MC perfectly agree in reconstructed spectrum, you need to worry the
absolute calibration of vertex, target volume, and density.

+
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U; :unsmearing matrix

b, :predicted background

v
Euij(dj&bi)\

do) 5 d, :data vector

dx), & (@T)AX
3.7 Binning T—

AX; :bin width
g, :efficiency T :integrated target number
® :integrated v-flux
o
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3.7 Bin width

Statistics
Bin width is finer at high statistics region, and coarser at low statistics region.

Systematics
Too fine bins with large shape systematic make no sense?

Reconstruction bias
For CCQE analysis, reconstruction bias was added to bin resolution.

s (em?)
— e —
CconPOOONRAD

CCQE

NCEL

CCQE

NC1m°

CC1n*

CC1no°

I
0.6

x10™
= (a)
i MiniBooNE data with shape error
i ——=—— MiniBooNE data with total error
e RFG model with .\lf‘{:=l.03 GeV, k=1.000
— RFG model with M =1.35 GeV, k=1.007
- 1 1 | L L PR | L L | L L L | - 1 PR 1 L L | L L | - 1 L
E,RFG
4 06 038 1 1.2 14 EQ (GeV)

anti
CCQE

Entries

0

Mean
RMS

%I ndf
Constant
Mean
Sigma

hune_9

5912
0.3039
0.2055

1376120
540+ 8.2
0.2517 + 0.0036
0.1801+ 0.0017

L 1 I Il Pl PP P PR B
-1 08 06 04 02 -0 02 04 06 038

1

resolution + reconstruction bias

04/02/14
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U; :unsmearing matrix

b, :predicted background

v
Euij(dj&bﬂ\
do) 5 d, :data vector
dx | g(PT)AX
A \
AX; :bin width
3.8 Systematic errors
g, :efficiency T :integrated target number

® :integrated v-flux

‘e-_,_@_a’ Queen Mary
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3.8 Systematic errors

Systematic error is
calculated from the

difference of systematics
varied cross section result

and central value cross
section result.

() ()], )

4 parts are related with

systematic error. Don’t vary

all of them with all

systematics! You need to

think about the effect of
each term
3.8.1 background

U; :unsmearing matrix

b. :predicted background

— ]

3.8.2 U-matrix

dj data vector

AX; :bin width

g, -efficiency

3.8.3 Efficiency
3.8.4 Flux term
3 8.5 Target number

T :integrated target number

® :integrated v-flux

“Qs’ Queen Mary

University of London




> U3(d, - b))
J

e (P°T°)Ax.

3.8 Systematic errors (do)s
— | #

Systematic error is dx i
calculated from the
difference of systematics
varied cross section result
and central value cross
section result.

() ()], )

4 parts are related with

systematic error. Don’t vary i ' i

all of them with all T
systematics! You need to Ax. ‘bin width
think about the effect of '

each term

U; :unsmearing matrix

b, :predicted background

— ]

(do) j ol d, :data vector
|

3.8.1 background . .
3 8.2 U-matrix g, :efficiency T :integrated target number

3.8.3 Efficiency .
3 8.4 Flux term ® :integrated v-flux

3 8.5 Target number
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3.8 Systematic errors

Systematic error is
calculated from the
difference of systematics
varied cross section result

and central value cross
section result.

b, :predicted background

e )]s S

j
4 parts are related with (—) = :
systematic error. Don’t vary dx . g (DT )AX;
all of them with all

systematics! You need to To reduce cross section error
think about the effect of  higher purity

each term - sideband (then error is measurement)
3.8.1 background
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3.8 Systematic errors

Systematic error is
calculated from the
difference of systematics
varied cross section result

and central value cross
section result.

b, :predicted background

l()()][()()] oy DY

j
4 parts are related with (—) = :
systematic error. Don’t vary dx . g (DT )AX;
all of them with all
systematics! You need to To reduce flux error

think about the effect of - use cancellation with signal MC
each term - purity correction method
3.8.1 background - shape-only background subtraction method

el
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3.8 Systematic errors

Systematic error is
calculated from the
diffgrence of syst_ematics U, :unsmearing matrix
varied cross section result !
and central value cross
section result.

