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Abstract

This paper makes significant advances in cashflow-driven investment where the aim is to find
buy-and-hold portfolios whose future payouts cover given liability payments as well as possible.
While current industry solutions are largely based on expected future cash flows, we use a
stochastic optimization model that seeks portfolios that give the best possible match across
time as well as scenarios. The optimized hedging strategies are able to employ any statistical
connections between the liabilities and publicly quoted assets. Reinvestment risk is described
by a stochastic model of an illiquid money market. While cashflow matching across scenarios is
controlled by the risk aversion, the timing is controlled by the illiquidity factors. Besides optimal
hedging strategies, we find the least cost of hedging which provides a market-consistent valuation
based on the current quotes and the liquidity factors as well as the views and risk preferences
of the investor/regulator. The approach is illustrated by pricing and hedging of defined benefit
pension liabilities which depend on uncertain longevity developments and the consumer price
index. The hedging strategies are constructed from 128 publicly quoted instruments including
index-linked bonds and equities. Increasing the risk aversion and the illiquidity parameters, we
find portfolios that hedge the liabilities with significantly lower risk but only slightly higher cost.

Keywords: Defined benefit pensions, Asset-liability management, Cashflow-driven investment,
Convex stochastic optimization

1 Introduction

Cashflow-driven investment (CDI) has become a recommended approach for defined benefit (DB)
pension funds who face an outflow of cash over the coming decades; see [HFW, Wil19, Pen19, cdi19,
Exl17, KMB19, Mci19, Ins] for a small sample of practitioner-oriented papers. A CDI portfolio aims
to cover the pension payments with the contractual payments of the involved assets when held to
maturity. If one could achieve perfect cashflow matching, such a portfolio would provide the security
of delivering liability payments without exposure to the reinvestment risks associated with future
trading. This would be ideal for large DB schemes who face significant liquidity risks that may
be difficult to control with dynamic asset allocation. Many more traditional ALM-approaches aim
at matching valuations of liabilities with valuations of assets so they are sensitive to the employed
valuation formulas which often have little to do with the true costs of delivering the cashflows. CDI
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can be seen as an economically consistent ALM technique as it focuses on the actual delivery of
the pension benefits.

Most publicly available descriptions of CDI, however, focus on matching expected cashflows.
This is inline with common actuarial practice, but it ignores the significant financial risks associated
with DB-liabilities that often extend several decades into the future. The present paper develops
a convex stochastic optimization model that incorporates uncertainty directly into CDI. Inclusion
of risk into the optimization model allows for a consistent treatment of risky “growth assets” as
well as hedging instruments whose contractual cashflows are uncertain by definition. The model
can employ any publicly traded assets and it calibrates explicitly to the available quotes. Following
the CDI principles, it seeks buy-and-hold portfolios in the quoted assets, but instead of matching
expected cashflows, it seeks cheapest available portfolios that cover the uncertain liabilities at an
acceptable level of risk. The risk is measured by a user-specified risk measure on the net terminal
wealth.

As opposed to deterministic CDI models, real pension payments cannot be exactly matched
with payouts of buy-and-hold portfolios. This gives rise to reinvestment risk of financing cashflow
mismatches in the face of uncertain lending/borrowing costs and liquidity risk. This is the financial
motivation for the aim of matching cashflows across time. We describe the reinvestment risk by
stochastic money market rates with a user specified illiquidity parameter. While the liquidity risk
drives the cashflow matching over time, the risk aversion drives cashflow matching across different
scenarios. This allows the model to exploit the hedging potential of e.g. inflation-linked bonds
which, in a deterministic model, would seem overpriced with respect to government bonds when
only comparing the expected payouts.

Our optimization model seeks the cheapest buy-and-hold portfolios whose cashflows (together
with reinvestment in the illiquid money market) cover the liabilities in all scenarios at an acceptable
level of risk. The cost of a portfolio is calculated from available market quotes so the optimum
value gives a natural hedging-based market-consistent valuation of the given liabilities. This can be
seen as a natural extension of the classical no-arbitrage pricing principle to the incomplete market
setting with bid-ask spreads, illiquidity effects and pension liabilities; see [Pen14] for a general study
of contingent valuation in incomplete markets and [HKP11] for applications to pensions. This is
in sharp contrast with the common actuarial valuations which are based on discounting expected
future liability cashflows with a point estimate of future investment returns.

We illustrate the model by pricing and hedging defined benefit pension liabilities that are
subject to longevity and indexation risks. As hedging instruments, we use live quotes for 32 gilts, 22
inflation-linked bonds and 35 zero-coupon bonds as well as equities with predetermined liquidations
strategies. All the relevant risk factors are described by the probabilistic model of [AMAP21] that
captures dependencies across time as well as the different risk factors. Optimal hedging strategies
are constructed numerically by first discretizing the underlying probability measure and then solving
the resulting finite-dimensional convex optimization problems by an interior point solver. The only
dynamically updated decision variable is the money market position which is completely determined
by the buy-and-hold portfolio and the development of the risk factors. It follows that the position
is automatically adapted to the underlying stochastic processes so we can avoid using scenario trees
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in the discretization thus avoiding the complications that come with them; see [Sod05] for a survey
of scenario tree-based ALM models and [MSZ+08, GZ08] for applications to pensions.

Even with the above off-the-shelf computational approach, we find approximately optimal so-
lutions within minutes. The quality of a solution is verified in out-of-sample simulations in less
than a second on a desktop computer. The optimized hedging strategies achieve lower risk at a
lower cost than the strategies obtained by matching expected cashflows. The risk and liquidity
factors allow for an effective way to control the risk and portfolio composition. Increasing the risk
aversion and/or the illiquidity parameters, the optimal portfolios become more diversified and they
cover the pension payments well across time and scenarios with a moderate increase in the hedging
cost. When the risk aversion is increased, the allocation shifts from equities towards inflation-linked
bonds whose cashflows are more closely connected to the inflation-indexed pension benefits. When
the money market liquidity decreases, there is a move from gilts to zero-coupon bonds that give
more control over the timing of the payments.

