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Abstract

We study the problem of diversifying a given initial capital over a fi-

nite number of investment funds that follow different trading strategies.

The investment funds operate in a market where a finite number of un-

derlying assets may be traded over finite discrete time. We present a

numerical procedure for finding a diversification that is optimal in the

sense of a given convex risk measure. The procedure is illustrated on an

asset-liability management problem where the liabilities correspond to a

pension insurance portfolio.

1 Introduction

There exist several instances of portfolio optimization problems where an opti-
mal trading strategy can be characterized in terms of problem data. General
dynamic portfolio optimization problems with trading restrictions, liabilities
and general return/claim distributions, however, remain unsolved and in prac-
tical applications one often has to rely on approximations or heuristics. This is
the case e.g. in pricing and hedging of some complex financial instruments as
well as in asset-liability management (ALM) of insurance companies.

The main contribution of this paper is to describe a computational proce-
dure for constructing good investment strategies out of a given set of candidate
(basis) strategies. The procedure can effectively employ expert guesses of good
strategies by adjusting their linear combination to the given objective and under-
lying probability distribution. The procedure combines simulations with large
scale convex optimization and it can be efficiently implemented with modern
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solvers for convex optimization. The resulting strategy is easy to evaluate in
simulations.

We illustrate the optimization process on a problem coming from the Finnish
pension insurance industry. The liabilities are taken as the claim process asso-
ciated with current claims portfolio of the private sector occupational pension
system and the investment horizon is 82 years. The results reveal a significant
improvement over a set of standard investment styles that are often recom-
mended for long term investors. The optimization process is repeated with
different model specifications in order to illustrate how the optimized strategy
adapts to liabilities and to user-specified risk tolerances.

The rest of this paper is organized as follows. We begin by reviewing some
well-known parametric investment strategies in Section 2. Section 3 states the
optimization problem and Section 4 outlines the numerical procedure for its
solution. The application to pension fund management is reported in Section 5.
The market model used in the case study is described in the Appendix.

2 Basic investment strategies

We study dynamic trading over finite discrete time t = 0, . . . , T from the per-
spective of an investor who has initial capital w0 and liabilities characterized by
their claim process c = (ct)

T
t=1. Here ct denotes the claim the investor has to

pay at time t. The claim process c is allowed to be random and to take both
positive and negative values so it can be used to model uncertain expenses as
well as income.

The underlying financial market is modeled by a finite set J of securities that
can be traded at every t = 0, . . . , T . The return on asset j ∈ J over holding
period [t − 1, t] will be denoted by Rt,j . The interpretation is that if ht−1,j

units of cash is invested in asset j ∈ J at time t − 1, the investment will be
worth Rt,jht−1,j at time t. The return processes Rj = (Rt,j)

T
t=1 are assumed

to be positive but otherwise their joint distribution with the claim process c is
arbitrary.

Several rules have been proposed for updating an investment portfolio in
an uncertain dynamic environment. The simplest are the buy and hold (BH)
strategies where an initial investment portfolio is held over time without up-
dates. For nonzero claim process c, however, BH strategies may be infeasible.
A natural modification is to liquidate each asset in the proportion of the initial
investments to cover the claims. The resulting strategy consists of investing

ht,j =

{

πjw0 t = 0,

Rt,jht−1,j − πjct t = 1, . . . , T,

units of cash in asset j ∈ J at the beginning of the holding period starting at
time t. Here πj is the proportion invested in asset j ∈ J at time t = 0. Such
strategies will be “self-financing” in the sense that they allow for paying out the
claims without need for extra capital after time t = 0. If the claim process c is
null, the BH strategy requires no transactions after time t = 0.
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Another well-known strategy is the fixed proportions (FP) strategy where at
each time and state the allocation is rebalanced into predetermined proportions
given by a vector π ∈ R