() ()], )

4 parts are related with

systematic error. Don’t vary

all of them with all

systematics! You need to

think about the effect of The error is dominated by detector error (flux error

each term cancels). For Bayesian unfolding, signal MC gives
error here, too.

— ]

‘d 1o}
T

& (P[T)AX.

I\

3.8.2 U-matrix
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3.8 Systematic errors

Systematic error is

calculated from the

difference of systematics

varied cross section result

and central value cross Detector error goes here (flux and
section result. Xsec error cancel).

)@ x) o DUCED

4 parts are related with
systematic error. Don’t vary (I)T)AXi

all of them with all ']\

— ]

systematics! You need to
think about the effect of
each term

Efficiency variation

3.8.3 Efficiency
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3.8 Systematic errors

Systematic error is
calculated from the
difference of systematics
varied cross section result
and central value cross
section result.

() ()], )

&

4 parts are related with | =
systematic error. Don’t vary dx i
all of them with all

systematics! You need to

think about the effect of

each term

Flux normalization error is here. You may need to
apply cutoff to remove flux variation irrelevant for
cross section measurement, to avoid
overestimation of error.

C

ild; 1b;)

IK

Integrated flux variation

3.8.4 Flux term
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3.8 Systematic errors

Systematic error is
calculated from the

difference of systematics Precise definition of active volume may
and central value cross (this is not simulated effect, i.e., incorrect

section result. fiducial volume just give wrong answer)

Eu=l($),(cfxs)|][($)1(c§‘s),} Il L)

(do) J
4 parts are related with | =
systematic error. Don’t vary i

all of them with all

systematics! You need to

think about the effect of

each term

eiKCD T)AX.

Total target number

*3.8.5 Target number

%Qf Queen Mary -
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3.8.6 Systematics error matrix production
Unisim

The error matrix can be made by changing one of systematics and calculate differential
cross section (dos/dx), then take a difference with differential cross section calculated with

central value MC (do/dx).

(do)_ do® (do) [do®

dx /i \ dx J [} \dx i dx |
j

|
If there is a correlation between systematics (input error matrix), it should propagate
correctly. In this case, number of do%/dx with different set of systematics drawn from input
error matrix make many error matrices. Then, we take average of them to construct

output error matrix.
do) (do®
dxj dx j

w254

e o
\Q Queen Mary Teppei Katori 04/02/14

University of London

]

Multisim

69



3.8.6 Multisim
ex) cross section uncertainties
MAQE 6% I correlated
EIoSf 2%
QE o norm 10%  uncorrelated

var(M , )
coviM ,E )
0]

Minput (XS) =

\

cross section error for EVQE

1st cross section model
2" cross section model
31 cross section model

A

—

n, N, N3 N, N Ng N; Ng

() Queen Mary

University of London

EvQE (GeV)

f

Teppei Katori

waou O 3D

cross section
parameter space

M,

o ]
coviM ,,E ) 0]
var(E, ) 0]

0 var(o —norm)

repeat this exercise many times to create
smooth error matrix for EvQE

04/02/14

/
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3.8.6 Multisim

Output cross section error matrix for EVQE

[Moutput (Xs)]ij ~ — E (Nf (xs) = N )(Nf (xs)— Nlj\dc )

Moutput (XS) =

1S
S

k

( var(n,)
cov(n,,n,)

cov(n,,n,)

\

cross section error for EVQE

—

cov(n,,n,)
var(n,)

cov(n,,n,)

A 1st cross section model
2" cross section model

31 cross section model

cov(n,,n,)
cov(n,,n,)

var(n,)

smooth error matrix for EvQE

n, N, N3 N, N Ng N; Ng

‘e_,_é_s’ Queen Mary

University of London

EvQE (GeV)

Teppei Katori

04/02/14
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repeat this exercise many times to create
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3.8.7 Statistics error

NC1re || CC1

Statistical error propagation
Due to unfolding, there is data statistical error on off-diagonal term of error matrix. The
diagonal statistical error can be propagated through Jacobian. It is weakened, and smoothly
migrate to off diagonal. MC statistics can be transferred by similar way if it is large.