The presented models and computational techniques are not limited to pensions and the hedging
instruments employed in the computational examples. A similar approach could be taken in pricing
and hedging of corporate debt, index-liked bonds or any other liability whose contractual payments
can be described by a stochastic model. The payouts of corporate debt could be modelled e.g.
by incorporating default intensity factors in the underlying stochastic model of the risk factors.
Corporate bonds will be an important addition to the space of hedging instruments when the
models presented in this paper are implemented in practice.

2 CDI under uncertainty

Consider a closed DB-scheme with outstanding future pension payments ct over a finite time t =
1; : : : ; T . Our aim is to design investment strategies that cover the future pension payments as
well as possible. In the context of CDI, the most typical investment classes are fixed-rate and
inflation-linked bonds as well as riskier instruments such as stocks and other “growth assets” aimed
at achieving better returns in the face of long-dated liabilities. The basic CDI aims to construct
buy-and-hold portfolios whose cash-flows match those of the pension liabilities over time. While
investment grade fixed-rate bonds provide fairly predictable cash-flows, the pension payments c are
subject to significant uncertainties due to longevity and indexation risks as the time horizon T is
typically several decades in the future. Also, when employing index-linked bonds and growth assets
as parts of the investment strategy, the investment income becomes highly uncertain as well. It
follows that the cash-flows can be matched only partially and in each period t there will be either
surplus or deficit that needs to be reinvested or paid by money market operations. If the money
market was perfectly liquid and predictable, this wouldn’t present problems as one could then
roll over all mismatches over time and settle accounts at the end. In reality, however, the money
market operations are subject to illiquidity and uncertainties that create an incentive to match the
cash-flows across time and different future scenarios. This section proposes a mathematical model
for optimization of CDI-strategies in the face of illiquidities and uncertainties.
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Let K be a finite collection of assets the fund can buy or sell at time t = 0. We denote the cost
of buying zk 2 R units of contract k 2 K by pk(zk). As usual, negative purchases are interpreted
as sales. If infinite quantities were available at the best bid and ask prices, we would simply have

pk(zk) =

(
pakzk if zk � 0;

pbkzk if zk � 0;

where pbk and pak are the bid- and ask-prices, respectively, of contract k 2 K. As usual, buying
negative units means selling. The cash-flow provided by one unit of k 2 K at time t = 1; : : : ; T will
be denoted by ck;t. For example, if k is a fixed rate government bond with maturity Tk, then ck;Tk

would be the principal payment, ck;t for t = 1; : : : ; Tk � 1 would be the annual coupon payments
while ck;t = 0 for t > Tk. For index-linked bonds and stocks, the cash-flows would be stochastic;
see Section 5 below.

If we hold zk 2 R units of contract k 2 K then the net investment income from all assets at
time t is given by

P
k2K zkck;t. In an idealized CDI, the net cash-flows from investments match

the liability cash-flows c = (ct)
T
t=0 perfectly so that ct =

P
k2K zkck;t. In reality, this can only be

achieved approximately so the surplus/deficit needs to be covered by dynamically trading in the
financial markets. The amount xt of cash invested in the markets at time t evolves according to
the equation

xt = xt�1 +Rt�1(xt�1) +
X
k2K

zkck;t � ct; t = 1; : : : ; T; (1)

where Rt�1(xt�1) is the interest received at time t when investing xt�1 units of cash over the period
[t� 1; t]. In the numerical implementations below, we will assume that

Rt(x) =

(
rltx if x � 0;

rbtx if x � 0;
(2)

where rlt and rbt denote the lending and borrowing rates, respectively, at time t. Both rl = (rlt)
T
t=0

and rb = (rbt )
T
t=0 will be modelled as stochastic processes; see Section 5 below. In reality, the rates

satisfy rbt > rlt > �1. In other words, the borrowing rate is always higher than the lending rate and
the lending rate is greater than �100%. Violation of the second inequality would mean that money
would become nondisposable waste. It should be noted that we do allow for strictly negative rates
which would mean that money is subject to storage cost. At the time of writing, the interbank
rates as well as the central bank overnight rate in the euro-zone are around �0:5%.

Given a portfolio z in the statically held assets K, equation (1) determines the development
of the cash position of the fund uniquely in each scenario. The terminal wealth xT is thus a
random variable determined by z and the realization of all the risk factors that affect the cash-
flows and money market returns; see Section 5 below. We will study the problem of finding the
cheapest allocation z 2 RK that covers the pension payments over time and in all scenarios with
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an acceptable level of risk. Mathematically, the problem can be written as

minimize x0 +
X
k2K

pk(zk) over z 2 RK ; x 2 N

subject to xt � xt�1+Rt�1(xt�1) +
X
k2K

zkck;t � ct; t = 1; : : : ; T; P -a.s.