J whose components sum up to one. In other words,

ht = πwt,

where for t = 1, . . . , T ,

wt =
∑

j∈J

ht−1,jRt,j − ct

is the net wealth of the investor at time t.
A target date fund (TDF) is a popular strategy in the pension industry

(Bodie and Treussard (2007)). In a TDF, the proportion invested in risky
assets is decreased as retirement date approaches. In our multi-asset setting
we implement TDFs by adjusting the allocation between two complementary
subsets Jr and Js of the set of all assets J . Here Js consists of “safe” assets
and Jr consists of the rest (the “risky” assets). In a TDF, the proportional

exposure to Jr at time t is given by

et = a − bt.

The parameter a gives the initial proportion invested in Jr and b specifies how
fast the proportion is decreased with time. Nonnegativity of the exposure in
the risky assets can be guaranteed by choosing a and b so that

a ≥ 0 and a − bT ≥ 0.

A TDF can be written as
ht = πtwt

where the vector πt is dynamically adjusted to give the specified proportional
exposure:

∑

j∈Jr

πt,j = et.

To complete the definition, one has to determine how the wealth is allocated
within Jr and Js. We do this according to FP rules.

One of the best known strategies is the constant proportion portfolio insur-

ance (CPPI) strategy; see e.g. Black and Jones (1987), Black and Perold (1992)
and Perold and Sharpe (1995). In a CPPI, the proportional exposure to the
risky assets is given by

et =
m

wt

max{wt − Ft, 0}

= mmax{1 −
Ft

wt

, 0},

where the “floor” Ft represents the value of outstanding claims at time t and
the parameter m ≥ 0 determines the fraction of the “cushion” (wealth over
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the floor) invested in risky assets. One can limit the maximum proportional
exposure to a given upper bound l by defining the exposure as

et = min{mmax{1 −
Ft

wt

, 0}, l}.

3 The optimization problem

We propose to diversify a given initial capital w0 among a finite number of in-
vestment strategies in order to acchieve a return distribution that better suits
the liabilities and risk preferences of the investor. As long as the individual
strategies cover the given liabilities (see the previous section) so will the overall
strategy obtained with diversification. One is then free to search for an optimal
diversification. Appropriately diversifying among parametric classes of invest-
ment strategies one may be able to produce new superior strategies which do
not belong to the original parametric classes; see Section 5.3.

The problem of diversifying among a finite set {hi | i ∈ I} of strategies can
be written as

minimize
α∈X

ρ(
∑

i∈I

αiwi
T ),

where wi
T is the terminal wealth obtained by following strategy i ∈ I when

starting with initial capital w0,

X = {α ∈ R
I
+ |

∑

i∈I

αi = 1}

and ρ is a convex risk measure that quantifies the preferences of the decision
maker over random terminal wealth distributions; see e.g. Föllmer and Schied
(2004) or Rockafellar (2007).

Several choices of ρ may be considered. We will concentrate on the Con-
ditional Value at Risk (CV @R) which is particularly convenient in the opti-
mization context. According to Rockafellar and Uryasev (2000), CV @Rδ at
confidence level δ of a random variable w can be expressed as

CV @Rδ(w) = inf
γ

E

[

1

1 − δ
max{γ − w, 0} − γ

]

.

Moreover, the minimum over γ is achieved by Value at Risk at confidence level δ.
The problem of optimal diversification with respect to CV @Rδ can be written
as

minimize
α∈X,γ

E

[

1

1 − δ
max{γ −

∑

i∈I

αiwi
T , 0} − γ

]

. (1)

The problem thus becomes that of minimizing a convex expectation function
over a finite number of variables. Mathematically, it is close to the classical
problem of maximizing the expected utility in a one period setting and, con-
sequently, similar techniques can be applied for its solution; see e.g. Sharpe
(2007).
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4 Numerical procedure

In order to solve (1), we will first make a quadrature approximation of the
objective; see Pennanen and Koivu (2005), Koivu and Pennanen (2009). That
is, we generate a finite number N of return and claim scenarios (Rk, ck), k =
1, . . . , N over the planning horizon t = 0, . . . , T and approximate the expectation
by

1

N

N
∑

k=1

[

1

1 − δ
max{γ −

∑

i∈I

αiwi,k
T , 0} − γ

]

,

where wi,k
T is the terminal wealth along scenario k obtained with strategy hi.

