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Preface

Optimization problems arise whenever decisions are to be made. Many phenom-
ena in natural sciences can also be described in terms of minima or maxima of
certain functions. In the words of Leonhard Euler, “...nothing whatsoever takes
place in the universe in which some relation of maximum or minimum does not
appear”.

These lecture notes study general aspects of convex optimization problems
where one seeks to minimize a convex function over a linear space. In a cer-
tain sense, convex optimization problems form the nicest class of optimization
problems. Stronger analytical results e.g. on the existence and uniqueness of
solutions and on optimality conditions are available as soon as the problem is
known to be convex. Convexity is essential also in the duality theory of opti-
mization. Under convexity, one can treat nonsmooth and infinite-dimensional
problems with the same ease as the smooth and finite-dimensional ones. Con-
vexity is indispensable in numerical optimization in higher dimensions. When
analyzing a given optimization problem, convexity is the first thing to look for.

Many aspects of more specific problem classes such as stochastic optimiza-
tion, robust optimization, calculus of variations, optimal control, semidefinite
programming and multicriteria optimization can be treated under convex analy-
sis. Although convexity rules out some important problems e.g. in combinatorial
optimization, it arises quite naturally in many applications. Classical applica-
tion fields include operations research, engineering, physics and economics. More
recently, convex optimization has found important applications in mathemati-
cal finance and financial engineering. Even some combinatorial problems can
be analyzed with techniques of convex analysis. Selected applications will be
treated in the following sections.

These notes study convex optimization in general topological vector spaces.
The generality is motivated by various important applications e.g. in physics
and financial economics which go beyond finite-dimensional spaces. In stochas-
tic optimization and mathematical finance, one often encounters topological
vector spaces which are not even locally convex. The material is divided into
three chapters according to mathematical structure. After outlining some ap-
plications, the first chapter studies convex optimization in general (real) vector
spaces. Chapter 2 studies optimization problems in topological vector spaces.
The last chapter is devoted to duality theory in locally convex topological vec-
tor spaces. The necessary topological and functional analytic concepts will be
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introduced as needed. Most of the material in these notes is collected from [11],
[13], [16] and [7].



Chapter 1

Convexity

This chapter studies convex optimization problems in general vector spaces. The
aim is to summarize some basic facts in convexity that do not require topology or
duality. Most results are quite simple but already useful in practice. We start by
studying convex functions on the real line and then proceed to study convexity
preserving operations that result in convex functions on more general vector
spaces. Knowledge of such operations is useful in identification of convexity
in applications as well as in building tractable optimization models in decision
sciences.

We will also study differential and asymptotic scaling properties of convex
sets and functions. Such properties are involved in conditions for optimality and
existence of solutions, respectively. We will see that convexity makes the scaling
behaviour remarkably tractable and allows for useful geometric interpretations
and calculus rules in practice. We end this chapter by presentting the funda-
mental separation theorems that yield more familiar separation theorems when
applied in topological vector spaces.

Before going to the general theory, we outline some applications where con-
vexity arises quite naturally. That these problems are in fact convex, will be
verified as applications as we proceed with the general theory.

1.1 Examples

This section discusses some well-known optimization problems where convexity
has an important role. The choice of applications is rather arbitrarily and many
important applications e.g. in statistics and inverse problems have been omitted.

Mathematical programming

Mathematical programming is the discipline that studies numerical solution of
optimization problems mostly in finite-dimensional spaces of real or integer vari-
ables. We will be concerned with problems with real variables. Optimization
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routines are designed for classes of optimization problems that can be written
in the form of a generic model. The classical linear programming model can be
written as

minimize x · c over x ∈ Rn

subject to Ax ≤ b,
(LP)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm and c · x =
∑n
i=1 cixi. Linear programming

models were studied already by Kantorovich in the 1930’s as a general formalism
in operations research; see [6]. They gained popularity with George Dantzig’s
invention of the simplex algorithm [3] which is still widely used. For large
problems, modern interior point methods often outperform simplex methods
both in theory and practice.

An important special case of the LP-model is the network optimization prob-
lem

minimize
∑

(i,j)∈A

ci,jxi,j over x ∈ RA

subject to
∑

{j|(i,j)∈A}

xi,j −
∑

{j|(j,i)∈A}

xj,i = si ∀i ∈ N

li,j ≤ xi,j ≤ ui,j ∀(i, j) ∈ A,

where N is the set of nodes and A ⊆ {(i, j) | i, j ∈ N} is the set of arcs of a
network. A notable feature of such models is that if the parameters si, li,j and
ui,j have integer values, then there is an optimal solution x with all xi,j integer;
see e.g. Rockafellar [15] or Bertsekas [2]. Important special cases of the general
network optimization problem include shortest path, assignment, transportation
and max-flow problems. There are also natural infinite-dimensional extensions
where the finite network is replaced by a measurable space (Ω,F) and flows
are described in terms of measures on the product space (Ω × Ω,F ⊗ F). The
most famous instance is the Monge-Kantorovich mass transportation problem;
see e.g. [9].

Replacing the linear functions in the LP-model by more general ones, one
obtains the nonlinear programming model

minimize f0(x) over x ∈ Rn

subject to fj(x) ≤ 0, j = 1, . . . ,m.
(NLP)

This is still the most common format for computational optimization routines.
More flexible and often more natural format is the composite optimization model

minimize h(F (x)) over x ∈ Rn, (CO)

where F = (f0, . . . , fm) is a vector-valued function from R
n to Rm+1 and h is a

function on Rm+1. In this model, all the functions fj are treated symmetrically
much as in multicriteria optimization. Allowing h to take on infinite-values, one
obtains (NLP) as a special case of (CO); see Section 1.4 below.
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Stochastic optimization

Many optimization problems involve uncertain factors that have an essential
effect on the outcome. Let (Ω,F , P ) be a probability space and let f : Rn×Ω→
R be such that ω 7→ f(x, ω) is measurable for every x ∈ Rn. The basic static
(as opposed to dynamic) stochastic optimization model can be written as

minimize Ef(x, ·) over x ∈ Rn. (SP)

Instead of the expectation, one could also minimize other functions of the ran-
dom variable ω 7→ f(x, ω). This leads to models of the form

minimize V(f(x, ·)) over x ∈ Rn, (CSP)

where V is a function on the space of random variables.
Problems where some of the decisions may react to realizations of random

variables, often lead to dynamic stochastic programming models of the form

minimize Ef(x(·), ·) over x ∈ N , (DSP)

where f is a B(Rn)⊗F-measurable function on Rn × Ω and

N = {(xt)Tt=0 |xt ∈ L0(Ω,Ft, P ;Rnt)}

for given integers nt such that n0 + . . . + nT = n and an increasing sequence
(Ft)Tt=0 of sub-sigma-algebras of F . Here L0(Ω,Ft, P ;Rnt) denotes the space
of (equivalence classes of) Ft-measurable Rnt-valued functions. This kind of
models are typical e.g. in mathematical finance; see the examples below or [8].

Price formation in a centralized market

Most modern securities markets are based on the so called double auction mech-
anism where market participants submit buying or selling offers characterized
by limits on quantity and unit price. For example, a selling offer consists of an
offer to sell up to x units of a security at the unit price of p (units of cash).
All the selling offers can be combined into a function x 7→ c(x), which gives
the marginal price when buying x units. The quantity available at the low-
est submitted selling price is finite and when buying more one gets the second
lowest price and so on. The marginal price c(x) is thus a piecewise constant
nondecreasing function of x. Equivalently, the cost function

C(x) =

∫ x

0

c(z)dz

is a piecewise linear convex function on R+. Buying offers are combined analo-
gously into a piecewise linear concave function R : R+ → R giving the maximum
revenue obtainable by selling a given quantity to the willing buyers.

Given the cost and revenue functions C and R, the market is cleared by
solving the optimization problem

maximize R(x)− C(x) over x ∈ R+.
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When multiple solutions exist, the greatest solution x̄ is implemented by match-
ing x̄ units of the cheapest selling offers with with x̄ units of the most generous
buying offers. The prices of the remaining selling offers are then all strictly
higher than the prices of the remaining buying offers and no more trades are
possible before new offers arrive.

The offers remaining after market clearing are recorded in the limit order
book. It gives the marginal prices for buying or selling a given quantity at the
best available prices. Interpreting negative purchases as sales, the marginal
prices can be incorporated into a single function x 7→ s(x) giving the marginal
price for buying positive or negative quantities of the commodity. Since the
highest buying price is lower than the lowest selling price, the marginal price
curve s is a nondecreasing piecewise constant function on R, or equivalently,
the cost function

S(x) =

∫ x

0

s(z)dz

is a convex piecewise linear function on R.

Price formation in a decentralized market

Centralized markets are used for trading goods that can be transported without
a cost. When there are significant costs or constraints on transportation, the
location of supply and demand plays a role. Examples include electricity markets
where the traded good is transported through a network of transmission lines
that have finite capacity and transmission losses cannot be ignored.

Assume that there are selling and buying offers for electricity at a finite setN
of locations. Denote the cost and revenue functions at location i ∈ N by Ci and
Ri, respectively. Let A ⊆ {(i, j) | i, j ∈ N} be the set of transmission lines with
capacities u = {ui,j}(i,j)∈A and transmission losses a = {ai,j}(i,j)∈A ⊂ [0, 1].
The capacity ui,j gives the maximum amount of energy that can be sent through
line (i, j). If an amount fi,j of energy is sent from i to j, only the fraction ai,jfi,j
reaches j.

The market is cleared by solving the optimization problem

minimize
s,d,f

∑
i∈N

[Ci(si)−Ri(di)]

subject to
∑

{j|(i,j)∈A}

fi,j −
∑

{j|(j,i)∈A}

aj,ifj,i = si − di ∀i ∈ N ,

si, di ≥ 0 ∀i ∈ N ,
fi,j ∈ [0, ui,j ] ∀(i, j) ∈ A.

Here si and di denote the supply and demand at node i and fi,j the amount
of energy sent along the transmission line (i, j) ∈ A. Note that if ui,j = 0,
this reduces to a situation where, at each node i ∈ N , the market is cleared as
in centralized markets. When transmission is possible, it may be beneficial for
some market participants to trade across the network.
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Mathematical finance

Consider a (centralized) securities market where trading occurs over several
points t = 0, . . . , T in time. At each time t, we can buy a portfolio xt ∈ Rd of d
different securities. Again, negative quantities are interpreted as sales. Buying
a portfolio x ∈ Rd at time t costs St(x) units of cash. The uncertainty about
the future development of the markets will be modeled by allowing the cost
functions St be random.

Let (Ω,F , P ) be a probability space with a filtration (Ft)Tt=0. The market
is described by a sequence (St)

T
t=0 of real-valued functions on Rd ×Ω such that

1. for every ω ∈ Ω, the function x 7→ St(x, ω) is convex on Rd and vanishes
at the origin,

2. St is B(Rd)⊗Ft-measurable.

The interpretation is that buying a portfolio xt ∈ Rd at time t and state ω costs
St(xt, ω) units of cash. The measurability property implies that if the portfolio
xt is Ft-measurable then the cost ω 7→ St(xt(ω), ω) is also Ft-measurable. This
just means that the cost is known at the time of purchase.

Many problems in financial risk management come down to asset-liability
management problems of the form

minimize

T∑
t=0

Vt(St(∆xt) + ct) over x ∈ ND, (ALM)

where c = (ct)
T
t=0 is a sequence of random cash-flows, x−1 := 0,

ND := {x ∈ N |xt ∈ Dt, xT = 0},

the sets Dt describe portfolio constraints and the function Vt describe the
“risk/disutility/regret” from the random expenditure St(∆xt) + ct at time t.
Various pricing principles can be derived by analyzing the optimum value ϕ(c)
of (ALM) as a function on the space M := {(ct)Tt=0 | ct ∈ L0(Ω,Ft, P )} of
adapted sequences of payments. The optimal value can be interpreted as the
least risk an agent with liabilities c can achieve by optimally trading in financial
markets. This is a fundamental problem in the basic operations of any financial
institution.

For example, the least initial capital that would allow the agent to achieve
an “acceptable” risk-return profile with liabilities c is given by

π0(c) = inf{α ∈ R |ϕ(c− αp0) ≤ 0},

where p = (1, 0, . . . , 0). Here “acceptability” is defined as having nonpositive
cumulative “risk”. Similarly, the least multiple (swap rate) of a sequence p ∈M
an agent with initial liabilities c̄ ∈ M would accept in exchange for taking on
an additional liability c ∈M is given by

π(c) = inf{α ∈ R |ϕ(c̄+ c− αp) ≤ ϕ(c̄)},
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Traditionally in mathematical finance, the focus has been on valuation of liabil-
ities of the form c = (0, . . . , 0, cT ), i.e. a random payment at a single date. In
reality, where cash cannot be borrowed quite freely, the timing of payments is
critical. Indeed, many financial contracts in practice involve several payments
in time. Examples include bonds, interest rate swaps, insurance contracts and
dividend paying stocks. The study of such products in realistic models of finan-
cial markets goes beyond the scope of traditional stochastic analysis but can be
treated quite easily by combining stochastics with some convex analysis.

Optimal control and calculus of variations

Problems of optimal control can often be written in the form

minimize

∫
[0,T ]

ht(xt, ut)dt+ h0(x0) + hT (xT ) over x ∈ AC, u ∈ U

subject to ẋt = gt(xt, ut),

ut ∈ Ut,

where AC = {x ∈ L1 | ẋ ∈ L1}, U is the space of Lebesgue-measurable functions
on [0, T ] and (x, u, t) 7→ ht(x, u), (x, u, t) 7→ gt(x, u), h0 and hT are sufficiently
regular functions and t 7→ Ut is a measurable set-valued mapping. Defining

ft(x, v) = inf
u∈Ut
{ht(x, u) | v = gt(x, u)},

we can write the optimal control problem as

minimize

∫
[0,T ]

ft(xt, ẋt)dt+ h0(x0) + hT (xT ) over x ∈ AC.

This is a special case of the generalized problem of Bolza which generalizes the
classical problem in calculus of variations [12]. Such problems are central in
variational principles e.g. in Lagrangian and Hamiltonian mechanics.

One can generalize the Bolza problem by replacing the domain of integration
by an open set Ω in Rd and by allowing for higher order derivatives. This leads
to problems of the form

minimize

∫
Ω

f(Dx(ω), ω)dω over u ∈Wm,p(Ω) (CV)

where (we ignore the boundary term for simplicity)

Wm,p(Ω) = {x ∈ Lp(Ω) | ∂αx ∈ Lp(Ω) ∀α : |α| ≤ m}

and D : Wm,p(Ω)→ Lp(Ω)n is the linear operator given by Dx = {∂αx}|α|≤m.

Here n denotes the cardinality of the index set {α ∈ Nd | |α| ≤ m} and ∂α stands
for the distributional derivative of order α. Elliptic partial differential equations
often arise in this manner. In particular, when D = ∇ and

f(u, ω) =
1

2
|u|2,
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the above problem corresponds to the classical second order elliptic partial dif-
ferential equation with Neumann boundary conditions. Indeed, we will see in
Section 3.4 that the partial differential equation is obtained from the Fermat’s
rule for optimality which says that the “derivative” of a function vanishes at its
minimum points.

1.2 Extended real-valued functions

This section introduces some basic concepts and notation that will be useful
in the analysis of general optimization problems. Particularly useful will be
the notion of “essential objective”, that incorporates the constraints of a given
minimization problem into the objective function. Although it hides much of the
structure in a given problem, it is sufficient for many kinds of analysis, including
the study of existence of solutions.

Let f0 be a function on some space X and consider the problem of minimizing
f0 over a subset C ⊂ X. The problem is equivalent to minimizing the extended
real-valued function f : X → R := R ∪ {+∞,−∞} defined by

f(x) =

{
f0(x) if x ∈ C,
+∞ otherwise,

over all of X. The function f is called the essential objective of the original
problem. Extended real-valued functions arise also via max and min operations.
Consider, for example, the function

f(x) = sup
y∈Y

l(x, y),

where l is a function on a product space X×Y . Even if l is real-valued at every
point of X × Y , the value of f may be infinite for some x ∈ X.

Identifying a set C by its indicator function

δC(x) :=

{
0 if x ∈ C,
+∞ otherwise

many properties of extended real-valued functions can be translated into prop-
erties of sets. Conversely, an extended real-valued function can be studied by
examining its epigraph

epi f := {(x, α) ∈ X ×R | f(x) ≤ α},

which is a set in X ×R. A function can also be characterized through its level
sets

levα f := {x ∈ X | f(x) ≤ α},

where α ∈ R is fixed. In applications, the set of feasible points of an optimization
problem is often described in terms of level sets of functions.
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Example 1.1 (Nonlinear programming). The essential objective of the opti-
mization model (NLP) can be expressed as

f = f0 +

m∑
j=1

δlev0 fj .

A function f is proper if f(x) < ∞ for at least one x ∈ X and f(x) > −∞
for all x ∈ X. Only proper functions make sensible objectives for optimization
problems. Minimizing a proper function f over X is equivalent to minimizing a
real-valued function over the set

dom f := {x ∈ X | f(x) <∞},

called the effective domain of f . The set of solutions is denoted by

argmin f := {x ∈ X | f(x) ≤ inf f},

where inf f := infx∈X f(x) is the optimal value of the problem. It may happen
that argmin f = ∅ but the set

ε-argmin f := {x ∈ X | f(x) ≤ inf f + ε}

of ε-optimal solutions is nonempty whenever ε > 0 and inf f > −∞. Note that
argmin f and ε-argmin f are level sets of f .

The above concepts are related to minimization problems but one could
define corresponding concepts for maximization problems in an obvious way.
That is unnecessary, however, since one can always revert maximization prob-
lems into minimization problems simply by minimizing the function −f instead
of maximizing f .

The following interchange rule is obvious but often useful.