R(xT ) � 0;

(CDI)

where N is the linear space of adapted stochastic processes, R is a given risk measure and P denotes
the probability measure that describes the agent’s views concerning the relevant risk factors. We
have written the budget constraint as an inequality to clarify that the problem is that of convex
optimization. The inequality allows for throwing away cash but as long as the risk measure R is
strictly decreasing in the sense that R(x2) < R(x1) whenever x1 < x2 almost surely, the constraint
will hold as an equality at any optimal solution. Indeed, since we are assuming that the lending rate
is always greater than �100%, it is always rational to save available money for the future. Allowing
for throwing away money, however, makes (CDI) a convex optimization problem which greatly
facilitates its solution; see Section 6 below. Optimization of investment strategies in practice are
driven by an investor’s risk preferences and views concerning the future development of the market
and the liability cash-flows. In problem (CDI), the risk preferences are described by the risk
measure R and the views by the probability measure P that governs the behaviour of the relevant
risk factors. It is important to note that the risk measure may depend on the measure P as is the
case e.g. with the entropic risk measure

R(x) =
1

�
lnEe��x; (3)

where � > 0 is a given risk aversion parameter; see e.g. [FS16, Example 4.13]. The same is true of
the conditional value at risk (CV@R) given by

R(x) = inf
s2R

E

�
s+

1

1� �
(x� s)

�
;

where � 2 (0; 1) is a given parameter; see [UR01]. The CV@R measure focuses on the left tail of
the distribution as its values do not depend on the distribution of x above a given quantile. Such a
risk measure may be appropriate for a scheme sponsor who is liable to deliver the future pensions
but who does not get to keep the possible upside. The entropic risk measure, on the other hand,
takes into account the whole distribution so it may be more relevant e.g. for an annuity provider
or a reinsurer who owns any residual wealth at time T .

The optimum value of problem (CDI) provides a market consistent valuation of the liabilities c.
It is the least cost of ”acceptable” hedging of the pension payments c when trading the instruments
K and the money market. What is acceptable, is determined by the risk measure R. The cost
functions pk are read off the current market quotes so the valuation is naturally calibrated to the
market prices of other instruments. The valuation calibrates also to the given views concerning the
risk factors such as money market rates, inflation and longevity developments.
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3 Defined benefit pension liabilities

We will study cash-flow driven investment with defined benefit (DB) pension liabilities, where the
yearly payments (ct)

T
t=1 depend on the number of pensioners as well as the consumer price index

(CPI). More precisely, the liability payment in year t is given by

ct =
X
b2Bt

Ftc
b
0;

where Bt is a set representing a population of pensioners, cb0 are their nominal pension entitlements
at time t = 0 and Ft is the accumulated pension adjustment, given by

Ft =

tY
k=0

�
1 + fadj

�
Ik � Ik�1

Ik�1

��
; (4)

where fadj is a given function that determines how annual rate of price inflation affects the accrued
pension entitlements. In the study, we adopt the adjustment policy of the Universities Superan-
nuation Scheme (USS) [USS18], in which benefits are adjusted by the inflation rate, up to 5%
inflation. Above this threshold, the scheme provides a top-up of half the inflation rate, up to a
total adjustment of 10%.

Both the population sizes and the inflation are subject to significant uncertainties over the
lifetime of the liabilities, i.e., the time it takes for the population size to converge to zero. Section 5
gives a brief description of the stochastic model used to describe these as well as other relevant risk
factors in the model.

In the numerical examples below, we will study a hypothetical fund who is liable to pay the
pensions for all members until they turn 100 years. The above liabilities should be taken just as an
illustration as it would be straightforward to treat more complicated cash-flows with the techniques
presented below.

4 Hedging instruments

Our CDI portfolios draw from a set K of hedging instruments that include fixed-rate bonds,
inflation-linked bonds (ILB) and equities. As the present study focuses on UK pension funds,
we will use UK government gilts, gilt strips (zero-coupon bonds), inflation-linked gilts and FTSE
100 exchange traded funds. We look for optimal buy-and-hold portfolios where all bonds are held
to maturity and the investor collects the contractual coupon and principal payments. In the case
of equities, we optimize over deterministic liquidation strategies where the number of shares liqui-
dated over time t = 1; : : : ; T does not depend on the scenarios. Such strategies can be expressed
as linear combinations of T simple strategies in which all stock investment made at time t = 0 are
liquidated at time t.
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When an element k 2 K corresponds to an individual equity strategy, its cash-flows ck;t for the
times t = 1; : : : ; T , will be given by

ck;t =

(
St if t = Tk,

0 otherwise;

where Tk corresponds to its predetermined liquidation date, and St is the value of the FTSE 100
index at time t. In the case of coupon paying bonds,

ck;t =

8><>:
Ck if t < Tk;

1 if t = Tk;

0 otherwise;

with Ck as the annual coupon payments of k and Tk as its maturity date. Zero-coupon bonds are
a special case in which Ck = 0. The cash-flows of inflation-linked bonds are given by

ck;t =

8><>:
Ck

It
Ik

if t < Tk;

1 It
Ik

if t = Tk;

0 otherwise,

where the term It=Ik is the inflation-adjustment. In the UK, ILBs are often indexed by the retail
price index (RPI) instead of the consumer price index I; see e.g. [Uni05, Uni12]. In the numer-
ical illustrations below, we will use the CPI as a proxy for the RPI since the former is readily
incorporated in the stochastic model employed in this study.

The cost function pk associated with the hedging instrument k 2 K is given by

pk(z) =

(
pakz z � 0;

pbkz z � 0;

where pak and pbk are the best bid- and ask-prices, respectively, for k. In the numerical illustrations
below, we use bid- and ask-prices provided by a Bloomberg terminal at a given point in time
simultaneously for all the considered instruments.

