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Assassinating spam e-mail

SpamAssassin is a widely used open-source spam filter. It calculates a score for
an incoming e-mail, based on a number of built-in rules or ‘tests’ in
SpamAssassin’s terminology, and adds a ‘junk’ flag and a summary report to the
e-mail’s headers if the score is 5 or more.

-0.1 RCVD_IN_MXRATE_WL RBL: MXRate recommends allowing
[123.45.6.789 listed in sub.mxrate.net]

0.6 HTML_IMAGE_RATIO_02 BODY: HTML has a low ratio of text to image area
1.2 TVD_FW_GRAPHIC_NAME_MID BODY: TVD_FW_GRAPHIC_NAME_MID
0.0 HTML_MESSAGE BODY: HTML included in message
0.6 HTML_FONx_FACE_BAD BODY: HTML font face is not a word
1.4 SARE_GIF_ATTACH FULL: Email has a inline gif
0.1 BOUNCE_MESSAGE MTA bounce message
0.1 ANY_BOUNCE_MESSAGE Message is some kind of bounce message
1.4 AWL AWL: From: address is in the auto white-list

From left to right you see the score attached to a particular test, the test
identifier, and a short description including a reference to the relevant part of the
e-mail. As you see, scores for individual tests can be negative (indicating
evidence suggesting the e-mail is ham rather than spam) as well as positive. The
overall score of 5.3 suggests the e-mail might be spam.
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Example 1, p.2 Linear classification

Suppose we have only two tests and four training e-mails, one of which is spam
(see Table 1). Both tests succeed for the spam e-mail; for one ham e-mail neither
test succeeds, for another the first test succeeds and the second doesn’t, and for
the third ham e-mail the first test fails and the second succeeds.

It is easy to see that assigning both tests a weight of 4 correctly ‘classifies’ these
four e-mails into spam and ham. In the mathematical notation introduced in
Background 1 we could describe this classifier as 4x1 +4x2 > 5 or
(4,4) · (x1, x2) > 5.

In fact, any weight between 2.5 and 5 will ensure that the threshold of 5 is only
exceeded when both tests succeed. We could even consider assigning different
weights to the tests – as long as each weight is less than 5 and their sum
exceeds 5 – although it is hard to see how this could be justified by the training
data.
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Table 1, p.3 Spam filtering as a classification task

E-mail x1 x2 Spam? 4x1 +4x2

1 1 1 1 8
2 0 0 0 0
3 1 0 0 4
4 0 1 0 4

The columns marked x1 and x2 indicate the results of two tests on four different e-mails.

The fourth column indicates which of the e-mails are spam. The right-most column

demonstrates that by thresholding the function 4x1 +4x2 at 5, we can separate spam

from ham.
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Figure 1, p.5 Linear classification in two dimensions
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The straight line separates the positives from the negatives. It is defined by w ·xi = t ,

where w is a vector perpendicular to the decision boundary and pointing in the direction

of the positives, t is the decision threshold, and xi points to a point on the decision

boundary. In particular, x0 points in the same direction as w, from which it follows that

w ·x0 = ||w|| ||x0|| = t (||x|| denotes the length of the vector x).
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Background 1, p.4 Homogeneous coordinates

It is sometimes convenient to simplify notation further by introducing an extra
constant ‘variable’ x0 = 1, the weight of which is fixed to w0 =−t .

The extended data point is then x◦ = (1, x1, . . . , xn) and the extended weight
vector is w◦ = (−t , w1, . . . , wn), leading to the decision rule w◦ ·x◦ > 0 and the
decision boundary w◦ ·x◦ = 0.

Thanks to these so-called homogeneous coordinates the decision boundary
passes through the origin of the extended coordinate system, at the expense of
needing an additional dimension.

t note that this doesn’t really affect the data, as all data points and the ‘real’
decision boundary live in the plane x0 = 1.
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Important point to remember

Machine learning is the systematic study of algorithms and systems that improve
their knowledge or performance with experience.
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Figure 2, p.5 Machine learning for spam filtering
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At the top we see how SpamAssassin approaches the spam e-mail classification task:

the text of each e-mail is converted into a data point by means of SpamAssassin’s

built-in tests, and a linear classifier is applied to obtain a ‘spam or ham’ decision. At the

bottom (in blue) we see the bit that is done by machine learning.
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Example 2, p.6 Overfitting

Imagine you are preparing for your Machine Learning 101 exam. Helpfully,
Professor Flach has made previous exam papers and their worked answers
available online. You begin by trying to answer the questions from previous
papers and comparing your answers with the model answers provided.

Unfortunately, you get carried away and spend all your time on memorising the
model answers to all past questions. Now, if the upcoming exam completely
consists of past questions, you are certain to do very well. But if the new exam
asks different questions about the same material, you would be ill-prepared and
get a much lower mark than with a more traditional preparation.

In this case, one could say that you were overfitting the past exam papers and
that the knowledge gained didn’t generalise to future exam questions.
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A Bayesian classifier I

Bayesian spam filters maintain a vocabulary of words and phrases – potential
spam or ham indicators – for which statistics are collected from a training set.

t For instance, suppose that the word ‘Viagra’ occurred in four spam e-mails
and in one ham e-mail. If we then encounter a new e-mail that contains the
word ‘Viagra’, we might reason that the odds that this e-mail is spam are
4:1, or the probability of it being spam is 0.80 and the probability of it being
ham is 0.20.

t The situation is slightly more subtle because we have to take into account
the prevalence of spam. Suppose that I receive on average one spam
e-mail for every six ham e-mails. This means that I would estimate the odds
of an unseen e-mail being spam as 1:6, i.e., non-negligible but not very high
either.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 18 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


A Bayesian classifier II

t If I then learn that the e-mail contains the word ‘Viagra’, which occurs four
times as often in spam as in ham, I need to combine these two odds. As we
shall see later, Bayes’ rule tells us that we should simply multiply them: 1:6
times 4:1 is 4:6, corresponding to a spam probability of 0.4.

In this way you are combining two independent pieces of evidence, one
concerning the prevalence of spam, and the other concerning the occurrence of
the word ‘Viagra’, pulling in opposite directions.

The nice thing about this ‘Bayesian’ classification scheme is that it can be
repeated if you have further evidence. For instance, suppose that the odds in
favour of spam associated with the phrase ‘blue pill’ is estimated at 3:1, and
suppose our e-mail contains both ‘Viagra’ and ‘blue pill’, then the combined odds
are 4:1 times 3:1 is 12:1, which is ample to outweigh the 1:6 odds associated
with the low prevalence of spam (total odds are 2:1, or a spam probability of
0.67, up from 0.40 without the ‘blue pill’).
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A rule-based classifier

t if the e-mail contains the word ‘Viagra’ then estimate the odds of spam as
4:1;

t otherwise, if it contains the phrase ‘blue pill’ then estimate the odds of spam
as 3:1;

t otherwise, estimate the odds of spam as 1:6.

The first rule covers all e-mails containing the word ‘Viagra’, regardless of
whether they contain the phrase ‘blue pill’, so no overcounting occurs. The
second rule only covers e-mails containing the phrase ‘blue pill’ but not the word
‘Viagra’, by virtue of the ‘otherwise’ clause. The third rule covers all remaining
e-mails: those which neither contain neither ‘Viagra’ nor ‘blue pill’.
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Figure 3, p.11 How machine learning helps to solve a task

Learning problem

Features
Domain 

objects

Data Output
Model

Learning 
algorithm

Training data

Task

An overview of how machine learning is used to address a given task. A task (red box)

requires an appropriate mapping – a model – from data described by features to outputs.

Obtaining such a mapping from training data is what constitutes a learning problem (blue

box).
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Important point to remember

Tasks are addressed by models, whereas learning problems are solved by
learning algorithms that produce models.
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Important point to remember

Machine learning is concerned with using the right features to build the right
models that achieve the right tasks.
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1. The ingredients of machine learning

Important point to remember

Models lend the machine learning field diversity, but tasks and features give it
unity.
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1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning
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1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Tasks for machine learning

The most common machine learning tasks are predictive, in the sense that they
concern predicting a target variable from features. .

t Binary and multi-class classification: categorical target

t Regression: numerical target

t Clustering: hidden target

Descriptive tasks are concerned with exploiting underlying structure in the data.
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1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Example 1.1, p.15 Measuring similarity

If our e-mails are described by word-occurrence features as in the text
classification example, the similarity of e-mails would be measured in terms of
the words they have in common. For instance, we could take the number of
common words in two e-mails and divide it by the number of words occurring in
either e-mail (this measure is called the Jaccard coefficient).

Suppose that one e-mail contains 42 (different) words and another contains 112
words, and the two e-mails have 23 words in common, then their similarity would
be 23

42+112−23 = 23
130 = 0.18. We can then cluster our e-mails into groups, such

that the average similarity of an e-mail to the other e-mails in its group is much
larger than the average similarity to e-mails from other groups.
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1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Looking for structure I

Consider the following matrix: 

1 0 1 0
0 2 2 2
0 0 0 1
1 2 3 2
1 0 1 1
0 2 2 3


Imagine these represent ratings by six different people (in rows), on a scale of 0
to 3, of four different films – say The Shawshank Redemption, The Usual
Suspects, The Godfather, The Big Lebowski, (in columns, from left to right). The
Godfather seems to be the most popular of the four with an average rating of 1.5,
and The Shawshank Redemption is the least appreciated with an average rating
of 0.5. Can you see any structure in this matrix?
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1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Looking for structure II



1 0 1 0
0 2 2 2
0 0 0 1
1 2 3 2
1 0 1 1
0 2 2 3

 =



1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

 ×
 1 0 0

0 2 0
0 0 1

 ×
 1 0 1 0

0 1 1 1
0 0 0 1



t The right-most matrix associates films (in columns) with genres (in rows):
The Shawshank Redemption and The Usual Suspects belong to two
different genres, say drama and crime, The Godfather belongs to both, and
The Big Lebowski is a crime film and also introduces a new genre (say
comedy).

t The tall, 6-by-3 matrix then expresses people’s preferences in terms of
genres.
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1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Looking for structure III

t Finally, the middle matrix states that the crime genre is twice as important
as the other two genres in terms of determining people’s preferences.
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1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Table 1.1, p.18 Machine learning settings

Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery
Unsupervised learning predictive clustering descriptive clustering,

association rule discovery

The rows refer to whether the training data is labelled with a target variable, while the

columns indicate whether the models learned are used to predict a target variable or

rather describe the given data.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Machine learning models

Machine learning models can be distinguished according to their main intuition:

t Geometric models use intuitions from geometry such as separating
(hyper-)planes, linear transformations and distance metrics.

t Probabilistic models view learning as a process of reducing uncertainty,
modelled by means of probability distributions.

t Logical models are defined in terms of easily interpretable logical
expressions.

Alternatively, they can be characterised by their modus operandi :

t Grouping models divide the instance space into segments; in each segment
a very simple (e.g., constant) model is learned.

t Grading models learning a single, global model over the instance space.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.1, p.22 Basic linear classifier
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The basic linear classifier constructs a decision boundary by half-way intersecting the

line between the positive and negative centres of mass. It is described by the equation

w ·x = t , with w = p−n; the decision threshold can be found by noting that (p+n)/2 is

on the decision boundary, and hence t = (p−n) · (p+n)/2 = (||p||2 −||n||2)/2, where

||x|| denotes the length of vector x.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 35 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.2, p.23 Support vector machine
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The decision boundary learned by a support vector machine from the linearly separable

data from Figure 1. The decision boundary maximises the margin, which is indicated by

the dotted lines. The circled data points are the support vectors.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Table 1.2, p.26 A simple probabilistic model

Viagra lottery P (Y = spam|Viagra, lottery) P (Y = ham|Viagra, lottery)

0 0 0.31 0.69
0 1 0.65 0.35
1 0 0.80 0.20
1 1 0.40 0.60

‘Viagra’ and ‘lottery’ are two Boolean features; Y is the class variable, with values ‘spam’

and ‘ham’. In each row the most likely class is indicated in bold.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Decision rule

Assuming that X and Y are the only variables we know and care about, the
posterior distribution P (Y |X ) helps us to answer many questions of interest.

t For instance, to classify a new e-mail we determine whether the words
‘Viagra’ and ‘lottery’ occur in it, look up the corresponding probability
P (Y = spam|Viagra, lottery), and predict spam if this probability exceeds
0.5 and ham otherwise.

t Such a recipe to predict a value of Y on the basis of the values of X and
the posterior distribution P (Y |X ) is called a decision rule.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.2, p.26 Missing values I

Suppose we skimmed an e-mail and noticed that it contains the word ‘lottery’ but
we haven’t looked closely enough to determine whether it uses the word ‘Viagra’.
This means that we don’t know whether to use the second or the fourth row in
Table 1.2 to make a prediction. This is a problem, as we would predict spam if the
e-mail contained the word ‘Viagra’ (second row) and ham if it didn’t (fourth row).
The solution is to average these two rows, using the probability of ‘Viagra’
occurring in any e-mail (spam or not):

P (Y |lottery) =P (Y |Viagra= 0, lottery)P (Viagra= 0)

+P (Y |Viagra= 1, lottery)P (Viagra= 1)

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 39 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.2, p.26 Missing values II

For instance, suppose for the sake of argument that one in ten e-mails contain
the word ‘Viagra’, then P (Viagra= 1) = 0.10 and P (Viagra= 0) = 0.90. Using
the above formula, we obtain
P (Y = spam|lottery = 1) = 0.65 ·0.90+0.40 ·0.10 = 0.625 and
P (Y = ham|lottery = 1) = 0.35 ·0.90+0.60 ·0.10 = 0.375. Because the
occurrence of ‘Viagra’ in any e-mail is relatively rare, the resulting distribution
deviates only a little from the second row in Table 1.2.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Likelihood ratio

As a matter of fact, statisticians work very often with different conditional
probabilities, given by the likelihood function P (X |Y ).

t I like to think of these as thought experiments: if somebody were to send
me a spam e-mail, how likely would it be that it contains exactly the words
of the e-mail I’m looking at? And how likely if it were a ham e-mail instead?

t What really matters is not the magnitude of these likelihoods, but their ratio:
how much more likely is it to observe this combination of words in a spam
e-mail than it is in a non-spam e-mail.

t For instance, suppose that for a particular e-mail described by X we have
P (X |Y = spam) = 3.5 ·10−5 and P (X |Y = ham) = 7.4 ·10−6, then
observing X in a spam e-mail is nearly five times more likely than it is in a
ham e-mail.

t This suggests the following decision rule: predict spam if the likelihood ratio
is larger than 1 and ham otherwise.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Important point to remember

Use likelihoods if you want to ignore the prior distribution or assume it uniform,
and posterior probabilities otherwise.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.3, p.28 Posterior odds

P (Y = spam|Viagra= 0, lottery = 0)

P (Y = ham|Viagra= 0, lottery = 0)
= 0.31

0.69
= 0.45

P (Y = spam|Viagra= 1, lottery = 1)

P (Y = ham|Viagra= 1, lottery = 1)
= 0.40

0.60
= 0.67

P (Y = spam|Viagra= 0, lottery = 1)

P (Y = ham|Viagra= 0, lottery = 1)
= 0.65

0.35
= 1.9

P (Y = spam|Viagra= 1, lottery = 0)

P (Y = ham|Viagra= 1, lottery = 0)
= 0.80

0.20
= 4.0

Using a MAP decision rule we predict ham in the top two cases and spam in the
bottom two. Given that the full posterior distribution is all there is to know about
the domain in a statistical sense, these predictions are the best we can do: they
are Bayes-optimal.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Table 1.3, p.29 Example marginal likelihoods

Y P (Viagra= 1|Y ) P (Viagra= 0|Y )

spam 0.40 0.60
ham 0.12 0.88

Y P (lottery= 1|Y ) P (lottery= 0|Y )

spam 0.21 0.79
ham 0.13 0.87
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.4, p.30 Using marginal likelihoods

Using the marginal likelihoods from Table 1.3, we can approximate the likelihood
ratios (the previously calculated odds from the full posterior distribution are
shown in brackets):

P (Viagra= 0|Y = spam)

P (Viagra= 0|Y = ham)

P (lottery = 0|Y = spam)

P (lottery = 0|Y = ham)
= 0.60

0.88

0.79

0.87
= 0.62 (0.45)

P (Viagra= 0|Y = spam)

P (Viagra= 0|Y = ham)

P (lottery = 1|Y = spam)

P (lottery = 1|Y = ham)
= 0.60

0.88

0.21

0.13
= 1.1 (1.9)

P (Viagra= 1|Y = spam)

P (Viagra= 1|Y = ham)

P (lottery = 0|Y = spam)

P (lottery = 0|Y = ham)
= 0.40

0.12

0.79

0.87
= 3.0 (4.0)

P (Viagra= 1|Y = spam)

P (Viagra= 1|Y = ham)

P (lottery = 1|Y = spam)

P (lottery = 1|Y = ham)
= 0.40

0.12

0.21

0.13
= 5.4 (0.67)

We see that, using a maximum likelihood decision rule, our very simple model
arrives at the Bayes-optimal prediction in the first three cases, but not in the
fourth (‘Viagra’ and ‘lottery’ both present), where the marginal likelihoods are
actually very misleading.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.3, p.31 The Scottish classifier
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(top) Visualisation of two marginal likelihoods as estimated from a small data set. The

colours indicate whether the likelihood points to spam or ham. (bottom) Combining the

two marginal likelihoods gives a pattern not unlike that of a Scottish tartan.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.4, p.32 A feature tree
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 =1
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spam: 20

  ham: 40

spam: 10

ham: 5

(left) A feature tree combining two Boolean features. Each internal node or split is

labelled with a feature, and each edge emanating from a split is labelled with a feature

value. Each leaf therefore corresponds to a unique combination of feature values. Also

indicated in each leaf is the class distribution derived from the training set. (right) A

feature tree partitions the instance space into rectangular regions, one for each leaf. We

can clearly see that the majority of ham lives in the lower left-hand corner.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.5, p.33 Labelling a feature tree

t The leaves of the tree in Figure 1.4 could be labelled, from left to right, as
ham – spam – spam, employing a simple decision rule called majority class.

t Alternatively, we could label them with the proportion of spam e-mail
occurring in each leaf: from left to right, 1/3, 2/3, and 4/5.

t Or, if our task was a regression task, we could label the leaves with
predicted real values or even linear functions of some other, real-valued
features.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.5, p.33 A complete feature tree
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(left) A complete feature tree built from two Boolean features. (right) The corresponding

instance space partition is the finest partition that can be achieved with those two

features.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.6, p.34 Overlapping rules

Consider the following rules:

·if lottery = 1 then Class=Y = spam·
·if Peter = 1 then Class=Y = ham·

As can be seen in Figure 1.6, these rules overlap for lottery = 1 ∧ Peter = 1, for
which they make contradictory predictions. Furthermore, they fail to make any
predictions for lottery = 0 ∧ Peter = 0.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.6, p.35 Overlapping rules
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The effect of overlapping rules in instance space. The two rules make contradictory

predictions in the top right-hand corner, and no prediction at all in the bottom left-hand

corner.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.7, p.37 Mapping machine learning models
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A ‘map’ of some of the models that will be considered in this book. Models that share

characteristics are plotted closer together: logical models to the right, geometric models

on the top left and probabilistic models on the bottom left. The horizontal dimension

roughly ranges from grading models on the left to grouping models on the right.
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1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.8, p.38 ML taxonomy

grading

logical

a bit

geometric

 a lot

supervised

yes

naive
Bayes

 not so
much

association
rules

no

trees & 
rules

 yes

supervised

not
 com-

  pletely

grouping

yes

GMM

 no

SVM

 yes

linear
classifiers

 no

supervised

 some

K-means

 no

k-NN

 yes

A taxonomy describing machine learning methods in terms of the extent to which they

are grading or grouping models, logical, geometric or a combination, and supervised or

unsupervised. The colours indicate the type of model, from left to right: logical (red),

probabilistic (orange) and geometric (purple).
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1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

What’s next?

1 The ingredients of machine learning
Tasks: the problems that can be solved with machine learning

Looking for structure

Models: the output of machine learning
Geometric models
Probabilistic models
Logical models
Grouping and grading

Features: the workhorses of machine learning
Two uses of features
Feature construction and transformation
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1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Example 1.7, p.39 The MLM data set

Suppose we have a number of learning models that we want to describe in terms
of a number of properties:

t the extent to which the models are geometric, probabilistic or logical;
t whether they are grouping or grading models;
t the extent to which they can handle discrete and/or real-valued features;
t whether they are used in supervised or unsupervised learning; and
t the extent to which they can handle multi-class problems.