Here and in what follows, Rk denotes a realization of the |J |-dimensional process

(Rt)
T
t=1 where Rt = (Rt,j)j∈J . The computation of wi,k

T is straightforward:
given a realization (Rk, ck) and a strategy hi, the corresponding wealth process

wi,k = (wi,k
t )T

t=0 is given recursively by

wi,k
t =

{

w0 for t = 0,
∑

j∈J Rk
t,jh

i,k
t−1,j − ck

t for t > 0.

Algorithmically, the solution procedure can be summarized as follows.

1. Generate N scenarios of asset returns Rt and claims ct over t = 1, . . . , T .

2. Evaluate each basis strategy i ∈ I along each of the scenarios k = 1, . . . , N
and record the corresponding terminal wealth wi,k

T .

3. Solve the optimization problem

minimize
α∈X,γ

1

N

N
∑

k=1

[

1

1 − δ
max{γ −

∑

i∈I

αiwi,k
T , 0} − γ

]

(2)

for the optimal diversification weights αi.

There are several possibilities for solving (2). We follow Rockafellar and Uryasev
(2000) and reformulate (2) as the linear programming problem

minimize
α∈RI ,γ∈R,s∈RN

1

N

N
∑

k=1

(

1

1 − δ
sk − γ

)

subject to sk ≥ γ −
∑

i∈I

αiwi,k
T k = 1, . . . , N,

∑

i∈I

αi = 1,

αi, sk ≥ 0.

This LP has |I|+N +1 variables, where |I| is the number of funds and N is the
number of scenarios in the quadrature approximation of the expectation. Mod-
ern commercial solvers are able to solve LP problems with millions of variables
and constraints.
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5 Case study: pension fund management

Consider a closed pension fund whose aim is to cover its accrued pension lia-
bilities with given initial capital. The pension claims are of the defined benefit
type and they depend on the wage and consumer price indices. According
to the current Finnish mortality tables, all the liabilities will be amortized in
82 years. The following section describes the stochastic return/claim process
(R, c) = (Rt, ct)

T
t=1 and Section 5.2 lists the basic strategies that will be used in

the numerical study in Section 5.3.

5.1 Assets and liabilities

The set J of primitive assets consists of

1. Euro area money market,

2. Euro area government bonds,

3. Euro area equity,

4. US equity,

5. Euro area real estate.

These are the assets in which the individual funds described in Section 2 invest.
The above asset classes may also be viewed as investment funds themselves. For
the money market fund, the return over a holding period of ∆t is determined
by the short rate Y1,

Rt,1 = e∆tYt−1,1 ,

The short rate will be modeled as a strictly positive stochastic process which
will imply that R1 > 1. The return of the government bond fund will be given
by the formula

Rt,2 = ∆tYt−1,2 +

(

1 + Yt,2

1 + Yt−1,2

)−D

,

where Yt,2 is the average yield to maturity of the bond fund at time t and D
is the modified duration of the fund. The total returns of the equity and real
estate funds are given in terms of their total return indices Sj ,

Rt,j =
St,j

St−1,j

, j = 3, 4, 5.

The pension fund’s liabilities consist of the accrued benefits of the plan mem-
bers. The population of the pension plan is distributed into different cohorts
based on the members’ age and gender. The fraction of retirees in each cohort
increases with age and reaches 100% by the age of 68. The youngest cohort is
18 years of age and all the members are assumed to die by the age of 100. The
defined benefit pensions depend on stochastic wage and consumer price indices.
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We will model the evolution of the short rate, the bond yield, the total
return indices of equities as well as the wage and consumer price indices with
a Vector Equilibrium Correction-model (Engle and Granger (1987)) augmented
with GARCH innovations. A detailed description of the model together with
the estimated model parameters is given in the Appendix.