Special care must be taken when working with bond quotes provided e.g. by Bloomberg. In
most cases, the market quotes are not the actual cost for the settlement of a trade, which also
include inflation adjustments and the ”accrued interest”; see e.g. [Uni12, Uni05, BSB05]. Figure 1
gives a screenshot from a Bloomberg terminal displaying both the market quotes and the actual
costs of trading an inflation-linked bond. Since our model uses yearly time increments, we have
also accumulated the biannual coupon payments by rounding the payment dates to the nearest
yearly increment. In the numerical study below, we used all the available bond quotes available on
08/04/2021. This included 31 gilts, 22 inflation-linked gilts and 35 zero-coupon bonds. In addition
to this, we will use 35 basic equity strategies where 35 is the length T of the planning horizon after
which the pension liabilities amortize.
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Figure 1: “Yield and Spread Analysis” screen from a Bloomberg terminal, illustrating the difference
in quotes and settlement prices. The quoted “Price” (115.708) corresponds to a face value of 100
pounds, while the total cost (1,325,988.02) corresponds to a face value of one million pounds.
The total cost includes the inflation adjustment (“Index Ratio 1.14585”) and the accrued interest
(“Accrued (38 Days): 147.90 pounds”).
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5 Stochastic modeling of the risk factors

A full description of the optimization model (CDI) requires a speci�cation of the probability measure
P governing the future values of the relevant risk factors. It is essential to describe statistical
connections between the assets and liabilities, as that allows for the construction of investment
portfolios with payouts that accommodate the liability payments not only across time but also across
di�erent scenarios. Ination has a direct inuence on both pension liabilities and ination-linked
bonds. Furthermore, there are statistical connections between the longevity and macroeconomic
risk factors such as GDP and average earnings; see [AP14, HG18]. For the liabilities and the asset
classes described in Sections 3 and 4, the relevant risk factors are longevity, price ination, money
market rates and the stock index.

In the computational examples below, we employ the multivariate stochastic model presented
in [AMAP21], which accounts for the statistical connections mentioned above and describes the
main macroeconomic, �nancial and longevity risk factors a�ecting longevity-sensitive �nancial prod-
ucts. In particular, the model describes yearly returns on equities and bonds (money market, gov-
ernment, ination-linked and corporate). The model also describes stochastic survival probabilities
for cohorts of both genders with ages between 18 and 105. This high-dimensional space of random
vectors is modeled using only six longevity risk factors. Each realization of these six stochastic
processes can be used to construct yearly survival probability curves. Figure 2 plots historical
survival rates from 1922 to 2016. A more detailed description of the longevity side of the model
can be found in [AP11].

The employed stochastic model is also able to incorporate short-term forecasts and long-term
views of an investor; see [AMAP21, Section 4.2]. In this study, we calibrate the model to the long-
term median values given Table 1. The values are based on the \Long-term economic determinants"
published by the O�ce for Budget Responsibility (OBR) in [fBR21] as part of a report on its outlook
for the UK economy in the coming years. In addition to the long-term views in Table 1, we specify
the future median values of the money market rates according to the forward rates extracted from
the ask-prices of the zero-coupon bonds. Denoting the ask-price of the zero coupon bond with
maturity t by Pt , the forward rate Ft over [t; t + 1] is de�ned by

Pt+1

Pt
= eFt () Ft = � ln Pt+1 :

Market quotes for zero-coupon bonds and corresponding forward rates are illustrated in Figure 3.
Of course, if one has di�erent views concerning the future money market rates, one can use them
instead of the forward rates. The forward rates can be thought of as market neutral views that
seem appropriate when no extra information is available.

The money market is described by a single rater so to describe the illiquidity of lending and
borrowing, we add a margin on both sides so that the lending rate isr l

t = r t � � and the borrowing
rate r l

t = r t + � . Varying the illiquidity parameter � will allow us to control the activity of the
money market trading and control the time-matching of the liability cash-ows; see Section 7 and 8
below.
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Simulated scenarios of the risk factors relevant to the (CDI) problem are illustrated in Figure 4.
The same risk factors are used in the simulation of the pension liabilities illustrated in Figure 5.
The numbers corresponds to a cohort of 1000 females with 65 years of age and an initial pension
bene�t of 1 GBP.

Long-term views

Year 2070-71
Nominal GDP growth 3.9%
CPI ination 2.0%
Average earnings growth 3.8%
Money market rates 4.1%
Gilt rates 4.1%
Stock index growth 6.0%

Table 1: Long-term views used in the stochastic modeling of the risk factors, based on the \Long-
term economic determinants" published by the O�ce for Budget Responsibility (OBR) in the report
\Economic and �scal outlook - March 2021". The median value for growth of the stock index was
chosen by the authors.
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Figure 2: Yearly survival rates for females in the UK. Based on data from the Human Mortality
Database [Uni].

Figure 3: The plot on the left shows the bid- and ask-prices observed for a set of gilt coupon
strips on 08/Apr/2021. The corresponding forward rates, used to calibrate the median values of
the money market rates are shown on the right.
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Figure 4: Historical and simulated values for the risk factors used in the computation of CDI
portfolios. The 95% and 99% con�dence bands obtained from a set of 100k simulated scenarios are
illustrated in each plot along with a single simulated scenario. The rightmost risk factors correspond
to longevity scenarios for females in the UK. Each realization of the three longevity risk factors
reconstructs a survival probability surface such as the one illustrated in Figure 2.
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Figure 5: Pension payments to a cohort of 1000 65 year-old females that receive an initial bene�t
of 1 GBP. The 95% and 99% con�dence bands are plotted along with a single scenario. Bene�ts
are adjusted yearly, following the rules of the University Superannuation Scheme.

6 Numerical solution

We will study problem (CDI) numerically in the case of sublinear money market rates (2) and the
risk measureR de�ned as the entropic risk of the real terminal wealth, i.e.