The first two properties could be expressed by discrete features with three and
two values, respectively; or if the distinctions are more gradual, each aspect
could be rated on some numerical scale. A simple approach would be to
measure each property on an integer scale from 0 to 3, as in Table 1.4. This
table establishes a data set in which each row represents an instance and each
column a feature.
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1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Table 1.4, p.39 The MLM data set

Model geom stats logic group grad disc real sup unsup multi

Trees 1 0 3 3 0 3 2 3 2 3
Rules 0 0 3 3 1 3 2 3 0 2
naive Bayes 1 3 1 3 1 3 1 3 0 3
kNN 3 1 0 2 2 1 3 3 0 3
Linear Classifier 3 0 0 0 3 1 3 3 0 0
Linear Regression 3 1 0 0 3 0 3 3 0 1
Logistic Regression 3 2 0 0 3 1 3 3 0 0
SVM 2 2 0 0 3 2 3 3 0 0
Kmeans 3 2 0 1 2 1 3 0 3 1
GMM 1 3 0 0 3 1 3 0 3 1
Associations 0 0 3 3 0 3 1 0 3 1

The MLM data set describing properties of machine learning models.
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1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Example 1.8, p.41 Two uses of features

Suppose we want to approximate y = cosπx on the interval −1 ≤ x ≤ 1. A linear
approximation is not much use here, since the best fit would be y = 0. However,
if we split the x-axis in two intervals −1 ≤ x < 0 and 0 ≤ x ≤ 1, we could find
reasonable linear approximations on each interval. We can achieve this by using
x both as a splitting feature and as a regression variable (Figure 1.9).
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1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Figure 1.9, p.41 A small regression tree

x

ŷ = 2x+1

<0

ŷ = −2x+1

 ≥0 -1 0 1

-1

1

(left) A regression tree combining a one-split feature tree with linear regression models

in the leaves. Notice how x is used as both a splitting feature and a regression variable.

(right) The function y = cosπx on the interval −1 ≤ x ≤ 1, and the piecewise linear

approximation achieved by the regression tree.
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1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Figure 1.10, p.42 Class-sensitive discretisation
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(left) Artificial data depicting a histogram of body weight measurements of people with

(blue) and without (red) diabetes, with eleven fixed intervals of 10 kilograms width each.

(right) By joining the first and second, third and fourth, fifth and sixth, and the eighth,

ninth and tenth intervals, we obtain a discretisation such that the proportion of diabetes

cases increases from left to right. This discretisation makes the feature more useful in

predicting diabetes.
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1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Example 1.9, p.43 The kernel trick

Let x1 = (x1, y1) and x2 = (x2, y2) be two data points, and consider the mapping
(x, y) 7→ (x2, y2,

p
2x y) to a three-dimensional feature space. The points in

feature space corresponding to x1 and x2 are x′1 = (x2
1 , y2

1 ,
p

2x1 y1) and
x′2 = (x2

2 , y2
2 ,
p

2x2 y2). The dot product of these two feature vectors is

x′1 ·x′2 = x2
1 x2

2 + y2
1 y2

2 +2x1 y1x2 y2 = (x1x2 + y1 y2)2 = (x1 ·x2)2

That is, by squaring the dot product in the original space we obtain the dot
product in the new space without actually constructing the feature vectors! A
function that calculates the dot product in feature space directly from the vectors
in the original space is called a kernel – here the kernel is κ(x1,x2) = (x1 ·x2)2.
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1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Figure 1.11, p.43 Non-linearly separable data
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(left) A linear classifier would perform poorly on this data. (right) By transforming the

original (x, y) data into (x ′, y ′) = (x2, y2), the data becomes more ‘linear’, and a linear

decision boundary x ′+ y ′ = 3 separates the data fairly well. In the original space this

corresponds to a circle with radius
p

3 around the origin.
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2. Binary classification and related tasks

What’s next?

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

Scoring and ranking
Assessing and visualising ranking performance
Turning rankers into classifiers

Class probability estimation
Assessing class probability estimates
Turning rankers into class probability estimators
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2. Binary classification and related tasks

Table 2.1, p.52 Predictive machine learning scenarios

Task Label space Output space Learning problem

Classification L =C Y =C learn an approximation ĉ :
X → C to the true labelling
function c

Scoring and
ranking

L =C Y =R|C | learn a model that outputs a
score vector over classes

Probability
estimation

L =C Y = [0,1]|C | learn a model that out-
puts a probability vector over
classes

Regression L =R Y =R learn an approximation f̂ :
X → R to the true labelling
function f
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2. Binary classification and related tasks 2.1 Classification

What’s next?

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

Scoring and ranking
Assessing and visualising ranking performance
Turning rankers into classifiers

Class probability estimation
Assessing class probability estimates
Turning rankers into class probability estimators
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2. Binary classification and related tasks 2.1 Classification

Classification

A classifier is a mapping ĉ : X →C , where C = {C1,C2, . . . ,Ck } is a finite and
usually small set of class labels. We will sometimes also use Ci to indicate the
set of examples of that class.

We use the ‘hat’ to indicate that ĉ(x) is an estimate of the true but unknown
function c(x). Examples for a classifier take the form (x,c(x)), where x ∈X is
an instance and c(x) is the true class of the instance (sometimes contaminated
by noise).

Learning a classifier involves constructing the function ĉ such that it matches c
as closely as possible (and not just on the training set, but ideally on the entire
instance space X ).
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2. Binary classification and related tasks 2.1 Classification

Figure 2.1, p.53 A decision tree
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(left) A feature tree with training set class distribution in the leaves. (right) A decision

tree obtained using the majority class decision rule.
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2. Binary classification and related tasks 2.1 Classification

Table 2.2, p.54 Contingency table

Predicted ⊕ Predicted ª
Actual ⊕ 30 20 50
Actual ª 10 40 50

40 60 100

⊕ ª
⊕ 20 30 50
ª 20 30 50

40 60 100

(left) A two-class contingency table or confusion matrix depicting the performance of the

decision tree in Figure 2.1. Numbers on the descending diagonal indicate correct

predictions, while the ascending diagonal concerns prediction errors. (right) A

contingency table with the same marginals but independent rows and columns.
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2. Binary classification and related tasks 2.1 Classification

Example 2.1, p.56 Accuracy as a weighted average

Suppose a classifier’s predictions on a test set are as in the following table:

Predicted ⊕ Predicted ª
Actual ⊕ 60 15 75
Actual ª 10 15 25

70 30 100

From this table, we see that the true positive rate is tpr = 60/75 = 0.80 and the
true negative rate is tnr = 15/25 = 0.60. The overall accuracy is
acc = (60+15)/100 = 0.75, which is no longer the average of true positive and
negative rates. However, taking into account the proportion of positives
pos = 0.75 and the proportion of negatives neg = 1−pos = 0.25, we see that

acc = pos · tpr+neg · tnr
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2. Binary classification and related tasks 2.1 Classification

Table 2.3, p.57 Performance measures I

Measure Definition Equal to Estimates

number of positives Pos =∑
x∈Te I [c(x) =⊕]

number of negatives Neg =∑
x∈Te I [c(x) =ª] |Te|−Pos

number of true positives TP =∑
x∈Te I [ĉ(x) = c(x) =⊕]

number of true negatives TN =∑
x∈Te I [ĉ(x) = c(x) =ª]

number of false positives FP =∑
x∈Te I [ĉ(x) =⊕,c(x) =ª] Neg −TN

number of false negatives FN =∑
x∈Te I [ĉ(x) =ª,c(x) =⊕] Pos−TP

proportion of positives pos = 1
|Te|

∑
x∈Te I [c(x) =⊕] Pos/|Te| P (c(x) =⊕)

proportion of negatives neg = 1
|Te|

∑
x∈Te I [c(x) =ª] 1−pos P (c(x) =ª)

class ratio clr = pos/neg Pos/Neg

(*) accuracy acc = 1
|Te|

∑
x∈Te I [ĉ(x) = c(x)] P (ĉ(x) = c(x))

(*) error rate err = 1
|Te|

∑
x∈Te I [ĉ(x) 6= c(x)] 1−acc P (ĉ(x) 6= c(x))
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2. Binary classification and related tasks 2.1 Classification

Table 2.3, p.57 Performance measures II

Measure Definition Equal to Estimates

true positive rate,
sensitivity, recall

tpr =
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [c(x)=⊕] TP/Pos P (ĉ(x) =⊕|c(x) =⊕)

true negative rate,
specificity

tnr =
∑

x∈Te I [ĉ(x)=c(x)=ª]∑
x∈Te I [c(x)=ª] TN/Neg P (ĉ(x) =ª|c(x) =ª)

false positive rate,
false alarm rate

fpr =
∑

x∈Te I [ĉ(x)=⊕,c(x)=ª]∑
x∈Te I [c(x)=ª] FP/Neg = 1− tnr P (ĉ(x) =⊕|c(x) =ª)

false negative rate fnr =
∑

x∈Te I [ĉ(x)=ª,c(x)=⊕]∑
x∈Te I [c(x)=⊕] FN/Pos = 1− tpr P (ĉ(x) =ª|c(x) =⊕)

precision, confi-
dence

prec =
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [ĉ(x)=⊕] TP/(TP+FP) P (c(x) =⊕|ĉ(x) =⊕)

Table : A summary of different quantities and evaluation measures for classifiers on a
test set Te. Symbols starting with a capital letter denote absolute frequencies (counts),
while lower-case symbols denote relative frequencies or ratios. All except those
indicated with (*) are defined only for binary classification.
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2. Binary classification and related tasks 2.1 Classification

Figure 2.2, p.58 A coverage plot
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(left) A coverage plot depicting the two contingency tables in Table 2.2. The plot is

square because the class distribution is uniform. (right) Coverage plot for Example 2.1,

with a class ratio clr = 3.
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2. Binary classification and related tasks 2.1 Classification

Figure 2.3, p.59 An ROC plot
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(left) C1 and C3 both dominate C2, but neither dominates the other. The diagonal line

indicates that C1 and C3 achieve equal accuracy. (right) The same plot with normalised

axes. We can interpret this plot as a merger of the two coverage plots in Figure 2.2,

employing normalisation to deal with the different class distributions. The diagonal line

now indicates that C1 and C3 have the same average recall.
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2. Binary classification and related tasks 2.1 Classification

Important points to remember

In a coverage plot, classifiers with the same accuracy are connected by line
segments with slope 1.

In a ROC plot (i.e., a normalised coverage plot), line segments with slope 1
connect classifiers with the same average recall.
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2. Binary classification and related tasks 2.1 Classification

Figure 2.4, p.61 Comparing coverage and ROC plots
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(left) In a coverage plot, accuracy isometrics have a slope of 1, and average recall

isometrics are parallel to the ascending diagonal. (right) In the corresponding ROC plot,

average recall isometrics have a slope of 1; the accuracy isometric here has a slope of 3,

corresponding to the ratio of negatives to positives in the data set.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 74 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


2. Binary classification and related tasks 2.2 Scoring and ranking

What’s next?

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

Scoring and ranking
Assessing and visualising ranking performance
Turning rankers into classifiers

Class probability estimation
Assessing class probability estimates
Turning rankers into class probability estimators
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2. Binary classification and related tasks 2.2 Scoring and ranking

Scoring classifier

A scoring classifier is a mapping ŝ : X →Rk , i.e., a mapping from the instance
space to a k-vector of real numbers.
The boldface notation indicates that a scoring classifier outputs a vector
ŝ(x) = (ŝ1(x), . . . , ŝk (x)) rather than a single number; ŝi (x) is the score assigned
to class Ci for instance x.
This score indicates how likely it is that class label Ci applies.

If we only have two classes, it usually suffices to consider the score for only one
of the classes; in that case, we use ŝ(x) to denote the score of the positive class
for instance x.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.5, p.62 A scoring tree

ʻViagraʼ

ʻlotteryʼ

=0

spam: 20
ham: 5

 =1

spam: 20
  ham: 40

=0

spam: 10
ham: 5

 =1

ʻViagraʼ

ʻlotteryʼ

=0

ŝ(x) = +2

  =1

ŝ(x) = −1

=0

ŝ(x) = +1

 =1

(left) A feature tree with training set class distribution in the leaves. (right) A scoring tree

using the logarithm of the class ratio as scores; spam is taken as the positive class.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Margins and loss functions

If we take the true class c(x) as +1 for positive examples and −1 for negative
examples, then the quantity z(x) = c(x)ŝ(x) is positive for correct predictions and
negative for incorrect predictions: this quantity is called the margin assigned by
the scoring classifier to the example.

We would like to reward large positive margins, and penalise large negative
values. This is achieved by means of a so-called loss function L :R 7→ [0,∞)
which maps each example’s margin z(x) to an associated loss L(z(x)).

We will assume that L(0) = 1, which is the loss incurred by having an example on
the decision boundary. We furthermore have L(z) ≥ 1 for z < 0, and usually also
0 ≤ L(z) < 1 for z > 0 (Figure 2.6).

The average loss over a test set Te is 1
|Te|

∑
x∈Te L(z(x)).
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2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.6, p.63 Loss functions
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From bottom-left (i) 0–1 loss L01(z) = 1 if z ≤ 0, and L01(z) = 0 if z > 0; (ii) hinge loss

Lh(z) = (1− z) if z ≤ 1, and Lh(z) = 0 if z > 1; (iii) logistic loss

Llog(z) = log2(1+exp(−z)); (iv ) exponential loss Lexp(z) = exp(−z); (v ) squared loss

Lsq(z) = (1− z)2 (this can be set to 0 for z > 1, just like hinge loss).
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2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.2, p.64 Ranking example

t The scoring tree in Figure 2.5 produces the following ranking:
[20+,5−][10+,5−][20+,40−]. Here, 20+ denotes a sequence of 20
positive examples, and instances in square brackets [. . . ] are tied.

t By selecting a split point in the ranking we can turn the ranking into a
classification. In this case there are four possibilities:

(A) setting the split point before the first segment, and thus assigning all
segments to the negative class;

(B) assigning the first segment to the positive class, and the other two to
the negative class;

(C) assigning the first two segments to the positive class; and
(D) assigning all segments to the positive class.

t In terms of actual scores, this corresponds to (A) choosing any score larger
than 2 as the threshold; (B) choosing a threshold between 1 and 2; (C)
setting the threshold between −1 and 1; and (D) setting it lower than −1.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.3, p.65 Ranking accuracy

The ranking error rate is defined as

rank-err =
∑

x∈Te⊕,x ′∈Teª I [ŝ(x) < ŝ(x ′)]+ 1
2 I [ŝ(x) = ŝ(x ′)]

Pos ·Neg

t The 5 negatives in the right leaf are scored higher than the 10 positives in
the middle leaf and the 20 positives in the left leaf, resulting in
50+100 = 150 ranking errors.

t The 5 negatives in the middle leaf are scored higher than the 20 positives in
the left leaf, giving a further 100 ranking errors.

t In addition, the left leaf makes 800 half ranking errors (because 20 positives
and 40 negatives get the same score), the middle leaf 50 and the right leaf
100.

t In total we have 725 ranking errors out of a possible 50 ·50 = 2500,
corresponding to a ranking error rate of 29% or a ranking accuracy of 71%.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.7, p.66 Coverage curve
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(left) Each cell in the grid denotes a unique pair of one positive and one negative

example: the green cells indicate pairs that are correctly ranked by the classifier, the red

cells represent ranking errors, and the orange cells are half-errors due to ties. (right)
The coverage curve of a tree-based scoring classifier has one line segment for each leaf

of the tree, and one (FP,TP) pair for each possible threshold on the score.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Important point to remember

The area under the ROC curve is the ranking accuracy.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.4, p.67 Class imbalance

t Suppose we feed the scoring tree in Figure 2.5 an extended test set, with
an additional batch of 50 negatives.

t The added negatives happen to be identical to the original ones, so the net
effect is that the number of negatives in each leaf doubles.

t As a result the coverage curve changes (because the class ratio changes),
but the ROC curve stays the same (Figure 2.8).

t Note that the ranking accuracy stays the same as well: while the classifier
makes twice as many ranking errors, there are also twice as many
positive–negative pairs, so the ranking error rate doesn’t change.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.8, p.67 Class imbalance
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(left) A coverage curve obtained from a test set with class ratio clr = 1/2. (right) The

corresponding (axis-normalised) ROC curve is the same as the one corresponding to the

coverage curve in Figure 2.7 (right). The ranking accuracy is the area under the ROC

curve (AUC).
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2. Binary classification and related tasks 2.2 Scoring and ranking

Rankings from grading classifiers

Figure 2.9 (left) shows a linear classifier (the decision boundary is denoted B)
applied to a small data set of five positive and five negative examples, achieving
an accuracy of 0.80.

We can derive a score from this linear classifier by taking the distance of an
example from the decision boundary; if the example is on the negative side we
take the negative distance. This means that the examples are ranked in the
following order: p1 – p2 – p3 – n1 – p4 – n2 – n3 – p5 – n4 – n5.

This ranking incurs four ranking errors: n1 before p4, and n1, n2 and n3 before
p5. Figure 2.9 (right) visualises these four ranking errors in the top-left corner.
The AUC of this ranking is 21/25 = 0.84.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.9, p.68 Rankings from grading classifiers
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(left) A linear classifier induces a ranking by taking the signed distance to the decision

boundary as the score. This ranking only depends on the orientation of the decision

boundary: the three lines result in exactly the same ranking. (right) The grid of correctly

ranked positive–negative pairs (in green) and ranking errors (in red).
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2. Binary classification and related tasks 2.2 Scoring and ranking

Important point to remember

By decreasing a model’s refinement we sometimes achieve better ranking
performance.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.10, p.70 Coverage curve of grading classifier
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The coverage curve of the linear classifier in Figure 2.9. The points labelled A, B and C

indicate the classification performance of the corresponding decision boundaries. The

dotted lines indicate the improvement that can be obtained by turning the grading

classifier into a grouping classifier with four segments.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Important point to remember

Grouping model ROC curves have as many line segments as there are instance
space segments in the model; grading models have one line segment for each
example in the data set.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.5, p.70 Tuning your spam filter I

You have carefully trained your Bayesian spam filter, and all that remains is
setting the decision threshold. You select a set of six spam and four ham e-mails
and collect the scores assigned by the spam filter. Sorted on decreasing score
these are 0.89 (spam), 0.80 (spam), 0.74 (ham), 0.71 (spam), 0.63 (spam), 0.49
(ham), 0.42 (spam), 0.32 (spam), 0.24 (ham), and 0.13 (ham).

If the class ratio of 3 spam against 2 ham is representative, you can select the
optimal point on the ROC curve using an isometric with slope 2/3. As can be
seen in Figure 2.11, this leads to putting the decision boundary between the
sixth spam e-mail and the third ham e-mail, and we can take the average of their
scores as the decision threshold (0.28).
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2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.5, p.70 Tuning your spam filter II

An alternative way of finding the optimal point is to iterate over all possible split
points – from before the top ranked e-mail to after the bottom one – and calculate
the number of correctly classified examples at each split: 4 – 5 – 6 – 5 – 6 – 7 – 6
– 7 – 8 – 7 – 6. The maximum is achieved at the same split point, yielding an
accuracy of 0.80.

A useful trick to find out which accuracy an isometric in an ROC plot represents
is to intersect the isometric with the descending diagonal. Since accuracy is a
weighted average of the true positive and true negative rates, and since these
are the same in a point on the descending diagonal, we can read off the
corresponding accuracy value on the y-axis.
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2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.11, p.71 Finding the optimal point
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Selecting the optimal point on an ROC curve. The top dotted line is the accuracy

isometric, with a slope of 2/3. The lower isometric doubles the value (or prevalence) of

negatives, and allows a choice of thresholds. By intersecting the isometrics with the

descending diagonal we can read off the achieved accuracy on the y-axis.
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2. Binary classification and related tasks 2.3 Class probability estimation

What’s next?

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

Scoring and ranking
Assessing and visualising ranking performance
Turning rankers into classifiers

Class probability estimation
Assessing class probability estimates
Turning rankers into class probability estimators

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 94 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


2. Binary classification and related tasks 2.3 Class probability estimation

Class probability estimation

A class probability estimator – or probability estimator in short – is a scoring
classifier that outputs probability vectors over classes, i.e., a mapping
p̂ : X → [0,1]k . We write p̂(x) = (

p̂1(x), . . . , p̂k (x)
)
, where p̂i (x) is the

probability assigned to class Ci for instance x, and
∑k

i=1 p̂i (x) = 1.

If we have only two classes, the probability associated with one class is 1 minus
the probability of the other class; in that case, we use p̂(x) to denote the
estimated probability of the positive class for instance x.

As with scoring classifiers, we usually do not have direct access to the true
probabilities pi (x).
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2. Binary classification and related tasks 2.3 Class probability estimation

Figure 2.12, p.73 Probability estimation tree
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 =1

A probability estimation tree derived from the feature tree in Figure 1.4.
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2. Binary classification and related tasks 2.3 Class probability estimation

Mean squared probability error

We can define the squared error (SE) of the predicted probability vector
p̂(x) = (

p̂1(x), . . . , p̂k (x)
)

as

SE(x) = 1

2

k∑
i=1

(p̂i (x)− I [c(x) =Ci ])2

and the mean squared error (MSE) as the average squared error over all
instances in the test set:

MSE(Te) = 1

|Te|
∑

x∈Te
SE(x)

The factor 1/2 in Equation 2.6 ensures that the squared error per example is
normalised between 0 and 1: the worst possible situation is that a wrong class is
predicted with probability 1, which means two ‘bits’ are wrong.
For two classes this reduces to a single term (p̂(x)− I [c(x) =⊕])2 only referring
to the positive class.
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2. Binary classification and related tasks 2.3 Class probability estimation

Example 2.6, p.74 Squared error

Suppose one model predicts (0.70,0.10,0.20) for a particular example x in a
three-class task, while another appears much more certain by predicting
(0.99,0,0.01).

t If the first class is the actual class, the second prediction is clearly better
than the first: the SE of the first prediction is
((0.70−1)2 + (0.10−0)2 + (0.20−0)2)/2 = 0.07, while for the second
prediction it is ((0.99−1)2 + (0−0)2 + (0.01−0)2)/2 = 0.0001. The first
model gets punished more because, although mostly right, it isn’t quite sure
of it.

t However, if the third class is the actual class, the situation is reversed: now
the SE of the first prediction is
((0.70−0)2 + (0.10−0)2 + (0.20−1)2)/2 = 0.57, and of the second
((0.99−0)2 + (0−0)2 + (0.01−1)2)/2 = 0.98. The second model gets
punished more for not just being wrong, but being presumptuous.
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2. Binary classification and related tasks 2.3 Class probability estimation

Which probabilities achieve lowest MSE?