G200 () | Sl
m

Vi g(@T)Ax | | ad ad
i mj

Vi dx

Statistical error through Multisim NCEL
Fake data set is made by applying fluctuation on data within data statistics. Then statistics
multisim output error matrix is made from fake data set.

anti
CCQE || CC1x* CCQE

Statisical error through detector error matrix

Detector error multisim MC set is made with data statistics (MiniBooNE historic reason), so
the multisim output error matrix has ~data statistical error, too.

+
\@ Queen Mary Teppei Katori 04/02/14 72

University of London



3.8.8 Correlated systematic errors between samples

Correlated errors between T2K cross section results
T2K used many MiniBooNE cross section results for the global fit, however, MiniBooNE
data errors should be correlated because all of them are measured by the same beamine

and the detector.

To avoid same mistake, we should provide correlated errors? For example

1. flux normalization

2. /K ratio (Mark H.)
Providing these 2 numbers could reduce over all errors dramatically for the global fit.
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U; :unsmearing matrix

b, :predicted background

v
Euij(dj&bﬂ\
do) 5 d, :data vector
dx)  &(DPT)AX
A ‘\
AX; :bin width
g, :efficiency T :integrated target number

3.9 Data format

® :integrated v-flux
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3.9 Data format

N anti anti
CCQE | NCEL || NC1n° || CC1x CC1no° CCQE || NCEL

Tables on MiniBooNE data release website
- In MiniBooNE, all cross section tables, as well as flux table, are released in website
http://www-boone.fnal.gov/for_physicists/data_release/

BwoNE

BOOSTER NEUTRINO EXPERIMENT [about!ooNE about neutrinos virtual tour BooNEntworkW

> Home News & Events BooNE Collaboration For Physicists Contact

Data Releases

This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the
subset of MiniBooNE papers with released data are listed here. Refer to the Publications page for a complete list of MiniBooNE
publications.

© Data Released with A.A. Aguilar-Arevalo et al., "Measurement of Muon Neutrino Induced Charged Current Neutral Pion Production
Cross Sections on Mineral Oil at Enu = 0.5-2.0 GeV", arXiv:1010.3264 [hep-ex], submitted to Phys. Rev. D

© Data Released with A.A. Aguilar-Arevalo et al., "Measurement of the Neutrino Neutral Current Elastic Differential Cross Section",
arXiv:1007.4730 [hep-ex], submitted to Phys. Rev. D

with A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Neutrino Charged Current Quasielastic Double
Differential Cross section”, arXiv:1002.2680 [hep-ex], Phys. Rev. D81, 092005 (2010)

0

Data Released with A.A. Aguilar-Arevalo et al., "Measurement of v_ and V__induced neutral current single n~ production cross
sections on mineral oil at E_~O(1 GeV)", arXiv:0911.2063 [hep-ex], Phys. Rev. D81, 013005 (2010)

Data Released with A.A. Aguilar-Arevalo et al., "A Search for Electron Anti-Neutrino Appearance at the Am2 ~1 eV2 Scale",
arXiv:0904.1958 [hep-ex], Phys. Rev. Lett. 103, 111801 (2009),

Data Released with A.A. Aguilar-Arevalo et al., "A Search for Muon Neutrino and Anti-Neutrino Disappearance in MiniBooNE",
arXiv:0903.2465 [hep-ex], Phys. Rev. Lett. 103, 061802 (2009)