Proposition 1.2. Let f be an extended real-valued function on a product space
X × U and define ϕ(u) = infx f(x, u) and ψ(x) = infu f(x, u). Then

inf f = inf ϕ = inf ψ

and

argmin f = {(x, u) |u ∈ argminϕ, x ∈ argmin f(·, u)}
= {(x, u) |x ∈ argminψ, u ∈ argmin f(x, ·)}.

Example 1.3 (Decentralized markets). Consider the model of a decentralized
market in Section 1.1 and define

Si(r) = inf{Ci(s)−Ri(d) | s, d ≥ 0, s− d = r}.

The market clearing problem can then be written in the reduced form

minimize
∑
i∈N

Si

 ∑
{j|(i,j)∈A}

fi,j −
∑

{j|(j,i)∈A}

aj,ifj,i

 over f ∈ RA

subject to fi,j ∈ [0, ui,j ] ∀(i, j) ∈ A.
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Example 1.4 (Mathematical finance). The function π0 in the financial model
of Section 1.1 can be expressed as

π0(c) = inf{α | c− αp0 ∈ lev0 ϕ}.

Example 1.5 (Optimal control). The reduction in the optimal control model
sketched in Section 1.1 is obtained with

ψ(x) = inf
u∈U

{∫
[0.T ]

ht(xt, ut)dt+ h0(x0) + hT (xT )

∣∣∣∣∣ ẋt = gt(xt, ut), ut ∈ Ut

}

= inf
u∈U

{∫
[0.T ]

ht(xt, ut)dt

∣∣∣∣∣ ẋt = gt(xt, ut), ut ∈ Ut

}
+ h0(x0) + hT (xT )

and using the interchange rule for minimization and integration; see [16, The-
orem 14.60] for details.

While the order of minimization can be interchanged according to Proposi-
tion 1.2, the inequality in

inf
x

sup
u
f(x, u) ≥ sup

u
inf
x
f(x, u)

is strict in general. If equality holds, the common value is known as the saddle-
value of f . The existence of a saddle-value and of the points that attain it are
central in the duality theory of convex optimization. That will be the topic of
Chapter 3.

1.3 Convexity

In order to talk about convexity, one needs a vector space. A real vector space
(or a real linear space) is a nonempty set X equipped with operations of addition
and scalar multiplication and containing a zero element 0 (or the origin) such
that for every x, xi ∈ X and α, αi ∈ R

x1 + (x2 + x3) = (x1 + x2) + x3,

x1 + x2 = x2 + x1,

α(x1 + x2) = αx1 + αx2,

(α1 + α2)x = α1x+ α2x,

(α1α2)x = α1(α2x),

1x = x,

x+ 0 = x

and such that for each x ∈ X there is a unique element, denoted by −x such
that x+ (−x) = 0. The Euclidean space Rn with componentwise addition and
scalar multiplication is a vector space.
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Example 1.6. The function spaces L0(Ω, F, P ;Rn), N , U , Wm.p(Ω) and AC
in Section 1.1 are vector spaces if we define addition and scalar multiplication
in the usual pointwise sense.

A subset C of a vector space X is convex if α1x1 +α2x2 ∈ C for every xi ∈ C
and αi > 0 such that α1 + α2 = 1. An extended real-valued function f on a
vector space X is convex if its epigraph is a convex subset of the vector space
X ×R. It is not hard to check that a function f is convex iff

f(α1x1 + α2x2) ≤ α1f(x1) + α2f(x2)

whenever x1, x2 ∈ dom f and α1, α2 > 0 are such that α1 + α2 = 1. A function
f is concave if −f is convex.

Exercise 1.7. Let C be convex and αi ≥ 0. Show that (α1+α2)C = α1C+α2C.

Convexity of a function f implies that dom f is convex. If a function is
convex, then all its level sets are convex (the converse is not true in general).
In particular, the set of solutions or ε-optimal solutions of the problem of min-
imizing a convex function is convex. A set is convex iff its indicator function
is convex. A function is strictly convex if the above inequality holds as a strict
inequality whenever x1 6= x2. If f is strictly convex, then argmin f consists of
at most one point.

A set C is a cone if αx ∈ C for every x ∈ C and α > 0. A function f is
positively homogeneous if f(αx) = αf(x) for every x ∈ dom f and α > 0, or
equivalently, if epi f is a cone. A function is sublinear if it is both convex and
positively homogeneous, or equivalently, if its epigraph is a convex cone.

Proposition 1.8. A set C is a convex cone if and only if α1x1 +α2x2 ∈ C for
every xi ∈ C and αi > 0. A function f is sublinear if and only if

f(α1x1 + α2x2) ≤ α1f(x1) + α2f(x2)

for every xi ∈ dom f and αi > 0. A positively homogeneous function is convex
if and only if

f(x1 + x2) ≤ f(x1) + f(x2)

for every xi ∈ dom f .

Proof. Exercise

A seminorm is a real-valued sublinear function f which is symmetric in the
sense that f(−x) = f(x) for every x. A seminorm f is called a norm if f(x) = 0
only when x = 0.

Exercise 1.9. Show that a seminorm is nonnegative and vanishes at the origin.

A set C is affine if α1x1 + α2x2 ∈ C for every xi ∈ C and αi ∈ R such that
α1 +α2 = 1. A real-valued function f is affine if it is both convex and concave,
or equivalently, if its graph is affine, or equivalently, if there is a linear function
l and a scalar α such that f(x) = l(x) + α for every x ∈ X.

Even in infinite-dimensional applications, convexity can often be traced back
to the convexity of functions on the real line.
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Lemma 1.10. Let φ : R → R be nondecreasing and a ∈ R such that φ(a) is
finite. Then the function

f(x) =

∫ x

a

φ(t)dt

is convex. If φ is strictly increasing, f is strictly convex.

Proof. Let xi ⊆ dom f such that x1 < x2 and αi > 0 such that α1 + α2 = 1.
Denoting x̄ = α1x2 + α2x2, we have

f(x̄)− f(x1) =

∫ x̄

x1

φ(t)dt ≤ φ(x̄)(x̄− x1)

and

f(x2)− f(x̄) =

∫ x2

x̄

φ(t)dt ≥ φ(x̄)(x2 − x̄).

Thus,

f(x̄) ≤ α1[f(x1) + φ(x̄)(x̄− x1)] + α1[f(x2)− φ(x̄)(x2 − x̄)]

= α1f(x1) + α1f(x2),

which proves convexity. If φ is strictly increasing, then all the above inequalities
are strict and we get strict convexity.

Exercise 1.11. Consider the problem of price formation in Section 1.1. Show
that the cost and revenue functions C and R are convex and concave, respec-
tively.

Lemma 1.12. A real-valued function f on an interval I ⊂ R is convex iff

f(y)− f(x)

y − x
≤ f(z)− f(x)

z − x
≤ f(z)− f(y)

z − y

whenever x < y < z in I.

Proof. ??

Combined with the fundamental theorem of calculus, Lemma 1.10 gives a
derivative test for convexity.

Theorem 1.13. A proper function f on R is convex if and only if dom f is
an interval and f is absolutely continuous with nondecreasing f ′ on compact
subintervals of dom f .

Proof. By the fundamental theorem of calculus, an absolutely continuous func-
tion f on an interval [a, b] is differentiable almost everywhere (with respect to
the Lebesgue measure) and

f(x)− f(a) =

∫ x

a

f ′(t)dt
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for every x ∈ [a, b]. The first claim thus follows from Lemma 1.10.
Conversely, if f is convex, Lemma 1.12 implies that f is Lipschitz continuous,

and thus absolutely continuous, on every compact subinterval of dom f . The
monotonicity of the difference quotient in Lemma 1.12 also implies that f ′ is
nondecreasing.

Example 1.14. The convexity/concavity of the following elementary functions
on the real line is easily verified with the derivative test.

1. f(x) = x is both convex and concave on R,

2. f(x) = ex is convex on R,

3. f(x) = lnx is concave on R++,

4. f(x) = x lnx is convex on R++,

5. f(x) = xp is concave on R++ if p ∈ (0, 1]. It is convex if p /∈ [0, 1). Note
that f is increasing when p > 0 and decreasing when p < 0,

More examples are obtained by convexity-preserving algebraic operations from
the above; see Section 1.4 below.

The derivative criterion in Theorem 1.13 yields derivative criteria also in
higher dimensions.

Corollary 1.15 (Hessians). A twice continuously differentiable function f on
an open subset C ⊂ Rn is convex if and only if its Hessian ∇2f(x) is positive
semidefinite for all x ∈ C.

Proof. The function f is convex if and only if for every x, z ∈ Rn, the function
g(α) := f(x + αz) is convex on {α |x + αz ∈ C}. The first derivative of g is
given by g′(α) = ∇f(x + αz) · z. This is increasing if and only if the second
derivative

g′′(α) = z · ∇2f(x+ αz)z

is positive. This holds for all x, z ∈ Rn if and only if the Hessian is positive
semidefinite on all of C.

Example 1.16 (Quadratics and ellipsoids). A quadratic function f(x) = x ·Hx
is convex if and only if H is positive semidefinite. In particular, if H is a positive
semidefinite matrix, the corresponding ellipsoid

{x ∈ Rn |x ·Hx ≤ 1}

is a convex set.

The following provides an important source of convex functions on function
spaces and, in particular, Euclidean spaces. Throughout these notes, the positive
and negative parts of an α ∈ R are denoted by α+ := max{α, 0} and α− :=
[−α]+, respectively.
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Example 1.17 (Convex integral functionals). Let f be an extended real-valued
B(Rn)⊗F-measurable function on Rn×Ω such that f(·, ω) is proper and convex
for every ω ∈ Ω. Then the function If : L0(Ω,F , µ;Rn)→ R defined by

If (x) =

{∫
Ω
f(x(ω), ω)dµ(ω) if f(x(·), ·)+ ∈ L1,

+∞ otherwise

is convex. The function If is the integral functional associated with f ; see
[10, 14] or [16, Chapter 14].

If f is of the form f(x, ω) = δD(ω)(x) for a convex valued mapping ω 7→
D(ω) ⊂ Rn, then If is the indicator function of the set

D := {x ∈ L0(Ω,F , µ) |x ∈ D µ-a.e.}

of measurable selectors of D. If D is convex-valued, then f(·, ω) is convex so
that If is convex function and thus, D is a convex set.

Proof. Let xi ∈ dom If so that f(xi(·), ·)+ ∈ L1. Then, for every αi > 0 such
that α1 + α2 = 1, the pointwise convexity of f gives

f(α1x1(ω) + α2x2(ω), ω) ≤ α1f(x1(ω), ω) + α1f(x1(ω), ω)

so α1x1 + α2x2 ∈ dom If and

If (α1x1 + α2x2) ≤
∫

Ω

[α1f(x1(ω), ω) + α1f(x1(ω), ω)]dµ(ω)

=

∫
Ω

α1f(x1(ω), ω)dµ(ω) +

∫
Ω

α1f(x1(ω), ω)dµ(ω)

= α1

∫
Ω

f(x1(ω), ω)dµ(ω) + α1

∫
Ω

f(x1(ω), ω)dµ(ω)

= α1If (x1) + α2If (x2),

where the first equality holds since the positive parts of the two integrands are
in L1.

The convex hull of a set C is the intersection of all convex sets that contain
C. It is denoted by coC. The convex hull of a function f is the pointwise
supremum of all convex functions dominated by f . It is denoted by co f .

Lemma 1.18. We have inf co f = inf f , argmin co f ⊇ co argmin f and (co f)(x) =
inf{α | (x, α) ∈ co epi f}.

Proof. Clearly, co f ≤ f . On the other hand, the constant function x 7→ inf f is
convex and dominated by f , so that (co f)(x) ≥ inf f for every x. This proves
the first clam and also shows that argmin f ⊆ argmin co f . Since the latter
set is convex, we have co argmin f ⊆ argmin co f . If g ≤ f is convex, then
co epi f ⊆ epi g, so that

g(x) = inf{α | (x, α) ∈ epi g} ≤ inf{α | (x, α) ∈ co epi f},

where the last expression is a convex function of x by Lemma ??.
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Exercise 1.19. Show that

coC =

{
n∑
i=1

αixi

∣∣∣∣∣ n ∈ N, αi ≥ 0,

n∑
i=1

αi = 1, xi ∈ C

}

and

(co f)(x) = inf

{
n∑
i=1

αif(xi)

∣∣∣∣∣ n ∈ N, αi ≥ 0, xi ∈ dom f,

n∑
i=1

αi = 1, x =

n∑
i=1

αixi

}
.

1.4 Convexity in algebraic operations

One of the reasons why convexity appears so frequently in applications is that
it is well preserved under various algebraic operations. One often encounters
functions that have been constructed through various operations from some el-
ementary functions on the real line. Convexity of such a function can often be
verified by first inspecting the derivatives of the elementary functions (see The-
orem 1.13) and then checking that the involved operations preserve convexity.
This section is devoted to convexity preserving algebraic operations.

Theorem 1.20. Let X, Xi and U be vector spaces.

1. If C1, C2 ⊂ X are convex, then C1 + C2 := {x1 + x2 |xi ∈ Ci} is convex.

2. Given any collection {Cj}j∈J of convex sets in X, their intersection ∩j∈JCj
is convex.

3. If Ci ⊂ Xi are convex, then
∏
i Ci is convex.

4. If A : X → U is linear and C ⊂ X is convex, then AC := {Ax |x ∈ C} is
convex.

5. If A : X → U is linear and C ⊂ U is convex, then A−1C = {x ∈ X |Ax ∈
C} is convex.

All the above hold with “convex” replaced by “cone” or “affine”.

Proof. Exercise

Unions of convex sets are not convex in general. However, if C ⊂ X is
convex, then its positive hull

posC =
⋃
α>0

αC

is convex. It is the smallest cone containing C.

Exercise 1.21. Let A be a totally ordered set and (Cα)α∈A a nondecreasing
family of convex sets, then

⋃
α∈A Cα is convex.
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We now turn to operations on convex functions. Intersecting the epigraphs
of convex functions gives the following.

Theorem 1.22 (Pointwise supremum). The pointwise supremum of an arbi-
trary collection of convex functions is convex.

Example 1.23. Here are some useful constructions in Euclidean spaces:

1. The function x 7→ |x| is convex on R.

2. The function
f(x) = max

i=1,...,n
xi

is convex on Rn.

3. Given a set C ⊂ Rn, the function

σC(x) = sup
v∈C

x · v

is convex on Rn.

4. For any function g on Rn, the function

f(x) = sup{x · v − g(v)}

is convex on Rn.

Note that 3 is a special case of 4 with g = δC while 2 is a special case of 3
with C = {v ∈ Rn+ |

∑n
i=1 xi = 1}. In 1, one simply takes the supremum of the

functions, x 7→ x and x 7→ −x. We will see later that 2-4 can be extended to
general locally convex vector spaces.

Let X and U be vector spaces and let K ⊆ U be a convex cone containing
the origin. A function F from a subset domF of X to U is K-convex if

epiK F = {(x, u) |x ∈ domF, F (x)− u ∈ K}

is a convex set in X ×U . The domain domF of a K-convex function is convex,
by Theorem 1.20(c), since it is the projection of the convex set epiK F to X.

Lemma 1.24. A function F from X to U is K-convex if and only if domF is
convex and

F (α1x1 + α2x2)− α1F (x1)− α2F (x2) ∈ K

for every xi ∈ domF and αi > 0 such that α1 + α2 = 1.

Proof. Since K is a convex cone containing the origin, the condition in the
lemma is equivalent, by Proposition 1.8, to the seemingly stronger condition
that

F (α1x1 + α2x2)− α1(F (x1)− u1)− α2(F (x2)− u2) ∈ K
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for every xi ∈ domF , ui ∈ K and αi > 0 such that α1 + α2 = 1. Since
xi ∈ domF and ui ∈ K is equivalent to (xi, F (xi)−ui) ∈ epiK F , the condition
can be written as

F (α1x1 + α2x2)− α1v1 − α2v2 ∈ K

for every (xi, vi) ∈ epiK F and αi > 0 such that α1 + α2 = 1. This means that
epiK F is convex.

If h is an extended real-valued function on X, the composition h ◦F of F
with h is defined by

dom(h ◦F ) = {x ∈ domF | F (x) ∈ domh} ,
(h ◦F )(x) = h(F (x)) ∀x ∈ dom(h ◦F ).

The range of F will be denoted by rgeF .

Theorem 1.25 (Composition). If F is a K-convex function from X to U and
h is a convex function on U such that

u1 ∈ rgeF, u1 − u2 ∈ K =⇒ h(u1) ≤ h(u2)

then h ◦F is convex.

Proof. Let xi ∈ dom(h ◦F ) and αi > 0 such that α1 + α2 = 1. Then,

h(F (α1x1 + α2x2)) ≤ h(α1F (x1) + α2F (x2)) ≤ α1h(F (x1)) + α2h(F (x2)),

where the first inequality comes from the K-convexity of F , Lemma 1.24 and
the growth property of h. The second comes from the convexity of h.

A function h certainly satisfies the growth condition in Theorem 1.25 if
h(u1) ≤ h(u2) whenever u1 − u2 ∈ K. Imposing the growth condition only on
the range of F is often essential.

Example 1.26. The following functions are convex:

1. f(x) = h(x)p, where p ≥ 1 and h is convex and nonnegative,

2. f(x) = eh(x), where h is convex,

3. f(x) = |x|p, where p ≥ 1,

4. f(x) = xx on R (this follows from 2 and Example 1.14.4 by writing f(x) =
ex ln x).