Returning to the probability estimation tree in Figure 2.12, we calculate the
squared error per leaf as follows (left to right):

SE1 = 20(0.33−1)2 +40(0.33−0)2 = 13.33

SE2 = 10(0.67−1)2 +5(0.67−0)2 = 3.33

SE3 = 20(0.80−1)2 +5(0.80−0)2 = 4.00

which leads to a mean squared error of MSE = 1
100 (SE1 +SE2 +SE3) = 0.21.

Changing the predicted probabilities in the left-most leaf to 0.40 for spam and
0.60 for ham, or 0.20 for spam and 0.80 for ham, results in a higher squared
error:

SE′
1 = 20(0.40−1)2 +40(0.40−0)2 = 13.6

SE′′
1 = 20(0.20−1)2 +40(0.20−0)2 = 14.4

Predicting probabilities obtained from the class distributions in each leaf is
optimal in the sense of lowest MSE.
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2. Binary classification and related tasks 2.3 Class probability estimation

Why predicting empirical probabilities is optimal

The reason for this becomes obvious if we rewrite the expression for two-class
squared error of a leaf as follows, using the notation n⊕ and nª for the numbers
of positive and negative examples in the leaf:

n⊕(p̂ −1)2 +nªp̂2 = (n⊕+nª)p̂2 −2n⊕p̂ +n⊕ = (n⊕+nª)
[
p̂2 −2ṗ p̂ + ṗ

]
= (n⊕+nª)

[
(p̂ − ṗ)2 + ṗ(1− ṗ)

]
where ṗ = n⊕/(n⊕+nª) is the relative frequency of the positive class among
the examples covered by the leaf, also called the empirical probability. As the
term ṗ(1− ṗ) does not depend on the predicted probability p̂, we see
immediately that we achieve lowest squared error in the leaf if we assign p̂ = ṗ.
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2. Binary classification and related tasks 2.3 Class probability estimation

Smoothing empirical probabilities

It is almost always a good idea to smooth these relative frequencies. The most
common way to do this is by means of the Laplace correction:

ṗi (S) = ni +1

|S|+k

In effect, we are adding uniformly distributed pseudo-counts to each of the k
alternatives, reflecting our prior belief that the empirical probabilities will turn out
uniform.
We can also apply non-uniform smoothing by setting

ṗi (S) = ni +m ·πi

|S|+m

This smoothing technique, known as the m-estimate, allows the choice of the
number of pseudo-counts m as well as the prior probabilities πi . The Laplace
correction is a special case of the m-estimate with m = k and πi = 1/k.
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2. Binary classification and related tasks 2.3 Class probability estimation

? Calibration loss and refinement loss

If all elements of S receive the same predicted probability vector p̂(S) – which
happens if S is a segment of a grouping model – then a similar derivation to the
one above allows us to write

SE(S) = ∑
x∈S

SE(x) = ∑
x∈S

1

2

k∑
i=1

(p̂i (x)− I [c(x) =Ci ])2

= 1

2
|S|

k∑
i=1

(p̂i (S)− ṗi (S))2 + 1

2
|S|

k∑
i=1

(ṗi (S)(1− ṗi (S))

The first term of the final expression is called the calibration loss, and measures
squared error with respect to the empirical probabilities. It can be reduced to 0 in
grouping models where we are free to choose the predicted probabilities for each
segment, as in probability estimation trees. Models with low calibration loss are
said to be well-calibrated.
The second term is called the refinement loss; this depends only on the empirical
probabilities, and is smaller if they are less uniform.
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2. Binary classification and related tasks 2.3 Class probability estimation

Important point to remember

Concavities in ROC curves can be remedied by combining segments through
tied scores.
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2. Binary classification and related tasks 2.3 Class probability estimation

Figure 2.13, p.77 ROC convex hull
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(left) The solid red line is the convex hull of the dotted ROC curve. (right) The

corresponding calibration map in red: the plateaus correspond to several examples

being mapped to the same segment of the convex hull, and linear interpolation between

example scores occurs when we transition from one convex hull segment to the next. A

Laplace-corrected calibration map is indicated by the dashed line in blue: Laplace

smoothing compresses the range of calibrated probabilities but can sometimes affect the

ranking.
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3. Beyond binary classification

What’s next?

3 Beyond binary classification
Handling more than two classes

Multi-class classification
Multi-class scores and probabilities

Regression
Unsupervised and descriptive learning

Predictive and descriptive clustering
Other descriptive models
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3. Beyond binary classification 3.1 Handling more than two classes

What’s next?

3 Beyond binary classification
Handling more than two classes

Multi-class classification
Multi-class scores and probabilities

Regression
Unsupervised and descriptive learning

Predictive and descriptive clustering
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.1, p.82 Performance of multi-class classifiers I

Consider the following three-class confusion matrix (plus marginals):

Predicted

15 2 3 20
Actual 7 15 8 30

2 3 45 50
24 20 56 100

t The accuracy of this classifier is (15+15+45)/100 = 0.75.

t We can calculate per-class precision and recall: for the first class this is
15/24 = 0.63 and 15/20 = 0.75 respectively, for the second class
15/20 = 0.75 and 15/30 = 0.50, and for the third class 45/56 = 0.80 and
45/50 = 0.90.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.1, p.82 Performance of multi-class classifiers II

t We could average these numbers to obtain single precision and recall
numbers for the whole classifier, or we could take a weighted average
taking the proportion of each class into account. For instance, the weighted
average precision is 0.20 ·0.63+0.30 ·0.75+0.50 ·0.80 = 0.75.

t Another possibility is to perform a more detailed analysis by looking at
precision and recall numbers for each pair of classes: for instance, when
distinguishing the first class from the third precision is 15/17 = 0.88 and
recall is 15/18 = 0.83, while distinguishing the third class from the first
these numbers are 45/48 = 0.94 and 45/47 = 0.96 (can you explain why
these numbers are much higher in the latter direction?).
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.2, p.85 One-versus-one voting I

A one-versus-one code matrix for k = 4 classes is as follows:
+1 +1 +1 0 0 0
−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1


Suppose our six pairwise classifiers predict w =+1 −1 +1 −1 +1 +1. We can
interpret this as votes for C1 – C3 – C1 – C3 – C2 – C3; i.e., three votes for C3,
two votes for C1 and one vote for C2. More generally, the i -th classifier’s vote for
the j -th class can be expressed as (1+wi c j i )/2, where c j i is the entry in the
j -th row and i -th column of the code matrix.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.2, p.85 One-versus-one voting II

However, this overcounts the 0 entries in the code matrix; since every class
participates in k −1 pairwise binary tasks, and there are l = k(k −1)/2 tasks, the
number of zeros in every row is
k(k −1)/2− (k −1) = (k −1)(k −2)/2 = l (k −2)/k (3 in our case). For each zero
we need to subtract half a vote, so the number of votes for C j is

v j =
(

l∑
i=1

1+wi c j i

2

)
− l

k −2

2k
=

(
l∑

i=1

wi c j i −1

2

)
+ l − l

k −2

2k

=−d j + l
2k −k +2

2k
= (k −1)(k +2)

4
−d j

where d j =∑
i (1−wi c j i )/2 is a bit-wise distance measure.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.2, p.85 One-versus-one voting III

In other words, the distance and number of votes for each class sum to a
constant depending only on the number of classes; with three classes this is 4.5.
This can be checked by noting that

t the distance between w and the first code word is 2.5 (two votes for C1);

t with the second code word, 3.5 (one vote for C2);

t with the third code word, 1.5 (three votes for C3);

t and 4.5 with the fourth code word (no votes).

So voting and distance-based decoding are equivalent in this case.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.3, p.86 Loss-based decoding

Continuing the previous example, suppose the scores of the six pairwise
classifiers are (+5,−0.5,+4,−0.5,+4,+0.5). This leads to the following margins,
in matrix form: 

+5 −0.5 +4 0 0 0
−5 0 0 −0.5 +4 0

0 +0.5 0 +0.5 0 +0.5
0 0 −4 0 −4 −0.5


Using 0–1 loss we ignore the magnitude of the margins and thus predict C3 as in
the voting-based scheme of Example 3.2. Using exponential loss
L(z) = exp(−z), we obtain the distances (4.67,153.08,4.82,113.85).
Loss-based decoding would therefore (just) favour C1, by virtue of its strong wins
against C2 and C4; in contrast, all three wins of C3 are with small margin.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.4, p.87 Coverage counts as scores I

Suppose we have three classes and three binary classifiers which either predict
positive or negative (there is no reject option). The first classifier classifies 8
examples of the first class as positive, no examples of the second class, and 2
examples of the third class. For the second classifier these counts are 2, 17 and
1, and for the third they are 4, 2 and 8. Suppose a test instance is predicted as
positive by the first and third classifiers. We can add the coverage counts of
these two classifiers to obtain a score vector of (12,2,10). Likewise, if all three
classifiers ‘fire’ for a particular test instance (i.e., predict positive), the score
vector is (14,19,11).
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.4, p.87 Coverage counts as scores II

We can describe this scheme conveniently using matrix notation:

(
1 0 1
1 1 1

) 8 0 2
2 17 1
4 2 8

=
(

12 2 10
14 19 11

)

The middle matrix contains the class counts (one row for each classifier). The
left 2-by-3 matrix contains, for each example, a row indicating which classifiers
fire for that example. The right-hand side then gives the combined counts for
each example.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.5, p.88 Multi-class AUC I

Assume we have a multi-class scoring classifier that produces a k-vector of
scores ŝ(x) = (ŝ1(x), . . . , ŝk (x)) for each test instance x.

t By restricting attention to ŝi (x) we obtain a scoring classifier for class Ci

against the other classes, and we can calculate the one-versus-rest AUC
for Ci in the normal way.

t By way of example, suppose we have three classes, and the
one-versus-rest AUCs come out as 1 for the first class, 0.8 for the second
class and 0.6 for the third class. Thus, for instance, all instances of class 1
receive a higher first entry in their score vectors than any of the instances of
the other two classes.

t The average of these three AUCs is 0.8, which reflects the fact that, if we
uniformly choose an index i , and we select an instance x uniformly among
class Ci and another instance x ′ uniformly among all instances not from Ci ,
then the expectation that ŝi (x) > ŝi (x ′) is 0.8.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.5, p.88 Multi-class AUC II

t Suppose now C1 has 10 instances, C2 has 20 and C3 70.

t The weighted average of the one-versus-rest AUCs is then 0.68: that is, if
we uniformly choose x without reference to the class, and then choose x ′

uniformly from among all instances not of the same class as x ′, the
expectation that ŝi (x) > ŝi (x ′) is 0.68.

t This is lower than before, because it is now more likely that a random x
comes from class C3, whose scores do a worse ranking job.
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3. Beyond binary classification 3.1 Handling more than two classes

One-versus-one AUC

We can obtain similar averages from one-versus-one AUCs.

t For instance, we can define AUCi j as the AUC obtained using scores ŝi to
rank instances from classes Ci and C j . Notice that ŝ j may rank these
instances differently, and so AUC j i 6= AUCi j .

t Taking an unweighted average over all i 6= j estimates the probability that,
for uniformly chosen classes i and j 6= i , and uniformly chosen x ∈Ci and
x ′ ∈C j , we have ŝi (x) > ŝi (x ′).

t The weighted version of this estimates the probability that the instances are
correctly ranked if we don’t pre-select the class.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.6, p.89 Reweighting multi-class scores

We illustrate the procedure for a three-class probabilistic classifier. The
probability vectors p̂(x) = (

p̂1(x), p̂2(x), p̂3(x)
)

can be thought of as points inside
the unit cube. Since the probabilities add up to 1, the points lie in an equilateral
triangle connecting three corners of the cube (Figure 3.1 (left)). Each corner of
this triangle represents one of the classes; the probability assigned to a particular
class in a given point is proportional to the distance to the opposite side.
Any decision rule of the form argmaxi wi ŝi (x) cuts the triangle in three areas
using lines perpendicular to the sides. For the unweighted decision rule these
lines intersect in the triangle’s centre of mass (Figure 3.1 (right)). Optimising the
separation between C2 against C1 means moving this point along a line parallel
to the base of the triangle, moving away from the class that receives greater
weight. Once the optimal point on this line is found, we optimise the separation of
C3 against the first two classes by moving in a direction perpendicular to the
previous line.
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3. Beyond binary classification 3.1 Handling more than two classes

Figure 3.1, p.89 ? Reweighting multi-class scores

(0,0,1)

(1,0,0)

(0,1,0)

3

1 2

(left) Triples of probabilistic scores represented as points in an equilateral triangle

connecting three corners of the unit cube. (right) The arrows show how the weights are

adjusted from the initial equal weights (dotted lines), first by optimising the separation of

C2 against C1 (dashed line), then by optimising the separation of C3 against the other

two classes (solid lines). The end result is that the weight of C1 is considerably

decreased, to the benefit of the other two classes.
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.7, p.90 Multi-class probabilities I

In Example 3.4 we can divide the class counts by the total number of positive
predictions. This results in the following class distributions: (0.80,0,0.20) for the
first classifier, (0.10,0.85,0.05) for the second classifier, and (0.29,0.14,0.57) for
the third. The probability distribution associated with the combination of the first
and third classifiers is

10

24
(0.80,0,0.20)+ 14

24
(0.29,0.14,0.57) = (0.50,0.08,0.42)

which is the same distribution as obtained by normalising the combined counts
(12,2,10). Similarly, the distribution associated with all three classifiers is

10

44
(0.80,0,0.20)+ 20

44
(0.10,0.85,0.05)+ 14

44
(0.29,0.14,0.57) = (0.32,0.43,0.25)
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3. Beyond binary classification 3.1 Handling more than two classes

Example 3.7, p.90 Multi-class probabilities II

Matrix notation describes this very succinctly as

(
10/24 0 14/24
10/44 20/44 14/44

) 0.80 0.00 0.20
0.10 0.85 0.05
0.29 0.14 0.57

=
(

0.50 0.08 0.42
0.32 0.43 0.25

)

The middle matrix is a row-normalised version of the middle matrix in Equation
3.1. Row normalisation works by dividing each entry by the sum of the entries in
the row in which it occurs. As a result the entries in each row sum to one, which
means that each row can be interpreted as a probability distribution. The left
matrix combines two pieces of information: (i) which classifiers fire for each
example (for instance, the second classifier doesn’t fire for the first example); and
(ii) the coverage of each classifier. The right-hand side then gives the class
distribution for each example. Notice that the product of row-normalised matrices
again gives a row-normalised matrix.
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3. Beyond binary classification 3.2 Regression

What’s next?
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3. Beyond binary classification 3.2 Regression

Real-valued targets

A function estimator, also called a regressor, is a mapping f̂ : X →R. The
regression learning problem is to learn a function estimator from examples
(xi , f (xi )).

Note that we switched from a relatively low-resolution target variable to one with
infinite resolution. Trying to match this precision in the function estimator will
almost certainly lead to overfitting – besides, it is highly likely that some part of
the target values in the examples is due to fluctuations that the model is unable
to capture.

It is therefore entirely reasonable to assume that the examples are noisy, and
that the estimator is only intended to capture the general trend or shape of the
function.
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3. Beyond binary classification 3.2 Regression

Example 3.8, p.92 Line fitting example

Consider the following set of five points:

x y
1.0 1.2
2.5 2.0
4.1 3.7
6.1 4.6
7.9 7.0

We want to estimate y by means of a polynomial in x. Figure 3.2 (left) shows the
result for degrees of 1 to 5 using tlinear regression, which will be explained in
Chapter 7. The top two degrees fit the given points exactly (in general, any set of
n points can be fitted by a polynomial of degree no more than n −1), but they
differ considerably at the extreme ends: e.g., the polynomial of degree 4 leads to
a decreasing trend from x = 0 to x = 1, which is not really justified by the data.
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3. Beyond binary classification 3.2 Regression

Figure 3.2, p.92 Fitting polynomials to data
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(left) Polynomials of different degree fitted to a set of five points. From bottom to top in

the top right-hand corner: degree 1 (straight line), degree 2 (parabola), degree 3, degree

4 (which is the lowest degree able to fit the points exactly), degree 5. (right) A piecewise

constant function learned by a grouping model; the dotted reference line is the linear

function from the left figure.
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3. Beyond binary classification 3.2 Regression

Overfitting again

An n-degree polynomial has n +1 parameters: e.g., a straight line y = a · x +b
has two parameters, and the polynomial of degree 4 that fits the five points
exactly has five parameters.

A piecewise constant model with n segments has 2n−1 parameters: n y-values
and n −1 x-values where the ‘jumps’ occur.

So the models that are able to fit the points exactly are the models with more
parameters.

A rule of thumb is that, to avoid overfitting, the number of parameters estimated
from the data must be considerably less than the number of data points.
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3. Beyond binary classification 3.2 Regression

? Bias and variance I

If we underestimate the number of parameters of the model, we will not be able
to decrease the loss to zero, regardless of how much training data we have.

On the other hand, with a larger number of parameters the model will be more
dependent on the training sample, and small variations in the training sample
can result in a considerably different model.

This is sometimes called the bias–variance dilemma: a low-complexity model
suffers less from variability due to random variations in the training data, but may
introduce a systematic bias that even large amounts of training data can’t
resolve; on the other hand, a high-complexity model eliminates such bias but can
suffer non-systematic errors due to variance.
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3. Beyond binary classification 3.2 Regression

? Bias and variance II

We can make this a bit more precise by noting that expected squared loss on a
training example x can be decomposed as follows:

E
[(

f (x)− f̂ (x)
)2

]
= (

f (x)−E[
f̂ (x)

])2 +E
[(

f̂ (x)−E[
f̂ (x)

])2
]

The expectation is taken over different training sets and hence different function
estimators.

The first term on the right is zero if these function estimators get it right on
average; otherwise the learning algorithm exhibits a systematic bias of some
kind.

The second term quantifies the variance in the function estimates f̂ (x) as a
result of variations in the training set.
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3. Beyond binary classification 3.2 Regression

Figure 3.3, p.94 ? Bias and variance
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A dartboard metaphor illustrating the concepts of bias and variance. Each dartboard

corresponds to a different learning algorithm, and each dart signifies a different training

sample. The top row learning algorithms exhibit low bias, staying close to the bull’s eye

(the true function value for a particular x) on average, while the ones on the bottom row

have high bias. The left column shows low variance and the right column high variance.
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

What’s next?

3 Beyond binary classification
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Table 3.1, p.95 Unsupervised and descriptive learning

Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery
Unsupervised learning predictive clustering descriptive clustering,

association rule discov-
ery

The learning settings indicated in bold are introduced in the remainder of this chapter.
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Important point to remember

In descriptive learning the task and learning problem coincide.
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Figure 3.4, p.96 Descriptive learning

Task

Descriptive 

model
Features

Domain 

objects

Discovery 
algorithm

Data

Learning problem

In descriptive learning the task and learning problem coincide: we do not have a

separate training set, and the task is to produce a descriptive model of the data.
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Predictive and descriptive clustering

One way to understand clustering is as learning a new labelling function from
unlabelled data. So we could define a ‘clusterer’ in the same way as a classifier,
namely as a mapping q̂ : X →C , where C = {C1,C2, . . . ,Ck } is a set of new
labels. This corresponds to a predictive view of clustering, as the domain of the
mapping is the entire instance space, and hence it generalises to unseen
instances.

A descriptive clustering model learned from given data D ⊆X would be a
mapping q̂ : D →C whose domain is D rather than X . In either case the labels
have no intrinsic meaning, other than to express whether two instances belong to
the same cluster. So an alternative way to define a clusterer is as an equivalence
relation q̂ ⊆X ×X or q̂ ⊆ D ×D or, equivalently, as a partition of X or D .
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Distance-based clustering I

Most distance-based clustering methods depend on the possibility of defining a
‘centre of mass’ or exemplar for an arbitrary set of instances, such that the
exemplar minimises some distance-related quantity over all instances in the set,
called its scatter. A good clustering is then one where the scatter summed over
each cluster – the within-cluster scatter – is much smaller than the scatter of the
entire data set.