Data Released with A.A. Aguilar-Arevalo et al., "Unexplained Excess of Electron-Like Events From a 1 GeV Neutrino Beam"”,
arXiv:0812.2243 [hep-ex], Phys. Rev. Lett. 102, 101802 (2009)

Data Released with A.A. Aguilar-Arevalo et al., "The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rew.
D. 79, 072002 (2009)

Data Released with A.A. Aguilar-Arevalo et al., "A Search for Electron Neutrino Appearance at the Am2 ~1 eV2 Scale",
arXiv:0704.1500 [hep-ex], Phys. Rev. Lett. 98, 231801 (2007)
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3.9 Data format

;
CCQE || NCEL || NC1xe || cC1n* || cC1ro g%bE

Tables on MiniBooNE data release website
- In MiniBooNE, all cross section tables, as well as flux table, are released in website
http://www-boone.fnal.gov/for_physicists/data_release/

Data Release for A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Neutrino Charged Current Quasielastic
Double Differential Cross section", arXiv:1002:2680 [hep-ex], Phys. Rev. D81, 092005 (2010)

The following MiniBooNE information from the 2010 CCQE cross section paper is made available to the public:

. vlll CCQE cross sections:

o MiniBooNE flux
= table of predicted MiniBooNE muon neutrino flux (Table V)

o flux-integrated double differential cross section (Figure 13)
= 1D array of bin boundaries partitioning the muon kinetic energy (top) and the cosine of the muon scattering angle (bottom)

= 2D array of the value of the double differential cross section in each bin in units of 10*! em?/GeV/nucleon. The muon kinetic energy increases from left to right, and the cosin¢
of the muon scattering angle decreases from top to bottom (Table VI)

= 2D array of the shape uncertainty of the double differential cross section in each bin in units of 10*? cm?/GeV/nucleon. The total normalization error is 10.7% (Table VII)

= 2D array of the predicted CCQE-like background double differential cross section in each bin in units of 10*! em%/GeV/nucleon (Table VIII)

o flux-integrated single differential cross section in bins of Q2 (Figure 14)
= 1D array of bin boundaries partitioning the reconstructed four momentum transfer, Q2
= 1D array of the value of the single differential cross section in each bin in units of cmzchVzlnuclcon (Table IX)
= 1D array of the shape uncertainty of the single differential cross section in each bin in units of cm?/GeV2/nucleon. The total normalization error is 10.7% (Table IX)
= 1D array of the predicted CCQE-like background single differential cross section in each bin in units of cm?/GeVZ/nucleon (Table IX)

o flux-unfolded cross section as a function of neutrino energy (Figure 15)
= 1D array of bin boundaries partitioning the neutrino energy

= 1D array of the value of the cross section in each bin in units of cm2/nuclcon (Table X)
= 1D array of the shape uncertainty of the cross section in each bin in units of cm?/nucleon. The total normalization error is 10.7% (Table X)

» = 1D array of the total uncertainty of the cross section in each bin in units of cm?/nucleon (Table X)
C = 1D array of the predicted CCQE-like background cross section in each bin in units of cm?/nucleon (Table X)

University of London



3.9 Data format

CCQE

NCEL

NC1m°

CC1n*

CC1no°

Tables on MiniBooNE data release website
- In MiniBooNE, all cross section tables, as well as flux table, are released in website
http://www-boone.fnal.gov/for_physicists/data_release/

Cross section format
- Flux-integrated double differential cross section

- Fliix intearated cinnle diffarential cronce cacrtinn
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3.9 Data format

Tables on MiniBooNE data release website
- In MiniBooNE, all cross section tables, as well as flux table, are released in website

CCQE

NCEL

NC1m°

CC1n*

CC1no°

anti

http://www-boone.fnal.gov/for_physicists/data_release/

Cross section format

- Flux-integrated double differential cross section

- Flux integrated single differential cross section

- Flux-unfolded total cross section

Additional tables

CCQE

CCQE

NC1x°

CC1x*

- signal-like background tables are presented, so that people can use either exclusive
cross section or effective cross section.