Example 1.27 (Composite model). Theorem 1.25 can be directly applied to
the composite model (CO) of Section 1.1. We do not need to assume that the
functions have full domains so we can incorporate various constraints in the
definition of the functions F and h. If all the m+ 1 components of the function
F = (f0, . . . , fm) are proper and convex, then F is an Rm+1

− -convex function
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with domF =
⋂m
j=0 dom fj. Thus, for the composite model to be convex, it

suffices that h be convex and h(u1) ≤ h(u2) whenever u1 ∈ rgeF and u1 ≤ u2

componentwise. This is certainly satisfied by

h(u) =

{
u0 if uj ≤ 0 for j = 1, . . . ,m,

+∞ otherwise,

which corresponds to the classical nonlinear programming model (NLP) with

(h ◦F )(x) =

{
f0(x) if fj(x) ≤ 0 for j = 1, . . . ,m,

+∞ otherwise.

Example 1.28 (Stochastic programming). Consider the stochastic optimization
model (CSP) in the generalized formulation where f is allowed to be extended
real-valued. Let domF = {x ∈ Rn | f(x, ·) ∈ L0(Ω,F , P )}, F (x) = f(x, ·) for
x ∈ domF and

K = {u ∈ L0(Ω,F , P ) |u ≤ 0 P -a.s.}.

If f(·, ω) is a proper convex function for every ω, then F is a K-convex function
from R

n to L0(Ω,F , P ). Indeed, if xi ∈ domF and α > 0 are such that α1 +
α2 = 1, then f(α1x1 +α2x2, ω) ≤ α1f(x1, ω)+α2f(x2, ω) so that α1x1 +α2x2 ∈
domF and F (α1x1 + α2x2)− α1F (x1)− α2F (x2) ∈ K.

If V is a convex function on L0(Ω,F , P ) such that V(u1) ≤ V(u2) whenever
u1 ≤ u2, then by Theorem 1.25, the composition V ◦ f is a convex function on
R
n. In the special case where

f(x, ω) =

{
f0(x, ω) if fj(x, ω) ≤ 0 for j = 1, . . . ,m,

+∞ otherwise,

with fj(x, ·) ∈ L0(Ω,F , P ) for every j = 0, . . . ,m and x ∈ Rn, we have domF =
{x ∈ Rn | fj(x, ·) ≤ 0 P -a.s. j = 1, . . . ,m} so that (CSP) can be written with
pointwise constraints as

minimize V(f0(x, ·)) over x ∈ Rn

subject to fj(x, ·) ≤ 0, P -a.s. j = 1, . . . ,m

much like in the traditional nonlinear programming model.

Example 1.29 (Convex integral functionals). Let (Ω,F , µ) be a measure space
and define F like in the previous example. The function I : L0(Ω,F , P ) → R

defined by

I(u) =

{∫
Ω
u(ω)dµ(ω) if u+ ∈ L1,

+∞ otherwise.

satisfies the growth condition in Theorem 1.25 so the function I ◦F is convex
on L0(Ω,F , µ;Rn). Since I ◦F = If , we obtain an alternative proof of the
convexity of an integral functional defined in Example 1.17.



24 CHAPTER 1. CONVEXITY

Corollary 1.30. Let X and U be vector spaces.

(a) If A is a linear mapping from a linear subspace domA of X to U and h
is a convex function on U , then h ◦A is convex on X.

(b) If fj are proper and convex then f1 + · · ·+ fm is convex.

Proof. In part (a), let F = A and K = {0} and in (b), U = R
m, F (x) =

(f1(x), . . . , fm(x)), K = R
m
− and h(u) = u1 + · · ·+ um.

The following gives another important class of convexity preserving opera-
tions.

Theorem 1.31 (Infimal projection). If f is a convex function on the product
X×U of two vector spaces, then ϕ(u) := infx∈X f(x, u) is a convex function on
U . If f is sublinear, then ϕ is sublinear as well.

Proof. We have domϕ = {u ∈ U | ∃x ∈ X : f(x, u) < ∞}. Given u1, u2 ∈
domϕ and α1, α2 > 0 such that α1 + α2 = 1, the convexity of f gives

α1ϕ(u1) + α2ϕ(u2) = α1 inf
x1∈X

f(x1, u1) + α2 inf
x2∈X

f(x2, u2)

= inf
x1,x2∈X

{α1f(x1, u1) + α2f(x2, u2)}

≥ inf
x1,x2∈X

f(α1x1 + α2x2, α1u1 + α2u2)

= ϕ(α1u1 + α2u2).

Sublinearity is proved similarly.

The function ϕ in Theorem 1.31 is called the inf-projection of f . It may be
viewed as the value function of a parametric optimization problem. The value
function plays a key role in the duality theory of convex optimization to be
studied in Chapter 3.

Corollary 1.32. Let X and U be vector spaces.

(a) If F is a K-convex function from X to U and f is a convex function on
X, then the function

(Ff)(u) = inf{f(x) |x ∈ domF, F (x)− u ∈ K}

is convex on U .

(b) If A : X → U is linear and k is a convex function on X, then the function

(Af)(u) = inf
x
{f(x) |Ax = u}

is convex on U .
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(c) If f1 and f2 are convex functions on U , then the function

(f1 � f2)(u) = inf
u1,u2

{f1(u1) + f2(u2) |u1 + u2 = u}

is convex.

Proof. In (a), apply Theorem 1.31 to the function (x, u) 7→ f(x) + δepiKF (x, u).
In (b), we can take K = {0}. In part (c), let X = U × U , A(u1, u1) = u1 + u2,
f(u1, u2) = f1(u1) + f2(u2) and apply part (b).

The following simple construction will be useful.

Corollary 1.33. If C is a convex subset of X ×R, then the function

g(u) = inf{α | (u, α) ∈ C}

is convex. If C is a convex cone, g is sublinear.

Proof. This applies Theorem 1.31 to the function f(x, α) = α+ δC(x, α).

Example 1.34 (Distance function). Given a convex set C in a normed space
X, the associated distance function

dC(x) := inf{‖x− z‖ | z ∈ C}

is convex.

Proof. This applies Theorem 1.31 to the function f(x, z) = ‖x−z‖+ δC(z).

Example 1.35 (Risk measures). Let V be a convex function on L0(Ω,F , P )
such that V(0) = 0 and V(c1) ≤ V(c2) whenever c1 ≤ c2 almost surely (i.e. V
in nondecreasing). The function R(c) := inf{w | V(c−w) ≤ 0} is a convex risk
measure in the sense that it is convex, nondecreasing and R(c+ α) = R(c) + α
for every α ∈ R.

Example 1.36. The function

f(x) = lnEex

is a convex on L0(Ω,F , P ). In particular, the function

f(x) = ln

n∑
i=1

exi

is convex on Rn.

Proof. We have

f(x) = inf{α | lnEex ≤ α}
= inf{α |Eex ≤ eα}
= inf{α |Eex−α ≤ 1}
= inf{α | (x, α) ∈ lev1 g},
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where g(x, α) := Eex−α is convex by Example 1.17 and Corollary 1.32. Con-
vexity of f thus follows from Corollary 1.33. When Ω := {1, . . . , n}, F is the
power set of Ω and P is the uniform measure on Ω, we have L0(Ω,F , P ) = R

n

and we can write the expectation as the weighted sum.

Exercise 1.37 (Exponential family of probability distributions). In statistics,
an exponential family is a parameteric set of probability distributions which is
often convenient in numerical computations. Given a measure space (Ω,F , µ)
and a parameter η ∈ Rn, the probability measure P is defined by

dP

dµ
= eη·T−A(η),

where T is a Rn-valued random variable (known as “sufficient statistic”) and
A is an extended real-valued function on Rn. Several familiar parametric dis-
tributions such as normal, log-normal, gamma, binomial, Poisson, etc. can be
parameterized as exponential families.

Show that A is convex and thus that the log-likelihood function given a sample
of N observations of T is concave with respect to θ (thus making max-likelihood
estimation of θ a convex optimization problem). Hint: use Exercise 1.36 and
the fact that P (Ω) = 1.

It can be shown that members of the exponential family associated with given
(Ω,F , µ) and T are the measures P whose entropy with respect to µ is maximal
among all measures under which the expectation of T equals a given t ∈ Rn. The
proof is a simple application of the duality theory to be developed in Section 3.2
below.

Exercise 1.38 (Decentralized markets). Show that the functions Si in Exam-
ple 1.3 are convex.

The function (h1 �h2) in the above corollary is known as the inf-convolution
of h1 and h2. It turns out to be dual to the operation of addition under the so
called Legendre-Fenchel transform; see Section 3.1.

Exercise 1.39. Show that

1. the infimal projection ϕ of a function f can be expressed as

ϕ(u) = inf{α | ∃x ∈ X : (x, u, α) ∈ epi f}.

Because of this, the inf-projection is sometimes called the epi-projection.

2. the inf-convolution can be expressed as

(h1 �h2)(u) = inf{α | (u, α) ∈ epih1 + epih2}.

Because of this, the inf-convolution is sometimes called the epi-sum.

3. for any α > 0,
λf(x/λ) = inf{α | (x, α) ∈ λ epi f}.

This function is sometimes called the epi-multiplication of f .
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Since sums, projections and scalar multiples of convex sets are convex (see The-
orem 1.20), the above expressions combined with Corollary 1.33, yield quick
proofs of convexity of the functional operations.

The following shows that the epi-multiplication is jointly convex in (x, α).

Proposition 1.40. If f is convex, then

g(x, α) =

{
αf(x/α) if α > 0,

+∞ otherwise

is a sublinear function on X ×R.

Proof. By convexity of f ,

f

(
x1 + x2

α1 + α2

)
≤ α1

α1 + α2
f(x1/α1) +

α2

α1 + α2
f(x2/α2)

for any xi ∈ X and αi > 0. The claim then follows by multiplying by (α1 +α2)
and using Proposition 1.8.

Example 1.41 (Gauge). Given a convex set C ⊂ X, the associated gauge

gC(x) := inf{α > 0 | z/α ∈ C}

is convex.

Proof. By Proposition 1.40, the function f(x, α) = α+ δC(z/α) is convex. The
convexity of gC thus follows from Theorem 1.31.

Example 1.42 (Geometric mean). The function

u(x) = exp(E lnx)

is concave and positively homogeneous on L0(Ω,F , P )+ (compare with Exam-
ple 1.36). In particular, given αi > 0 such that

∑n
i=1 αi = 1, the geometric

mean (aka Cobb–Douglas utility function)

u(x) =

n∏
i=1

xαii

is concave and positively homogeneous on on Rn+. If
∑n
i=1 αi < 1, this function

is still concave but not sublinear (use the composition rule).

Proof. We can express u as

u(x) = sup{λ |λ > 0, E lnx ≥ lnλ}
= sup{λ |λ > 0, E ln(x/λ) ≥ 0}
= sup{λ |λ > 0, λE ln(x/λ) ≥ 0}
= sup{λ |λ > 0, λg(x/λ) ≤ 0},

where g(x) = −E lnx. Since g is convex the concavity of u follows from Propo-
sition 1.40 and Corollary 1.33.
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Example 1.43 (Generalized mean). If p ≤ 1, the function

f(x) = (Exp)
1/p

is concave and positively homogeneous on L0
+. In particular, the harmonic mean

f(x) =

(
n∑
i=1

x−1
i

)−1

is a concave function on Rn+.

Proof. Assume first that p < 0 so that x 7→ xp is convex and decreasing. We
have

f(x) = sup{λ | (Exp)1/p ≥ λ}
= sup{λ |Exp ≤ λp}
= sup{λ |E(x/λ)p ≤ 1}
= sup{λ |λE(x/λ)p ≤ λ}
= sup{λ | g(x, λ) ≤ 0},

where the function
g(x, λ) = λE(x/λ)p − λ

is convex by Proposition 1.40. Thus, the concavity of f follows from Corol-
lary 1.33. When p ∈ (0, 1], the function x 7→ xp is concave and increasing and
the above proof goes through with obvious modifications.

No that the functions in Examples 1.36, 1.42 and 1.43 are all of the form

f(x) = g−1[Eg(x)]

for a function g that is strictly increasing or strictly decreasing as well as convex
or concave. Functions of this form are known as Kolmogorov means or quasi-
arithmetic means.

1.5 Convex sets and functions under scaling

Convex sets and functions have regular behavior under scaling by positive con-
stants. The main purpose of this section is to study the limiting behavior as
the scaling parameter approaches zero or infinity. This gives rise to directional
derivatives and recession functions, which are involved e.g. in optimality condi-
tions and criteria for existence of solutions.

Lemma 1.44. If C is a convex set with 0 ∈ C and if 0 < α1 < α2, then
α1C ⊆ α2C. If f is a convex function finite at x̄, then for every x ∈ X

f(x̄+ λx)− f(x̄)

λ

is increasing in λ > 0.



1.5. CONVEX SETS AND FUNCTIONS UNDER SCALING 29

Proof. The first claim follows from α1/α2C + (1 − α1/α2){0} ⊆ C. Applying
the first part to the epigraph of the function h(x) = f(x̄ + x) − f(x̄) we get
that the set α epih grows with α. Since α epih is the epigraph of the function
x 7→ αh(x/α), this means that

α[f(x̄+ x/α)− f(x̄)]

decreases with α > 0. It now suffices to make the substitution α = 1/λ.

The union
pos(C − x) =

⋃
α>0

α(C − x)

may be viewed as a local approximation of the set C at a point x ∈ C. It is
a convex cone containing the origin. Given a convex function f and a point x̄
where f is finite, the directional derivative

f ′(x̄;x) = lim
λ↘ 0

f(x̄+ λx)− f(x̄)

λ

gives a local approximation of f at x̄. By Lemma 1.44, the directional derivative
is well-defined and

f ′(x̄;x) = inf
λ>0

f(x̄+ λx)− f(x̄)

λ
.

Exercise 1.45. Let f be a convex function on R. Show that

f ′(x̄;x) =

{
f ′+(x̄)x if x ≥ 0,

f ′−(x̄)x if x ≤ 0,

where f ′+ and f− denote the right- and left-derivatives of f , respectively.

The following will be useful.

Lemma 1.46. If f is a convex function finite at x̄, then

f ′(x̄;x) = inf{α | (x, α) ∈ pos(epi f − (x̄, f(x̄)))}.

Proof. The condition (x, α) ∈ pos(epi f − (x̄, f(x̄))) can be written as

∃γ > 0 : (x, α) ∈ γ(epi f − (x̄, f(x̄)))

⇐⇒ ∃γ > 0 : (x̄+ x/γ, f(x̄) + α/γ) ∈ epi f

⇐⇒ ∃γ > 0 : α ≥ γ[f(x̄+ x/γ)− f(x̄)],

so

inf{α | (x, α) ∈ pos(epi f − (x̄, f(x̄)))}
= inf{α | ∃γ > 0 : α ≥ γ[f(x̄+ x/γ)− f(x̄)]}
= inf
γ>0

γ[f(x̄+ x/γ)− f(x̄)]

which equals the above expression for f(x̄;x).
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Theorem 1.47. If f is a convex function finite at a point x̄, then the directional
derivative f ′(x̄; ·) is a well-defined sublinear function. Moreover, f attains its
minimum at x̄ if and only if f ′(x̄; ·) is a nonnegative function.

Proof. The first claim follows from Lemma 1.46 and Corollary 1.33. The rest
follows from Lemma 1.44 once we observe that an x̄ minimizes f if and only
if the difference quotient in Lemma 1.44 is nonnegative for every x ∈ X and
λ > 0.

The optimality condition in the above theorem can be seen as an abstract
version of the classical Fermat’s rule which says that the derivative of a differ-
entiable function vanishes at a point where the function attains its minimum.

While pos(C − x) gives a local approximation of a set C at a point x ∈ C,
the set

C∞ =
⋂
x∈C

⋂
α>0

α(C − x)

describes the shape of C infinitely far from the origin. The set C∞ is called the
recession cone of C. It is a convex cone containing the origin. It can also be
expressed as

C∞ = {y |x+ αy ∈ C ∀x ∈ C ∀α > 0}.

The recession cone thus gives the directions in which a set is “unbounded”.

We will say that a set C is algebraically open (or linearly open) if for any
x, y ∈ X the preimage of C under the mapping α 7→ x + αy is open in R. A
set is algebraically closed (or linearly closed) if its complement is algebraically
open, or equivalently, if the above preimages are closed in R. We will see in
the next chapter that topologically closed sets in a topological vector space are
always algebraically closed and that, for a convex set in a Euclidean space, the
two notions coincide. Clearly, if C is convex, then the preimages of C under the
mapping α 7→ x+ αy are intervals.

Theorem 1.48. Let C be convex and algebraically closed. Then C∞ is alge-
braically closed and

C∞ =
⋂
α>0

α(C − x)

for every x ∈ C. In other words, y ∈ C∞ if there exists even one x ∈ C such
that x+ αy ∈ C for every α > 0.

Proof. Let x ∈ C and y 6= 0 be such that x + αy ∈ C for every α > 0 and let
x′ ∈ C and α′ > 0 be arbitrary. It suffices to show that x′ + α′y ∈ C. Since
x+ αy ∈ C for every α ≥ α′, we have, by convexity of C,

x′ + α′y +
α′

α
(x− x′) = (1− α′

α
)x′ +

α′

α
(x+ αy) ∈ C ∀α ≥ α′.

If C is algebraically closed, we must have x′ + α′y ∈ C.
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If C is an algebraically closed convex set containing the origin, Theorem 1.48
gives C∞ =

⋂
α>0 αC. In particular, if C is an algebraically closed convex cone,

then necessarily 0 ∈ C and thus, C∞ = C. In general, C ⊆ C∞ for every convex
cone C. The equality fails e.g. for C = {(x1, x2) ∈ R2 |xi > 0}.

Given a convex function f , the function

f∞(x) = inf{α | (x, α) ∈ (epi f)∞}

is called the recession function of f . By Corollary 1.33, f∞ is sublinear. We will
say that a function is algebraically closed if its epigraph is algebraically closed.

Theorem 1.49. Let f be a proper convex function. Then

f∞(x) = sup
x̄∈dom f

sup
λ>0

f(x̄+ λx)− f(x̄)

λ
.