This analysis suggests a definition of the clustering problem as finding a partition
D = D1 ] . . .]DK that minimises the within-cluster scatter. However, there are a
few issues with this definition:

t the problem as stated has a trivial solution: set K = |D| so that each
‘cluster’ contains a single instance from D and thus has zero scatter;

t if we fix the number of clusters K in advance, the problem cannot be solved
efficiently for large data sets (it is NP-hard).
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Distance-based clustering II

The first problem is the clustering equivalent of overfitting the training data. It
could be dealt with by penalising large K . Most approaches, however, assume
that an educated guess of K can be made. This leaves the second problem,
which is that finding a globally optimal solution is intractable for larger problems.
This is a well-known situation in computer science and can be dealt with in two
ways:

t by applying a heuristic approach, which finds a ‘good enough’ solution
rather than the best possible one;

t by relaxing the problem into a ‘soft’ clustering problem, by allowing
instances a degree of membership in more than one cluster.

Notice that a soft clustering generalises the notion of a partition, in the same way
that a probability estimator generalises a classifier.
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Figure 3.5, p.98 Predictive clustering
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(left) An example of a predictive clustering. The coloured dots were sampled from three

bivariate Gaussians centred at (1,1), (1,2) and (2,1). The crosses and solid lines are

the cluster exemplars and cluster boundaries found by 3-means. (right) A soft

clustering of the same data found by matrix decomposition.
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Example 3.9, p.98 Representing clusterings

The predictive cluster exemplars in Figure 3.5 (left) can be given as a c-by-2
matrix:  0.92 0.93

0.98 2.02
2.03 1.04


The following n-by-c matrices represent descriptive clusterings of given data
points: 

1 0 0
0 1 0
1 0 0
0 0 1

· · · · · · · · ·




0.40 0.30 0.30
0.40 0.51 0.09
0.44 0.29 0.27
0.35 0.08 0.57
· · · · · · · · ·


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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Example 3.10, p.99 Evaluating clusterings

Suppose we have five test instances that we think should be clustered as
{e1,e2}, {e3,e4,e5}. So out of the 5 ·4 = 20 possible pairs, 4 are considered
‘must-link’ pairs and the other 16 as ‘must-not-link’ pairs. The clustering to be
evaluated clusters these as {e1,e2,e3}, {e4,e5} – so two of the must-link pairs
are indeed clustered together (e1–e2, e4–e5), the other two are not (e3–e4,
e3–e5), and so on.
We can tabulate this as follows:

Are together Are not together

Should be together 2 2 4
Should not be together 2 14 16

4 16 20

We can now treat this as a two-by-two contingency table, and evaluate it
accordingly. For instance, we can take the proportion of pairs on the ‘good’
diagonal, which is 16/20 = 0.8. In classification we would call this accuracy, but
in the clustering context this is known as the Rand index.
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Example 3.11, p.100 Subgroup discovery

Imagine you want to market the new version of a successful product. You have a
database of people who have been sent information about the previous version,
containing all kinds of demographic, economic and social information about
those people, as well as whether or not they purchased the product.

t If you were to build a classifier or ranker to find the most likely customers for
your product, it is unlikely to outperform the majority class classifier
(typically, relatively few people will have bought the product).

t However, what you are really interested in is finding reasonably sized
subsets of people with a proportion of customers that is significantly higher
than in the overall population. You can then target those people in your
marketing campaign, ignoring the rest of your database.
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3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Example 3.12, p.101 Association rule discovery

Associations are things that usually occur together. For example, in market
basket analysis we are interested in items frequently bought together. An
example of an association rule is ·if beer then crisps·, stating that customers
who buy beer tend to also buy crisps.

t In a motorway service station most clients will buy petrol. This means that
there will be many frequent item sets involving petrol, such as
{newspaper,petrol}.

t This might suggest the construction of an association rule
·if newspaper then petrol· – however, this is predictable given that {petrol}
is already a frequent item set (and clearly at least as frequent as
{newspaper,petrol}).

t Of more interest would be the converse rule ·if petrol then newspaper·
which expresses that a considerable proportion of the people buying petrol
also buy a newspaper.
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4. Concept learning

What’s next?

4 Concept learning
The hypothesis space

Least general generalisation
Internal disjunction

Paths through the hypothesis space
Most general consistent hypotheses
Using first-order logic ?

Learnability ?
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4. Concept learning 4.1 The hypothesis space

What’s next?

4 Concept learning
The hypothesis space

Least general generalisation
Internal disjunction

Paths through the hypothesis space
Most general consistent hypotheses
Using first-order logic ?

Learnability ?
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4. Concept learning 4.1 The hypothesis space

Example 4.1, p.106 Learning conjunctive concepts

Suppose you come across a number of sea animals that you suspect belong to
the same species. You observe their length in metres, whether they have gills,
whether they have a prominent beak, and whether they have few or many teeth.
Using these features, the first animal can described by the following conjunction:

Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

The next one has the same characteristics but is a metre longer, so you drop the
length condition and generalise the conjunction to

Gills= no ∧ Beak= yes ∧ Teeth=many

The third animal is again 3 metres long, has a beak, no gills and few teeth, so
your description becomes

Gills= no ∧ Beak= yes

All remaining animals satisfy this conjunction, and you finally decide they are
some kind of dolphin.
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4. Concept learning 4.1 The hypothesis space

Figure 4.1, p.107 A hypothesis space

Length=3 & Gills=yes & Beak=yes & Teeth=many Length=3 & Gills=yes & Beak=yes & Teeth=fewLength=3 & Gills=yes & Beak=no & Teeth=many Length=3 & Gills=yes & Beak=no & Teeth=fewLength=3 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=3 & Gills=no & Beak=no & Teeth=many Length=3 & Gills=no & Beak=no & Teeth=fewLength=4 & Gills=yes & Beak=yes & Teeth=many Length=4 & Gills=yes & Beak=yes & Teeth=fewLength=4 & Gills=yes & Beak=no & Teeth=many Length=4 & Gills=yes & Beak=no & Teeth=fewLength=4 & Gills=no & Beak=yes & Teeth=many Length=4 & Gills=no & Beak=yes & Teeth=fewLength=4 & Gills=no & Beak=no & Teeth=many Length=4 & Gills=no & Beak=no & Teeth=fewLength=5 & Gills=yes & Beak=yes & Teeth=many Length=5 & Gills=yes & Beak=yes & Teeth=fewLength=5 & Gills=yes & Beak=no & Teeth=many Length=5 & Gills=yes & Beak=no & Teeth=fewLength=5 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=no & Teeth=many Length=5 & Gills=no & Beak=no & Teeth=few

Gills=yes & Beak=yes & Teeth=many Length=3 & Beak=yes & Teeth=manyLength=3 & Gills=yes & Teeth=many Length=3 & Gills=yes & Beak=yes

Beak=yes & Teeth=many

Gills=no & Beak=yes & Teeth=manyLength=4 & Beak=yes & Teeth=many Length=5 & Beak=yes & Teeth=many

Gills=yes & Teeth=many

Gills=yes & Beak=no & Teeth=manyLength=4 & Gills=yes & Teeth=many Length=5 & Gills=yes & Teeth=many

Gills=yes & Beak=yes

Gills=yes & Beak=yes & Teeth=fewLength=4 & Gills=yes & Beak=yes Length=5 & Gills=yes & Beak=yes

Teeth=many

Length=3 & Teeth=many Beak=no & Teeth=many Gills=no & Teeth=manyLength=4 & Teeth=many Length=5 & Teeth=many

Beak=yes

Length=3 & Beak=yes Beak=yes & Teeth=fewGills=no & Beak=yesLength=4 & Beak=yes Length=5 & Beak=yes

true

Gills=yes Length=3 Teeth=fewBeak=no Gills=noLength=4 Length=5

Length=3 & Gills=yes Gills=yes & Teeth=fewGills=yes & Beak=noLength=4 & Gills=yes Length=5 & Gills=yes

Length=3 & Beak=no & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Beak=yes & Teeth=fewLength=3 & Gills=no & Beak=yes

Length=3 & Teeth=fewLength=3 & Beak=no Length=3 & Gills=no

Length=3 & Gills=yes & Teeth=fewLength=3 & Gills=yes & Beak=no Gills=no & Beak=yes & Teeth=fewLength=4 & Beak=yes & Teeth=few Length=5 & Beak=yes & Teeth=fewGills=yes & Beak=no & Teeth=fewLength=4 & Gills=yes & Teeth=few Length=5 & Gills=yes & Teeth=few

Beak=no & Teeth=few Gills=no & Teeth=fewLength=4 & Teeth=few Length=5 & Teeth=few

Length=3 & Beak=no & Teeth=few Length=3 & Gills=no & Teeth=fewGills=no & Beak=no & Teeth=manyLength=4 & Beak=no & Teeth=many Length=5 & Beak=no & Teeth=many Length=4 & Gills=yes & Beak=no Length=5 & Gills=yes & Beak=no

Gills=no & Beak=noLength=4 & Beak=no Length=5 & Beak=no

Length=3 & Gills=no & Beak=no Gills=no & Beak=no & Teeth=fewLength=4 & Beak=no & Teeth=few Length=5 & Beak=no & Teeth=fewLength=4 & Gills=no & Teeth=many Length=5 & Gills=no & Teeth=many Length=4 & Gills=no & Beak=yes Length=5 & Gills=no & Beak=yes

Length=4 & Gills=no Length=5 & Gills=no

Length=4 & Gills=no & Teeth=few Length=5 & Gills=no & Teeth=fewLength=4 & Gills=no & Beak=no Length=5 & Gills=no & Beak=no

The hypothesis space corresponding to Example 4.1. The bottom row corresponds to

the 24 possible instances, which are complete conjunctions with four literals each.
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4. Concept learning 4.1 The hypothesis space

Figure 4.2, p.109 Reducing the hypothesis space

Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=few

Gills=no & Beak=yes & Teeth=many Length=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many

Gills=no & Teeth=many

Length=4 & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=4 & Gills=no & Beak=yes Gills=no & Beak=yes & Teeth=few

Teeth=many

Length=3 & Teeth=manyLength=4 & Teeth=many

Beak=yes

Length=3 & Beak=yesLength=4 & Beak=yes Beak=yes & Teeth=few

true

Gills=no Length=3Length=4 Teeth=few

Length=3 & Gills=noLength=4 & Gills=no Gills=no & Teeth=few

Length=3 & Beak=yes & Teeth=few

Length=3 & Teeth=few

Length=3 & Gills=no & Teeth=few

Part of the hypothesis space in Figure 4.1 containing only concepts that are more

general than at least one of the three given instances on the bottom row. Only four

conjunctions, indicated in green at the top, are more general than all three instances; the

least general of these is Gills= no ∧ Beak= yes. It can be observed that the two

left-most and right-most instances would be sufficient to learn that concept.
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4. Concept learning 4.1 The hypothesis space

Least General Generalisation (LGG)

Intuitively, the LGG of two instances is the nearest concept in the hypothesis
space where paths upward from both instances intersect. The fact that this point
is unique is a special property of many logical hypothesis spaces, and can be put
to good use in learning.

More precisely, such a hypothesis space forms a lattice: a partial order in which
each two elements have a least upper bound (lub) and a greatest lower bound
(glb). So, the LGG of a set of instances is exactly the least upper bound of the
instances in that lattice.

Furthermore, it is the greatest lower bound of the set of all generalisations of the
instances: all possible generalisations are at least as general as the LGG. In this
very precise sense, the LGG is the most conservative generalisation that we can
learn from the data.
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4. Concept learning 4.1 The hypothesis space

Algorithm 4.1, p.108 Least general generalisation

Algorithm LGG-Set(D) – find least general generalisation of a set of instances.

Input : data D .
Output : logical expression H .

1 x ←first instance from D ;
2 H ←x;
3 while instances left do
4 x ←next instance from D ;
5 H ←LGG(H , x) ; // e.g., LGG-Conj (Alg. 4.2) or LGG-Conj-ID (Alg. 4.3)

6 end
7 return H
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4. Concept learning 4.1 The hypothesis space

Algorithm 4.2, p.110 Least general conjunctive generalisation

Algorithm LGG-Conj(x, y) – find least general conjunctive generalisation of two
conjunctions.

Input : conjunctions x, y .
Output : conjunction z.

1 z ←conjunction of all literals common to x and y ;
2 return z
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4. Concept learning 4.1 The hypothesis space

Example 4.2, p.110 Negative examples

In Example 4.1 we observed the following dolphins:
p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

Suppose you next observe an animal that clearly doesn’t belong to the species –
a negative example. It is described by the following conjunction:

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
This negative example rules out some of the generalisations that were hitherto
still possible: in particular, it rules out the concept Beak= yes, as well as the
empty concept which postulates that everything is a dolphin.
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4. Concept learning 4.1 The hypothesis space

Figure 4.3, p.111 Employing negative examples

Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=yes & Beak=yes & Teeth=many

Gills=no & Beak=yes & Teeth=many Length=3 & Beak=yes & Teeth=manyLength=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many Gills=yes & Beak=yes & Teeth=many Length=5 & Beak=yes & Teeth=many

Gills=no & Teeth=many

Length=4 & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=4 & Gills=no & Beak=yes Gills=no & Beak=yes & Teeth=few

Teeth=many

Length=3 & Teeth=manyLength=4 & Teeth=many Gills=yes & Teeth=many Length=5 & Teeth=many

Beak=yes

Length=3 & Beak=yesLength=4 & Beak=yes Beak=yes & Teeth=fewGills=yes & Beak=yes Length=5 & Beak=yes

true

Gills=no Length=3Length=4 Teeth=fewGills=yes Length=5

Length=3 & Gills=noLength=4 & Gills=no Gills=no & Teeth=few

Length=3 & Beak=yes & Teeth=few

Length=3 & Teeth=few

Length=3 & Gills=no & Teeth=fewLength=5 & Gills=yes & Teeth=many Length=5 & Gills=yes & Beak=yes

Length=5 & Gills=yes

A negative example can rule out some of the generalisations of the LGG of the positive

examples. Every concept which is connected by a red path to a negative example covers

that negative and is therefore ruled out as a hypothesis. Only two conjunctions cover all

positives and no negatives: Gills= no ∧ Beak= yes and Gills= no.
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4. Concept learning 4.1 The hypothesis space

Example 4.3, p.112 Internal disjunction

We now enrich our hypothesis language with internal disjunction between values
of the same feature. Using the same three positive examples as in Example 4.1,
the second and third hypothesis are now

Length= [3,4] ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

and
Length= [3,4] ∧ Gills= no ∧ Beak= yes

We can drop any of the three conditions in the latter LGG without covering the
negative example from Example 4.2. Generalising further to single conditions,
we see that Length= [3,4] and Gills= no are still OK but Beak= yes is not, as it
covers the negative example.
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4. Concept learning 4.1 The hypothesis space

Figure 4.4, p.113 Hypothesis space with internal disjunction

Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=yes & Beak=yes & Teeth=many

Length=[3,4] & Gills=no & Beak=yes & Teeth=many Length=[3,5] & Gills=no & Beak=yes & Teeth=manyLength=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Gills=no & Beak=yes & Teeth=many

Length=[4,5] & Gills=no & Beak=yes & Teeth=many

Length=[3,4] & Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many

Length=[3,4] & Gills=no & Teeth=many

Length=4 & Gills=no & Teeth=many

Length=[3,4] & Gills=no & Beak=yes

Length=4 & Gills=no & Beak=yes Length=[3,4] & Gills=no & Beak=yes & Teeth=few

Beak=yes & Teeth=many

Length=[3,5] & Beak=yes & Teeth=manyLength=[4,5] & Beak=yes & Teeth=manyGills=yes & Beak=yes & Teeth=many

Gills=no & Teeth=many

Length=[3,5] & Gills=no & Teeth=manyLength=[4,5] & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=[3,5] & Gills=no & Beak=yesLength=[4,5] & Gills=no & Beak=yes Gills=no & Beak=yes & Teeth=few

Teeth=many

Length=[3,4] & Teeth=manyLength=[3,5] & Teeth=manyLength=[4,5] & Teeth=manyGills=yes & Teeth=many

Beak=yes

Length=[3,4] & Beak=yesLength=[3,5] & Beak=yesLength=[4,5] & Beak=yes Beak=yes & Teeth=fewGills=yes & Beak=yes

true

Gills=noLength=[3,4]Length=[3,5]Length=[4,5] Teeth=fewGills=yes

Length=[3,4] & Gills=no Length=[3,5] & Gills=noLength=[4,5] & Gills=no Gills=no & Teeth=few

Length=3 & Teeth=manyLength=4 & Teeth=many Length=3 & Beak=yesLength=4 & Beak=yes Length=[3,4] & Beak=yes & Teeth=few

Length=3Length=4 Length=[3,4] & Teeth=few

Length=3 & Gills=noLength=4 & Gills=no Length=[3,4] & Gills=no & Teeth=few

Length=[3,5] & Gills=yes & Beak=yes & Teeth=many Length=5 & Beak=yes & Teeth=many Length=[3,5] & Gills=no & Beak=yes & Teeth=few

Length=[3,5] & Gills=yes & Teeth=many Length=5 & Teeth=many Length=[3,5] & Beak=yes & Teeth=fewLength=[3,5] & Gills=yes & Beak=yes Length=5 & Beak=yes

Length=[3,5] & Teeth=fewLength=[3,5] & Gills=yes Length=5

Length=[3,5] & Gills=no & Teeth=few

Length=3 & Beak=yes & Teeth=few

Length=3 & Teeth=few

Length=3 & Gills=no & Teeth=fewLength=[4,5] & Gills=yes & Beak=yes & Teeth=many

Length=[4,5] & Gills=yes & Teeth=many Length=[4,5] & Gills=yes & Beak=yes

Length=[4,5] & Gills=yes

Length=5 & Gills=yes & Teeth=many Length=5 & Gills=yes & Beak=yes

Length=5 & Gills=yes

Length=[3,4] & Gills=no & Beak=yes

Length=[3,4] & Beak=yes Length=[3,4] & Gills=no Gills=no & Beak=yes

Length=[3,4] Gills=no

(left) A snapshot of the expanded hypothesis space that arises when internal disjunction

is used for the ‘Length’ feature. We now need one more generalisation step to travel

upwards from a completely specified example to the empty conjunction. (right) The

version space consists of one least general hypothesis, two most general hypotheses,

and three in between.
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4. Concept learning 4.1 The hypothesis space

Algorithm 4.3, p.112 LGG with internal disjunction

Algorithm LGG-Conj-ID(x, y) – find least general conjunctive generalisation of
two conjunctions, employing internal disjunction.

Input : conjunctions x, y .
Output : conjunction z.

1 z ←true;
2 for each feature f do
3 if f = vx is a conjunct in x and f = vy is a conjunct in y then
4 add f = Combine-ID(vx , vy ) to z ; // Combine-ID: see text
5 end
6 end
7 return z
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4. Concept learning 4.2 Paths through the hypothesis space

What’s next?

4 Concept learning
The hypothesis space

Least general generalisation
Internal disjunction

Paths through the hypothesis space
Most general consistent hypotheses
Using first-order logic ?

Learnability ?
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4. Concept learning 4.2 Paths through the hypothesis space

Definition 4.1, p.113 Version space

A concept is complete if it covers all positive examples. A concept is consistent if
it covers none of the negative examples. The version space is the set of all
complete and consistent concepts. This set is convex and is fully defined by its
least and most general elements.
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4. Concept learning 4.2 Paths through the hypothesis space

Figure 4.5, p.114 Paths through the hypothesis space

A: Length=3 & Gills=no & Beak=yes & Teeth=many

B: Length=[3,4] & Gills=no & Beak=yes & Teeth=many

C: Length=[3,4] & Gills=no & Beak=yes

E: Beak=yes

D: Length=[3,4] & Beak=yes

F: true

Negatives

P
os
iti
ve
s

p1
p2

p3

n1

A

B

C,D E,F

(left) A path in the hypothesis space of Figure 4.3 from one of the positive examples (p1,

see Example 4.2) all the way up to the empty concept. Concept A covers a single

example; B covers one additional example; C and D are in the version space, and so

cover all three positives; E and F also cover the negative. (right) The corresponding

coverage curve, with ranking p1 – p2 – p3 – n1.
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4. Concept learning 4.2 Paths through the hypothesis space

Important point to remember

An upward path through the hypothesis space corresponds to a coverage curve.
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4. Concept learning 4.2 Paths through the hypothesis space

Example 4.4, p.115 Data that is not conjunctively separable I

Suppose we have the following five positive examples (the first three are the
same as in Example 4.1):

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few
p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and the following negatives (the first one is the same as in Example 4.2):

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few
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4. Concept learning 4.2 Paths through the hypothesis space

Example 4.4, p.115 Data that is not conjunctively separable II

The least general complete hypothesis is Gills= no ∧ Beak= yes as before, but
this covers n5 and hence is inconsistent. There are seven most general
consistent hypotheses, none of which are complete:

Length= 3 (covers p1 and p3)
Length= [3,5] ∧ Gills= no (covers all positives except p2)
Length= [3,5] ∧ Teeth= few (covers p3 and p5)
Gills= no ∧ Teeth=many (covers p1, p2 and p4)
Gills= no ∧ Beak= no
Gills= yes ∧ Teeth= few
Beak= no ∧ Teeth= few

The last three of these do not cover any positive examples.
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4. Concept learning 4.2 Paths through the hypothesis space

Algorithm 4.4, p.116 Most general consistent specialisation

Algorithm MGConsistent(C , N ) – find most general consistent specialisations of
a concept.