Figure 1 displays the 0.1%, 5%, 50% (median), 95% and the 99.9% per-
centiles of the simulated asset return distributions over the first twenty years
of the 82 year investment horizon. Figure 2 displays the development of the
median and the 95% confidence interval of the yearly pension claims over the
82 year horizon.
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Figure 1: Evolution of the 0.1%, 5%, 50%, 95% and 99.9% percentiles of monthly
asset return distributions over twenty years.
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Figure 2: Median and 95% confidence interval of the projected pension expen-
diture c over the 82 year horizon.
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5.2 The investment funds

We will diversify a given initial capital among different investment funds as
described in Section 3. The considered funds follow the trading rules listed in
Section 2 with varying parameters. The set Js of “safe assets” consists of the
money market and bond investments.

We take five buy and hold strategies each of which invest all in a single asset.
More general BH strategies can be generated by diversifying among such simple
BH strategies. We use 11 FP strategies with varying parameters π. In TDF
and CPPI strategies, we always use fixed proportion allocations within the safe
assets Js and the risky assets Jr. We use 20 TDF strategies with varying values
for a and b. In the case of CPPI strategies, we define the floor through

FT = 0,

Ft = (1 + r)Ft−1 − c̄t t = 0, . . . , T,

where r is a deterministic discount factor and c̄t is the median of claim amount
at time t; see Figure 3. This corresponds to the traditional actuarial definition
of “technical reserves” for an insurance portfolio. We generate 40 CPPI strate-
gies with varying values for the multiplier m and the discount factor r in the
definition of the floor.
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Figure 3: Development of the floor F with different discount factors r over the
82 year horizon.
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5.3 Results

We computed an optimal diversification over the above funds assuming an ini-
tial capital of 225 billion euros and a confidence level δ of 97.5% in the definition
of the optimization problem (2). We constructed the corresponding linear pro-
gramming problem with 20000 scenarios as described in Section 4. The resulting
LP consisted of 20072 variables and 20001 constraints. The LP was solved with
MOSEK interior point solver and AMD 3GHz processor in approximately 30
seconds.

The optimal solution is given in Table 1 with the characteristics of the funds
in the optimal diversification. The CV @R97.5% of the optimally constructed
fund of funds is 251. The last column of Table 1 gives the CV @R numbers
obtained with the individual funds in the optimal fund of funds. The constructed
fund of funds clearly improves upon them. The best CV @R97.5% value among all
individual funds is 1020, which means that the best individual fund is roughly
300% riskier than the optimal diversification. Surprisingly, this fund is not
included in the optimal fund of funds. All the CV @R-values were computed on
an independent set of 100000 scenarios.

The optimal allocation in terms of the primitive assets at time t = 0 is given
in Figure 4. Figure 5(a) gives the proportion of risky assets at the beginning of
year 20 as a function of total wealth. While the level of wealth clearly affects the
optimal portfolio, there is significant variation that is not explained by it. This
just illustrates the fact that the optimal strategy may be a complicated function
of the underlying risk factors. For comparison, Figure 5(b) plots an analogous
“exposure diagram” for the CPPI-strategy that got the highest weight in the
optimal fund of funds. In a CPPI strategy, the exposure to the risky assets is a
well-defined function of the level of wealth.
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Table 1: Optimized fund of funds. The first column gives the optimal weights of
the funds in the optimized fund of funds. The second and the third columns give
type and parameters, respectively, of the corresponding strategy in the notation
of Sections 2 and 5.3. The last column gives the CV @R97.5% for each individual
fund in billions of euros.