R(x) =
1
�

ln Ee
� � I 0

I T
x
;

where I is the consumer price index. As a �rst step, we approximate problem (CDI) by the
�nite-dimensional problem obtained when the probability measure P, described in Section 5, is
approximated by a �nitely supported measure of the form

PN :=
NX

i =1

pi � � i ; (5)

where (� i ; pi )N
i =1 is a �nite collection of scenarios and associated probabilities. The problem then

becomes:

minimize x0 +
X

k2 K

pk (zk ) over z 2 RK ; x 2 N N

subject to x i
t � x i

t � 1+ Ri
t � 1(x i

t � 1) +
X

k2 K

zkci
k;t � ci

t ; t = 1 ; : : : ; T; i = 1 ; : : : ; N

1
�

ln
NX

i =1

pi e
� � I 0

I T
x i

T � 0;

(CDId)
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where NN denotes the �nite dimensional space ofN paths of the money market investments.
There are many di�erent techniques for approximating the meaure P by a �nitely supported

measure of the form (5). The simplest option is Monte Carlo where one takes a random sample
of N paths of the stochastic process and setspi = 1=N for all i = 1 ; : : : ; N . Other options
include various quasi-Monte Carlo methods such as Sobol sequences or lattice methods combined
with the method of inversion. We will use \antithetic sampling" which constructs N=2 scenarios
by randomly sampling from P and then obtains another set of N=2 scenarios by reecting the
scenarios. Antithetic sampling tends to reduce the variance of the expectation estimate when the
integrand is monotonic with respect to the underlying random variables; see e.g. [Gla13].

Problem (CDId) is �nite dimensional but it is given in terms of the nondi�erentiable functions

pk (zk ) =

(
pa

kzk if zk � 0;

pb
kzk if zk � 0;

and

Ri
t (x) =

(
r l;i

t x if x � 0;

r b;i
t x if x � 0;

where r l;i
t and r b;i

t are the values of the lending and borrowing rates, respectively, at timet in
scenarioi . We write the problem in standard form by making the substitution

zk = z+
k � z�

k ;

and
x i

t = x+ ;i
t � x � ;i

t

where z+
k , z+

k , x+ ;i
t and x � ;i

t are constrained to be nonnegative. This doubles the number of
decision variables but the resulting problem is a convex optimization problem with a smooth ob-
jective and constraints. In fact, all the involved functions are either linear or a logarithm of
the sum of exponentials. Such problems can be solved quite e�ciently by modern interior point
solvers. The numerical results presented below were obtained with the conic interior point solver of
Mosek [ApS21]. The problem was formulated and communicated to Mosek using Python [VRD09]
and CVXPY [DB16, AVDB18]. As an alternative to the splitting of variables and using of interior
point methods, one could explore the use of the techniques developed in [BH05] in the present
setting.

When using a small sample sizeN , one expects the optimized buy-and-hold portfolio in (CDId)
to be somewhat infeasible with respect to the risk measure constraint in the original problem (CDI).
We perform a simple numerical experiment to analyze the approximation error. For a given sample
sizeN , we solve the optimization problem 50 times using independent random samples. For each
of the 50 instances, we record the optimum value of (CDId) and evaluate the entropic risk measure
of the corresponding buy-and-hold portfolio with an independent sample of 256k scenarios. The
out-of-sample evaluation is computed by rolling the money market position over time along every
scenario using the budget constraint in (CDId) for the given buy-and-hold portfolio.
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We repeat the experiment with increasing sample sizesN (powers of 2) in order to study how
the sample size a�ects the accuracy. The results are summarized in Table 2. As expected, optimized
portfolios are infeasible in the sense that the out-of-sample evaluation of the risk measure is slightly
positive. The infeasibility is reduced as the sample size increases. Similarly, the in-sample optimum
values increase withN as more scenarios are added in the risk measure constraint of (CDId). With
32,768 scenarios, the numbers seem to have stabilized and the value of the risk measure seems
acceptable given that it has units in cash and its value is about 10,000th of the initial wealth.

Table 3 gives the computation times for the above experiment on an AMD Ryzen Threadrip-
per 1950x desktop with 128 GB of RAM. The out-of-sample simulations were implemented using
PyCUDA [KPL + 12] and CUDA [NVI21], which reduced the computation times signi�cantly. The
numerical results of Sections 8 and 9 were obtained with 32,768 scenarios in the optimization of the
buy-and-hold portfolios in CDId and 256k out-of-sample scenarios in the analysis of the optimized
portfolios.

Valuation (in-sample) Risk measure (out-of-sample)

Scenarios Min Max Mean SD Min Max Mean SD

1024 27.6438 28.3834 28.0708 0.1824 2.06e-04 3.09e-03 8.00e-04 5.41e-04
2048 27.9261 28.4241 28.1485 0.1016 8.52e-05 1.09e-03 4.99e-04 2.12e-04
4096 28.0152 28.3942 28.2406 0.0774 2.05e-04 1.70e-03 4.15e-04 2.47e-04
8192 28.1452 28.4361 28.2429 0.0494 1.59e-04 1.27e-03 3.83e-04 2.18e-04
16384 28.1879 28.3604 28.2767 0.0338 1.54e-04 1.95e-03 3.43e-04 2.69e-04
32768 28.2084 28.3436 28.2797 0.0352 1.75e-04 8.38e-04 2.96e-04 1.02e-04

Table 2: Monte Carlo approximation errors

Optimization (in-sample) Simulation (out-of-sample)

Scenarios Min Max Mean SD Min Max Mean SD

1024 7.81 10.13 8.84 0.42 0.49 0.66 0.55 0.03
2048 18.20 28.86 20.27 1.50 0.53 0.87 0.60 0.07
4096 48.30 79.39 58.99 5.21 0.54 0.83 0.61 0.06
8192 107.69 203.25 180.38 21.18 0.51 0.68 0.60 0.04

16384 251.75 547.70 463.09 81.98 0.52 0.78 0.60 0.05
32768 540.16 1211.67 819.64 220.12 0.55 0.71 0.62 0.04

Table 3: Analysis of computational time
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7 CDI based on expectations

We start numerical analysis of problem (CDI) by considering a completely deterministic model
where all cash-ows and investment returns are assumed known at timet = 0. We will assume that
all risk factors follow their median values. This corresponds to current industry practices where
CDI analysis is often done against a single scenario. Deterministic models are commonly used
also in actuarial liability valuations which are based on discounting a single forecast of the future
payments using deterministic discount factors.