If f is algebraically closed, then f∞ is algebraically closed and

f∞(x) = sup
λ>0

f(x̄+ λx)− f(x̄)

λ
= lim
λ↗∞

f(x̄+ λx)− f(x̄)

λ

for every x̄ ∈ dom f .

Proof. The condition (x, α) ∈ (epi f)∞ means that

(x̄+ λx, ᾱ+ λα) ∈ epi f ∀(x̄, ᾱ) ∈ epi f, λ > 0

⇐⇒ f(x̄+ λx) ≤ ᾱ+ λα ∀(x̄, ᾱ) ∈ epi f, λ > 0

⇐⇒ f(x̄+ λx) ≤ f(x̄) + λα ∀x̄ ∈ dom f, λ > 0.

When f is proper, the last condition can be written as

sup
x̄∈dom f

sup
λ>0

f(x̄+ λx)− f(x̄)

λ
≤ α,

which gives the first expression. The rest follows from Theorem 1.48 and
Lemma 1.44.

Corollary 1.50. Given a proper convex function f , one has

f(x̄+ λx) ≤ f(x̄) ∀x̄ ∈ dom f, λ > 0

if and only if f∞(x) ≤ 0. If f is algebraically closed, this holds if there is even
one x̄ ∈ dom f such that f(x̄+ λx) is nonincreasing in λ.

By the above, a convex function is constant with respect to the linear space
{x ∈ X | f∞(x) ≤ 0, f∞(−x) ≤ 0} known as the constancy space of f .

Exercise 1.51. Let f be a convex function with dom f = R. Show that

f∞(x) =

{
v+x if x ≥ 0,

v−x if x ≤ 0,
]

where v+ = ess sup f ′ and v− = essinf f ′; see Theorem 1.13. How does the
expression change when dom f is not all of R?
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Exercise 1.52. Define f(x) = lnEex on L0 as in Example 1.36 and show that
f∞(x) = ess supx.

Exercise 1.53. Let f be sublinear. Show that f∞ ≤ f and that equality holds
when f is algebraically closed.

Theorem 1.54. If f is proper, convex and algebraically closed, then

(levα f)∞ = lev0 f
∞

for every α ∈ R with levα f 6= ∅.

Proof. The condition y ∈ (levα f)∞ means that f(x+λy) ≤ α for all x ∈ levα f
and λ > 0, or equivalently, that (x, α) + λ(y, 0) ∈ epi f for all x ∈ levα f
and λ > 0. When f is algebraically closed, Theorem 1.48 says that the latter
property is equivalent to (y, 0) ∈ (epi f)∞. Since by Theorem 1.49, (epi f)∞ is
algebraically closed, this means that f∞(y) ≤ 0.

Exercise 1.55. Show that the level sets of an algebraically closed function are
algebraically closed.

1.6 Separation of convex sets

A hyperplane is an affine set of the form {x ∈ X | l(x) = α}, where α is a scalar
and l is a linear functional (i.e. a real-valued function) not identically zero. A
hyperplane is said to separate two sets C1 and C2 if the sets belong to opposite
sides of the hyperplane in the sense that

l(x1) ≥ α ∀x1 ∈ C1 and l(x2) ≤ α ∀x2 ∈ C2

The separation is said to be proper unless both sets are contained in the hyper-
plane. In other words, proper separation means that

inf{l(x1 − x2) |xi ∈ Ci} ≥ 0 and sup{l(x1 − x2) |xi ∈ Ci} > 0.

A proper linear subspace of X is said to be maximal if it cannot be properly
enlarged to another proper subspace of X.

Lemma 1.56. A proper linear subspace is a maximal if and only if it is a
hyperplane containing the origin.

Proof. If L is a maximal proper subspace and if y /∈ L, then X is the linear
span of L ∪ {y}. For every x ∈ X, there are unique α ∈ R and a z ∈ L such
that x = αy + z. Indeed, if (α′, z′) ∈ R × L is another such pair, we have
(α′ − α)y = z − z′ ∈ L, so α′ = α and z′ = z. As is easily checked, the map
x 7→ α is linear and has L as its null space. Conversely, let l : X → R be linear
and L := {x | l(x) = 0}. If l is nonzero, L is a proper subspace of X. If y /∈ L,
then for every x ∈ X there is an α ∈ R such that l(x− αy) = l(x)− αl(y) = 0.
Thus, X is the linear span of L ∪ {y} so L is maximal.
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Theorem 1.57. If C is a nonempty algebraically open convex set with 0 /∈ C,
then there exists a linear functional l such that

inf{l(x) |x ∈ C} ≥ 0 and sup{l(x) |x ∈ C} > 0.

Proof. By Zorn’s lemma, there exists a maximal element L among all subspaces
disjoint from C. By Lemma 1.56, it suffices to show that L is a maximal proper
subspace. Since L is disjoint from C, it is also disjoint from posC and thus,
from D = L + posC. In particular, 0 /∈ D so that D ∩ (−D) = ∅. We also
have D ∪ (−D) ∪ L = X since if there was an x /∈ D ∪ (−D) ∪ L the linear
span of L∪ {x} would be disjoint from D, and thus, also from C, contradicting
the maximality of L. Indeed, if αx + α′x′ ∈ D for some α, α′ ∈ R and x′ ∈ L,
then since D + L = D, we would have αx ∈ D which is in contradiction with
x /∈ D ∪ (−D) since D is a cone not containing the origin.

Suppose that L is not a maximal proper subspace. Then there exist x1 ∈ D
and x2 ∈ −D such that x2 is not in the linear span of L ∪ {x1}. Since C is
algebraically open, D is also algebraically open (exercise) so the preimage of
D∪ (−D) under the mapping α 7→ αx1 + (1−α2)x2 is the union of two disjoint
open intervals in R. One of the intervals contains 0 and the other 1, so there
exists an α ∈ (0, 1) such that αx1 + (1− α2)x2 ∈ L. But this implies that x2 is
in the linear span of L ∪ {x1} which is a contradiction.

The conclusion of Theorem 1.57 implies that l(x) > 0 for all x ∈ C. Indeed,
since l(x̄) > 0 for some x̄ ∈ C, one cannot have l(x′) = 0 for an x′ ∈ C since
the algebraic openness of C would give the existence of an α > 1 such that
αx′ + (1− α)x̄ ∈ C and the linearity of l would give l(αx′ + (1− α)x̄) < 0.

Corollary 1.58. If C1 and C2 are nonempty disjoint convex sets such that
C1 − C2 is algebraically open, then C1 and C2 can be properly separated.

Proof. Apply Theorem 1.57 to the set C1 − C2.

In a typical situation, we have two convex sets one of which is algebraically
open.

Exercise 1.59. Show that the sum of two sets is algebraically open if one of
the sets is algebraically open.

Corollary 1.60 (Hahn–Banach). Let p be a seminorm on X and f a linear
function on a linear subspace L such that f ≤ p on L. There exists a linear
function f̄ on X such that f̄ = f on L and f̄ ≤ p on X.

Proof. Apply Corollary 1.58 to the sets C1 = {(x, α) | p(x) < α} and C2 =
{(x, α) |x ∈ L, f(x) = α}. To see that C1 is algebraically open, let (x, α) ∈ C1,
(y, β) ∈ X ×R and f(λ) = p(x + λy) − α − λβ. It suffices to show that there
is a λ > 0 such that f(λ) < 0. Since f is convex, f(λ) ≤ λf(1) + (1 − λ)f(0),
where f(0) < 0 and f(1) is finite.
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Chapter 2

Topological properties

Topology has an important role in optimization. For example, existence of solu-
tions is often established through compactness arguments as e.g. in the “direct
method in the calculus of variations”. Continuity and differentiability properties
of optimal value functions turn out to be intimately related to existence criteria
and to optimality conditions.

This chapter studies some basic properties of optimization problems in topo-
logical spaces. Section 2.2 studies lower semicontinuous functions and the ex-
istence of optimal solutions in general topological spaces. Sections 2.4 and 2.5
study the topological properties of convex sets and functions in topological vec-
tor spaces. Neither Hausdorff property nor local convexity will be assumed in
this chapter.

2.1 Topological spaces

A topology on a set X is a collection τ of subsets of X such that

1. X, ∅ ∈ τ

2.
⋃
i∈I Ui ∈ τ for any collection {Ui}i∈I ⊂ τ

3.
⋂
i∈I Ui ∈ τ for any finite collection {Ui}i∈I ⊂ τ

Members of τ are called open sets. Their complements are said to be closed.

Example 2.1 (Metric spaces). A metric on a set X is a function d : X ×X →
R+ such that d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X and
d(x, y) = 0 if and only if x = y. An open ball is a set of the form B

o(x, δ) =
{y ∈ X | d(x, y) < δ}. If we define τ as the collection of sets U ⊆ X such that
for every x ∈ U there is a δ > 0 such that Bo(x, δ) ⊂ U , then τ is a topology on
X known as the metric topology. A set is closed in the metric topology if and
only if it is sequentially closed, i.e. if every converging sequence in the set has
its limit in the set; see e.g. [5, Proposition 4.6].

35



36 CHAPTER 2. TOPOLOGICAL PROPERTIES

Example 2.2 (Euclidean topology). The Euclidean topology on R
n is the

metric topology associated with

d(x, y) = |x− y| :=

(
n∑
i=1

|xi − yi|2
) 1

2

.

Example 2.3 (Lebesgue spaces). For p ∈ [1,∞), the function

d(x, y) = ‖x− y‖Lp :=

[∫
Ω

|x− y|pdµ
] 1
p

is a metric on Lp(Ω,F , µ). The function

d(x, y) = ‖x− y‖L∞ := inf{α |µ({ω | |x(ω)− y(ω)| ≥ α}) = 0}

is a metric on L∞(Ω,F , µ). If µ(Ω) <∞, the function

d(x, y) =

∫
Ω

|x− y|
|x− y|+ 1

dµ

is a metric on L0(Ω,F , µ).

Not all topologies correspond to metrics. We will see later that in convex
analysis, some of the most interesting topologies (e.g. weak topologies generated
by collections of linear functionals) go beyond metric topologies.

The interior of a set C is the union of all open sets contained in C. The
closure of C is the intersection of all closed sets that contain C. The interior
and the closure of a set C will be denoted by intC and clC, respectively.

Exercise 2.4. Show that intC = (cl(Cc))c and clC = (int(Cc))c.

A set U ⊆ X is a neighborhood of a point x if x ∈ intU . A collection B(x) of
neighborhoods of a point x ∈ X is said to be a neighborhood base at x if for any
neighborhood U of x there is a V ∈ B(x) such that V ⊆ U . In Example 2.1, the
collection of open balls Bo(x, δ) is a neighborhood base of x, as is the collection
of closed balls B(x, δ) = {y ∈ X | d(y, x) ≤ δ} for δ > 0.

It is easily checked that the intersection of a collection of topologies on X is
again a topology on X. If E is a collection of subsets of X, then the intersection
of all topologies containing E is called the topology generated by E .

Exercise 2.5. Let τ be the topology generated by a collection E of sets. Show
that

1. τ consists of X and the unions of finite intersections of the members of E.

2. each x ∈ X has a neighborhood base B(x) consisting of finite intersections
of members of E.

3. if E is the set of open balls in a metric space, then τ is the metric topology.
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If (Xi, τi)i∈I is a collection of topological spaces, then the product topology
on the product space

∏
i∈I Xi is the topology generated by sets of the form

{x ∈
∏
i∈I

Xi |xj ∈ Vj},

where j ∈ I and Vj ∈ τj . Every point x ∈
∏
i∈I Xi has a neighborhood base

consisting of sets of the form
∏
i∈I Vi where Vi ∈ τi differs from Xi only for

finitely many i ∈ I.
A function f from a topological space (X, τ) to another (Y, σ) is continuous

at a point x if the preimage of every neighborhood of f(x) is a neighborhood of
x. The function is continuous if it is continuous at every point.

Exercise 2.6. Show that a function is continuous if and only if the preimage
of every open set is open. If the topology σ is generated by a collection E of sets
and if f−1(V ) ∈ τ for every V ∈ E, then f is continuous.

Lemma 2.7. If f is a continuous function on X1×X2, then for every x2 ∈ X2,
the function x1 7→ f(x1, x2) is continuous on X1.

Proof. The preimage of any neighborhood V of f(x1, x2) contains a neighbor-
hood of (x1, x2) of the form U1 × U2. In particular, U1 × {x2} ⊂ U1 × U2 ⊂
F−1(V ), which means that U1 is in the preimage of V under x1 7→ f(x1, x2).

If {fi}i∈I is a collection of functions fi from X to topological spaces (Yi, τi),
then the weak topology on X generated by the collection is the topology gen-
erated by sets of the form f−1

i (Ui) where Ui ∈ τi and i ∈ I. In other words,
the weak topology is the intersection of all topologies under which every fi is
continuous.

A set C is compact if any collection of open sets whose union contains C
has a finite subcollection whose union also contains C. A collection of sets
has the finite intersection property if every finite subcollection has a nonempty
intersection.

Lemma 2.8. A set is compact if and only if every collection of its closed subsets
having the finite intersection property has a nonempty intersection.

Proof. Exercise on de Morgan’s laws.

Lemma 2.9. Let f be a contiuous function from (X, τ) to (Y, σ). If C ⊂ X is
compact, then f(C) is compact.

Proof. Let (Vj) be a collection of open sets whose union contains f(C). The
union of the preimages f−1(Vj) then contains C. Since C is compact, it is
contained also in a finite subcollection. The corresponding finite collection of
Vj ’s then contains f(C).

Theorem 2.10 (Tychonoff product theorem). The product of compact sets is
compact in the product topology.
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Proof. See e.g. [5, Section 4.6].

A sequence (xn)∞n=1 in a metric space (X, d) is said to be a Cauchy sequence
if for every ε > 0 there is an N such that d(xn, xm) ≤ ε for every n,m ≥ N . A
metric space is complete if every Cauchy sequence converges in the sense that
there is an x̄ ∈ X such that for every ε > 0 there is an N such that d(xn, x̄) ≤ ε
for n ≥ N . Euclidean, Lebesgue and the L0-spaces are examples of complete
metric spaces.

Theorem 2.11 (Baire category theorem). Let (X, d) be a complete metric
space. If (Cn)∞n=1 is a countable collection of closed sets whose union equals
X, then intCn 6= ∅ for some n.

Proof. See e.g. [5, Theorem 5.9].

2.2 Existence of optimal solutions

According to the classical theorem of Weierstrass, a continuous function achieves
it minimum and maximum over a compact set. If we are only interested in
one extreme, continuity can be replaced by “semicontinuity”. This principle is
sometimes referred to as the “direct method” in calculus of variations; see e.g.
[1, ?].

An extended real-valued function on a topological space X is lower semicon-
tinuous (lsc) if its epigraph is a closed set in X ×R with respect to the product
topology. A set C is closed iff its indicator function δC is lsc.

Theorem 2.12. The following are equivalent

(a) f is lsc,

(b) levα f is closed for every α ∈ R,

(c) For every x ∈ X,
sup

U∈N(x)

inf
x′∈U

f(x′) ≥ f(x),

where N(x) is the collection of neighborhoods of x.

Proof. Recall that each point in X ×R has a neighborhood base consisting of
sets of the form U × (α1, α2) where U ⊂ X is open. Assume f is lsc. To show
that levα f is closed it suffices to show that for every x /∈ levα f there is an
open set U 3 x which is disjoint from levα f . If x /∈ levα f then (x, α) /∈ epi f
so there exists and open set U 3 x and an interval (α1, α2) 3 α such that
[U × (α1, α2)] ∩ epi f = ∅. In particular, f(x′) > α for every x′ ∈ U , so U is
disjoint of levα f .

Assume (b) holds, or in other words, that the sets Uα = {x′ | f(x′) > α} are
open. Given an x, we have Uα ∈ N(x) for every α < f(x) and thus,

sup
U∈N(x)

inf
x′∈U

f(x′) ≥ sup
α<f(x)

inf
x′∈Uα

f(x′) ≥ sup
α<f(x)

α = f(x),
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so (c) holds.
Assume (c) and let (x, α) /∈ epi f . Since α < f(x), there is a U ∈ N(x) such

that
inf
x′∈U

f(x′) > α.

Choosing α1, α2 ∈ R such that α1 < α < α2 < infx′∈U f(x), we have that
[U × (α1, α2)] is a neighborhood of (x, α) which is disjoint from epi f . Since
(x, α) /∈ epi f was arbitrary, epi f must be closed.

Example 2.13 (Integral functionals). Define If as in Example 1.17. Assume
that f is nonnegative and that f(·, ω) is lower semicontinuous on Rn for each
ω. Then If is lower semicontinuous on L0(Ω,F , µ;Rn).

Proof. Since L0 is a metric space, it suffices to verify that levα If is sequentially
closed for every α ∈ R; see e.g. [5, Section 4.1]. Let xν ∈ levα If such that
xν → x. The convergence in the metric given in Example 2.3 implies convergence
in measure. Passing to a subsequence if necessary, we may assume that xν → x
almost everywhere; see e.g. [5, Theorem 2.30]. Then, by Fatou’s lemma,

lim inf
ν

If (xν) ≥
∫

Ω

lim inf
ν

f(xν(ω), ω)dµ(ω) ≥
∫

Ω

f(x(ω), ω)dµ(ω) = If (x),

so that x ∈ levα If

Theorem 2.14. Let f be a lower semicontinuous function such that levα f
is nonempty and compact for some α ∈ R. Then argmin f is nonempty and
compact.

Proof. Let ᾱ ∈ R be such that levᾱ f is nonempty and compact. If ᾱ = inf f
the claim clearly holds. Otherwise, the collection of closed sets {levα f |α ∈
(inf f, ᾱ)} has the finite intersection property. Since the sets are contained in
the compact set levᾱ f , their intersection, which equals argmin f , is nonempty;
see Lemma 2.8. Being a closed subset of a compact set, argmin f is compact.

The above result is a topological version of the “direct method” in calculus of
variations; see e.g. [1, ?]. The more common “sequential” version will be studied
in the exercises.