Input : concept C ; negative examples N .
Output : set of concepts S.

1 if C doesn’t cover any element from N then return {C };
2 S ←;;
3 for each minimal specialisation C ′ of C do
4 S ←S∪ MGConsistent(C ′, N );
5 end
6 return S
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4. Concept learning 4.2 Paths through the hypothesis space

Figure 4.6, p.117 Another path

A: Length=3 & Gills=no & Beak=yes & Teeth=few

B: Length=[3,5] & Gills=no & Beak=yes & Teeth=few

C: Length=[3,5] & Gills=no & Beak=yes

D: Gills=no & Beak=yes

E: Gills=no

F: true

Negatives

P
os
iti
ve
s

p3
p5

p1
-2

p4
n5 n1-4

A

B

C

D,E F

(left) A path in the hypothesis space of Example 4.4. Concept A covers a single positive

(p3); B covers one additional positive (p5); C covers all positives except p4; D is the LGG

of all five positive examples, but also covers a negative (n5), as does E. (right) The

corresponding coverage curve.
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4. Concept learning 4.2 Paths through the hypothesis space

? Closed concepts

In this example, concepts D and E occupy the same point in coverage space:
generalising D into E by dropping Beak= yes does not change its coverage. That
the data suggests that, in the context of concept E, the condition Beak= yes is
implicitly understood.

A concept that includes all implicitly understood conditions is called a closed
concept. Essentially, a closed concept is the LGG of all examples that it covers.
For instance, D and E both cover all positives and n5; the LGG of those six
examples is Gills= no ∧ Beak= yes, which is D. Mathematically speaking we
say that the closure of E is D, which is also its own closure – hence the term
‘closed concept’.

This doesn’t mean that D and E are logically equivalent: there exist instances in
X that are covered by E but not by D. However, none of these ‘witnesses’ are
present in the data, and thus, as far as the data is concerned, D and E are
indistinguishable.
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4. Concept learning 4.2 Paths through the hypothesis space

Figure 4.7, p.118 ? Closed concepts

true

Teeth=manyBeak=yes Length=[3,4] Length=[3,5] Length=[4,5]

Beak=yes & Teeth=many Length=[3,4] & Teeth=many Length=[3,5] & Teeth=many Length=[4,5] & Teeth=many

Gills=no & Beak=yes & Teeth=many Length=[3,4] & Beak=yes & Teeth=many Length=[3,5] & Beak=yes & Teeth=many Length=[4,5] & Beak=yes & Teeth=many

Length=[3,4] & Gills=no & Beak=yes & Teeth=many Length=[3,5] & Gills=no & Beak=yes & Teeth=many Length=[4,5] & Gills=no & Beak=yes & Teeth=many

Length=3 & Gills=no & Beak=yes & Teeth=many Length=4 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many

Length=4 & Gills=yes & Beak=yes & Teeth=many

Length=5 & Beak=yes & Teeth=many

Length=5 & Gills=yes & Beak=yes & Teeth=many

Length=[4,5] & Gills=yes & Beak=yes & Teeth=many

Length=4 & Teeth=many

Length=4 & Gills=yes & Teeth=many

Length=4 & Gills=yes & Beak=no & Teeth=many

Length=5 & Teeth=many

Length=5 & Gills=yes & Teeth=many

Length=5 & Gills=yes & Beak=no & Teeth=many

Length=[4,5] & Gills=yes & Teeth=many

Length=[4,5] & Gills=yes & Beak=no & Teeth=many

Gills=no & Beak=yes Length=[3,4] & Beak=yes Length=[3,5] & Beak=yes Length=[4,5] & Beak=yes

Length=[3,4] & Gills=no & Beak=yes Length=[3,5] & Gills=no & Beak=yes Length=[4,5] & Gills=no & Beak=yesGills=no & Beak=yes & Teeth=few

Length=3 & Gills=no & Beak=yes Length=4 & Gills=no & Beak=yesLength=[3,4] & Gills=no & Beak=yes & Teeth=few

Length=3 & Gills=no & Beak=yes & Teeth=few Length=4 & Gills=no & Beak=yes & Teeth=few

Length=[3,5] & Gills=no & Beak=yes & Teeth=few Length=5 & Gills=no & Beak=yes

Length=5 & Gills=no & Beak=yes & Teeth=few

Length=[4,5] & Gills=no & Beak=yes & Teeth=few

Length=4 & Beak=yes Length=5 & Beak=yes

Length=4 Length=5

The hypothesis space is reduced considerably if we restrict attention to closed concepts.

There are three, rather than four, complete concepts (in green), and two, rather than

seven, most general consistent closed concepts (in orange).
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4. Concept learning 4.2 Paths through the hypothesis space

Algorithm 4.5, p.120 ? Learning a conjunction of Horn clauses

Algorithm Horn(Mb,Eq) – learn a conjunction of Horn clauses from membership and equivalence oracles.

Input : equivalence oracle Eq; membership oracle Mb.
Output : Horn theory h equivalent to target formula f .

1 h ←true; // conjunction of Horn clauses, initially empty
2 S ←; ; // a list of negative examples, initially empty
3 while Eq(h) returns counter-example x do
4 if x violates at least one clause of h then // x is a false negative
5 specialise h by removing every clause that x violates
6 else // x is a false positive
7 find the first negative example s ∈ S such that (i) z = s ∩x has fewer true literals than s, and

(ii) Mb(z) labels it as a negative;
8 if such an example exists then replace s in S with z, else append x to the end of S;
9 h ←true;

10 for all s ∈ S do // rebuild h from S
11 p ←the conjunction of literals true in s;
12 Q ←the set of literals false in s;
13 for all q ∈Q do h ←h ∧ (p → q) ;
14 end
15 end
16 end
17 return h
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4. Concept learning 4.2 Paths through the hypothesis space

Example 4.5, p.121 ? Learning a Horn theory I

Suppose the target theory f is

(ManyTeeth ∧ Short → Beak) ∧ (ManyTeeth ∧ Gills → Short)

This theory has 12 positive examples: eight in which ManyTeeth is false;
another two in which ManyTeeth is true but both Gills and Short are false; and
two more in which ManyTeeth, Short and Beak are true. The negative
examples, then, are

n1: ManyTeeth ∧ Gills ∧ Short ∧ ¬Beak
n2: ManyTeeth ∧ Gills ∧ ¬Short ∧ Beak
n3: ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak
n4: ManyTeeth ∧ ¬Gills ∧ Short ∧ ¬Beak

S is initialised to the empty list and h to the empty conjunction. We call the
equivalence oracle which returns a counter-example which has to be a false
positive (since every example satisfies our initial hypothesis), say n1 which
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4. Concept learning 4.2 Paths through the hypothesis space

Example 4.5, p.121 ? Learning a Horn theory II

violates the first clause in f . There are no negative examples in S yet, so we add
n1 to S (step 8 of Algorithm 4.5). We then generate a new hypothesis from S
(steps 9–13): p is ManyTeeth ∧ Gills ∧ Short and Q is {Beak}, so h becomes
(ManyTeeth ∧ Gills ∧ Short → Beak). Notice that this clause is implied by our
target theory: if ManyTeeth and Gills are true then so is Short by the second
clause of f ; but then so is Beak by f ’s first clause. But we need more clauses to
exclude all the negatives.
Now, suppose the next counter-example is the false positive n2. We form the
intersection with n1 which was already in S to see if we can get a negative
example with fewer literals set to true (step 7). The result is equal to n3 so the
membership oracle will confirm this as a negative, and we replace n1 in S with
n3. We then rebuild h from S which gives (p is ManyTeeth ∧ Gills and Q is
{Short,Beak})

(ManyTeeth ∧ Gills → Short) ∧ (ManyTeeth ∧ Gills → Beak)
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4. Concept learning 4.2 Paths through the hypothesis space

Example 4.5, p.121 ? Learning a Horn theory III

Finally, assume that n4 is the next false positive returned by the equivalence
oracle. The intersection with n3 on S is actually a positive example, so instead of
intersecting with n3 we append n4 to S and rebuild h. This gives the previous
two clauses from n3 plus the following two from n4:

(ManyTeeth ∧ Short → Gills) ∧ (ManyTeeth ∧ Short → Beak)

The first of this second pair will subsequently be removed by a false negative
from the equivalence oracle, leading to the final theory

(ManyTeeth ∧ Gills → Short) ∧
(ManyTeeth ∧ Gills → Beak) ∧

(ManyTeeth ∧ Short → Beak)

which is logically equivalent (though not identical) to f .
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4. Concept learning 4.2 Paths through the hypothesis space

Example 4.6, p.123 ? Using first-order logic

Consider the following terms:

BodyPart(x,PairOf(Gill)) describing the objects that have a pair of
gills;

BodyPart(Dolphin42,PairOf(y)) describing the body parts that Dolphin42
has a pair of.

The following two terms are their unification and anti-unification, respectively:

BodyPart(Dolphin42,PairOf(Gill)) describing Dolphin42 as having a pair of
gills;

BodyPart(x,PairOf(y)) describing the objects that have a pair of
unspecified body parts.
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4. Concept learning 4.3 Learnability ?

What’s next?

4 Concept learning
The hypothesis space

Least general generalisation
Internal disjunction

Paths through the hypothesis space
Most general consistent hypotheses
Using first-order logic ?

Learnability ?
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4. Concept learning 4.3 Learnability ?

Example 4.7, p.125 ? Shattering a set of instances

Consider the following instances:

m = ManyTeeth ∧ ¬Gills ∧ ¬Short ∧ ¬Beak
g = ¬ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak
s = ¬ManyTeeth ∧ ¬Gills ∧ Short ∧ ¬Beak
b = ¬ManyTeeth ∧ ¬Gills ∧ ¬Short ∧ Beak

There are 16 different subsets of the set {m, g , s,b}. Can each of them be
represented by its own conjunctive concept? The answer is yes: for every
instance we want to exclude, we add the corresponding negated literal to the
conjunction. Thus, {m, s} is represented by ¬Gills ∧ ¬Beak, {g , s,b} is
represented by ¬ManyTeeth, {s} is represented by
¬ManyTeeth ∧ ¬Gills ∧ ¬Beak, and so on. We say that this set of four
instances is shattered by the hypothesis language of conjunctive concepts.
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5. Tree models

What’s next?

5 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees
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5. Tree models

Figure 5.1, p.130 Paths as trees

Gills

Beak

=no

[0+, 4–]

 =yes

Length

=yes

[0+, 0–]

 =no

Teeth

=[3,5]

[1+, 1–]

 ≠[3,5]

Length

=few

[2+, 0–]

=many

[1+, 0–]

=3

[1+, 0–]

=5

ĉ(x) = ⊕

Gills

Length

=no

ĉ(x) = ⊖

 =yes

Teeth

ĉ(x) = ⊖

=few

ĉ(x) = ⊕

=many

=3  =4

ĉ(x) = ⊕

 =5

(left) The path from Figure 4.6, redrawn in the form of a tree. The coverage numbers in

the leaves are obtained from the data in Example 4.4. (right) A decision tree learned on

the same data. This tree separates the positives and negatives perfectly.
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5. Tree models

Important point to remember

Decision trees are strictly more expressive than conjunctive concepts.
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5. Tree models

Important point to remember

One way to avoid overfitting and encourage learning is to deliberately choose a
restrictive hypothesis language.
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5. Tree models

Definition 5.1, p.132 Feature tree

A feature tree is a tree such that each internal node (the nodes that are not
leaves) is labelled with a feature, and each edge emanating from an internal
node is labelled with a literal.

The set of literals at a node is called a split.

Each leaf of the tree represents a logical expression, which is the conjunction of
literals encountered on the path from the root of the tree to the leaf. The
extension of that conjunction (the set of instances covered by it) is called the
instance space segment associated with the leaf.
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5. Tree models

Algorithm 5.1, p.132 Growing a feature tree

Algorithm GrowTree(D,F ) – grow a feature tree from training data.

Input : data D ; set of features F .
Output : feature tree T with labelled leaves.

1 if Homogeneous(D) then return Label(D);
2 S ←BestSplit(D,F ) ; // e.g., BestSplit-Class (Algorithm 5.2)
3 split D into subsets Di according to the literals in S;
4 for each i do
5 if Di 6= ; then Ti ←GrowTree(Di ,F ) ;
6 else Ti is a leaf labelled with Label(D);
7 end
8 return a tree whose root is labelled with S and whose children are Ti
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5. Tree models

Growing a feature tree

Algorithm 5.1 gives the generic learning procedure common to most tree
learners. It assumes that the following three functions are defined:

Homogeneous(D) returns true if the instances in D are homogeneous enough
to be labelled with a single label, and false otherwise;

Label(D) returns the most appropriate label for a set of instances D ;

BestSplit(D,F ) returns the best set of literals to be put at the root of the tree.

These functions depend on the task at hand: for instance, for classification tasks
a set of instances is homogeneous if they are (mostly) of a single class, and the
most appropriate label would be the majority class. For clustering tasks a set of
instances is homogenous if they are close together, and the most appropriate
label would be some exemplar such as the mean.
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5. Tree models 5.1 Decision trees

What’s next?

5 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees
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5. Tree models 5.1 Decision trees

Figure 5.2, p.134 Measuring impurity I

Indicating the impurity of a single leaf D j as Imp(D j ), the impurity of a set of
mutually exclusive leaves {D1, . . . ,Dl } is defined as a weighted average

Imp({D1, . . . ,Dl }) =
l∑

j=1

|D j |
|D| Imp(D j )

where D = D1 ∪ . . .∪Dl .
For a binary split there is a nice geometric construction to find Imp({D1,D2}):

t We first find the impurity values Imp(D1) and Imp(D2) of the two children
on the impurity curve (here the Gini index).

t We then connect these two values by a straight line, as any weighted
average of the two must be on that line.

t Since the empirical probability of the parent is also a weighted average of
the empirical probabilities of the children, with the same weights (i.e.,
ṗ = |D1|

|D| ṗ1 + |D2|
|D| ṗ2),ṗ gives us the correct interpolation point.
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5. Tree models 5.1 Decision trees

Figure 5.2, p.134 Measuring impurity II

0 0.5 1

0.5

Imp(ṗ)

ṗ
0

0.48
Gini index

ṗṗ1 ṗ2

(left) Impurity functions plotted against the empirical probability of the positive class.

From the bottom: the relative size of the minority class, min(ṗ,1− ṗ); the Gini index,

2ṗ(1− ṗ); entropy, −ṗ log2 ṗ − (1− ṗ) log2(1− ṗ) (divided by 2 so that it reaches its

maximum in the same point as the others); and the (rescaled) square root of the Gini

index,
√

ṗ(1− ṗ) – notice that this last function describes a semi-circle. (right)
Geometric construction to determine the impurity of a split (Teeth= [many, few] from

Example 5.1): ṗ is the empirical probability of the parent, and ṗ1 and ṗ2 are the

empirical probabilities of the children.
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5. Tree models 5.1 Decision trees

Example 5.1, p.135 Calculating impurity I

Consider again the data in Example 4.4. We want to find the best feature to put
at the root of the decision tree. The four features available result in the following
splits:

Length= [3,4,5] [2+,0−][1+,3−][2+,2−]
Gills= [yes,no] [0+,4−][5+,1−]
Beak= [yes,no] [5+,3−][0+,2−]
Teeth= [many, few] [3+,4−][2+,1−]

Let’s calculate the impurity of the first split. We have three segments: the first
one is pure and so has entropy 0; the second one has entropy
−(1/4) log2(1/4)− (3/4) log2(3/4) = 0.5+0.31 = 0.81; the third one has entropy
1. The total entropy is then the weighted average of these, which is
2/10 ·0+4/10 ·0.81+4/10 ·1 = 0.72.
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5. Tree models 5.1 Decision trees

Example 5.1, p.135 Calculating impurity II

Similar calculations for the other three features give the following entropies:

Gills 4/10 ·0+6/10 · (−(5/6) log2(5/6)− (1/6) log2(1/6)
)= 0.39;

Beak 8/10 · (−(5/8) log2(5/8)− (3/8) log2(3/8)
)+2/10 ·0 = 0.76;

Teeth 7/10 · (−(3/7) log2(3/7)− (4/7) log2(4/7)
)

+3/10·(−(2/3) log2(2/3)− (1/3) log2(1/3)
)= 0.97.

We thus clearly see that ‘Gills’ is an excellent feature to split on; ‘Teeth’ is poor;
and the other two are somewhere in between.
The calculations for the Gini index are as follows (notice that these are on a scale
from 0 to 0.5):

Length 2/10 ·2 · (2/2 ·0/2)+4/10 ·2 · (1/4 ·3/4)+4/10 ·2 · (2/4 ·2/4) = 0.35;
Gills 4/10 ·0+6/10 ·2 · (5/6 ·1/6) = 0.17;
Beak 8/10 ·2 · (5/8 ·3/8)+2/10 ·0 = 0.38;
Teeth 7/10 ·2 · (3/7 ·4/7)+3/10 ·2 · (2/3 ·1/3) = 0.48.

As expected, the two impurity measures are in close agreement. See Figure 5.2
(right) for a geometric illustration of the last calculation concerning ‘Teeth’.
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5. Tree models 5.1 Decision trees

Algorithm 5.2, p.137 Finding the best split for a decision tree

Algorithm BestSplit-Class(D,F ) – find the best split for a decision tree.

Input : data D ; set of features F .
Output : feature f to split on.

1 Imin ←1;
2 for each f ∈ F do
3 split D into subsets D1, . . . ,Dl according to the values v j of f ;
4 if Imp({D1, . . . ,Dl }) < Imin then
5 Imin ←Imp({D1, . . . ,Dl });
6 fbest ← f ;
7 end
8 end
9 return fbest
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5. Tree models 5.1 Decision trees

Figure 5.3, p.137 Decision tree for dolphins

D: [2+, 0−]

A: Gills

B: Length

=no

C: [0+, 4−]

 =yes

E: Teeth

G: [0+, 1−]

=few

H: [1+, 0−]

=many

=3  =4

F: [2+, 0−]

 =5

Negatives
P
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p4
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(left) Decision tree learned from the data in Example 4.4. (right) Each internal and leaf

node of the tree corresponds to a line segment in coverage space: vertical segments for

pure positive nodes, horizontal segments for pure negative nodes, and diagonal

segments for impure nodes.
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5. Tree models 5.2 Ranking and probability estimation trees

What’s next?

5 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees
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5. Tree models 5.2 Ranking and probability estimation trees

Important point to remember

The ranking obtained from the empirical probabilities in the leaves of a decision
tree yields a convex ROC curve on the training data.
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5. Tree models 5.2 Ranking and probability estimation trees

Example 5.2, p.139 Growing a tree

Consider the tree in Figure 5.4 (left). Each node is labelled with the numbers of
positive and negative examples covered by it: so, for instance, the root of the tree
is labelled with the overall class distribution (50 positives and 100 negatives),
resulting in the trivial ranking [50+,100−]. The corresponding one-segment
coverage curve is the ascending diagonal (Figure 5.4 (right)).

t Adding split (1) refines this ranking into [30+,35−][20+,65−], resulting in a
two-segment curve.

t Adding splits (2) and (3) again breaks up the segment corresponding to the
parent into two segments corresponding to the children.

t However, the ranking produced by the full tree –
[15+,3−][29+,10−][5+,62−][1+,25−] – is different from the left-to-right
ordering of its leaves, hence we need to reorder the segments of the
coverage curve, leading to the top-most, solid curve. This reordering always
leads to a convex coverage curve
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5. Tree models 5.2 Ranking and probability estimation trees

Figure 5.4, p.140 Growing a tree

[50+, 100−]

[30+, 35−]

   (1)

[20+, 65−]

[29+, 10−]

  (2)

[1+, 25−] [15+, 3−]

   (3)

[5+, 62−]
Negatives

P
os
iti
ve
s

0
50

0 100

(1)(2)

(3)

(left) Abstract representation of a tree with numbers of positive and negative examples

covered in each node. Binary splits are added to the tree in the order indicated. (right)
Adding a split to the tree will add new segments to the coverage curve as indicated by

the arrows. After a split is added the segments may need reordering, and so only the

solid lines represent actual coverage curves.
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5. Tree models 5.2 Ranking and probability estimation trees

Figure 5.5, p.141 Labelling a tree

Negatives
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s

0
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−−−−

+−−−

−+−−

−−+−

−−−+

++−−

+−+−

+−−+

−++−

−+−+

−−++

+++−

++−+

+−++

−+++

++++

Graphical depiction of all possible labellings and all possible rankings that can be

obtained with the four-leaf decision tree in Figure 5.4. There are 24 = 16 possible leaf

labellings; e.g., ‘+−+−’ denotes labelling the first and third leaf from the left as + and

the second and fourth leaf as −. There are 4! = 24 possible blue-violet-red-orange paths

through these points which start in −−−− and switch each leaf to + in some order;

these represent all possible four-segment coverage curves or rankings.
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5. Tree models 5.2 Ranking and probability estimation trees

Choosing a labelling based on costs

Assume the training set class ratio clr = 50/100 is representative. We have a
choice of five labellings, depending on the expected cost ratio c = cFN/cFP of
misclassifying a positive in proportion to the cost of misclassifying a negative:

+−+− would be the labelling of choice if c = 1, or more generally if
10/29 < c < 62/5;

+−++ would be chosen if 62/5 < c < 25/1;
++++ would be chosen if 25/1 < c; i.e., we would always predict positive if

false negatives are more than 25 times as costly as false positives,
because then even predicting positive in the second leaf would reduce
cost;

−−+− would be chosen if 3/15 < c < 10/29;
−−−− would be chosen if c < 3/15; i.e., we would always predict negative if

false positives are more than 5 times as costly as false negatives,
because then even predicting negative in the third leaf would reduce
cost.
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5. Tree models 5.2 Ranking and probability estimation trees

Figure 5.6, p.143 Pruning a tree

[50+, 100−]

[30+, 35−] [20+, 65−]

[29+, 10−] [1+, 25−] [15+, 3−] [5+, 62−]
Negatives

P
os
iti
ve
s

0
50

0 100

(left) To achieve the labelling +−++ we don’t need the right-most split, which can

therefore be pruned away. (right) Pruning doesn’t affect the chosen operating point, but

it does decrease the ranking performance of the tree.
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5. Tree models 5.2 Ranking and probability estimation trees

Algorithm 5.3, p.144 Reduced-error pruning

Algorithm PruneTree(T,D) – reduced-error pruning of a decision tree.