In the �rst instance, we only use zero-coupon bonds as the hedging instruments. In the deter-
ministic setting, the liability cash-ows c can then be perfectly matched by buyingct units of the
zero-coupon bond with maturity t. We con�rm this numerically by solving problem (CDI) with
a single scenario that follows the median forecast. Figure 6 plots the yearly pension payments
together with the cash-ows of the hedging portfolio. Pension payments are illustrated with the
solid line and the portfolio payouts by the vertical bars positioned at payment dates. Since the
portfolio is composed of zero-coupon bonds, the height of each bar corresponds to the amount
of capital invested in each bond. The money market position over time (lending/borrowing) is
represented by the dotted line. It should be noted that the optimal strategy involves zero trading
in the money market. This is because the money market yields were calibrated to the quotes of
the zero-coupon bonds as described in Section 5 so there is no incentive to invest in the money
market. Moreover, the strictly positive spread between the lending and borrowing rates makes
made zero-coupon bonds strictly better investment than the money market. In this example the
margin between the lending and borrowing rates is� = 0 :01 basis points (BPS).

Next, maintaining the margin of � = 0 :01 BPS, we add coupon paying bonds to the problem. In
this setting, the optimal strategy invests the whole initial wealth into a single gilt and �nances most
of the liability payments by trading in the money market, as shown in the top-left plot of Figure 7.
The poor diversi�cation is explained the lack of the risk-return trade-o� in the deterministic model
and the lower cost of gilts compared to gilt strips, used here as zero-coupon bonds. While the
risk-return trade-o� can only be adequately studied in the stochastic case, topic of Section 8, we
can study di�erent market conditions by changing the margin � . When increased to� = 50 BPS, for
example, the trading activity in the money market decreases, and the diversi�cation in the optimal
portfolio improves, as it now contains a variety of gilts and zero-coupon bonds, as represented in
the middle-left plot of Figure 7. Perfect matching of the cash-ows is obtained when we increase
the margin to � = 200 BPS. In this case, it is optimal to cover all payments by the statically held
bonds and avoid borrowing from the money market.

We continue the experiment by adding stocks and ination-linked bonds to the set of hedging
instruments. The results should be interpreted with caution, however, as stocks and ination-
linked bonds are characterized by the uncertainty of their cash-ows which cannot be described by
a deterministic model. In the deterministic case, one cannot see the risks of stock investments nor
the hedging properties of ination-linked bonds. Essentially, the lack of risk in the deterministic
model makes stocks seem under priced while ination-linked bonds seem overpriced. Nevertheless,
we proceed with the experiment as this seems to be a common practice (more or less quantitatively)
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among investment advisors.
We start with a small margin � that we later increase. The optimal hedging strategies are

illustrated in the right column of Figure 7. As expected, the stock investments dominate in the
deterministic model when the margin is small. The deterministic model cannot account for the
downside risk, so the high level of return makes stocks seem like the best investment. With the
small margin � = 0 :01 BPS (top-right plot), the optimal portfolio invests everything in stocks that
are liquidated at the end of the last period. All intermediate pension payments are �nanced by
borrowing from the money market. When we increase the borrowing margin to� = 500 BPS,
the diversi�cation is increased in order to reduce borrowing from the money market (middle-right
plot). To perfectly match the cash-ows, we increase the margin to� = 1000 BPS. In this extreme
case, borrowing costs become prohibitive and the annual pension payments are covered by yearly
liquidation of the equity investments (bottom-right plot).

Despite being overly simplistic, the deterministic model allows us to illustrate some important
features of problem (CDI). For convenience, results from the experiments are summarized in
Table 4. When the borrowing margin increases, the diversi�cation and cash-ow matching improve
reducing the money market investments. Essentially, the illiquidity of the money market drives the
matching of the cash-ows. With increased diversi�cation, comes an increase in cost. When capital
is allocated in a larger number of hedging instruments, instead of the most pro�table one, the cost
to cover liabilities increases. Costs decrease, however, with additional hedging instruments. From
an optimization perspective, it is clear that the inclusion of new instruments can only improve
optimal solutions.

We end this section by analyzing the performance of the deterministically optimized portfolios
in the stochastic model. To this end, we use the model described in Section 5 to simulate 256k
scenarios for the pension payments and asset returns. For a given portfolio, the terminal fund
wealth is easily computed by following the budget constraints in (CDId). Figure 8 gives kernel
density plots for the terminal wealth distributions of each deterministically optimized portfolio.
It is clear that portfolios that provide perfect cashow matching in a deterministic model can be
dangerously risky in a stochastic (real) world.
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Figure 6: Deterministic pension payments along with cash-ows of an optimal hedging portfolio
corresponding to a margin of � = 0 :01 BPS. The perfect matching of cash-ows results in zero
positions in the money market.