Weight (%) Type Parameters CV @R97.5% (billion e)
66.5 BH Bonds 1569
2.9 BH Euro Equity 6567
10.4 BH US Equity 5041
2.2 FP m = 0.8 3324
3.9 CPPI m = 1, l = 100%, r = 4% 1420
9.9 CPPI m = 2, l = 100%, r = 4% 1907
4.2 CPPI m = 2, l = 100%, r = 5% 2417

Money market 
1%           

Bonds 
84%   

Euro area equity 
3%               

US equity 
11%       

Real estate 
1%          

Figure 4: Optimal allocation in terms of the primitive assets at time t = 0.

To gain insight on how risk preferences affect the optimal asset allocation,
we computed the optimal fund of funds for five different confidence levels δ ∈
{80%, 90%, 95%, 97.5%, 99%}. The optimal allocations in terms of the primitive
assets at time t = 0 are given in Figure 6(a). Expectedly, the proportion of
equities increases as the confidence level (i.e. the “risk aversion”) is lowered.

To illustrate the effect of liabilities on the optimal asset allocation we re-
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(a) Optimized strategy
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Figure 5: Proportion of the “risky assets” in year t = 20 as a function of total
wealth. Figure (a) depicts the optimized strategy while (b) corresponds to the
CPPI strategy with the largest weight in the optimal fund of funds.

computed the optimal diversifications without liabilities. Accordingly, the basis
strategies were constructed by setting (ct)

T
t=1 = 0 in the specifications of Sec-

tion 2. The optimal allocations in terms of the primitive assets at time t = 0
are given in Figure 6(b). Comparing the optimal allocations in Figures 6(a) and
6(b), it is clear that the liabilities play an essential role in the determination
of an optimal allocation. In particular, for a highly risk averse investor, bonds
seem to provide the best hedge for the long term liabilities among the considered
asset classes.
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(b) Asset weights without liabilities (c = 0)

Figure 6: Optimal initial allocations in the primitive assets with varying confi-
dence levels δ.
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6 Conclusions

This paper applied the strategic optimization technique developed in Koivu
and Pennanen (2009) to a long term asset liability management (ALM) prob-
lem. The ALM problem was formulated as that of diversifying a given initial
capital optimally over a finite number of investment funds with varying invest-
ment styles. The funds follow given parametric investment strategies that are
constructed so that they allow for required claim payments. The optimality
criterion was taken to be the Conditional Value at Risk with a given confidence
level but other choices of risk measures can be used as well.

The proposed optimization framework was applied to an asset liability man-
agement problem coming from pension insurance industry. The optimized fund
of funds outperformed the best individual investment strategy by a wide mar-
gin. The promising results open ample possibilities for future research. An
interesting application would be to use the approach in pricing of insurance lia-
bilities. The ability to adjust the hedging strategy to given insurance portfolio
and risk preferences is essential in incomplete markets; see Hilli et al. (2009).
The approach can also be extended to accommodate for trading restrictions and
liquidity costs.

A The time series model

As described in Section 5.1, the returns on the primitive assets as well as the
pension claims are expressed in terms of seven economic factors; short term
(money market) interest rate (Y1), euro area government bond yield (Y2), euro
area total return equity index (S3), US total return equity index S4, euro area
total return real estate index (S5), Finnish wage index (W ) and euro area con-
sumer price index (C). We will model the evolution of the stochastic factors with
a Vector Equilibrium Correction-model (Engle and Granger (1987)) augmented
with GARCH innovations. To guarantee the positivity of the processes Y1, Y2,
S3, S4, S5, W and C we will model their natural logarithms as real-valued
stochastics processes. More precisely, we will assume that the 7-dimensional
process

ξt =





















lnYt,1

lnYt,2

lnSt,3

lnSt,4

lnSt,5

lnWt

lnCt





















follows a VEqC-GARCH process

∆ξt − δ = µt + σtεt, (3)
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where