Input : decision tree T ; labelled data D .
Output : pruned tree T ′.

1 for every internal node N of T , starting from the bottom do
2 TN ←subtree of T rooted at N ;
3 DN ← {x ∈ D|x is covered by N };
4 if accuracy of TN over DN is worse than majority class in DN then
5 replace TN in T by a leaf labelled with the majority class in DN ;
6 end
7 end
8 return pruned version of T
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5. Tree models 5.2 Ranking and probability estimation trees

Example 5.3, p.144 Skew sensitivity of splitting criteria I

Suppose you have 10 positives and 10 negatives, and you need to choose
between the two splits [8+,2−][2+,8−] and [10+,6−][0+,4−].

t You duly calculate the weighted average entropy of both splits and conclude
that the first split is the better one.

t Just to be sure, you also calculate the average Gini index, and again the
first split wins.

t You then remember somebody telling you that the square root of the Gini
index was a better impurity measure, so you decide to check that one out
as well. Lo and behold, it favours the second split...! What to do?
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5. Tree models 5.2 Ranking and probability estimation trees

Example 5.3, p.144 Skew sensitivity of splitting criteria II

You then remember that mistakes on the positives are about ten times as costly
as mistakes on the negatives.

t You’re not quite sure how to work out the maths, and so you decide to
simply have ten copies of every positive: the splits are now
[80+,2−][20+,8−] and [100+,6−][0+,4−].

t You recalculate the three splitting criteria and now all three favour the
second split.

t Even though you’re slightly bemused by all this, you settle for the second
split since all three splitting criteria are now unanimous in their
recommendation.
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5. Tree models 5.2 Ranking and probability estimation trees

Relative impurity

The Gini index of the parent is 2 n⊕
n

nª
n , and the weighted Gini index of one of the

children is n1
n 2

n⊕
1

n1

nª
1

n1
. So the weighted impurity of the child in proportion to the

parent’s impurity is
n⊕

1 nª
1 /n1

n⊕nª/n ; let’s call this relative impurity.
The same calculations for

p
Gini give

t impurity of the parent:

√
n⊕

n

nª

n
;

t weighted impurity of the child:
n1

n

√
n⊕

1

n1

nª
1

n1
;

t relative impurity:

√
n⊕

1 nª
1

n⊕nª .

This last ratio doesn’t change if we multiply all numbers involving positives with a
factor c. That is, a splitting criterion using

p
Gini as impurity measure is

insensitive to changes in class distribution – unlike Gini index and entropy.
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5. Tree models 5.2 Ranking and probability estimation trees

Figure 5.7, p.146 Skew sensitivity of splitting criteria

Negatives

P
os
iti
ve
s

Negatives

P
os
iti
ve
s

(left) ROC isometrics for entropy in blue, Gini index in violet and
p

Gini in red through

the splits [8+,2−][2+,8−] (solid lines) and [10+,6−][0+,4−] (dotted lines). Only
p

Gini

prefers the second split. (right) The same isometrics after inflating the positives with a

factor 10. All splitting criteria now favour the second split; the
p

Gini isometrics are the

only ones that haven’t moved.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 197 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


5. Tree models 5.2 Ranking and probability estimation trees

Important point to remember

Entropy and Gini index are sensitive to fluctuations in the class distribution,p
Gini isn’t.
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5. Tree models 5.2 Ranking and probability estimation trees

Peter’s recipe for decision tree learning

t First and foremost, I would concentrate on getting good ranking behaviour,
because from a good ranker I can get good classification and probability
estimation, but not necessarily the other way round.

t I would therefore try to use an impurity measure that is
distribution-insensitive, such as

p
Gini; if that isn’t available and I can’t hack

the code, I would resort to oversampling the minority class to achieve a
balanced class distribution.

t I would disable pruning and smooth the probability estimates by means of
the Laplace correction (or the m-estimate).

t Once I know the deployment operation conditions, I would use these to
select the best operating point on the ROC curve (i.e., a threshold on the
predicted probabilities, or a labelling of the tree).

t (optional) Finally, I would prune away any subtree whose leaves all have the
same label.
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5. Tree models 5.3 Tree learning as variance reduction

What’s next?

5 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees
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5. Tree models 5.3 Tree learning as variance reduction

Tree learning as variance reduction

t The variance of a Boolean (i.e., Bernoulli) variable with success probability
ṗ is ṗ(1− ṗ), which is half the Gini index. So we could interpret the goal of
tree learning as minimising the class variance (or standard deviation, in
case of

p
Gini) in the leaves.

t In regression problems we can define the variance in the usual way:

Var(Y ) = 1

|Y |
∑

y∈Y
(y − y)2

If a split partitions the set of target values Y into mutually exclusive sets
{Y1, . . . ,Yl }, the weighted average variance is then

Var({Y1, . . . ,Yl }) =
l∑

j=1

|Y j |
|Y | Var(Y j ) = . . . = 1

|Y |
∑

y∈Y
y2 −

l∑
j=1

|Y j |
|Y | y2

j

The first term is constant for a given set Y and so we want to maximise the
weighted average of squared means in the children.
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5. Tree models 5.3 Tree learning as variance reduction

Example 5.4, p.150 Learning a regression tree I

Imagine you are a collector of vintage Hammond tonewheel organs. You have
been monitoring an online auction site, from which you collected some data
about interesting transactions:

# Model Condition Leslie Price

1. B3 excellent no 4513
2. T202 fair yes 625
3. A100 good no 1051
4. T202 good no 270
5. M102 good yes 870
6. A100 excellent no 1770
7. T202 fair no 99
8. A100 good yes 1900
9. E112 fair no 77
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5. Tree models 5.3 Tree learning as variance reduction

Example 5.4, p.150 Learning a regression tree II

From this data, you want to construct a regression tree that will help you
determine a reasonable price for your next purchase.
There are three features, hence three possible splits:

Model= [A100,B3,E112,M102,T202]
[1051,1770,1900][4513][77][870][99,270,625]

Condition= [excellent,good, fair]
[1770,4513][270,870,1051,1900][77,99,625]

Leslie= [yes,no] [625,870,1900][77,99,270,1051,1770,4513]

The means of the first split are 1574, 4513, 77, 870 and 331, and the weighted
average of squared means is 3.21 ·106. The means of the second split are 3142,
1023 and 267, with weighted average of squared means 2.68 ·106; for the third
split the means are 1132 and 1297, with weighted average of squared means
1.55 ·106. We therefore branch on Model at the top level. This gives us three
single-instance leaves, as well as three A100s and three T202s.
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5. Tree models 5.3 Tree learning as variance reduction

Example 5.4, p.150 Learning a regression tree III

For the A100s we obtain the following splits:

Condition= [excellent,good, fair] [1770][1051,1900][]
Leslie= [yes,no] [1900][1051,1770]

Without going through the calculations we can see that the second split results in
less variance (to handle the empty child, it is customary to set its variance equal
to that of the parent). For the T202s the splits are as follows:

Condition= [excellent,good, fair] [][270][99,625]
Leslie= [yes,no] [625][99,270]

Again we see that splitting on Leslie gives tighter clusters of values. The learned
regression tree is depicted in Figure 5.8.
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5. Tree models 5.3 Tree learning as variance reduction

Figure 5.8, p.150 A regression tree

Model

Leslie

=A100

f̂(x)=4513

=B3

f̂(x)=77

 =E122

f̂(x)=870

 =M102

Leslie

=T202

f̂(x)=1900

=yes

f̂(x)=1411

 =no

f̂(x)=625

 =yes

f̂(x)=185

 =no

A regression tree learned from the data in Example 5.4.
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5. Tree models 5.3 Tree learning as variance reduction

Example 5.5, p.152 Learning a clustering tree I

Assessing the nine transactions on the online auction site from Example 5.4,
using some additional features such as reserve price and number of bids, you
come up with the following dissimilarity matrix:

0 11 6 13 10 3 13 3 12
11 0 1 1 1 3 0 4 0

6 1 0 2 1 1 2 2 1
13 1 2 0 0 4 0 4 0
10 1 1 0 0 3 0 2 0
3 3 1 4 3 0 4 1 3

13 0 2 0 0 4 0 4 0
3 4 2 4 2 1 4 0 4

12 0 1 0 0 3 0 4 0

This shows, for instance, that the first transaction is very different from the other
eight. The average pairwise dissimilarity over all nine transactions is 2.94.
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5. Tree models 5.3 Tree learning as variance reduction

Example 5.5, p.152 Learning a clustering tree II

Using the same features from Example 5.4, the three possible splits are (now
with transaction number rather than price):

Model= [A100,B3,E112,M102,T202] [3,6,8][1][9][5][2,4,7]
Condition= [excellent,good, fair] [1,6][3,4,5,8][2,7,9]
Leslie= [yes,no] [2,5,8][1,3,4,6,7,9]

The cluster dissimilarity among transactions 3, 6 and 8 is
1
32 (0+1+2+1+0+1+2+1+0) = 0.89; and among transactions 2, 4 and 7 it is
1
32 (0+1+0+1+0+0+0+0+0) = 0.22. The other three children of the first split
contain only a single element and so have zero cluster dissimilarity. The
weighted average cluster dissimilarity of the split is then
3/9 ·0.89+1/9 ·0+1/9 ·0+1/9 ·0+3/9 ·0.22 = 0.37. For the second split,
similar calculations result in a split dissimilarity of
2/9 ·1.5+4/9 ·1.19+3/9 ·0 = 0.86, and the third split yields
3/9 ·1.56+6/9 ·3.56 = 2.89. The Model feature thus captures most of the given
dissimilarities, while the Leslie feature is virtually unrelated.
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5. Tree models 5.3 Tree learning as variance reduction

Example 5.6, p.154 Clustering with Euclidean distance I

We extend our Hammond organ data with two new numerical features, one
indicating the reserve price and the other the number of bids made in the auction.

Model Condition Leslie Price Reserve Bids

B3 excellent no 45 30 22
T202 fair yes 6 0 9
A100 good no 11 8 13
T202 good no 3 0 1
M102 good yes 9 5 2
A100 excellent no 18 15 15
T202 fair no 1 0 3
A100 good yes 19 19 1
E112 fair no 1 0 5
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5. Tree models 5.3 Tree learning as variance reduction

Example 5.6, p.154 Clustering with Euclidean distance II

t The means of the three numerical features are (13.3,8.6,7.9) and their
variances are (158,101.8,48.8). The average squared Euclidean distance
to the mean is then the sum of these variances, which is 308.6.

t For the A100 cluster these vectors are (16,14,9.7) and (12.7,20.7,38.2),
with average squared distance to the mean 71.6; for the T202 cluster they
are (3.3,0,4.3) and (4.2,0,11.6), with average squared distance 15.8.

t Using this split we can construct a clustering tree whose leaves are labelled
with the mean vectors (Figure 5.9).
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5. Tree models 5.3 Tree learning as variance reduction

Figure 5.9, p.154 A clustering tree

Model

(16, 14, 9.7)

=A100

(45, 30, 22)

=B3

(1, 0, 5)

 =E122

(9, 5, 2)

 =M102

(3.3, 0, 4.3)

 =T202

A clustering tree learned from the data in Example 5.6 using Euclidean distance on the

numerical features.
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6. Rule models

What’s next?

6 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation
A closer look at rule overlap ?

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining
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6. Rule models 6.1 Learning ordered rule lists

What’s next?

6 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation
A closer look at rule overlap ?

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining
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6. Rule models 6.1 Learning ordered rule lists

Example 6.1, p.159 Learning a rule list I

Consider again our small dolphins data set with positive examples
p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few
p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and negatives
n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few
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6. Rule models 6.1 Learning ordered rule lists

Example 6.1, p.159 Learning a rule list II

t The nine possible literals are shown with their coverage counts in Figure 6.2
(left).

t Three of these are pure; in the impurity isometrics plot in Figure 6.2 (right)
they end up on the x-axis and y-axis.

t One of the literals covers two positives and two negatives, and therefore
has the same impurity as the overall data set; this literal ends up on the
ascending diagonal in the coverage plot.
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.2, p.160 Searching for literals

true
[5+, 5-]

Length=3
[2+, 0-]

Length=4
[1+, 3-]

Length=5
[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[5+, 1-]

Beak=yes
[5+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[3+, 4-]

Teeth=few
[2+, 1-]

Negatives

P
os
iti
ve
s

(left) All literals with their coverage counts on the data in Example 6.1. The ones in

green (red) are pure for the positive (negative) class. (right) The nine literals plotted as

points in coverage space, with their impurity values indicated by impurity isometrics

(away from the ascending diagonal is better). Impurity values are colour-coded: towards

green if ṗ > 1/2, towards red if ṗ < 1/2, and orange if ṗ = 1/2 (on a 45 degree

isometric). The violet arrow indicates the selected literal, which excludes all five positives

and one negative.
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.1, p.158 Equivalence of search heuristics

Negatives

P
os
iti
ve
s

0
P
os

0 Neg

ROC isometrics for entropy (rescaled to have a maximum value of 1/2), Gini index and

minority class. The grey dotted symmetry line is defined by ṗ = 1/2: each isometric has

two parts, one above the symmetry line (where impurity decreases with increasing

empirical probability ṗ) and its mirror image below the symmetry line (where impurity is

proportional to ṗ).
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.3, p.161 Constructing the second rule

true
[5+, 1-]

Length=3
[2+, 0-]

Length=4
[1+, 1-]

Length=5
[2+, 0-]

Gills=no
[5+, 1-]

Beak=yes
[5+, 1-]

Teeth=many
[3+, 0-]

Teeth=few
[2+, 1-]

Negatives

P
os
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ve
s

(left) Revised coverage counts after removing the four negative examples covered by the

first rule found (literals not covering any examples are omitted). (right) We are now

operating in the right-most ‘slice’ of Figure 6.2.
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.4, p.162 Constructing the third rule

true
[2+, 1-]

Length=3
[1+, 0-]

Length=4
[0+, 1-]

Length=5
[1+, 0-]

Gills=no
[2+, 1-]

Beak=yes
[2+, 1-]

Teeth=few
[2+, 1-]

Negatives

P
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(left) The third rule covers the one remaining negative example, so that the remaining

positives can be swept up by a default rule. (right) This will collapse the coverage space.
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6. Rule models 6.1 Learning ordered rule lists

Algorithm 6.1, p.163 Learning an ordered list of rules

Algorithm LearnRuleList(D) – learn an ordered list of rules.

Input : labelled training data D .
Output : rule list R.

1 R ←;;
2 while D 6= ; do
3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2
4 append r to the end of R;
5 D ←D \ {x ∈ D|x is covered by r };
6 end
7 return R

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 219 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


6. Rule models 6.1 Learning ordered rule lists

Algorithm 6.2, p.164 Learning a single rule

Algorithm LearnRule(D) – learn a single rule.

Input : labelled training data D .
Output : rule r .

1 b ←true;
2 L ←set of available literals;
3 while not Homogeneous(D) do
4 l ←BestLiteral(D,L) ; // e.g., highest purity; see text
5 b ←b ∧ l ;
6 D ← {x ∈ D|x is covered by b};
7 L ← L \ {l ′ ∈ L|l ′ uses same feature as l };
8 end
9 C ←Label(D) ; // e.g., majority class

10 r ←·if b then Class=C ·;
11 return r
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.5, p.164 Rule list as a tree

B: [0+, 4-]

D: [3+, 0-]

F: [0+, 1-]

A: Gills

 =yes

C: Teeth

 ≠yes

 =many

E: Length

 ≠many

 =4

G: [2+, 0-]

 ≠4

Negatives
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A
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C
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G

D

G

F B

(left) A right-branching feature tree corresponding to a list of single-literal rules. (right)
The construction of this feature tree depicted in coverage space. The leaves of the tree

are either purely positive (in green) or purely negative (in red). Reordering these leaves

on their empirical probability results in the blue coverage curve. As the rule list separates

the classes this is a perfect coverage curve.
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6. Rule models 6.1 Learning ordered rule lists

Important point to remember

Rule lists inherit the property of decision trees that their training set coverage
curve is always convex.
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6. Rule models 6.1 Learning ordered rule lists

Example 6.2, p.165 Rule lists as rankers I

Consider the following two concepts:

(A) Length= 4 p2 n2,n4–5
(B) Beak= yes p1–5 n1–2,n5

Indicated on the right is each concept’s coverage over the whole training set.
Using these concepts as rule bodies, we can construct the rule list AB:

·if Length= 4 then Class=ª· [1+,3−]
·else if Beak= yes then Class=⊕· [4+,1−]
·else Class=ª· [0+,1−]

The coverage curve of this rule list is given in Figure 6.6.
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6. Rule models 6.1 Learning ordered rule lists

Example 6.2, p.165 Rule lists as rankers II

t The first segment of the curve corresponds to all instances which are
covered by B but not by A, which is why we use the set-theoretical notation
B \ A.

t Notice that while this segment corresponds to the second rule in the rule
list, it comes first in the coverage curve because it has the highest
proportion of positives.

t The second coverage segment corresponds to rule A, and the third
coverage segment denoted ‘-’ corresponds to the default rule.

t This segment comes last, not because it represents the last rule, but
because it happens to cover no positives.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 224 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


6. Rule models 6.1 Learning ordered rule lists

Example 6.2, p.165 Rule lists as rankers III

We can also construct a rule list in the opposite order, BA:

·if Beak= yes then Class=⊕· [5+,3−]
·else if Length= 4 then Class=ª· [0+,1−]
·else Class=ª· [0+,1−]

The coverage curve of this rule list is also depicted in Figure 6.6. This time, the
first segment corresponds to the first segment in the rule list (B), and the second
and third segment are tied between rule A (after the instances covered by B are
taken away: A \ B) and the default rule.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 225 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


6. Rule models 6.1 Learning ordered rule lists

Figure 6.6, p.166 Rule lists as rankers
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B\A

A

-

B

A\B, -

Coverage curves of two rule lists consisting of the rules from Example 6.2, in different

order (AB in blue and BA in violet). B \ A corresponds to the coverage of rule B once

the coverage of rule A is taken away, and ‘-’ denotes the default rule. The dotted

segment in red connecting the two curves corresponds to the overlap of the two rules

A∧B, which is not accessible by either rule list.
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6. Rule models 6.1 Learning ordered rule lists

Important point to remember

Rule lists are similar to decision trees in that the empirical probabilities
associated with each rule yield convex ROC and coverage curves on the training
data.
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6. Rule models 6.2 Learning unordered rule sets

What’s next?

6 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation
A closer look at rule overlap ?

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining
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6. Rule models 6.2 Learning unordered rule sets

Example 6.3, p.167 Learning a rule set for class ⊕
Figure 6.7 shows that the first rule learned for the positive class is

·if Length= 3 then Class=⊕·

The two examples covered by this rule are removed, and a new rule is learned.
We now encounter a new situation, as none of the candidates is pure (Figure
6.8). We thus start a second-level search, from which the following pure rule
emerges:

·if Gills= no ∧ Length= 5 then Class=⊕·
To cover the remaining positive, we again need a rule with two conditions (Figure
6.9):

·if Gills= no ∧ Teeth=many then Class=⊕·
Notice that, even though these rules are overlapping, their overlap only covers
positive examples (since each of them is pure) and so there is no need to
organise them in an if-then-else list.
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.7, p.168 Learning a rule set

true
[5+, 5-]

Length=3
[2+, 0-]

Length=4
[1+, 3-]

Length=5
[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[5+, 1-]

Beak=yes
[5+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[3+, 4-]

Teeth=few
[2+, 1-]

Negatives

P
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s

(left) The first rule is learned for the positive class. (right) Precision isometrics look

identical to impurity isometrics (Figure 6.2); however, the difference is that precision is

lowest on the x-axis and highest on the y-axis, while purity is lowest on the ascending

diagonal and highest on both the x-axis and the y-axis.
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.8, p.169 Learning the second rule

true
[3+, 5-]

Length=4
[1+, 3-]

Length=5
[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[3+, 1-]

Beak=yes
[3+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[2+, 4-]

Teeth=few
[1+, 1-]

Gills=no & Length=4
[1+, 1-]

Gills=no & Length=5
[2+, 0-]

Gills=no & Beak=yes
[3+, 1-]

Gills=no & Teeth=many
[2+, 0-]

Gills=no & Teeth=few
[1+, 1-]

Negatives

P
os
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s

(left) The second rule needs two literals: we use maximum precision to select both.