Portfolio Asset classes Margin Valuation
Portfolio composition

ZCB Gilts ILB Stocks

D1 ZCB 0.01 23.73270 100% { { {
D2 ZCB, Gilts 0.01 23.34219 0% 100% { {
D3 ZCB, Gilts 50 23.52629 7% 93% { {
D4 ZCB, Gilts 200 23.55467 26% 74% { {
D5 All 0.01 4.69419 0% 0% 0% 100%
D6 All 500 13.16744 0% 0% 0% 100%
D7 All 1000 13.24309 0% 0% 0% 100%

Table 4: Results obtained with the deterministic model in Section 7, showing that when the bor-
rowing margin � increases, the diversi�cation in the hedging portfolio improves. With increased
diversi�cation, also comes an increase in cost (e.g. rows 2, 3 and 4; or 5, 6 and 7). In addition,
costs decrease with additional hedging instruments (e.g. rows 1, 2 and 5).
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Figure 7: Illustration of the optimal portfolios in the deterministic model described in Section 7.
Deterministic pension payments are illustrated along with aggregate yearly cash-ows of hedging
portfolios. Optimal hedging portfolio in the top plots are concentrated on a single instrument; a
gilt maturing at t = 16 (left) and stocks held until the last period (right). With the increase in
the money market margin � , we see more diversi�cation in the portfolios, an increase in cost and a
decrease in the money market positions.
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Figure 8: Distributions of the real terminal wealths of the deterministically optimized portfolios of
Section 7 computed using 256k scenarios. The top plot is based on the portfolio of zero-coupon
bonds (Figure 6). Middle plot on portfolios of �xed-rate instruments (left column in Figure 7), and
bottom plot on portfolios with all asset classes (right column in Figure 7).
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8 CDI under uncertainty

We now move to a fully stochastic version of (CDI), where the cashows of both the liabilities
and the hedging instruments are stochastic. This will allow us to quantify the risks and hedging
potential of assets with cashow uncertainties. Increasing the risk aversion will favour assets whose
paoyouts hedge against the pension liabilities. A lower risk aversion, on the other hand, will favour
assets with higher average payouts even if they are uncorrelated with the liability payments. In the
numerical experiments below, we will see this in economically sensible allocations in equities and
ination-linked bonds that were not captured in the deterministically optimized portfolios.

Our �rst results, with margin � = 100 BPS and risk aversion� = 5, are illustrated in Figure 9.
In the stochastic case, we cannot present the results using the simple cash-ow plots used in the
deterministic case in Section 7. Instead, we create six di�erent plots to illustrate the portfolios and
their hedging properties in the stochastic case. In the top-left corner of the �gure, we have awealth
allocation plot (not to be confused with the cash-ow plots of Section 7) where the vertical bars at
time t represent the aggregated amount of capital invested in hedging instruments maturing at that
time. In this particular example, we have an optimal portfolio S1 that invests, approximately, 1k
GBP in gilts maturing at times t = 1 ; : : : ; 7; 13; 14; over 4k GBP in ination-linked gilts maturing
at times t = 10; 16; 20 and other smaller positions aftert = 20. The optimal portfolio also holds
a position of approximately 0.5k GBP in equities that is only liquidated at the �nal period. The
actual positions in the portfolio S1 can be found in Table 7.

On the middle-left plot of Figure 9, we have aportfolio composition plot, in which stacked bands
are used to illustrate the amount of capital invested in each asset class over time. In such plots, a
drop occurs in one of the bands when one of the hedging instruments matures. Flat regions indicate
positions being held �xed. Referring to the wealth allocation plot in the �gure, for example, one
can see a drop associated with the ination linked gilt maturing at time t = 10. One can also see
the at region corresponding to the position in stocks. It spans the entire simulation period, as the
equities are liquidated only at the end.

In the top-right corner of Figure 9, we have an investment income plot, which illustrates the
aggregated cash-ows produced by the hedging strategy. The �gures plot median values and 95%
and 99% quantile bands of yearly cash-ows. Deterministic cash-ows, such as the ones from gilts
and gilt strips, are represented as solid line segments. In this example, the optimal allocation has
gilt positions maturing at times t = 1 ; : : : ; 7. The three spikes times at timest = 10; 16 and 20
correspond to the large positions in ination-linked bonds. The cash-ows corresponding to the
position in stocks are only found when they are liquidated at time t = 34. The width of the
con�dence bands show how uncertain stock returns can be after a few decades. Pension payments
are illustrated in the plot as the dark shape in the background; see Figure 5 for a comparison.

The three remaining plots in Figure 9 illustrate the development of the net cash-ows and the
money market position as well as the distribution of the terminal wealth. Again, we give the median
values and the 95% and 99% quantile bands. The net cash-ows are obtained simply by taking
the di�erence of the investment income and the pension outow so a surplus increase the money
market position and vice-versa. The net cash-ow is rolled over time through the money market
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account. Thus, the terminal wealth is simply the terminal position in the money market account.
To understand a hedging strategy, we refer to the wealth allocation, investment income and

money market position plots. The strategy illustrated in Figure 9, for example, relies primarily
on gilts to cover pension payments in the �rst years. More speci�cally, until time t = 7. In this
period, a surplus of capital is built, as indicated by the mostly positive values of the money market
position. The strategy then resorts to borrowing from the money market, as the income from
other investments is low in the next two years. Since no positions are maturing in that period, the
income is from to coupon-payments of bonds maturing later. The two-year de�cit in the money
market position is then covered by the ination-linked bond maturing at time t = 10. This creates
a surplus of cash which is then increased by gilts maturing at timest = 13 and 14, after two years
of low investment income. Next, at time t = 15, we �nd quantile bands that span both negative
and positive positions in the money market position, indicating a good chance of covering payments
without resorting to borrowing from the money market. Possible de�cits are then be covered in
the following year by the ination-linked bond position maturing at time t = 16. The next inows
of capital then create enough surplus to cover pension liabilities in the majority of cases until the
time t = 30. Notice that the median value of the money market position becomes negative after
that time. Finally, the position in equities is liquidated at time t = 34.