- response matrix R is presented so that people can calculate MiniBooNE
observed energy spectrum

WO Queen Mary

University of London

Teppei Katori

L || anti
CCQE || NCEL || NC1me || CC1x* || CC1°
anti
CCQE
S anti
CC1n° || ccaE
CCQE NCEL
NCEL
04/02/14 78




3.9 Data format

MINERVA style table?
- In MINERVA, data tables are all in “supplemental material” and the papers only have
cross section plots, to fit in PRL page limit. | think this is clever.

el
%Qf Queen Mary -

University of London
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3.9 Cross section errors

NC1xe || CC1xn* || CC1

Cross section error format
- Complete error matrix of differential cross sections

NCEL
- Complete error matrix for reconstructed energy spectrum

ccaE | 2%

- Diagonal term of shape only error matrix and total normalization error. CCQE
Diagonal term of shape only error matrix has information of covariance of total error matrix,
so this is a convenient way to show bin-bin correlation in 1-dimention

n 2 N
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M ——a—— MiniBooNE data with total error
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[ = ] MiniBooNE NCE cross-section with total error
un  Monte Carlo NCE-like background
2013)032001
“a 39— T —(hﬁnBooNEv)CCQEM(Cﬂ) NCEL
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- MiniBooNE V NCE cross section
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Conclusion

«Cross sectiort ér‘ialysis requires all set of different techniques and ideas.

Cross section analysjs takes time. " | . R B ~ ‘e
i\/liniBod[\lE developed lots of techniques and'idea'se are useful start.points for T2K |
analysis A | ST . B g
¢ . . x S ;
’
. 5 . b o ...
. ." | . .
®.e LAY '.. ! e 3
. ! . .. . '. ‘o
Y X . o . 4
e . - T L]

- Thank yqu' for.your att-enﬁoh.!
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3.2 Background removing

Data driven correction

CCQE

NCEL

CC1n*

CC1no°

anti
CCQE

- Almost all analyses use sideband data to correct background distribution in signal boxes

CCQE-CC1xn* box simultaneous fit

CCQE

- CC1x* box is >90% purity. Using this sample, background distribution in CCQE box is

modified.

External background enhanced sample
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3.2 Background removing

Cross section error of pion kinematics

CC1xn*

- Purity is extremely high (~90%), so error from background is negligible.
- Signal is defined from pion in final state, so pion absorption is not systematic error.
- In general, FSl is small error for all analyses

- The pion absorption in the oil is error.

- Secondary scattering will be the largest error for hadron measurement.

| think you revise all errors to think which is the important error etc. If you run analysis
machinery with all errors on, you will over-estimate systematic errors.

‘e-_,@_s’ Queen Mary

University of London

Teppei Katori 04/02/14
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3.3 Unsmearing

How to construct M-matrix? Reconstructed variables
- The definition of true kinematics is tricky, because you have choice.

anti

i. True Q2 is defined by reconstructed Q2 from true kinematics | CCQE NCEL | cCQE
For example, CCQE, true Q? is defined “reconstructed Q2 from true muon energy and angle”,
and we call it “Q?,” to remind people this is reconstructed under QE assumption.

i True Q2 is defined by true Q2 in MC | CC 17" | CC1
This may be useful to compare with old data, only presented by this way

N anti
iii True Ev is defined by true Ev in MC CCQE || NC1x || CCln* || CCI° [ coqE

For example, CCQE, Ev is called “EvERFC” to £ S
20000

remind people this is reconstructed under QE £ 1m0

L 16000

assumption then unfolded by assuming 2000
RFG model. 3000

6000

4000
2000

° IIIIIIIlIlIlII[lIII|IIIIIIIlIII|III|]II|III|III

o

Flux-unfolded total cross section

- it is important to unfold under RFG,
otherwise reconstruction bias deviate
cross section at the tail significantly.
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