µt = A(∆ξt−1 − δ) + α(βT ξt−1 − γ) (4)

and

σ2
t = Cσt−1εt−1(Cσt−1εt−1)

T + Dσ2
t−lD

T + Ω. (5)

The matrix A in (4) captures the autoregressive behavior of the time series, the
second term takes into account the long-term behavior of ξt around statistical
equilibria described by the system of linear equations βT ξ = γ, where β is a
matrix and γ is a vector of appropriate dimensions. The vector δ gives the
long term average drift of the process ξ. The instantaneous volatility matrix
σt is modelled by the multivariate GARCH-model (5), where C, D and Ω are
parameter matrices of appropriate dimension.

In its most general form, the above model has a very high number of free
parameters. To simplify the estimation procedure and to obtain a parsimonious
model, we will assume that the matrices A,C and D are diagonal and fix the
matrix β as

β =

[

0 1 0 0 0 0 0
−1 1 0 0 0 0 0

]T

.

The specification of the matrix β implies that the government bond yield and the
spread between the bond yield and the short rate are mean reverting processes.

We take the parameter vectors δ and γ as user specified parameters and set
their values to

δ = 10−3
[

0 0 7.5 7.5 5.0 2.0 3.0
]T

,

γ =

[

ln(5)
ln(5/4)

]

.

The vector δ specifies the long term median values of the equity and real estate
returns as well as the growth rates of consumer prices and wages. On the other
hand, the vector γ specifies the long term median values of the government bond
yield, the spread between the bond yield and short rate. The chosen value of
γ implies that the median values of the short rate Yt,1 and the bond yield Yt,2

will equal 4 and 5, respectively.
The remaining parameters were estimated using monthly data between Jan-

uary 1991 and July 2008 by applying an estimation procedure where all insignif-
icant parameters were deleted one by one until all remaining parameters were
significant at a 5% confidence level. The data used in estimation is summarized
in Table 2 and the estimated parameter matrices are given below.

A = 10−2





















41.995 0 0 0 0 0 0
0 14.807 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 96.233 0
0 0 0 0 0 0 93.422




















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Table 2: Data series used in the estimation

Stochastic factor Historical time series
Y1 Three month EURIBOR (FIBOR prior to EURIBOR)
Y2 Yield of a German government bond portfolio with

an average modified duration of five years
S3 MSCI Euro area total return equity index
S4 MSCI US total return equity index
S5 EPRA/NAREIT Eurozone total return real estate index
W Seasonally adjusted Finnish wage index (Statistics Finland)
C Seasonally adjusted Eurozone consumer price index (Eurostat)

α = 10−2

[

0 −2.119 0 0 0 0 0
1.514 0 0 0 0 0 0

]T

,

C = 10−2





















25.788 0 0 0 0 0 0
0 29.816 0 0 0 0 0
0 0 41.952 0 0 0 0
0 0 0 38.588 0 0 0
0 0 0 0 28.071 0 0
0 0 0 0 0 31.8125 0
0 0 0 0 0 0 0





















,

D = 10−2





















88.301 0 0 0 0 0 0
0 91.236 0 0 0 0 0
0 0 86.412 0 0 0 0
0 0 0 91.373 0 0 0
0 0 0 0 94.117 0 0
0 0 0 0 0 81.056 0
0 0 0 0 0 0 0





















,

Ω = 10−6





















202.241 71.004 −0.460 0.723 −1.622 −0.015 −0.105
71.004 170.507 30.889 9.200 −3.682 0.134 −0.277
−0.460 30.889 202.430 53.547 54.036 0.021 0.199
0.723 9.200 53.547 25.330 14.050 0.003 0.021
−1.622 −3.682 54.036 14.050 44.769 −0.094 0.179
−0.015 0.134 0.021 0.003 −0.094 0.010 0.019
−0.105 −0.277 0.199 0.021 0.179 0.019 0.198





















.
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