(right) The coverage space is smaller because the two positives covered by the first rule

are removed. The blue box on the left indicates an even smaller coverage space in which

the search for the second literal is carried out, after the condition Gills= no filters out

four negatives. Inside the blue box precision isometrics overlap with those in the outer

box (this is not necessarily the case with search heuristics other than precision).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 231 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


6. Rule models 6.2 Learning unordered rule sets

Figure 6.9, p.170 Learning the third rule

true
[1+, 5-]

Length=4
[1+, 3-]

Length=5
[0+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[1+, 1-]

Beak=yes
[1+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[1+, 4-]

Teeth=few
[0+, 1-]

Length=4 & Gills=no
[1+, 1-]

Gills=no & Beak=yes
[1+, 1-]

Gills=no & Teeth=many
[1+, 0-]

Gills=no & Teeth=few
[0+, 1-] Negatives

P
os
iti
ve
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(left) The third and final rule again needs two literals. (right) The first literal excludes

four negatives, the second excludes the one remaining negative.
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6. Rule models 6.2 Learning unordered rule sets

Algorithm 6.3, p.171 Learning an unordered set of rules

Algorithm LearnRuleSet(D) – learn an unordered set of rules.

Input : labelled training data D .
Output : rule set R.

1 R ←;;
2 for every class Ci do
3 Di ←D ;
4 while Di contains examples of class Ci do
5 r ←LearnRuleForClass(Di ,Ci ) ; // LearnRuleForClass: see Algorithm

6.4
6 R ←R ∪ {r };
7 Di ←Di \ {x ∈Ci |x is covered by r } ; // remove only positives

8 end
9 end

10 return R
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6. Rule models 6.2 Learning unordered rule sets

Algorithm 6.4, p.171 Learning a single rule for a given class

Algorithm LearnRuleForClass(D,Ci ) – learn a single rule for a given class.

Input : labelled training data D ; class Ci .
Output : rule r .

1 b ←true;
2 L ←set of available literals ; // can be initialised by seed example
3 while not Homogeneous(D) do
4 l ←BestLiteral(D,L,Ci ) ; // e.g. maximising precision on class Ci

5 b ←b ∧ l ;
6 D ← {x ∈ D|x is covered by b};
7 L ← L \ {l ′ ∈ L|l ′ uses same feature as l };
8 end
9 r ←·if b then Class=Ci ·;

10 return r
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6. Rule models 6.2 Learning unordered rule sets

The need for probability smoothing

One issue with using precision as search heuristic is that it tends to focus a bit
too much on finding pure rules, thereby occasionally missing near-pure rules that
can be specialised into a more general pure rule.

t Consider Figure 6.10 (left): precision favours the rule
·if Length= 3 then Class=⊕·, even though the near-pure literal Gills= no
leads to the pure rule ·if Gills= no ∧ Teeth=many then Class=⊕·.

t A convenient way to deal with this ‘myopia’ of precision is the Laplace
correction, which ensures that [5+,1−] is ‘corrected’ to [6+,2−] and thus
considered to be of the same quality as [2+,0−] aka [3+,1−] (Figure 6.10
(right)).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 235 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


6. Rule models 6.2 Learning unordered rule sets

Figure 6.10, p.172 Using the Laplace correction

true
[5+, 5-]

Length=3
[2+, 0-]

Length=4
[1+, 3-]

Length=5
[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[5+, 1-]

Beak=yes
[5+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[3+, 4-]

Teeth=few
[2+, 1-]

Gills=no & Length=3
[2+, 0-]

Gills=no & Length=4
[1+, 1-]

Gills=no & Length=5
[2+, 0-]

Gills=no & Beak=yes
[5+, 1-]

Gills=no & Teeth=many
[3+, 0-]

Gills=no & Teeth=few
[2+, 1-]
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(left) Using Laplace-corrected precision allows learning a better rule in the first iteration.

(right) Laplace correction adds one positive and one negative pseudo-count, which

means that the isometrics now rotate around (−1,−1) in coverage space, resulting in a

preference for more general rules.
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6. Rule models 6.2 Learning unordered rule sets

Example 6.4, p.173 Rule sets as rankers I

Consider the following rule set (the first two rules were also used in Example 6.2):

(A) ·if Length= 4 then Class=ª· [1+,3−]
(B) ·if Beak= yes then Class=⊕· [5+,3−]
(C) ·if Length= 5 then Class=ª· [2+,2−]

t The figures on the right indicate coverage of each rule over the whole
training set. For instances covered by single rules we can use these
coverage counts to calculate probability estimates: e.g., an instance
covered only by rule A would receive probability p̂(A) = 1/4 = 0.25, and
similarly p̂(B) = 5/8 = 0.63 and p̂(C) = 2/4 = 0.50.

t Clearly A and C are mutually exclusive, so the only overlaps we need to
take into account are AB and BC.
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6. Rule models 6.2 Learning unordered rule sets

Example 6.4, p.173 Rule sets as rankers II

t A simple trick that is often applied is to average the coverage of the rules
involved: for example, the coverage of AB is estimated as [3+,3−] yielding
p̂(AB) = 3/6 = 0.50. Similarly, p̂(BC) = 3.5/6 = 0.58.

t The corresponding ranking is thus B – BC – [AB, C] – A, resulting in the
orange training set coverage curve in Figure 6.11.

Let us now compare this rule set with the following rule list ABC:

·if Length= 4 then Class=ª· [1+,3−]
·else if Beak= yes then Class=⊕· [4+,1−]
·else if Length= 5 then Class=ª· [0+,1−]

The coverage curve of this rule list is indicated in Figure 6.11 as the blue line. We
see that the rule set outperforms the rule list, by virtue of being able to distinguish
between examples covered by B only and those covered by both B and C.
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.11, p.174 Rule set vs rule list
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C\B\A
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AB, C
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Coverage curves of the rule set in Example 6.4 (in orange) and the rule list ABC (in

blue). The rule set partitions the instance space in smaller segments, which in this case

lead to better ranking performance.
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6. Rule models 6.2 Learning unordered rule sets

Example 6.5, p.175 ? Rule tree

From the rules in Example 6.4 we can construct the rule tree in Figure 6.12. The
use of a tree rather than a list allows further splitting of the segments of the rule
list.

t For example, the node labelled A is further split into AB (A∧B) and A-
(A∧¬B).

t As the latter is pure, we obtain a better coverage curve (the red line in
Figure 6.13).
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.12, p.175 ? Rule tree

[0+, 0-] [1+, 2-]

[1+, 2-]

 ABC  AB-

[0+, 0-] [0+, 1-]

[0+, 1-]

 A-C  A--

[1+, 3-]

 AB  A-

[2+, 1-] [2+, 0-]

[4+, 1-]

 -BC  -B-

[0+, 1-] [0+, 0-]

[0+, 1-]

 --C  ---

[4+, 2-]

 -B  --

[5+, 5-]

 A  -

A rule tree constructed from the rules in Example 6.5. Nodes are labelled with their

coverage (dotted leaves have empty coverage), and branch labels indicate particular

areas in the instance space (e.g., A-C denotes A∧¬B ∧C). The blue nodes are the

instance space segments corresponding to the rule list ABC: the rule tree has better

performance because it is able to split them further.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 241 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


6. Rule models 6.2 Learning unordered rule sets

Figure 6.13, p.176 ? Rule tree dominates rule list and rule set
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The blue line is the coverage curve of the rule list ABC in Example 6.4. This curve is

dominated by the red coverage curve, corresponding to the rule tree in Figure 6.12. The

rule tree also improves upon the rule set (orange curve in Figure 6.11), as it has access

to exact coverage counts in all segments and thus recognises that AB- goes before - -C.
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.14, p.177 ? Rule lists cannot reach some points

[2+, 0-] [2+, 1-]

[4+, 1-]

 XY  X-

[1+, 2-] [0+, 2-]

[1+, 4-]

 -Y  --

[5+, 5-]

 X  -
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XY

X-

-Y

--

X

Y\X

X\Y

Y

(left) A rule tree built on two rules X and Y. (right) The rule tree coverage curve strictly

dominates the convex hull of the two rule list curves. This means that there is an

operating point [2+,0−] that cannot be achieved by either rule list.
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6. Rule models 6.3 Descriptive rule learning

What’s next?

6 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation
A closer look at rule overlap ?

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining
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6. Rule models 6.3 Descriptive rule learning

Subgroup discovery

Subgroups are subsets of the instance space – or alternatively, mappings
ĝ : X → {true, false} – that are learned from a set of labelled examples
(xi , l (xi )), where l : X →C is the true labelling function.

t A good subgroup is one whose class distribution is significantly different
from the overall population. This is by definition true for pure subgroups, but
these are not the only interesting ones.

t For instance, one could argue that the complement of a subgroup is as
interesting as the subgroup itself: in our dolphin example, the concept
Gills= yes, which covers four negatives and no positives, could be
considered as interesting as its complement Gills= no, which covers one
negative and all positives.

t This means that we need to move away from impurity-based evaluation
measures.
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6. Rule models 6.3 Descriptive rule learning

Figure 6.15, p.179 Evaluating subgroups
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(left) Subgroups and their isometrics according to Laplace-corrected precision. The

solid, outermost isometrics indicate the best subgroups. (right) The ranking changes if

we order the subgroups on average recall. For example, [5+,1−] is now better than

[3+,0−] and as good as [0+,4−].
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6. Rule models 6.3 Descriptive rule learning

Example 6.6, p.180 Evaluating subgroups

Table 6.1 ranks ten subgroups in the dolphin example in terms of
Laplace-corrected precision and average recall.

t One difference is that Gills= no ∧ Teeth=many with coverage [3+,0−] is
better than Gills= no with coverage [5+,1−] in terms of Laplace-corrected
precision, but worse in terms of average recall, as the latter ranks it equally
with its complement Gills= yes.
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6. Rule models 6.3 Descriptive rule learning

Table 6.1, p.179 Evaluating subgroups

Subgroup Coverage precL Rank avg-rec Rank

Gills= yes [0+,4−] 0.17 1 0.10 1–2
Gills= no ∧ Teeth=many [3+,0−] 0.80 2 0.80 3
Gills= no [5+,1−] 0.75 3–9 0.90 1–2
Beak= no [0+,2−] 0.25 3–9 0.30 4–11
Gills= yes ∧ Beak= yes [0+,2−] 0.25 3–9 0.30 4–11
Length= 3 [2+,0−] 0.75 3–9 0.70 4–11
Length= 4 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11
Length= 5 ∧ Gills= no [2+,0−] 0.75 3–9 0.70 4–11
Length= 5 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11
Length= 4 [1+,3−] 0.33 10 0.30 4–11
Beak= yes [5+,3−] 0.60 11 0.70 4–11

Using Laplace-corrected precision we can evaluate the quality of a subgroup as

|precL −pos|. Alternatively, we can use average recall to define the quality of a subgroup

as |avg-rec−0.5|.
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6. Rule models 6.3 Descriptive rule learning

Algorithm 6.5, p.182 ? Weighted covering

Algorithm WeightedCovering(D) – learn overlapping rules by weighting exam-
ples.

Input : labelled training data D with instance weights initialised to 1.
Output : rule list R.

1 R ←;;
2 while some examples in D have weight 1 do
3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2
4 append r to the end of R;
5 decrease the weights of examples covered by r ;
6 end
7 return R

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 249 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


6. Rule models 6.3 Descriptive rule learning

Example 6.7, p.180 ? The effect of weighted covering

Suppose the first subgroup found is Length= 4, reducing the weight of the one
positive and three negatives covered by it to 1/2. Detailed calculations of how
this affects the weighted coverage of subgroups are given in Table 6.2.

t We can see how the coverage space shrinks to the blue box in Figure 6.16.
It also affects the weighted coverage of the subgroups overlapping with
Length= 4, as indicated by the arrows.

t Some subgroups end up closer to the diagonal and hence lose importance:
for instance, Length= 4 itself, which moves from [3+,1−] to [1.5+,0.5−].

t Others move away from the diagonal and hence gain importance: for
example Length= 5 ∧ Gills= yes at [0+,2−].
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6. Rule models 6.3 Descriptive rule learning

Table 6.2, p.180 ? The effect of weighted covering

Subgroup Coverage avg-rec Wgtd coverage W-avg-rec Rank

Gills= yes [0+,4−] 0.10 [0+,3−] 0.07 1–2
Gills= no [5+,1−] 0.90 [4.5+,0.5−] 0.93 1–2
Gills= no ∧ Teeth=many [3+,0−] 0.80 [2.5+,0−] 0.78 3
Length= 5 ∧ Gills= yes [0+,2−] 0.30 [0+,2−] 0.21 4
Length= 3 [2+,0−] 0.70 [2+,0−] 0.72 5–6
Length= 5 ∧ Gills= no [2+,0−] 0.70 [2+,0−] 0.72 5–6
Beak= no [0+,2−] 0.30 [0+,1.5−] 0.29 7–9
Gills= yes ∧ Beak= yes [0+,2−] 0.30 [0+,1.5−] 0.29 7–9
Beak= yes [5+,3−] 0.70 [4.5+,2−] 0.71 7–9
Length= 4 [1+,3−] 0.30 [0.5+,1.5−] 0.34 10
Length= 4 ∧ Gills= yes [0+,2−] 0.30 [0+,1−] 0.36 11

The ‘Wgtd coverage’ column shows how the weighted coverage of the subgroups is

affected if the weights of the examples covered by Length= 4 are reduced to 1/2.

‘W-avg-rec’ shows how how the avg-rec numbers as calculated in Table 6.1 are affected

by the weighting, leading to further differentiation between subgroups that were

previously considered equivalent.
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6. Rule models 6.3 Descriptive rule learning

Figure 6.16, p.181 ? The effect of weighted covering
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If the first subgroup found is Length= 4, then this halves the weight of one positive and

three negatives, shrinking the coverage space to the blue box. The arrows indicate how

this affects the weighted coverage of other subgroups, depending on which of the

reduced-weight examples they cover.
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6. Rule models 6.3 Descriptive rule learning

Items and transactions

Transaction Items

1 nappies
2 beer, crisps
3 apples, nappies
4 beer, crisps, nappies
5 apples
6 apples, beer, crisps, nappies
7 apples, crisps
8 crisps

Each transaction in this table involves a set of items; conversely, for each item we
can list the transactions in which it was involved: transactions 1, 3, 4 and 6 for
nappies, transactions 3, 5, 6 and 7 for apples, and so on. We can also do this for
sets of items: e.g., beer and crisps were bought together in transactions 2, 4 and
6; we say that item set {beer,crisps} covers transaction set {2,4,6}.
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6. Rule models 6.3 Descriptive rule learning

Figure 6.17, p.183 An item set lattice

{Nappies, Beer, Crisps, Apples}

{Beer, Crisps}

{Nappies, Beer, Crisps} {Beer, Crisps, Apples}

{Nappies, Apples}

{Nappies, Crisps, Apples} {Nappies, Beer, Apples}

{Crisps, Apples}

{Nappies}

{Nappies, Crisps} {Nappies, Beer}

{Apples}

{Beer, Apples}

{}

{Beer}{Crisps}

Item sets in dotted ovals cover a single transaction; in dashed ovals, two transactions; in

triangles, three transactions; and in polygons with n sides, n transactions. The maximal

item sets with support 3 or more are indicated in green.
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6. Rule models 6.3 Descriptive rule learning

Algorithm 6.6, p.184 Maximal item sets

Algorithm FrequentItems(D, f0) – find all maximal item sets exceeding a given support thresh-
old.

Input : data D ⊆X ; support threshold f0.
Output : set of maximal frequent item sets M .

1 M ←;;
2 initialise priority queue Q to contain the empty item set;
3 while Q is not empty do
4 I ← next item set deleted from front of Q;
5 max ← true ; // flag to indicate whether I is maximal
6 for each possible extension I ′ of I do
7 if Supp(I ′) ≥ f0 then
8 max ← false ; // frequent extension found, so I is not maximal
9 add I ′ to back of Q;

10 end
11 end
12 if max = true then M ← M ∪ {I };
13 end
14 return M
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Figure 6.18, p.185 ? Closed item sets

{}

{Apples} {Nappies} {Crisps}

{Nappies, Apples} {Crisps, Apples}

{Nappies, Beer, Crisps}

{Beer, Crisps}

{Nappies, Beer, Crisps, Apples}

Closed item set lattice corresponding to the item sets in Figure 6.17. This lattice has the

property that no two adjacent item sets have the same coverage.
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Association rules I

Frequent item sets can be used to build association rules, which are rules of the
form ·if B then H · where both body B and head H are item sets that frequently
appear in transactions together.

t Pick any edge in Figure 6.17, say the edge between {beer} and
{nappies,beer}. We know that the support of the former is 3 and of the
latter, 2: that is, three transactions involve beer and two of those involve
nappies as well. We say that the confidence of the association rule
·if beer then nappies· is 2/3.

t Likewise, the edge between {nappies} and {nappies,beer} demonstrates
that the confidence of the rule ·if nappies then beer· is 2/4.

t There are also rules with confidence 1, such as ·if beer then crisps·; and
rules with empty bodies, such as ·if true then crisps·, which has confidence
5/8 (i.e., five out of eight transactions involve crisps).
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Association rules II

But we only want to construct association rules that involve frequent items.

t The rule ·if beer ∧ apples then crisps· has confidence 1, but there is only
one transaction involving all three and so this rule is not strongly supported
by the data.

t So we first use Algorithm 6.6 to mine for frequent item sets; we then select
bodies B and heads H from each frequent set m, discarding rules whose
confidence is below a given confidence threshold.

t Notice that we are free to discard some of the items in the maximal frequent
sets (i.e., H ∪B may be a proper subset of m), because any subset of a
frequent item set is frequent as well.
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Algorithm 6.7, p.185 Association rule mining

Algorithm AssociationRules(D, f0,c0) – find all association rules exceeding given
support and confidence thresholds.

Input : data D ⊆X ; support threshold f0; confidence threshold c0.
Output : set of association rules R.

1 R ←;;
2 M ← FrequentItems(D, f0) ; // FrequentItems: see Algorithm 6.6
3 for each m ∈ M do
4 for each H ⊆ m and B ⊆ m such that H ∩B =; do
5 if Supp(B ∪H)/Supp(B) ≥ c0 then R ← R ∪ {·if B then H ·};
6 end
7 end
8 return R
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Association rule example

A run of the algorithm with support threshold 3 and confidence threshold 0.6
gives the following association rules:

·if beer then crisps· support 3, confidence 3/3
·if crisps then beer· support 3, confidence 3/5
·if true then crisps· support 5, confidence 5/8

Association rule mining often includes a post-processing stage in which
superfluous rules are filtered out, e.g., special cases which don’t have higher
confidence than the general case.
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Post-processing

One quantity that is often used in post-processing is lift, defined as

Lift(·if B then H ·) = n ·Supp(B ∪H)

Supp(B) ·Supp(H)

where n is the number of transactions.

t For example, for the the first two association rules above we would have lifts
of 8·3

3·5 = 1.6, as Lift(·if B then H ·) = Lift(·if H then B ·).
t For the third rule we have Lift(·if true then crisps·) = 8·5

8·5 = 1. This holds for
any rule with B =;, as

Lift(·if ; then H ·) = n ·Supp(;∪H)

Supp(;) ·Supp(H)
= n ·Supp(H)

n ·Supp(H)
= 1

More generally, a lift of 1 means that Supp(B ∪H) is entirely determined by the
marginal frequencies Supp(B) and Supp(H) and is not the result of any
meaningful interaction between B and H . Only association rules with lift larger
than 1 are of interest.
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Figure 6.19, p.187 Item sets and dolphins

Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=few

Gills=no & Beak=yes & Teeth=manyLength=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many Length=5 & Beak=yes & Teeth=many

Gills=no & Teeth=many

Length=4 & Gills=no & Teeth=many Length=5 & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=4 & Gills=no & Beak=yes Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes

Teeth=many

Length=3 & Teeth=manyLength=4 & Teeth=many Length=5 & Teeth=many

Beak=yes

Length=3 & Beak=yesLength=4 & Beak=yes Beak=yes & Teeth=fewLength=5 & Beak=yes

true

Gills=noLength=3Length=4 Teeth=fewLength=5

Length=3 & Gills=noLength=4 & Gills=no Gills=no & Teeth=fewLength=5 & Gills=no

Length=3 & Beak=yes & Teeth=few

Length=3 & Teeth=few

Length=3 & Gills=no & Teeth=few Length=5 & Beak=yes & Teeth=few Length=5 & Gills=no & Teeth=few

Length=5 & Teeth=few

The item set lattice corresponding to the positive examples of the dolphin example in

Example 4.4. Each ‘item’ is a literal Feature=Value; each feature can occur at most

once in an item set. The resulting structure is exactly the same as what was called the

hypothesis space in Chapter 4.
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Figure 6.20, p.188 ? Closed item sets and dolphins

Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=few

Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes

Gills=no & Beak=yes

Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes

Closed item set lattice corresponding to the item sets in Figure 6.19.
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7. Linear models

What’s next?