Theorem 2.12 implies that the pointwise supremum of a collection of lsc
functions is again lsc. Indeed, the epigraph of the pointwise supremum is the
intersection of closed epigraphs. The lower semicontinuous hull lsc f of a func-
tion f is the pointwise supremum of all the lower semicontinuous functions
dominated by f . The optimum value of a minimization problem is not affected
if the essential objective is replaced by its lower semicontinuous hull.

Proposition 2.15. If U is open, then infU lsc f = infU f . In particular, inf f =
inf lsc f . Moreover,

(lsc f)(x) = sup
U∈N(x)

inf
x′∈U

f(x′)

and epi lsc f = cl epi f .
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Proof. The piecewise constant function

g(x) =

{
infU f x ∈ U,
−∞ x /∈ U

is lower semicontinuous (see Theorem 2.12) and dominated by f . Thus lsc f ≥ g
and infU lsc f ≥ infU g = infU f . This must hold as an equality since lsc f ≤ f .
By Theorem 2.12 and the first part of the lemma,

(lsc f)(x) = sup
U∈N(x)

inf
x′∈U

(lsc f)(x′) = sup
U∈N(x)

inf
x′∈U

f(x′).

The function
f̄(x) = inf{α ∈ R | (x, α) ∈ cl epi f},

has epi f̄ = cl epi f so it is lower semicontinuous. If g ≤ f is lsc, then cl epi f ⊆
epi g so that g ≤ f̄ . Thus f̄ = lsc f .

Much like convexity, lower semicontinuity is preserved under many algebraic
operations.

Theorem 2.16. If F is a continuous function from a topological space X to
another U and h is a lsc function on U , then h ◦F is lsc.

Proof. Exercise.

Corollary 2.17. If fi are proper and lsc then f1 + · · ·+ fm is lsc.

In the convex case, Theorem 2.16 can be considerably strengthened; see
Section 2.43.

Exercise 2.18 (Nonlinear programming). Show that the essential objective of
the optimization model (NLP) is lower semicontinuous if the functions fj are
lower semicontinuous.

Example 2.19 (Calculus of variations). Consider the problem of calculus of
variations in Section 1.1. If f is nonnegative, then by Example 2.13, the integral
functional If is lower semicontinuous on Lp(Ω)n. Since the differential operator
D : Wm,p(Ω) → Lp(Ω)n is continuous from the strong topology of Wm,p(Ω) to
that of Lp(Ω)n, the objective If ◦D is a lower semicontinuous, by Theorem 2.16.
In order to guarantee the existence of minimizers, it suffices by Theorem 2.14,
to show that If ◦D has a compact level set. One possibility is to apply Poincaré
inequality.

The following gives a criterion for the lower semicontinuity of the optimum
value function of a parametric optimization problem.

Theorem 2.20. Let f be a lsc function on X × U such that for every ū ∈ U
and α ∈ R there is a neighborhood Uū of ū and a compact set Kū ⊆ X such that

{x ∈ X | ∃u ∈ Uū : f(x, u) ≤ α} ⊆ Kū.

Then, ϕ(u) = infx f(x, u) is lsc and the infimum is attained for every u ∈ U .
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Proof. The attainment of the infimum follows from Theorem 2.14 since the lower
semicontinuity of f implies the lower semicontinuity of x 7→ f(x, u) for each fixed
u. This can be verified by following the proof of Lemma 2.7 in showing that the
inverse image of every set of the form (α,∞) is open.

Let α ∈ R. If ū /∈ levα ϕ, then X × {ū} ∩ levα f = ∅. Since levα f is
closed, there exist for every x ∈ X an Xx ∈ B(x) and a Ux ∈ B(ū) such
that (Xx × Ux) ∩ levα f = ∅. Since Kū is compact, there is a finite set of
points x1, . . . , xn such that Kū ⊂

⋃n
i=1Xxi . Then V =

⋂n
i=1(Uxi ∩ Uū) is a

neighborhood of ū and V ∩ levα ϕ = ∅. Indeed, if u ∈ V ∩ levα ϕ, there is an
x ∈ X such that (x, u) ∈ levα f . But this is impossible since u ∈ V ⊂ Uū and
(x, u) ∈ levα f imply x ∈ Kū while

Kū × V ⊂
n⋃
i=1

(Xxi × Uxi),

which is disjoint from levα f .

The condition in Theorem 2.20 is certainly satisfied if f is such that dom f(·, u)
is contained in a fixed compact set for every u ∈ U . When f is the indicator of
a set, Theorem 2.20 can be written as follows.

Corollary 2.21. Let C ⊂ X×U be a closed set such that for every ū ∈ U there
is a neighborhood Uū of ū and a compact set Kū ⊆ X such that

{x ∈ X | ∃u ∈ Uū : (x, u) ∈ C} ⊆ Kū.

Then, {u ∈ U | ∃x ∈ X : (x, u) ∈ C} is closed.

It is clear that f1 + · · ·+fm ≥ lsc f1 + · · ·+lsc fm for any functions fi. Thus,
by Corollary 2.17, lsc(f1 + · · ·+ fm) ≥ lsc f1 + · · ·+ lsc fm. In general, however,
the inequality may be strict.

Lemma 2.22. If f1 is continuous at x0, then lsc(f1 + f2)(x0) = f1(x0) +
lsc f2(x0). In particular, if f1 is continuous, then lsc(f1 + f2) = f1 + lsc f2.

Proof. For any ε > 0 there is an open set U ′ 3 x0 such that f1(x) ≤ f1(x0) + ε
for every x ∈ U ′ and thus,

lsc(f1 + f2)(x0) = sup
U∈N(x0)

inf
x∈U

[f1(x) + f2(x)]

≤ sup
U∈N(x0)

inf
x∈U∩U ′

[f1(x) + f2(x)]

≤ f1(x0) + ε+ sup
U∈N(x0)

inf
x∈U∩U ′

f2(x)

= f1(x0) + ε+ (lsc f2)(x0).

Since ε > 0 was arbitrary, we get lsc(f1 + f2)(x0) ≤ f1(x0) + (lsc f2)(x0).

In the convex case, the above result can be significantly strengthened; see
Section 2.5.
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2.3 Compactness in Euclidean spaces

The Heine–Borel theorem states that a subset in a Euclidean space is compact
if and only if it is closed and bounded. This fact works particularly nicely with
the scaling properties of convex sets; see Section 1.5.

Theorem 2.23. A nonempty closed convex set C ⊂ Rd is bounded if and only
if C∞ = {0}.

Proof. If C∞ contains a nonzero vector then C contains a half-line so it is
unbounded. On the other hand, if C is unbounded and x ∈ C, then the sets
Dα = α(C − x)∩ {x | |x| = 1} are nonempty, closed and increasing in α so they
have the finite intersection property. Since they are contained in the compact
set B1, their intersection is nonempty, by Lemma 2.8. By Theorem 1.48, the
intersection equals C∞ ∩ {x ∈ Rn | |x| = 1}.

Corollary 2.24. If f is a lower semicontinuous proper convex function on Rn

such that
{x ∈ Rn | f∞(x) ≤ 0} = {0},

then argmin f is nonempty and compact.

Proof. By Theorem 2.14, it suffices to prove that levα f is nonempty and com-
pact for some α ∈ R. By Theorem 1.54, the recession condition implies that
(levα f)∞ = {0} for all α ≥ inf f , so the compactness follows from Theo-
rem 2.23.

Theorem 2.25. Let A : Rm → R
n be linear and C ⊆ Rm be closed and convex.

If kerA ∩ C∞ is a linear space, then AC is closed and (AC)∞ = AC∞.

Proof. ??

Theorem 2.26. Let f be a lower semicontinuous proper convex function on
R
m ×Rn. If {x ∈ Rn | f∞(x, 0) ≤ 0} is a linear space, then

ϕ(u) = inf
x∈Rn

f(x, u)

is a lower semicontinuous proper convex function and the infimum is attained
for every u.

Proof. By Corollary 1.50, the linearity condition implies that f(·, u) is constant
in the directions of L := {x ∈ Rn | f∞(x, 0) ≤ 0}. Thus,

ϕ(u) = inf
x∈L⊥

f(x, u).

Each ū ∈ Rm has the unit ball B(ū) as its neighborhood. To prove the lower
semicontinuity and attainment of the infimum, it suffices, by Theorem 2.20, to
show that the set

Kū := {x | ∃u ∈ B(ū) : f(x, u) ≤ α, x ∈ L⊥}
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is compact. By ??, it’s recession cone can be expressed as

K∞ū := {x ∈ Rn | f(x, 0) ≤ 0, x ∈ L⊥} = {0}.

The compactness thus follows from Theorem 2.23.

2.4 Interiors of convex sets

For convex sets and functions, stronger topological properties are available as
soon as the topology is compatible with the vector space operations. A topolog-
ical vector space is a vector space X equipped with a topology τ such that

1. the function (x1, x2) 7→ x1 + x2 is continuous from the product topology
of X ×X to X,

2. the function (x, α) 7→ αx is continuous from the product topology of X×R
to X,

Example 2.27. Let ‖ · ‖ be a norm on a vector space X. Then the topology
generated by the metric d(x, y) = ‖x−y‖ makes X a topological vector space. In
particular, Euclidean, Lebesgue and Sobolev spaces for p ∈ [1,∞] are topological
vector spaces.

Example 2.28. Given a finite measure µ, the translation invariant metric

d(x, y) =

∫
Ω

|x− y|
|x− y|+ 1

dµ

is not a norm but, nevertheless, makes L0(Ω,F , µ) a topological vector space.

Exercise 2.29. If a set is open/closed, then it is algebraically open/closed.

The following lists some fundamental consequences of the continuity of the
vector space operations.

Lemma 2.30. Let V be a neighborhood of the origin.

(a) If α 6= 0, then αV is a neighborhood of the origin

(b) There exists a neighborhood W of the origin such that W +W ⊂ V .

(c) If x ∈ X, then V + x is a neighborhood of x.

Proof. Use Lemma 2.7 and the fact that products of open sets form a base for
the product topology.

If B(0) is a neighborhood base at the origin, then part (c) of Lemma 2.30
implies that {U + x |U ∈ B(0)} is a neighborhood base at x. In a topological
vector space, the topology is thus completely determined by a neighborhood
base B(0) of the origin. Indeed, a set U is open if and only if for each x ∈ U
there is a V ∈ B(0) such that x+ V ⊂ U .
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Lemma 2.31. If C is convex then intC and clC are convex.

Proof. Let α ∈ (0, 1). Since intC ⊂ C and C is convex, we have α intC + (1−
α) intC ⊂ C. Since α intC+(1−α) intC is open, it is contained in intC. Since
α ∈ (0, 1) was arbitrary, this means that intC is convex.

Let xi ∈ clC, α ∈ (0, 1) and let U be a neighborhood of the origin. It suffices
to show that C ∩ (αx1 + (1−α)x2 +U) 6= ∅. Lemma 2.30 gives the existence of
neighborhoods Ui of the origin such that αU1 + (1−α)U2 ⊂ U . Since xi ∈ clC,
there exist zi ∈ C ∩ (xi + Ui) 6= ∅. We get

αz1 + (1− α)z2 ∈ α(x1 + U1) + (1− α)(x2 + U2) ⊂ αx1 + (1− α)x2 + U,

where the point on the left belongs to C by convexity.

Theorem 2.32. Let C be a convex set, x ∈ intC and x̄ ∈ clC. Then

αx+ (1− α)x̄ ∈ intC ∀α ∈ (0, 1].

If intC 6= ∅, then cl intC = clC and int clC = intC.

Proof. Let U ⊆ C be an open neighborhood of x. The set V = −α/(1−α)(U−x)
is a neighborhood of the origin so there is a z ∈ C ∩ (x̄+ V ). We get

αx+ (1− α)x̄ ∈ αx+ (1− α)(z − V ) = αU + (1− α)z,

where the open set on the right is contained in C by convexity. This proves the
first claim.

To prove that cl intC = clC, it suffices to show that for any x̄ ∈ clC and
any neighborhood U of x̄, there is an x′ ∈ intC∩U . Let x ∈ intC. Then, by the
continuity of α 7→ αx+(1−α)x̄, there is an α ∈ (0, 1) such that αx+(1−α)x̄ ∈ U .
By the first claim, αx+ (1− α)x̄ ∈ intC.

To prove the last claim, let z ∈ int clC and x ∈ intC. By continuity of the
vector space operations, there is an ε > 0 such that x̄ := z + ε(z − x) ∈ clC.
Let α = ε/(1 + ε). By the first claim, αx + (1 − α)x̄ ∈ intC. The last claim
now follows since αx+ (1− α)x̄ = z and z ∈ int clC was arbitrary.

The core (or the algebraic interior) of a set C is the set of points x ∈ C such
that, for every y ∈ X, the set {α |x + αy ∈ C} is a neighborhood of the origin
in R. The algebraic interior will be denoted by coreC. Note that x ∈ coreC if
and only if pos(C − x) = X.

Exercise 2.33. Show that coreC ⊇ intC. Give an example of a set C ⊂ R2

for which coreC 6= intC.

A topological vector space X is said to be barrelled if every closed convex
set C with posC = X is a neighborhood of the origin.

Proof. If C is convex, we have posC =
⋃∞
n=1 nC. If the union equals X and C

is closed then by Theorem 2.11, one of the sets nC, and thus, C has a nonempty
interior.
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Theorem 2.34. Let C be convex. Then coreC = intC holds in the following
situations

(a) X is Euclidean,

(b) intC 6= ∅,

(c) X is barrelled and C is closed.

(c) X is a complete metric space (e.g. a Banach space) and C is closed.

The space X is barrelled, in particular, if the topology of X is induced by a
metric under which X is complete.

Proof. If x ∈ coreC and X is Euclidean, then there is a finite set of points
{xi}i∈I ⊂ C such that x ∈ int co{xi}i∈I (exercise). By convexity, co{xi}i∈I ⊂
C, so that x ∈ intC.

Let x′ ∈ intC. If x ∈ coreC, there is an α ∈ (0, 1) and a z ∈ C such that
x = αz + (1− α)x′. By convexity,

x+ (1− α)[intC − x′] = αz + (1− α) intC ⊆ C

where the set on the left is a neighborhood x.
When C is closed and pos(C−x) = X, barrelledness of X implies that C−x

is a neighborhood of the origin so x ∈ intC, by Lemma2.30(c).
If C is convex, posC =

⋃∞
n=1 nC. Thus, if X is a complete metric space

and C is closed with posC = X, Theorem 2.11 implies that one of the sets nC,
and thus, Lemma2.30(a), C has a nonempty interior. Part (b) then implies that
0 ∈ intC.

Note that the last part of Theorem 2.34 covers e.g. Banach spaces or, more
generally, Frechet spaces which are the completely metrizable locally convex
vector spaces.

The relative interior of a set is its interior relatively its closed affine hull.
That is, the relative interior rintC of a set C is the set of points x ∈ C that
have a neighborhood U such that U ∩ cl aff C ⊂ C. In a Euclidean space,
every convex set has a nonempty relative interior; see [11, Theorem 6.2]. Many
results involving interiors of convex sets have natural counterparts involving
relative interiors. In particular, it is easily checked that the above results hold
with “rint” in the place of “int” throughout.

We end this section with some topological refinements of the algebraic sep-
aration theorems from Section 1.6. These will be based on the following simple
but significant observation.

Exercise 2.35. If a linear function is bounded from above on an open set, then
it is continuous.

Theorem 2.36. Let C1 and C2 be disjoint convex sets of a topological vector
space. If one of the sets is open, then there is a continuous linear functional
that separates them properly.
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Proof. By Exercise 2.29, a topologically open set is algebraically open. Corol-
lary 1.58 thus gives the existence of a linear function l that properly separates
C1 and C2. If one of the sets is open, l must be continuous, by Exercise 2.35.

The following is a version of the Hahn–Banach extension theorem.

Corollary 2.37. Let L be a linear subspace of a topological vector space X. If
l : L→ R is linear and continuous in the relative topology of L, then there exists
a linear continuous l̄ : X → R such that l̄ = l on L. The extension l̄ is unique
if L is dense in X.

Proof. The continuity of l(x) on L means that there is an α > 0 and an open
convex set U 3 0 such that l(x) ≤ α for x ∈ U ∩ L. Applying Theorem 2.36 to
the sets {(x, l(x)) |x ∈ L} and U × (α,∞), we get the existence of a continuous
linear functional k : X ×R→ R such that

k(x1, l(x1)) ≤ k(x2, β) ∀x1 ∈ L, (x2, β) ∈ U × (α,∞)

where the inequality does not reduce to equality. In particular, x 7→ k(x, l(x))
is bounded on L so, by linearity, it has to be identically zero on L. By linearity,
k is necessarily of the form k(x, r) = l̃(x) + γr, where γ 6= 0 since otherwise we
could not have 0 ≤ k(x, β) for all x ∈ U and β > α without this reducing to an
equality. It is easily checked that the linear function l̄ = −1/γl̃ is a continuous
extension of l.

If l has two continuous extensions l̄1 and l̄2, then L is contained in the closed
set ker(l1 − l2). If L is dense, then its closure and, thus, ker(l̄1 − l̄2) equals X
so l̄1 = l̄2.

2.5 Continuity of convex functions

If a function f is a continuous at a point x ∈ dom f , then it is bounded on
a neighborhood of that point. Indeed, for any M > f(x), the preimage of
(−∞,M) under f is a neighborhood of x. For convex functions, we have the
following converse.

Theorem 2.38. If a convex function is bounded from above on an open set,
then the function is continuous throughout the core of its domain.