Inspecting the terminal wealth plot for S1, in Figure 9, we notice a distribution of outcomes
that is skewed toward positive values. We compare this distribution to those of the perfectly
matching portfolios obtained with the deterministic model ( D1, D4 and D7) in Figure 10. Clearly,
the portfolio S1 provides a better hedging to the pension liabilities, as the other portfolios present
distributions that are approximately symmetric. The risk measure values in Table 5 provide a
more rigorous check. In the table, we notice thatS1 presents the smallest level of risk among
the portfolios and the higher cost as well. The risk measure values also show that the perfectly
matching portfolios do not correspond to optimal solutions to (CDI) in the stochastic case, as
their risk measures are signi�cantly larger than zero. Putting it simply, matching deterministic
cash-ows does not work.

Portfolio Valuation
(cost)

Risk
measure

Portfolio composition

Stocks Gilts ILB ZCB

S1 28.1592 1.99e-04 2% 42% 56% {
D1 23.7327 4.69e-01 { { { 100%
D4 23.6377 6.35e-01 { 74% { 26%
D7 13.2596 2.13e+00 100% { { {

Table 5: Comparison of terminal wealth distribution
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8.1 E�ect of the lending and borrowing margin

We now look into two variations of the experiment described above. Still with risk aversion� = 5,
we �rst increase the margin to � = 1000 BPS. Then, we lower it to � = 0 BPS and reoptimize.
In the �rst case, with the increased margin, we notice more diversi�cation in the optimal portfolio
S2, displayed in Table 8 and illustrated in the wealth allocation plot of Figure 11. We also �nd
an improved matching of cash-ows in the investment income plot. Inspecting the money market
position we see that, with an increased margin, the optimal strategy tends to avoid borrowing from
the money market. Signi�cant borrowing from the money market only occurs at the times t = 15
and t = 27. After the latter, the optimal portfolio is concentrated in stock investments, which
explains the wide quantile bands at the end of the money market position and of the investment
income plots. It is interesting to notice that the optimal portfolio S2 now includes zero-coupon
bonds. With higher money market costs, zero-coupon bonds provide a cheaper alternative for extra
liquidity. The distribution of the terminal wealth still has a positive skew but it is now less risky
than the portfolio S1, illustrated in Figure 9. With the improved matching of cash-ows and lower
risk, we also observe an increase in cost forS2.

The case with zero margin, is illustrated in Figure 12. As expected, for this optimal portfolio
S3, we see much more activity in the money market and a reduced cost, but we also see poorer
matching of the cash-ows and a less diversi�ed portfolio, displayed in Table 9. All the results
obtained in this section are summarized in Table 6.

Looking at the portfolio composition with �xed risk aversion and varying margin, we �nd that
reduction of liquidity leads to increased allocation zero-coupon and ination linked bonds and
reduction in gilts and equities. This is inline with the �ndings of [APW14] who investigated the
e�ects of liquidity risk on optimal portfolio composition. Their liquidity risk model was quite
di�erent from ours but the they found a similar shift from riskier assets to safer ones when the
liquidity risk is increased.

8.2 E�ect of the risk aversion

We now �x the margin at � = 100 BPS and analyse changes the e�ects of the risk aversion� . First,
we lower the risk aversion from� = 5 to � = 1 and then increase it to � = 10, reoptimizing after
each change. With the lower risk aversion, illustrated in Figure 13, we notice that the optimal
portfolio S4 has a decreased proportion of capital allocated to ination-linked bonds and increased
in stocks and gilts. The latter, in this case, became the main asset class in the portfolio, accounting
for 76% of the invested capital. The wealth allocation plot shows that the hedging strategy expects
to capitalize on the long-term returns of the stocks, as those are held until the end. The strategy
also builds a surplus of capital in the early years, until t = 16. By increasing the allocation in
stocks and the trading in the money market, S4 obtains the smallest cost among the portfolios in
this section; see Table 5.

Increasing the risk aversion to � = 10, we �nd a portfolio S5 which has shifted capital from
equities and gilts to ination-linked bonds. The hedging cost has increased by 20%, and we �nd
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Portfolio Margin Risk
aversion

Valuation
(cost)

Risk
measure

Portfolio composition

Stocks Gilts ILBs ZCBs

S1 100 5 28.1592 1.99e-04 2% 42% 56% {
S2 1000 5 29.7009 1.11e-04 2% 27% 60% 11%
S3 0 5 27.8031 4.33e-04 3% 38% 59% {
S4 100 1 24.1384 2.06e-04 11% 76% 13% {
S5 100 10 29.0350 4.31e-04 1% 37% 61% 2%

Table 6: Summary of results for the stochastically optimized hedging strategies

a more more diversi�cation and less trading in the money market. When we compareS5 to the
original portfolio S1, however, changes are not so dramatic. We �nd a 3% increase in the cost of the
hedging portfolio and an increase of 5% in the capital allocated to ination-linked bonds. Portfolio
allocations for portfolios S4 and S5 are displayed in Tables 10 and 11, respectively.
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Figure 9: Optimal hedging strategy S1 (risk aversion � = 5 and margin � = 100 BPS). Rightmost
plots contain median values and 95% and 99% con�dence bands. Leftmost plots illustrate the
terminal wealth and the portfolio allocation. The detailed portfolio allocation can be found in
Table 7.
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Figure 10: Comparison of terminal wealth distributions. See Table 5
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Figure 11: Optimal hedging strategyS2 (risk aversion � = 5 and margin � = 1000 BPS). Rightmost
plots contain median values and 95% and 99% con�dence bands. Leftmost plots illustrate the
terminal wealth and the portfolio allocation. The detailed portfolio allocation can be found in
Table 8.
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