Proof. Assume that f(x) ≤M on a neighborhood U of a point x̄. By translation,
we may assume that x̄ = 0 and f(0) = 0. By convexity,

f(αx) = f(αx+ (1− α)0) ≤ αf(x) + (1− α)f(0) = αM

for any x ∈ U and α ∈ (0, 1). Also,

1

2
f(x) +

1

2
f(−x) ≥ f(0) = 0,
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so that −f(αx) ≤ f(−αx) for any x ∈ X. We thus have that |f(x)| ≤ αM on
the set α[U ∩ (−U)] which is a neighborhood of the origin. Since α ∈ (0, 1) was
arbitrary, this implies that f is continuous at 0.

To finish the proof, it suffices to show that if f(x) ≤M for x in an open set
U , then f is bounded from above on a neighborhood of every point of core dom f .
Let x′ ∈ U . If x ∈ core dom f , there is an α ∈ (0, 1) and a z ∈ dom f such that
x = αz + (1− α)x′. By convexity,

f(αz + (1− α)w) ≤ αf(z) + (1− α)f(w) ≤ αf(z) + (1− α)M ∀w ∈ U.

Thus, f is bounded from above on W = αz + (1 − α)U , which is an open set
containing x.

Note that if f is linear, then Theorem 2.38 reduces to Exercise 2.35.

Corollary 2.39. A convex function f is continuous on core dom f in the fol-
lowing situations

(a) X is Euclidean,

(b) X is a complete metric space and f is lower semicontinuous.

Proof. If x ∈ core dom f and X is Euclidean, there is a finite set of points
{xi}i∈I ⊂ dom f such that x ∈ int co{xi}i∈I (exercise). The number α =
maxi∈I f(xi) is then finite and, by convexity, co{xi}i∈I ⊂ levα f , so the con-
tinuity follows from Theorem 2.38. In part (b), let x ∈ core dom f and α >
f(x). The lower semicontinuity of f implies, by Theorem 2.12, that the con-
vex set levα f is closed. Let z ∈ X. By part (a), x ∈ core dom f implies
that the function λ 7→ f(x + λz) is continuous at the origin, so the interval
{λ | f(x+ λz) < α} is a neighborhood of the origin. Since z ∈ X was arbitrary,
we have x ∈ core levα f . By Theorem 2.34(c), int levα f 6= ∅, so the continuity
follows from Theorem 2.38.

Part (b) of the above result gives the famous uniform boundedness principle.

Corollary 2.40 (Banach–Steinhaus). Given a family {Ai}i∈I of bounded linear
operators form a Banach space X to a normed space, let

f(x) = sup
i∈I
‖Ai(x)‖.

If dom f = X, then supi∈I ‖Ai‖ <∞.

Proof. Exercise

The lower semicontinuous hull lsc f of a convex function f is convex. In-
deed, by Proposition 2.15 epi lsc f = cl epi f , where the latter set is convex by
Lemma 2.31. The second part of the following result shows how the values of
lsc f can be recovered from the values of f along a single line.
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Theorem 2.41. Let f be a convex function finite and continuous at a point.
Then

int epi f = {(x, α) |x ∈ int dom f, α > f(x)}

and for any x0 ∈ core dom f and any x

(lsc f)(x) = lim
λ↗ 1

f(λx+ (1− λ)x0).

Proof. If (x, α) ∈ int epi f , then (x, α) has a neighborhood contained in epi f .
The neighborhood in X ×R contains a neighborhood of the product form U ×
(α − ε, α + ε) so x ∈ U ⊂ int dom f and f(x) < α − ε. On the other hand, if
x ∈ int dom f and α > f(x), then by Theorem 2.38, f is continuous at x, so for
any β ∈ (f(x), α), there is a neighborhood U of x such that f(z) < β for z ∈ U .
Thus, (x, α) ∈ U × (β,∞) ⊂ epi f , so (x, α) ∈ int epi f .

Since λ 7→ λx+ (1− λ)x0 is continuous, property (c) in Theorem 2.12 gives

(lsc f)(x) ≤ lim inf
λ↗ 1

f(λx+ (1− λ)x0).

Let (x, α) ∈ cl epi f . By the first claim, we have (x0, α0) ∈ int epi f for any
α0 > f(x0). Applying the line segment principle of Theorem 2.41 to epi f , we
get λ(x, α) + (1− λ)(x0, α0) ∈ int epi f for every λ ∈ (0, 1). Thus,

f(λx+ (1− λ)x0) ≤ λα+ (1− λ)α0

so lim supλ↗ 1 f(λx+ (1− λ)x0) ≤ α. Since (x, α) ∈ cl epi f was arbitrary, the
last part of Proposition 2.15 gives

(lsc f)(x) ≥ lim sup
λ↗ 1

f(λx+ (1− λ)x0).

which completes the proof.

Corollary 2.42. A lower semicontinuous convex function on the real line is
continuous with respect to the closure of its domain.

Proof. If the domain has a nonempty interior, the claim follows from Theo-
rem 2.41. Otherwise it is trivial.

In the convex case, Lemma 2.22 can be improved as follows.

Proposition 2.43. Let f1 and f2 be convex functions such that f1 is continuous
at a point where f2 is finite. Then

lsc(f1 + f2) = lsc f1 + lsc f2.

Proof. Let x0 ∈ dom f2 be a point where f1 is continuous and let x ∈ X. Since
x0 ∈ dom lsc(f1 + f2), Corollary 2.42 gives

lsc(f1 + f2)(x) = lim
λ↗ 1

lsc(f1 + f2)(λx+ (1− λ)x0)
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(here both sides equal +∞ unless x ∈ dom lsc(f1 + f2)). By Theorems 2.32 and
2.38, f1 is continuous at λx+ (1− λ)x0 for every λ ∈ (0, 1), so by Lemma 2.22,

lsc(f1 + f2)(x) = lim
λ↗ 1

[f1(λx+ (1− λ)x0) + (lsc f2)(λx+ (1− λ)x0)]

= (lsc f1)(x) + (lsc f2)(x),

where the second equality comes from Theorem 2.41 and Corollary 2.42.

Exercise 2.44. Show that the conclusion of Proposition 2.43 may fail to hold
if either convexity or the continuity condition is relaxed.

Exercise 2.45. Show that if A is a continuous linear mapping from X to U and
h is a convex function on U continuous at a point of rgeA, then lsc(h ◦A) =
(lsch) ◦A.
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Chapter 3

Duality

Duality theory of convex optimization has important applications e.g. in me-
chanics, statistics, economics and finance. Duality theory yields optimality con-
ditions and it is the basis for many algorithms for numerical optimization. This
chapter studies the conjugate duality framework of Rockafellar [13] which unifies
various other duality frameworks for convex optimization.

We start by studying conjugate convex functions on dual pairs of topological
vector spaces. Conjugate convex functions are involved in many fundamental
results in functional analysis. They also form the basis for dualization of opti-
mization problems which will be studied in the remainder of this chapter.

3.1 Conjugate convex functions

Two vector spaces X and V are in separating duality if there is a bilinear form
(x, v) 7→ 〈x, v〉 on X × V such that x = 0 whenever 〈x, v〉 = 0 for every v ∈ V
and v = 0 whenever 〈x, v〉 = 0 for every x ∈ X. It is easily checked that X = R

n

and V = R
n are in separating duality under the bilinear form 〈x, v〉 := x · v.

Moreover, every continuous linear functional onRn can be expressed as x 7→ x·v
for some v ∈ Rn. To have a similar situation in the general case, we need
appropriate topologies on X and V .

We will denote by σ(X,V ) the weakest topology on X under which the linear
functions x 7→ 〈x, v〉 are continuous for every v ∈ V . In other words, σ(X,V )
is the topology generated by sets of the form {x ∈ X | |〈x, v〉| < 1} where
v ∈ V . It turns out (see e.g. [?]) that every σ(X,V )-continuous real-valued
linear function can be expressed in the form x 7→ 〈x, v〉. In general, there are
many topologies with this property but, by the Mackey–Arens theorem, there
is a strongest one among them; see e.g. [?]. This topology, know as the Mackey
topology, is generated by sets of the form

{x ∈ X | sup
v∈D
〈x, v〉 < 1},

51
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where D ⊂ V is convex symmetric and σ(V,X)-compact. The Mackey topol-
ogy is denoted by τ(X,V ). Corresponding topologies σ(V,X) and τ(V,X) are
defined similarly on V . All the above topologies are locally convex, i.e. there is
a neighborhood base B(0) consisting of convex sets.

Even though a dual pair of vector spaces is a purely algebraic concept, the
most important pairs are constructed from vector spaces that already have a
locally convex topology.

Example 3.1. Let X be a locally convex Hausdorff topological vector space and
let V be the set of continuous linear functionals on X. Pointwise addition and
scalar multiplication make V a vector space and the bilinear form 〈x, v〉 := v(x)
puts X and V in separating duality. If X is a normed space, then τ(X,V ) is
the norm topology and σ(V,X) is known as the weak* topology.

Proof. See e.g. [?].

The space V in Example 3.1 is called the topological dual of X. It can be
given an explicit description in many important cases. Several examples can be
found e.g. in [4]. Below are two.

Example 3.2. For p, q ∈ [1,∞] such that 1/p + 1/q = 1, the spaces X =
Lp(Ω,F , P ) and V = Lq(Ω,F , P ) (assuming that µ is σ-finite if p = 1) are in
separating duality under the bilinear form

〈x, v〉 =

∫
Ω

x(ω)v(ω)dµ(ω).

Indeed, for p ∈ [1,∞), Lq is the dual of the normed space Lp (see e.g. [5,
Theorem 6.15]).

Example 3.3. Let Ω be a compact Hausdorff space, X the space of continuous
functions on Ω and V the space of Radon measures on Ω. The bilinear form

〈x, v〉 =

∫
Ω

x(ω)dv(ω).

puts X and V in separating duality. Indeed, V is the topological dual of (X, ‖·‖),
where ‖ · ‖ is the supremum norm; see [5, Theorem 7.17].

Exercise 3.4. Show that a continuous linear functional on a linear subspace of
a locally convex topological vector space has a unique extension if and only if the
linear subspace is dense.

The topologies σ(X,V ) and τ(X,V ) are perfectly suited for convex sets.

Theorem 3.5. The τ(X,V )-closed convex hull of a set is the intersection of a
collection of half-spaces of the form {x | 〈x, v〉 ≤ α}. In particular, a τ(X,V )-
closed convex set is σ(X,V )-closed.
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Proof. Let C be the τ(X,V )-closed convex hull in question and x /∈ C. Since
Cc is open there exists, by local convexity, an open convex set D 3 x which
is disjoint from C. By Theorem 2.36, there is a continuous linear functional
l separating C and D. The continuous linear functional can be expressed as
l(x) = 〈x, v〉 for some v ∈ V . For the constant α, one can take α := supC〈x, v〉.
Since these half-spaces are σ(X,V )-closed, the set C must be σ(X,V )-closed as
well.

The polar of a set C ⊂ X is defined by

C◦ = {v ∈ V | 〈x, v〉 ≤ 1, ∀x ∈ C}.

Being the intersection of closed half-spaces containing the origin, C◦ is always
σ(V,X)-closed and contains the origin.

Corollary 3.6 (Bipolar theorem). If C ⊂ X contains the origin, then C◦◦ =
cl coC.

Proof. By Theorem 3.5, cl coC is the intersection of closed half-spaces of the
form {x | 〈x, v〉 ≤ α}. When 0 ∈ C, the half-spaces must have α ≥ 0. Half-
spaces of the form {x | 〈x, v〉 ≤ 0} can be expressed as intersections of half-
spaces {x | 〈x, v〉 ≤ α} where α > 0. Replacing each v by v/α, we see that
cl coC is the intersection of half-spaces of the form {x | 〈x, v〉 ≤ 1}. This proves
the claim since, by definition, C◦◦ is the intersection of the closed half-spaces
{x | 〈x, v〉 ≤ 1} which contain C.

If C is a cone, C◦ equals the polar cone of C defined by

C∗ := {v ∈ V | 〈x, v〉 ≤ 0 ∀x ∈ C}.

This is a σ(V,X)-closed convex cone. For a cone, Corollary 3.6 can thus be
written as C∗∗ = cl coC.

Given an extended real-valued function f on X, its conjugate is the extended
real-valued function f∗ on V defined by

f∗(v) = sup
x∈X
{〈x, v〉 − f(x)}.

The conjugate of a function on V is defined analogously. The conjugate f∗∗ of
the conjugate f∗ of f is known as the biconjugate of f . Being the pointwise
supremum of continuous linear functions, f∗ is convex and σ(V,X)-lsc on V .
Similarly, the biconjugate f∗∗ is convex and σ(X,V )-lsc on X. The following is
the most useful form of the separation theorem.

Theorem 3.7. If f : X → R is such that (lsc co f)(x) > −∞ for every x ∈ X,
then f∗∗ = lsc co f . Otherwise, f∗∗ ≡ −∞. In particular, if f is a lsc proper
convex function, then f∗∗ = f .
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Proof. We have (x, α) ∈ epi f∗∗ if and only if

α ≥ 〈x, v〉 − β ∀(v, β) ∈ epi f∗.

Here (v, β) ∈ epi f∗ if and only if f(x) ≥ 〈x, v〉 − β for every x. Thus, epi f∗∗ is
the intersection of the epigraphs of all continuous affine functionals dominated
by f .

On the other hand, by Theorem 3.5, epi lsc co f is the intersection of all
closed half-spaces

Hv,β,γ = {(x, α) | 〈x, v〉+ αβ ≤ γ}

containing epi f . We have (lsc co f)(x) > −∞ for every x ∈ X if and only if one
of the half-spaces has β 6= 0, or in other words, there is an affine function h0

dominated by f .
It thus suffices to show that if there is a half-space Hv,β,γ containing epi f

but not a point (x̄, ᾱ), then there is an affine function h such that f ≥ h but
h(x̄) > ᾱ. If epi f ⊆ Hv,β,γ , then necessarily β ≤ 0. If β < 0, then the
function h(x) = 〈x, v/(−β)〉 + γ/β will do. If β = 0, then dom f is contained
in {x | 〈x, v〉 ≤ γ} while x̄ is not. It follows that f dominates the affine function
h(x) = h0(x) + λ(〈x, v〉 − γ) for any λ ≥ 0. Since 〈x̄, v〉 > γ, we have h(x̄) > ᾱ
for λ large enough.

The mapping f 7→ f∗ is known as the Legendre-Fenchel transform. By
Theorem 3.7, it provides a one-to-one correspondence between proper lower
semicontinuous convex functions on X and V , respectively.

Exercise 3.8. Let X = V = R. Calculate the conjugate of

(a) f(x) = 1/p|x|p, where p ∈ [1,∞).

(b) f(x) = ex.

(c) f(x) =

{
− lnx, x > 0,

+∞, x ≤ 0.

(d) f(x) = max{x, 0}.

Applying Theorem 3.7 to the indicator function of a closed convex set C ⊂ X
gives

δC(x) = sup
v
{〈x, v〉 − σC(v)},

where σC(v) = sup{〈x, v〉 |x ∈ C} is known as the support function of C. The
above says that x ∈ C if and only if 〈x, v〉 ≤ σC(v) for every v ∈ V . We thus
obtain Theorem 3.5 as a special case of Theorem 3.7. When X is a normed
space and C is the unit ball, σC is the dual norm on V . When C is a cone, we
have

σC = δC∗ ,

where C∗ is the polar cone of C.
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Example 3.9 (Integral functionals). Let (Ω, F, µ) be a complete measure space,
X = Lp(ω,F , µ;Rn) and V = Lq(ω,F , µ;Rn). Let f be an extended real-valued
B(Rn) ⊗ F-measurable function on Rn × Ω such that f(·, ω) is lsc proper and
convex for every ω. If If (x) < ∞ for some x ∈ X, then the conjugate (with
respect to X and V ) of the integral functional If : X → R can be expressed as
I∗f = If∗ , where

f∗(v, ω) = sup
x
{x · v − f(x, ω)}

is a B(Rn)⊗F-measurable function on Rn × Ω.

Proof. For any v ∈ V ,

I∗f (v) = sup
x∈X
{
∫
x(ω) · v(ω)dµ(ω)−

∫
f(x(ω), ω)dµ(ω)}

= sup
x∈X

∫
[x(ω) · v(ω)− f(x(ω), ω)]dµ(ω)

≤
∫

sup
x∈Rn

[x · v(ω)− f(x, ω)]dµ(ω)

=

∫
f∗(v(ω), ω)dµ(ω) = If∗(v).

On the other hand, let ε > 0 and x1 ∈ X such that If (x1) < ∞. By the
measurable selection theorem (see e.g. [16, Theorem 14.6]), there is an x0 ∈
L0(Ω, F, µ) such that

x0(ω) · v(ω)− f(x0(ω), ω) ≥ min{f∗(v(ω), ω), 1/ε} − ε.

Defining Aν = {ω | |x0(ω)| ≤ ν} and xν = x0
1Aν + x1

1Acν , we have xν ∈ X and

xν(ω) · v(ω)− f(xν(ω), ω)→ x0(ω) · v(ω)− f(x0(ω), ω)

almost surely. Thus, by Fatou’s lemma,

lim inf
ν→∞

{〈xν , v〉 − If (xν)} ≥
∫

[x0(ω) · v(ω)− f(x0(ω), ω)]dµ(ω)

≥
∫

[min{f∗(v(ω), ω), 1/ε} − ε]dµ(ω).

Since ε > 0 was arbitrary and f∗(v(ω), ω) ≥ x1(ω) · v(ω) − f(x1(ω), ω), the
monotone convergence theorem gives

lim inf
ν→∞

{〈xν , v〉 − If (xν)} ≥ If∗(v)

which completes the proof.

The following gives some basic rules for calculating conjugates of functions
obtained by elementary algebraic operations from another functions.
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Exercise 3.10. Show that if

(b) g(x) = f(x) + c for c ∈ R, then g∗(v) = f∗(v)− c,

(a) g(x) = f(x)− 〈x, v̄〉 for v̄ ∈ V , then g∗(v) = f∗(v + v̄),

(b) g(x) = f(x+ x̄) for x̄ ∈ X, then g∗(v) = f∗(v)− 〈x̄, v〉,

(b) g(x) = λf(x) for λ > 0, then g∗(v) = λf∗(v/λ),

(b) g(x) = λf(x/λ) for λ > 0, then g(v) = λf∗(v).

More general calculus rules for the Legendre–Fenchel transform will be de-
rived in Section 3.3.

The following is an important source of compactness in locally convex spaces.

Theorem 3.11. Let f be a lsc proper convex function on X such that f(0) <∞.
The following are equivalent:

(a) levα f is a τ(X,V )-neighborhood of the origin for some α > f(0),

(b) levα f is a τ(X,V )-neighborhood of the origin for every α > f(0),

(c) levβ f
∗ is σ(V,X)-compact for some β > inf f∗,

(d) levβ f
∗ is σ(V,X)-compact for every β > inf f∗.

Even if f is not lsc, (a) implies (d).

Proof. Clearly, (b) implies (a). By Theorem 2.38, (a) implies the continuity of
f at the origin which, in turn implies (b).

Part (a) means that there is a C ∈ τ(X,V ) such that 0 ∈ C and f ≤ δC +α.
Since the topology τ(X,V ) is generated by polars of convex symmetric and
σ(V,X)-compact sets D ⊂ V , we may assume that C = D◦ for such a D. We
have

f∗(v) ≥ sup{〈x, v〉 − δC(x)− α} = σC(v)− α.
In particular, inf f∗ ≥ −α, so if β > inf f∗, we have α+ β > 0 and then, by the
bipolar theorem,

levβ f
∗ ⊆ {v |σC(v) ≤ α+ β}

= (α+ β){v |σC(v) ≤ 1}
= (α+ β)C◦ = (α+ β)D◦◦ = (α+ β)D.

Since levβ f
∗ is σ(V,X)-closed, by the σ(V,X)-lower semicontinuity of f∗, it is

σ(V,X)-compact since D is.
To prove that (c) implies (a), we assume temporarily that f∗(0) = inf f∗ = 0.

Denote D := levβ f
∗. If v /∈ D, we have

γD(v) : = inf{η > 0 | v ∈ ηD}
= inf{η > 1 | v ∈ ηD}
= inf{η > 1 | f∗(v/η) ≤ β}
≤ inf{η > 1 | f∗(v)/η ≤ β}
= f∗(v)/β,
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where the inequality holds since f∗(v/η+(1−1/η)0) ≤ f∗(v)/η+(1−1/η)f∗(0),
by convexity. Letting δ := inf f∗ − β, we thus have f∗(v) ≥ βγD(v) + δ for all
v ∈ V and consequently, f∗ ≥ βγD̄+δ, where D̄ := co[D∪ (−D)]. Exercise 3.10
gives

f∗∗(x) ≤ βγ∗D̄(x/β)− δ,

where γ∗
D̄

= δD̄◦ as is easily checked. The set D̄ is convex, symmetric and
σ(V,X)-compact1 so D̄◦ is a τ(X,V )-neghborhood of the origin. This proves the
claim in the case f∗(0) = inf f∗ = 0. The general case follows by considering the
function g̃(v) = f∗(v̄+v)−f∗(v̄), where v̄ ∈ argmin f∗. Indeed, by Exercise 3.10,
g∗ is τ(X,V )-continuous at the origin if and only if f∗∗ is.

The following is probably the best known special case of Theorem 3.11.

Corollary 3.12 (Banach–Alaoglu). The unit ball of the dual of a normed space
is weak*-compact.

Proof. The indicator δB of the unit ball B ⊂ X satisfies conditions (a) and (b)
of Theorem 3.11. Thus, the level sets of δ∗B are weakly compact. But δ∗B is the
dual norm on V .

Differential properties of convex functions can be conveniently described in
terms of duality. A v ∈ V is said to be a subgradient of f at x̄ if

f(x) ≥ f(x̄) + 〈x− x̄, v〉 ∀x ∈ X.

The set of all subgradients of f at x̄ is denoted by ∂f(x̄) and it is called the
subdifferential of f at x̄. Since ∂f(x̄) is the intersection of closed half-spaces, it
is a closed convex set. Writing the subdifferential condition as

〈x̄, v〉 − f(x̄) ≥ 〈x, v〉 − f(x) ∀x ∈ X

we see that

v ∈ ∂f(x̄) ⇐⇒ f(x̄) + f∗(v) ≤ 〈x̄, v〉.

The reverse inequality f(x̄) + f∗(v) ≥ 〈x̄, v〉 is always valid, by definition of the
conjugate.

Theorem 3.13. Let f be a convex function and x̄ a point where f is finite. The
conjugate of the sublinear function f ′(x̄; ·) is the indicator function of ∂f(x̄). If
f is continuous at x̄, then ∂f(x̄) is a nonempty σ(V,X)-compact set and f ′(x̄; ·)
is the support function of ∂f(x̄).

1By Exercise 1.19, the set D̄ can be expressed as F (∆, D,−D) where ∆ = {(α1, α2) ∈
R

2
+ |αi ≥ 0, α1 + α2 = 1} and F (α, x1, x2) = α1x1 + α2x2. Thus, D̄ is compact since it is

the continuous image of a compact set.
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Proof. By Lemma 1.44,

f ′(x̄; ·)∗(v) = sup
x∈X

{
〈x, v〉 − inf

λ>0

f(x̄+ λx)− f(x̄)

λ

}
= sup
x∈X,λ>0

{〈x, v〉 − [f(x̄+ λx)− f(x̄)]/λ}

= sup
x∈X,λ>0

1

λ
{〈λx, v〉 − f(x̄+ λx) + f(x̄)}

= sup
λ>0

1

λ
sup
x∈X
{〈x, v〉 − f(x̄+ x) + f(x̄)}

= sup
λ>0

1

λ
{f∗(v) + f(x̄)− 〈x̄, v〉} ,

which equals the indicator function of ∂f(x̄). If f is continuous at x̄ then it
is bounded from above on a neighborhood of x̄. Since f ′(x̄;x) ≤ [f(x̄ + λx) −
f(x̄)]/λ, we then get that f ′(x̄; ·) is bounded from above on a neighborhood of
the origin. Since f ′(x̄; ·) is sublinear, it is then continuous throughout X, by
Theorem 2.38. By Theorem 3.7, f ′(x̄; ·) equals its biconjugate, which by the
first part is the support function of ∂f(x̄). The compactness now comes from
Theorem 3.11.

If f ′(x̄; ·) is linear and continuous, f is said to be Gateaux differentiable
at x̄. By Theorem 3.13, ∂f(x̄) consists then of a single point. That point is
denoted by ∇f(x̄) and it is called the gradient of f at x̄. Subgradients and
subdifferentials provide useful substitutes for the gradient in many situations
where the latter fails to exist. In particular, a point x̄ ∈ X minimizes a function
f if and only if 0 ∈ ∂f(x̄). This generalizes the classical Fermat’s rule which says
that the gradient of a differentiable function vanishes at a minimizing point. The
subdifferential makes good sense for nonsmooth and even extended real-valued
functions. It will be seen in Section 3.3, that subdifferentials follow calculus
rules reminiscent of those in classical analysis.

The subdifferential ∂δC(x) of the indicator function of a convex set C ⊆ X
is known as the normal cone of C at x. It is denoted by NC(x). If x /∈ C then
NC(x) = ∅ while for x ∈ C

NC(x) = {v ∈ V | 〈z − x, v〉 ≤ 0 ∀z ∈ C}.

Example 3.14 (Integral functionals). Let X, V and f be as in Example 3.9.
The subdifferential of the integral functional If : X → R can be expressed as

∂If (x) = {v ∈ V | v(ω) ∈ ∂f(x(ω), ω) µ-a.e.}.

Proof. By Example 3.9, the subgradient condition If (x) + I∗f (v) ≤ 〈x, v〉 can be
written as∫

Ω

f(x(ω), ω)dµ(ω) +

∫
Ω

f∗(v(ω), ω)dµ(ω) ≤
∫

Ω

x(ω) · v(ω)dµ(ω).
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Since f(x, ω) + f∗(v, ω) ≥ x · v for every x, v ∈ Rn, the subgradient condition is
equivalent to

f(x(ω), ω) + f∗(v(ω), ω) ≤ x(ω) · v(ω) µ-a.e.

which, in turn, means that v(ω) ∈ ∂f(x(ω), ω) almost everywhere.

We have already seen that the subdifferential and the Legendre–Fenchel
transform are closely related. This is further elaborated in the following.

Theorem 3.15. If ∂f(x) 6= ∅, then f∗∗(x) = f(x). On the other hand, if
f∗∗(x) = f(x), then ∂f(x) = ∂f∗∗(x) and

∂f(x) = {v |x ∈ ∂f∗(v)}.

In particular, if f = f∗∗, then ∂f∗ = (∂f)−1 and argmin f = ∂f∗(0).

Proof. The inequality f∗∗ ≤ f is always valid, by Theorem 3.7. We have v ∈
∂f(x) if and only if 〈x, v〉 − f∗(v) ≥ f(x) which implies

f∗∗(x) ≥ f(x),

proving the first claim. The second follows from the expressions ∂f∗∗(x) =
{v | f∗∗(x) + f∗(v) ≤ 〈x, v〉} and ∂f∗(v) = {x | f∗∗(x) + f∗(v) ≤ 〈x, v〉}, where
the former is valid since f∗∗∗ = f∗, by Theorem 3.7.

Recession functions can also be described in terms of conjugates.

Theorem 3.16. Let f be a proper convex function. Then the recession function
of f∗ is the support function of dom f . Conversely, if f is lower semicontinuous,
then its recession function is the support function of dom f∗.

Proof. By ??, the recession function of a pointwise supremum of proper lsc
convex functions equals the pointwise supremum of the recession functions of the
individual functions. If f(x) is finite, the recession function of x 7→ 〈x, v〉−f(x)
is x 7→ 〈x, v〉. The first claim then follows by writing the conjugate as

f∗(v) = sup
x∈dom f

{〈x, v〉 − f(x)}.

The second claim follows by applying the first to f∗.

Exercise 3.17. Let h be a finite convex function on Rn and z an Rn-valued
random vector with full support. Use Exercise 1.52 to show that

sup
α>0

lnE exp[α(z · v − h(z))]

α
= h∗(v)

for every v ∈ Rn.
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3.2 Parametric optimization and saddle-point prob-
lems

For the remainder of this chapter, we will study Rockafellar’s conjugate du-
ality framework which addresses parametric optimization problems, minimax
problems and the associated dual pairs of optimization problems. In minimax
theory, central concepts are saddle-values and subdifferential characterizations
of saddle-points which translate to the absence of a duality gap and generalized
Karush–Kuhn–Tucker conditions for dual pairs of convex optimization problems.
This theory is fundamental e.g. in Hamiltonian mechanics, partial differential
equations, mathematical finance as well as many numerical optimization algo-
rithms.

Let U and Y be vector spaces in separating duality. Let X be another vector
space and let f be a proper convex function on X × U such that f(x, ·) is lsc
for every x ∈ X. Consider the parametric optimization problem

minimize f(x, u) over x ∈ X (3.1)

and denote the optimal value by

ϕ(u) = inf
x∈X

f(x, u).

By Theorem 1.31, ϕ is a convex function on U . If ϕ is proper and lower semi-
continuous, Theorem 3.7 gives the dual representation

ϕ(u) = sup
y∈Y
{〈u, y〉 − ϕ∗(y)}.

This simple formula is behind many fundamental duality results e.g. in mathe-
matical finance.

Even when studying a fixed optimization problem without obvious parame-
ters, an appropriate parameterization often leads to duality relations which yield
valuable information about the original problem. The optimization problems

minimize f(x, 0) over x ∈ X,
maximize −ϕ∗(y) over y ∈ Y

are called the primal and the dual problem, respectively, associated with f . The
optimum values can be expressed as ϕ(0) and ϕ∗∗(0). The conjugacy corre-
spondences of Section 3.1 translate to relations between the primal and the
dual problems. In particular, by Theorem 3.7, ϕ(0) ≥ ϕ∗∗(0). If the inequality
is strict, a duality gap is said to exist.

Theorem 3.18. The optimal value and the optimal solutions of the dual problem
are given by ϕ∗∗(0) and ∂ϕ∗∗(0), respectively. We have y ∈ ∂ϕ(0) if and only if
there is no duality gap and y solves the dual.
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Proof. The optimal value of the dual can be written as

sup
y
{−ϕ∗(y)} = sup

y
{〈0, y〉 − ϕ∗(y)} = ϕ∗∗(0).

The rest follows from Theorem 3.15.

The relations between the primal and the dual problems are thus largely
determined by the local behavior of the value function ϕ at the origin. Indeed,
by Theorem 3.7, the biconjugate ϕ∗∗ in Theorem 3.18 equals lscϕ as soon as
lscϕ is proper. Thus, if lscϕ is proper and ϕ(0) = (lscϕ)(0), then the primal
and dual optimal values are equal. Combining Theorem 3.18 with Theorem 3.13
gives the following.

Corollary 3.19. Assume that ϕ is finite and continuous at the origin. Then the
optimal values of the primal and the dual are equal and the set of dual solutions
is nonempty and σ(Y,U)-compact.

In general, the exact calculation of ϕ(u) even for one u ∈ U is impossible
so it may seem hopeless to get anything useful out of ϕ∗ or ϕ∗∗. This is not
necessarily so. The conjugate of the value function can be expressed as

ϕ∗(y) = sup
u
{〈u, y〉 − ϕ(u)}

= sup
u

sup
x
{〈u, y〉 − f(x, u)}

= − inf
x
l(x, y),

where
l(x, y) = inf

u∈U
{f(x, u)− 〈u, y〉}.

is the Lagrangian associated with f . The Lagrangian is an extended real-valued
function onX×Y , convex in x and concave in y. Minimization of the Lagrangian
with respect to x may be considerably easier than the minimization of f(·, u).

Example 3.20 (Composite model). Let

f(x, u) =

{
+∞ if x /∈ domF ,

h(F (x) + u) if x ∈ domF ,

where F is a K-convex function from X to U and h is a proper convex function
on U such that u1 ∈ rgeF, u1 − u2 ∈ K =⇒ h(u1) ≤ h(u2). The Lagrangian
becomes

l(x, y) =

{
+∞ x /∈ domF,

infu{h(F (x) + u)− 〈u, y〉} x ∈ domF

=

{
+∞ x /∈ domF,

〈F (x), y〉 − h∗(y) x ∈ domF.
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In many applications, the Lagrangian has stronger continuity properties (over
domF × domh∗) than f . This is used by certain optimization algorithms.

When h is nonlinear (see Example 1.27), minimization of f(·, u) may be
much more difficult than minimization of l(·, y) for a fixed y. In particular,
when X =

∏
i∈I Xi and F (x) =

∑
i∈I Fi(xi) for a finite index set I. The

Lagrangian can now be written as

l(x, y) =

{∑
i∈I〈Fi(xi), y〉 − h∗(y) if xi ∈ domFi ∀i ∈ I,

+∞ otherwise.

In this case, the problem of minimizing the Lagrangian decomposes into min-
imizing 〈Fi(xi), y〉 over domFi separately for each i ∈ I. This decomposition
technique can be seen as an instance of a more general “Lagrangian relaxation”
technique, where certain complicating features of an optimization problem are
replaced by penalty terms in the objective.

Optimality conditions for the primal and the dual problems can be written
conveniently in terms of the Lagrangian. Indeed, when f is proper and f(x, ·)
is lsc for every x ∈ X, Theorem 3.7 gives

f(x, u) = sup
y∈Y
{l(x, y) + 〈u, y〉}.

In particular, the primal and the dual objectives can then be expressed sym-
metrically by

f(x, 0) = sup
y∈Y

l(x, y),

and
−ϕ∗(y) = inf

x∈X
l(x, y).

The primal and the dual problems can be seen as dual-halfs of the Lagrangian
saddle-point problem. A pair (x, y) ∈ X × Y is said to be a saddle-point of l if

l(x, y′) ≤ l(x, y) ≤ l(x′, y) ∀x′ ∈ X, y′ ∈ Y.

It is clear that
inf
x

sup
y
l(x.y) ≥ sup

y
l inf
x
l(x.y).

If this holds as an equality, a saddle value is said to exist. In fact, the above in-
equality is nothing but a restatement of the Fenchel inequality ϕ(0) ≥ −ϕ∗∗(0).

Theorem 3.18 gives sufficient conditions for the existence of a saddle-value
for convex-concave saddle functions l which are closed in the first argument.
Indeed, such functions are in one-to-one correspondence with convex functions
f closed in the first argument. Writing the saddle-point condition as

f(x, 0) ≤ l(x, y) ≤ −ϕ∗(y)

we get the following.
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Theorem 3.21. Assume that f is lsc in u. Then a saddle-value of the La-
grangian exists if and only if ϕ is closed at the origin. A pair (x, y) is a saddle-
point of the Lagrangian if and only if x solves the primal, y solves the dual and
the optimal values are equal.

The following is the source of more concrete optimality conditions to be
derived later.

Corollary 3.22. Assume that f is lsc in u, that there is no duality gap and
that the dual optimum is attained. Then an x solves the primal if and only if
there is a y such that (x, y) is a saddle-point of the Lagrangian.

Although, far from being necessary, the following condition is often easy to
check when dealing with the composite model.

Example 3.23 (Slater condition). Consider the composite model of Exam-
ple 3.20 and assume that there is an x ∈ domF such that h is bounded from
above on a neighborhood of F (x). Then ϕ is continuous at the origin.

We will assume from now on that X is in separating duality with a vector
space V . This allows us to write the saddle-point conditions of the previous sec-
tion in differential form. The following result, originally due to Rockafellar, gives
a far reaching generalization of the classical Karush–Kuhn–Tucker condition for
the classical nonlinear programming model.

Theorem 3.24 (KKT-conditions). Assume that f is lsc in u, that there is no
duality gap and that the dual optimum is attained (as happens e.g. when ϕ is
bounded from above on a neighborhood of the origin). Then an x solves the
primal if and only if there is a y such that

0 ∈ ∂xl(x, y) and 0 ∈ ∂y[−l](x, y).

Note that X×V is in separating duality with V ×Y and that the conjugate
of f can be expressed as

f∗(v, y) = sup
x∈X,u∈U

{〈x, v〉+ 〈u, y〉 − f(x, u)}

= sup
x∈X
{〈x, v〉+ sup

u∈U
{〈u, y〉 − f(x, u)}}

= sup
x∈X
{〈x, v〉 − l(x, y)}.

Theorem 3.25. Assume that f is closed in u. The following are equivalent

(a) (v, y) ∈ ∂f(x, u),

(b) v ∈ ∂xl(x, y) and u ∈ ∂y[−l](x, y).

If f is closed, then the above are equivalent also to

(c) (x, u) ∈ ∂f∗(v, y).



64 CHAPTER 3. DUALITY

Proof. Part (a) means that

f(x′, u′) ≥ f(x, u) + 〈x′ − x, v〉+ 〈u′ − u, y〉 ∀x′ ∈ X, u′ ∈ U,

or equivalently,

l(x′, y) ≥ f(x, u)− 〈u, y〉+ 〈x′ − x, v〉 ∀x′ ∈ X. (3.2)

This implies v ∈ ∂xl(x, y). It is clear that (a) also implies y ∈ ∂uf(x, u). Since f
is closed in u, this is equivalent to u ∈ ∂y[−l](x, y), by Theorem 3.15. Conversely,
u ∈ ∂y[−l](x, y) means that l(x, y) = f(x, u) − 〈u, y〉, and then v ∈ ∂xl(x, y) is
equivalent to (3.2). The last claim is proved by a symmetric argument.

3.3 Calculus of subgradients and conjugates

In order to apply the KKT-conditions in practice, one needs rules for calculating
the subdifferential of a given function. The following abstract result turns out to
be quite useful in this respect. Its proof is a direct application of Theorem 3.24.

Corollary 3.26. Assume that f is lsc in u and that for every v ∈ V the function

ϕv(u) = inf
x∈X
{f(x, u)− 〈x, v〉}

is bounded from above on a neighborhood of the origin. Then

∂xf(x, 0) =
⋃
{∂xl(x, y) | ∃y ∈ Y : 0 ∈ ∂y[−l](x, y)}

and
sup
x
{〈x, v〉 − f(x, 0)} = min

y
f∗(v, y)

for every v ∈ V .

Proof. Applying Theorem 3.24 to the function fv(x, u) := f(x, u) − 〈x, v〉, we
see that an x minimizes fv(·, 0) if and only if there is a y such that

0 ∈ ∂xlv(x, y) and 0 ∈ ∂y[−lv](x, y),

where
lv(x, y) = inf

u
{fv(x, u)− 〈u, y〉} = l(x, y)− 〈x, v〉.

It now suffices to note that an x minimizes fv(·, 0) if and only if v ∈ ∂xf(x, 0)
while ∂xlv(x, y) = ∂xl(x, y)− v and ∂y[−lv](x, y) = ∂y[−l](x, y) .

Given a K-convex function F from X to U and a y ∈ Y , the composition of
F and the linear function u 7→ 〈u, y〉 will be denoted by 〈y, F 〉. i.e.

〈y, F 〉(x) =

{
〈F (x), y〉 if x ∈ domF ,

+∞ otherwise.
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Corollary 3.27 (Subdifferential chain rule). Let F be a K-convex function
from X to U , let h be lsc proper convex function on U such that

u1 ∈ rgeF, u1 − u2 ∈ K =⇒ h(u1) ≤ h(u2).

If there is an x ∈ domF such that h bounded from above on a neighborhood of
F (x), then

∂(h ◦F )(x) =
⋃
{∂〈y, F 〉(x) | y ∈ ∂h(F (x))}

for every x ∈ dom(h ◦F ) and

(h ◦F )∗(v) = min
y∈Y
{〈y, F 〉∗(v) + h∗(y)}.

Proof. We apply Corollary 3.26 to the function f(x, u) = h(F (x) + u). The
boundedness assumption on h implies that on ϕv. We have

l(x, y) = inf{f(x, u)− 〈u, y〉}

=

{
+∞ x /∈ domF,

〈F (x), y〉 − h∗(y) x ∈ domF.

so that

∂xl(x, y) = ∂〈y, F 〉(x),

∂y[−l](x, y) = ∂h∗(y)− F (x).

Since h is lsc and proper, the condition 0 ∈ ∂y[−l](x, y) can be written as
y ∈ ∂h(F (x)), by Theorem 3.15.

The above chain rule can be written in a more convenient form when F is
linear. Let A be a linear mapping from a linear subspace domA of X to U . The
adjoint of A is the (a priori set-valued) mapping from Y to V defined through
its graph by

gphA∗ = {(y, v) | 〈Ax, y〉 = 〈x, v〉 ∀x ∈ domA}.

In other words, we have v ∈ A∗y if and only if the linear functional x 7→ 〈Ax, y〉
on domA can be represented by the continuous linear functional x 7→ 〈x, v〉.
The set domA∗ = {y ∈ Y |A∗y 6= ∅} is called the domain of the adjoint. If A∗

is single-valued on domA∗, then

〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ domA, y ∈ domA∗

in accordance with the definition of the adjoint of a continuous linear mapping.
Indeed, if A is continuous with domA = X, then the linear functional x 7→
〈Ax, y〉 is always continuous, so there is (sinceX and V are in separating duality)
a unique v ∈ V such that 〈Ax, y〉 = 〈x, v〉. Thus, in the continuous case,
domA∗ = Y and 〈Ax, y〉 = 〈x,A∗y〉 holds for every x ∈ X and y ∈ Y . For
general linear mappings, we have the following.
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Lemma 3.28. We have y ∈ domA∗ if and only if the functional x 7→ 〈Ax, y〉
is continuous on domA. The adjoint A∗ is single-valued on domA∗ if and only
if domA is dense in X. If A has closed graph, then A∗∗ = A and domA∗ is
dense in Y .

Proof. If x 7→ 〈Ax, y〉 is continuous on domA then, by Corollary 2.37, it can
be extended to a continuous linear functional on X. This yields the first claim
while the second claim follows from Exercise 3.4. When gphA is closed, the
bipolar theorem gives A∗∗ = A once we notice that gphA∗ = {(y, v) | (y,−v) ∈
(gphA)∗}. The denseness of domA∗ then follows by applying the second claim
to A∗∗.

Example 3.29 (Differential operators). The differential operator D : Wm,p
0 (Ω)→

Lp(Ω)n referred to at the end of Section 1.1 is linear and continuous. The space
Lp(Ω)n is in separating duality with Lq(Ω)n under the usual bilinear form. The
dual space of Wm,p

0 (Ω) is denoted by W−m,q(Ω). The adjoint of D can be ex-
pressed in terms of distributional derivatives as

D∗y =
∑
|α|≤m

(−1)|α|∂αyα.

Defining domD = Wm,p
0 (Ω), we can view D also as a densely defined linear

operator from Lp(Ω) to Lp(Ω)n. The adjoint D∗ can still be expressed as above
but now

domD∗ = {y ∈ Lq(Ω)n |
∑
|α|≤m

(−1)|α|∂αyα ∈ Lq(Ω)},

which is only dense in Lq(Ω)m. Since the norm of a point (x, u) ∈ gphD is
simply the Wm,p(Ω)-norm of x, the graph of D is closed, by completeness of
Wm,p(Ω).

For linear F , Theorem 3.27 can be written as follows.

Corollary 3.30. Let A be a densely defined linear mapping from X to U and
let h be a lsc proper convex function. If h is continuous at a point of rgeA, then

∂(h ◦A)(x) = A∗∂h(Ax)

for x ∈ dom(h ◦A).

Proof. The function F = A is K-convex for K = {0} so the assumptions of
Theorem 3.27 are satisfied. Thus, for x ∈ dom(h ◦A),

∂(h ◦A)(x) =
⋃
{∂〈y,A〉(x) | y ∈ ∂h(A(x))}.

By Lemma 3.28, x 7→ 〈Ax, y〉 is continuous on domA if and only if y ∈ domA∗.
Thus,

∂〈y,A〉(x) =

{
∅ for y /∈ domA∗,

A∗y for y ∈ domA∗,

which yields the desired expression.
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Example 3.31 (Generalized Laplacians). The objective in the problem of cal-
culus of variations (CV) in Section 1.1 fits the format of Corollary 3.30. If If
is lsc proper and continuous somewhere on rgeD, then

∂(If ◦D) = D∗∂IfD.

Thus, by Example 3.14, v ∈ ∂(If ◦D)(x) if and only if there is a y ∈ Lq(Ω)n such
that y(ω) ∈ ∂f(Dx(ω), ω) and v = D∗y. In particular, if m = 1 and f(u, ω) =
1
p

∑
|α|=1 |uα|p, we get the so called p-Laplacian given by ∂(If ◦D)(x) = −div(|∇x|p−2∇x).

When m = 1 we can write the differential operator as Dx = (x,∇x). If the
continuity condition holds, then an x minimizes If (x,∇x) if and only if there
exist a y ∈ Lq(Ω)d such that

((div y)(ω), y(ω)) ∈ ∂f(x(ω),∇x(ω), ω).

In the one-dimensional case, this becomes the classical Euler–Lagrange condition
in calculus of variations.

Corollary 3.32 (Subdifferential sum-rule). Let f1 and f2 be proper convex
functions such that f2 is continuous at a point of dom f1. If f2 is lsc, then

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x).

Proof. This is obtained by applying Corollary 3.26 to the function f(x, u) =
f1(x) + f2(x+ u). The details are left as an exercise.

For the infimal-projection, we have the following simple result whose proof
does not require the use of Corollary 3.26 like the above results.

Theorem 3.33. If the infimum ϕ(u) = infx f(x, u) is attained at x, then

∂ϕ(u) = {y | (0, y) ∈ ∂f(x, u)}.

Proof. If f(x, u) = ϕ(u), then

ϕ(u′) ≥ ϕ(u) + 〈y, u′ − u〉 ∀u′ ∈ U

can be written as

f(x′, u′) ≥ f(x, u) + 〈(0, y), (x′, u′)− (x, u)〉 ∀(x′, u′) ∈ X × U,

which means that (0, y) ∈ ∂f(x, u).

Corollary 3.34. Let fi be convex functions such that int dom fi 6= ∅. If the
infimum in the definition of f1 � · · ·� fn is attained at (xi)

n
i=1, then

∂(f1 � · · ·� fn)(x) =

n⋂
i=1

∂fi(xi).
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3.4 Parametric optimization and saddle-point prob-
lems: Part II

Equipped with the above rules for calculating subdifferentials, we now return
to the KKT-conditions. The first example treats an instance of the composite
model in Example 3.20. The special form is a generalization of the classical
nonlinear programming model.

Example 3.35 (Composite model). Let F and h be as in Example 3.20 and let
k be a convex function on X which is bounded from above on a neighborhood of
an x ∈ domF . The Lagrangian corresponding to

f(x, u) =

{
k(x) + h(F (x) + u) if x ∈ domF ,

+∞ otherwise

can be written as

l(x, y) =

{
+∞ if x /∈ dom k ∩ domF ,

k(x) + 〈F (x), y〉 − h∗(y) otherwise.

When U = R
m and h = δRm− , we recover the classical nonlinear programming

model (NLP) in Section 1.1. By Corollary 3.32, the KKT conditions can be
written as

∂k(x) + ∂〈y, F 〉(x) 3 0,

∂h∗(y)− F (x) 3 0.

When h = δK for a closed convex cone, then by ??,

∂h∗(y)− F (x) 3 0 ⇐⇒ F (x) ∈ K, y ∈ K∗, 〈F (x), y〉 = 0.

If there is an x ∈ dom k ∩ domF such that h is bounded from above on a
neighborhood of F (x) (the Slater condition holds), then an x solves the primal
if and only if there is a y such that the KKT conditions are satisfied.

When F is linear, the dual problem can be written more explicitly.

Example 3.36 (Fenchel–Rockafellar model). Consider Example 3.20 in the
case F (x) = Ax, where A is a linear mapping from a dense subset domA of X
to U and K = {0} so that

f(x, u) =

{
+∞ if x /∈ domA,

k(x) + h(Ax+ u) if x ∈ domA.

The Lagrangian becomes

l(x, y) =

{
+∞ x /∈ domA ∩ dom k,

k(x) + 〈Ax, y〉 − h∗(y) x ∈ domA ∩ dom k,
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so the KKT-condition can be written as (see the proof of Corollary 3.30)

∂k(x) +A∗y 3 0,

∂h∗(y)−Ax 3 0.

Since k is bounded from above on an open set, the dual objective

−ϕ∗(y) = inf
x
{k(x) + 〈Ax, y〉 − h∗(y) |x ∈ domA ∩ dom k}

equals −∞ unless x 7→ 〈Ax, y〉 is continuous on domA, or in other words, unless
y ∈ domA∗ and, thus

−ϕ∗(y) =

{
infx{k(x) + 〈x,A∗y〉 − h∗(y) |x ∈ dom k} y ∈ domA∗,

−∞ y /∈ domA∗,

=

{
k∗(−A∗y) + h∗(y) y ∈ domA∗,

−∞ y /∈ domA∗.

If there is an x ∈ dom k ∩ domA such that h is continuous at Ax, then Theo-
rem 3.19 implies that the optimal values of the two problems

minimize k(x) + h(Ax) over x ∈ domA

and
maximize −h∗(y)− k∗(−A∗y) over y ∈ domA∗

are equal and the set of optimal solutions to the latter is nonempty and σ(Y, U)-
compact. In this situation, the KKT-conditions are necessary and sufficient for
an x to solve the former problem.

Example 3.37 (Linear Programming). Consider the Fenchel–Rockafellar du-
ality framework in the case where h(u) = δ(u |u+ b ∈ K} and k(x) = 〈x, c〉 for
a given convex cone K ⊆ U , b ∈ U and c ∈ V . In this case, the primal and dual
problems can be written as

minimize 〈x, c〉 over x ∈ domA

subject to Ax+ b ∈ K,

and
maximize 〈b, y〉 over y ∈ domA∗

subject to A∗y = c,

y ∈ K∗,
where K∗ is the polar of K. The KKT-conditions can be written as

c+A∗y = 0,

NK∗(y)− b−Ax 3 0.

In the finite-dimensional case, where K is the negative orthant, the polar cone
K∗ is the positive orthant and we recover the classical LP-duality framework.
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The Fenchel–Rockafellar model can be generalized as follows.

Example 3.38. Let

f(x, u) =

{
+∞ if x /∈ domA,

f̃(x,Ax+ u) if x ∈ domA.

The Lagrangian becomes

l(x, y) = inf
u
{f̃(x,Ax+ u)− 〈u, y〉}

=

{
+∞ if x /∈ domA,

l̃(x, y) + 〈Ax, y〉 if x ∈ domA,

where l̃(x, y) = infu{f̃(x, u)−〈u, y〉}. If for each y, the function l̃(·, y) is bounded
from above on an open set, then

−ϕ∗(y) =

{
−f̃∗(−A∗y, y) if y ∈ domA∗,

−∞ if y /∈ domA∗

and the KKT conditions can be written as

∂x l̃(x, y) +A∗y 3 0,

∂y[−l̃](x, y) +Ax 3 0.

Example 3.39 (Calculus of variations). Consider the problem of calculus of
variations (CV) in Section 1.1. When m = 1, d = 1 and Ω = [0, T ], we can
write the problem as

minimize If (x, ẋ) over x ∈W 1,p([0, T ])

This fits the format of Example 3.38 with X = U = Lp([0, T ]), A = ∇, domA =
W 1,p([0, T ]) and f̃(x, u) = If (x, u). We have dom∇∗ = W 1,q([0, T ]) and ∇∗y =

−ẏ, so if the function f̃(·, y) defined by

l̃(x, y) = inf
u∈Lp([0,T ])

{If (x, u)− 〈u, y〉}

= inf
u∈Lp([0,T ])

∫
[0,T ]

{f(x(t), u(t), t)− u(t) · y(t)}dµ(t)

is bounded from above on an open set, then

−ϕ∗(y) =

{
−If∗(ẏ, y) if y ∈W 1,p([0, T ]),

−∞ if y /∈W 1,p([0, T ]),

where we have used that fact that I∗f = If∗ , by Example 3.9. The dual problem
can then be written as

maximize −If∗(ẏ, y) over y ∈W 1,q([0, T ]),

which is of the same for as the primal problem.
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[9] Svetlozar T. Rachev and Ludger Rüschendorf. Mass transportation prob-
lems. Vol. I. Probability and its Applications (New York). Springer-Verlag,
New York, 1998. Theory.

[10] R. T. Rockafellar. Integrals which are convex functionals. Pacific J. Math.,
24:525–539, 1968.

71



72 BIBLIOGRAPHY

[11] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No.
28. Princeton University Press, Princeton, N.J., 1970.

[12] R. T. Rockafellar. Existence and duality theorems for convex problems of
Bolza. Trans. Amer. Math. Soc., 159:1–40, 1971.

[13] R. T. Rockafellar. Conjugate duality and optimization. Society for Indus-
trial and Applied Mathematics, Philadelphia, Pa., 1974.

[14] R. T. Rockafellar. Integral functionals, normal integrands and measurable
selections. In Nonlinear operators and the calculus of variations (Sum-
mer School, Univ. Libre Bruxelles, Brussels, 1975), pages 157–207. Lecture
Notes in Math., Vol. 543. Springer, Berlin, 1976.

[15] R. T. Rockafellar. Network flows and monotropic optimization. Pure and
Applied Mathematics (New York). John Wiley & Sons Inc., New York,
1984. A Wiley-Interscience Publication.

[16] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, Berlin, 1998.