7 Linear models
The least-squares method

Multivariate linear regression
Regularised regression ?
Using least-squares regression for classification ?

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers
Going beyond linearity with kernel methods ?
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What’s next?

7 Linear models
The least-squares method

Multivariate linear regression
Regularised regression ?
Using least-squares regression for classification ?

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers
Going beyond linearity with kernel methods ?
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7. Linear models 7.1 The least-squares method

Example 7.1, p.197 Univariate linear regression

Suppose we want to investigate the relationship between people’s height and
weight. We collect n height and weight measurements (hi , wi ),1 ≤ i ≤ n.

Univariate linear regression assumes a linear equation w = a +bh, with
parameters a and b chosen such that the sum of squared residuals∑n

i=1(wi − (a +bhi ))2 is minimised.

In order to find the parameters we take partial derivatives of this expression, set
the partial derivatives to 0 and solve for a and b:

∂

∂a

n∑
i=1

(wi − (a +bhi ))2 =−2
n∑

i=1
(wi − (a +bhi )) = 0 ⇒ â = w − b̂h

∂

∂b

n∑
i=1

(wi − (a +bhi ))2 =−2
n∑

i=1
(wi − (a +bhi ))hi = 0 ⇒ b̂ =

∑n
i=1(hi −h)(wi −w)∑n

i=1(hi −h)2

So the solution found by linear regression is w = â + b̂h = w + b̂(h −h); see
Figure 7.1 for an example.
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7. Linear models 7.1 The least-squares method

Figure 7.1, p.197 Univariate linear regression
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The red solid line indicates the result of applying linear regression to 10 measurements

of body weight (on the y-axis, in kilograms) against body height (on the x-axis, in

centimetres). The orange dotted lines indicate the average height h = 181 and the

average weight w = 74.5; the regression coefficient b̂ = 0.78. The measurements were

simulated by adding normally distributed noise with mean 0 and variance 5 to the true

model indicated by the blue dashed line (b = 0.83).
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7. Linear models 7.1 The least-squares method

Linear regression: intuitions I

For a feature x and a target variable y , the regression coefficient is the
covariance between x and y in proportion to the variance of x:

b̂ = σx y

σxx

(Here I use σxx as an alternative notation for σ2
x ).

This can be understood by noting that the covariance is measured in units of x
times units of y (e.g., metres times kilograms in Example 7.1) and the variance in
units of x squared (e.g., metres squared), so their quotient is measured in units
of y per unit of x (e.g., kilograms per metre).
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Linear regression: intuitions II

The intercept â is such that the regression line goes through (x, y).

Adding a constant to all x-values (a translation) will affect only the intercept but
not the regression coefficient (since it is defined in terms of deviations from the
mean, which are unaffected by a translation).

So we could zero-centre the x-values by subtracting x, in which case the
intercept is equal to y .

We could even subtract y from all y-values to achieve a zero intercept, without
changing the problem in an essential way.
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Linear regression: intuitions III

Suppose we replace xi with x ′
i = xi /σxx and likewise x with x ′ = x/σxx , then

we have that b̂ = 1
n

∑n
i=1(x ′

i −x ′)(yi − y) =σx ′y .

In other words, if we normalise x by dividing all its values by x ’s variance, we can
take the covariance between the normalised feature and the target variable as
regression coefficient.

This demonstrates that univariate linear regression can be understood as
consisting of two steps:

t normalisation of the feature by dividing its values by the feature’s variance;

t calculating the covariance of the target variable and the normalised feature.

We will see below how these two steps change when dealing with more than one
feature.
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Linear regression: intuitions IV

Another important point to note is that the sum of the residuals of the
least-squares solution is zero:

n∑
i=1

(yi − (â + b̂xi )) = n(y − â − b̂x) = 0

The result follows because â = y − b̂x, as derived in Example 7.1.

While this property is intuitively appealing, it is worth keeping in mind that it also
makes linear regression susceptible to outliers: points that are far removed from
the regression line, often because of measurement errors.
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Example 7.2, p.199 The effect of outliers

Suppose that, as the result of a transcription error, one of the weight values in
Figure 7.1 is increased by 10 kg. Figure 7.2 shows that this has a considerable
effect on the least-squares regression line.
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7. Linear models 7.1 The least-squares method

Figure 7.2, p.199 The effect of outliers
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One of the blue points got moved up 10 units to the green point, changing the red

regression line to the green line.
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Multivariate linear regression I

First, we need the covariances between every feature and the target variable:

(XTy) j =
n∑

i=1
xi j yi =

n∑
i=1

(xi j −µ j )(yi − y)+nµ j y = n(σ j y +µ j y)

Assuming for the moment that every feature is zero-centred, we have µ j = 0 and
thus XTy is an n-vector holding all the required covariances (times n).

We can normalise the features by means of a d -by-d scaling matrix: a diagonal
matrix with diagonal entries 1/nσ j j . If S is a diagonal matrix with diagonal
entries nσ j j , we can get the required scaling matrix by simply inverting S.

So our first stab at a solution for the multivariate regression problem is

ŵ = S−1XTy
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Multivariate linear regression II

The general case requires a more elaborate matrix instead of S:

ŵ = (XTX)−1XTy

Let us try to understand the term (XTX)−1 a bit better.

t Assuming the features are uncorrelated, the covariance matrix Σ is
diagonal with entries σ j j .

t Assuming the features are zero-centred, XTX = nΣ is also diagonal with
entries nσ j j .

t In other words, assuming zero-centred and uncorrelated features, (XTX)−1

reduces to our scaling matrix S−1.

In the general case we cannot make any assumptions about the features, and
(XTX)−1 acts as a transformation that decorrelates, centres and normalises the
features.
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7. Linear models 7.1 The least-squares method

Example 7.3, p.202 Bivariate linear regression I

First, we derive the basic expressions.

XTX =
(

x11 · · · xn1

x12 · · · xn2

) x11 x12
...

...
xn1 xn2

= n

(
σ11 +x1

2 σ12 +x1 x2

σ12 +x1 x2 σ22 +x2
2

)

(XTX)−1 = 1

nD

(
σ22 +x2

2 −σ12 −x1 x2

−σ12 −x1 x2 σ11 +x1
2

)

D = (σ11 +x1
2)(σ22 +x2

2)− (σ12 +x1 x2)2

XTy =
(

x11 · · · xn1

x12 · · · xn2

) y1
...

yn

= n

(
σ1y +x1 y
σ2y +x2 y

)
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Example 7.3, p.202 Bivariate linear regression II

We now consider two special cases. The first is that X is in homogeneous
coordinates, i.e., we are really dealing with a univariate problem. In that case we
have xi 1 = 1 for 1 ≤ i ≤ n; x1 = 1; and σ11 =σ12 =σ1y = 0. We then obtain (we
write x instead of x2, σxx instead of σ22 and σx y instead of σ2y ):

(XTX)−1 = 1

nσxx

(
σxx +x2 −x

−x 1

)

XTy = n

(
y

σx y +x y

)

ŵ = (XTX)−1XTy = 1

σxx

(
σxx y −σx y x

σx y

)
This is the same result as obtained in Example 7.1.
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Example 7.3, p.202 Bivariate linear regression III

The second special case we consider is where we assume x1, x2 and y to be
zero-centred, which means that the intercept is zero and w contains the two
regression coefficients. In this case we obtain

(XTX)−1 = 1

n(σ11σ22 −σ2
12)

(
σ22 −σ12

−σ12 σ11

)

XTy = n

(
σ1y

σ2y

)

ŵ = (XTX)−1XTy = 1

(σ11σ22 −σ2
12)

(
σ22σ1y −σ12σ2y

σ11σ2y −σ12σ1y

)
The last expression shows, e.g., that the regression coefficient for x1 may be
non-zero even if x1 doesn’t correlate with the target variable (σ1y = 0), on
account of the correlation between x1 and x2 (σ12 6= 0).
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Important point to remember

Assuming uncorrelated features effectively decomposes a multivariate
regression problem into d univariate problems.
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Figure 7.3, p.204 Feature correlation

(left) Regression functions learned by linear regression. The true function is y = x1 +x2

(red plane). The red points are noisy samples of this function; the black points show

them projected onto the (x1, x2)-plane. The green plane indicates the function learned

by linear regression; the blue plane is the result of decomposing the problem into two

univariate regression problems (blue points). Both are good approximations of the true

function. (right) The same function, but now x1 and x2 are highly (negatively) correlated.

The samples now give much less information about the true function: indeed, from the

univariate decomposition it appears that the function is constant.
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? Regularised regression I

Regularisation is a general method to avoid overfitting by applying additional
constraints to the weight vector. A common approach is to make sure the
weights are, on average, small in magnitude: this is referred to as shrinkage.

The least-squares regression problem can be written as an optimisation problem:

w∗ = argmin
w

(y−Xw)T(y−Xw)

The regularised version of this optimisation is then as follows:

w∗ = argmin
w

(y−Xw)T(y−Xw)+λ||w||2

where ||w||2 =∑
i w2

i is the squared norm of the vector w, or, equivalently, the
dot product wTw; λ is a scalar determining the amount of regularisation.
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? Regularised regression II

This regularised problem still has a closed-form solution:

ŵ = (XTX+λI)−1XTy

where I denotes the identity matrix. Regularisation amounts to adding λ to the
diagonal of XTX, a well-known trick to improve the numerical stability of matrix
inversion. This form of least-squares regression is known as ridge regression.

An interesting alternative form of regularised regression is provided by the lasso,
which stands for ‘least absolute shrinkage and selection operator’. It replaces the
ridge regularisation term

∑
i w2

i with the sum of absolute weights
∑

i |wi |. The
result is that some weights are shrunk, but others are set to 0, and so the lasso
regression favours sparse solutions.
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Example 7.4, p.205 ? Univariate least-squares classifier I

We can use linear regression to learn a binary classifier by encoding the two
classes as real numbers.

t With y⊕ =+1 and yª =−1 we have XTy = Pos µ⊕−Neg µª, where µ⊕

and µª are d -vectors containing each feature’s mean values for the
positive and negative examples, respectively.

t In the univariate case we can rewrite the covariance between x and y as
σx y = 2pos ·neg (µ⊕−µª), and so the slope of the regression line is

b̂ = 2pos ·neg
µ⊕−µª

σxx

t This equation shows that the slope of the regression line increases with the
separation between the classes (measured as the distance between the
class means in proportion to the feature’s variance), but also decreases if
the class distribution becomes skewed.
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Example 7.4, p.205 ? Univariate least-squares classifier II

The regression equation y = y + b̂(x −x) can then be used to obtain a decision
boundary.

t We need to determine the point (x0, y0) such that y0 is half-way between
y⊕ and yª (i.e., y0 = 0 in our case). We then have

x0 = x + y0 − y

b̂
= x − pos−neg

2pos ·neg

σxx

µ⊕−µª

t That is, if there are equal numbers of positive and negative examples we
simply threshold the feature at the feature mean x; in case of unequal class
distribution we shift this threshold to the left or right as appropriate (Figure
7.4).
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Figure 7.4, p.206 ? Univariate least-squares classifier

−2 −1.5 −1 −0.5 0 0.5 1 1.50
−1

0

1

Using univariate linear regression to obtain a decision boundary. The 10 negative

examples are labelled with yª =−1 and the 20 positive examples are labelled y⊕ =+1.

µª and µ⊕ are indicated by red circles. The blue line is the linear regression line

y = y + b̂(x −x), and the crosshair indicates the decision boundary x0 = x − y/b̂. This

results in three examples being misclassified – notice that this is the best that can be

achieved with the given data.
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? Least-squares classifier

In the general case, the least-squares classifier learns the decision boundary
w ·x = t with

w = (XTX)−1(Pos µ⊕−Neg µª)

We would hence assign class ŷ = sign(w ·x− t ) to instance x, where

sign(x) =


+1 if x > 0
0 if x = 0
−1 if x < 0

Various simplifying assumptions can be made, including zero-centred features,
equal-variance features, uncorrelated features and equal class prevalences.

When all these assumptions are made, Equation 7.7 reduces to w = c(µ⊕−µª)
where c is some scalar that can be incorporated in the decision threshold t . We
recognise this as the tbasic linear classifier that was introduced in the
Prologue.
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7. Linear models 7.1 The least-squares method

Important point to remember

A general way of constructing a linear classifier with decision boundary w ·x = t
is by constructing w as M−1(n⊕µ⊕−nªµª), with different possible choices of
M, n⊕ and nª.
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

What’s next?

7 Linear models
The least-squares method

Multivariate linear regression
Regularised regression ?
Using least-squares regression for classification ?

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers
Going beyond linearity with kernel methods ?
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

The perceptron

A linear classifier that will achieve perfect separation on linearly separable data is
the perceptron, originally proposed as a simple neural network. The perceptron
iterates over the training set, updating the weight vector every time it encounters
an incorrectly classified example.
t For example, let xi be a misclassified positive example, then we have

yi =+1 and w ·xi < t . We therefore want to find w′ such that w′ ·xi > w ·xi ,
which moves the decision boundary towards and hopefully past xi .

t This can be achieved by calculating the new weight vector as w′ = w+ηxi ,
where 0 < η≤ 1 is the learning rate (often set to 1). We then have
w′ ·xi = w ·xi +ηxi ·xi > w ·xi as required.

t Similarly, if x j is a misclassified negative example, then we have y j =−1
and w ·x j > t . In this case we calculate the new weight vector as
w′ = w−ηx j , and thus w′ ·x j = w ·x j −ηx j ·x j < w ·x j .

t The two cases can be combined in a single update rule:

w′ = w+ηyi xi
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

Algorithm 7.1, p.208 Perceptron

Algorithm Perceptron(D,η) – train a perceptron for linear classification.

Input : labelled training data D in homogeneous coordinates; learning rate η.
Output : weight vector w defining classifier ŷ = sign(w ·x).

1 w ←0 ; // Other initialisations of the weight vector are possible
2 converged←false;
3 while converged = false do
4 converged←true;
5 for i = 1 to |D| do
6 if yi w ·xi ≤ 0 // i.e., ŷi 6= yi

7 then
8 w←w+ηyi xi ;
9 converged←false; // We changed w so haven’t converged yet

10 end
11 end
12 end
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

Figure 7.5, p.209 Varying the learning rate
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(left) A perceptron trained with a small learning rate (η= 0.2). The circled examples are

the ones that trigger the weight update. (middle) Increasing the learning rate to η= 0.5

leads in this case to a rapid convergence. (right) Increasing the learning rate further to

η= 1 may lead to too aggressive weight updating, which harms convergence. The

starting point in all three cases was the basic linear classifier.
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

Linear classifiers in dual form

Every time an example xi is misclassified, we add yi xi to the weight vector.

t After training has completed, each example has been misclassified zero or
more times. Denoting this number as αi for example xi , the weight vector
can be expressed as

w =
n∑

i=1
αi yi xi

t In the dual, instance-based view of linear classification we are learning
instance weights αi rather than feature weights w j . An instance x is
classified as

ŷ = sign

(
n∑

i=1
αi yi xi ·x

)
t During training, the only information needed about the training data is all

pairwise dot products: the n-by-n matrix G = XXT containing these dot
products is called the Gram matrix.
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

Algorithm 7.2, p.209 Perceptron training in dual form

Algorithm DualPerceptron(D) – perceptron training in dual form.

Input : labelled training data D in homogeneous coordinates.
Output : coefficients αi defining weight vector w =∑|D|

i=1αi yi xi .
1 αi ← 0 for 1 ≤ i ≤ |D|;
2 converged←false;
3 while converged = false do
4 converged←true;
5 for i = 1 to |D| do
6 if yi

∑|D|
j=1α j y j xi ·x j ≤ 0 then

7 αi ←αi +1;
8 converged←false;
9 end

10 end
11 end

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 293 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

Figure 7.6, p.210 Comparing linear classifiers
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Three differently trained linear classifiers on a data set of 100 positives (top-right) and 50

negatives (bottom-left): the basic linear classifier in red, the least-squares classifier in

orange and the perceptron in green. Notice that the perceptron perfectly separates the

training data, but its heuristic approach may lead to overfitting in certain situations.
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7. Linear models 7.2 The perceptron: a heuristic learning algorithm for linear classifiers

Algorithm 7.3, p.211 Training a perceptron for regression

Algorithm PerceptronRegression(D,T ) – train a perceptron for regression.

Input : labelled training data D in homogeneous coordinates;
maximum number of training epochs T .

Output : weight vector w defining function approximator ŷ = w ·x.
1 w ←0; t ←0;
2 while t < T do
3 for i = 1 to |D| do
4 w←w+ (yi − ŷi )2xi ;
5 end
6 t ← t +1;
7 end
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7. Linear models 7.3 Support vector machines

What’s next?

7 Linear models
The least-squares method

Multivariate linear regression
Regularised regression ?
Using least-squares regression for classification ?

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers
Going beyond linearity with kernel methods ?
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7. Linear models 7.3 Support vector machines

Figure 7.7, p.212 Support vector machine
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The geometry of a support vector classifier. The circled data points are the support

vectors, which are the training examples nearest to the decision boundary. The support

vector machine finds the decision boundary that maximises the margin m/||w||.
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7. Linear models 7.3 Support vector machines

Maximising the margin

Since we are free to rescale t , ||w|| and m, it is customary to choose m = 1.
Maximising the margin then corresponds to minimising ||w|| or, more
conveniently, 1

2 ||w||2, provided of course that none of the training points fall
inside the margin.

This leads to a quadratic, constrained optimisation problem:

w∗, t∗ = argmin
w,t

1

2
||w||2 subject to yi (w ·xi − t ) ≥ 1,1 ≤ i ≤ n

Using the method of Lagrange multipliers, the dual form of this problem can be
derived (see Background 7.3).
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7. Linear models 7.3 Support vector machines

? Deriving the dual problem I

Adding the constraints with multipliers αi for each training example gives the
Lagrange function

Λ(w, t ,α1, . . . ,αn ) = 1

2
||w||2 −

n∑
i=1

αi (yi (w ·xi − t )−1)

= 1

2
||w||2 −

n∑
i=1

αi yi (w ·xi )+
n∑

i=1
αi yi t +

n∑
i=1

αi

= 1

2
w ·w−w ·

(
n∑

i=1
αi yi xi

)
+ t

(
n∑

i=1
αi yi

)
+

n∑
i=1

αi

t By taking the partial derivative of the Lagrange function with respect to t
and setting it to 0 we find

∑n
i=1αi yi = 0.

t Similarly, by taking the partial derivative of the Lagrange function with
respect to w and setting to 0 we obtain w =∑n

i=1αi yi xi – the same
expression as we derived for the perceptron.
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7. Linear models 7.3 Support vector machines

? Deriving the dual problem II

t For the perceptron, the instance weights αi are non-negative integers
denoting the number of times an example has been misclassified in
training. For a support vector machine, the αi are non-negative reals.

t What they have in common is that, if αi = 0 for a particular example xi , that
example could be removed from the training set without affecting the
learned decision boundary. In the case of support vector machines this
means that αi > 0 only for the support vectors: the training examples
nearest to the decision boundary.

These expressions allow us to eliminate w and t and lead to the dual Lagrangian

Λ(α1, . . . ,αn ) = −1

2

(
n∑

i=1
αi yi xi

)
·
(

n∑
i=1

αi yi xi

)
+

n∑
i=1

αi

= −1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi
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7. Linear models 7.3 Support vector machines

SVM in dual form

The dual optimisation problem for support vector machines is to maximise the
dual Lagrangian under positivity constraints and one equality constraint:

α∗
1 , . . . ,α∗

n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to αi ≥ 0,1 ≤ i ≤ n and
n∑

i=1
αi yi = 0
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7. Linear models 7.3 Support vector machines

Figure 7.8, p.215 Two maximum-margin classifiers
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(left) A maximum-margin classifier built from three examples, with w = (0,−1/2) and

margin 2. The circled examples are the support vectors: they receive non-zero Lagrange

multipliers and define the decision boundary. (right) By adding a second positive the

decision boundary is rotated to w = (3/5,−4/5) and the margin decreases to 1.
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7. Linear models 7.3 Support vector machines

Example 7.5, p.215 Two maximum-margin classifiers I

X =
 1 2

−1 2
−1 −2

 y =
 −1

−1
+1

 X′ =
 −1 −2

1 −2
−1 −2


The matrix X′ on the right incorporates the class labels; i.e., the rows are yi xi .
The Gram matrix is (without and with class labels):

XXT =
 5 3 −5

3 5 −3
−5 −3 5

 X′X′T =
 5 3 5

3 5 3
5 3 5


The dual optimisation problem is thus

argmax
α1 ,α2 ,α3

− 1

2

(
5α2

1 +3α1α2 +5α1α3 +3α2α1 +5α2
2 +3α2α3 +5α3α1 +3α3α2 +5α2

3

)
+α1 +α2 +α3

= argmax
α1 ,α2 ,α3

− 1

2

(
5α2

1 +6α1α2 +10α1α3 +5α2
2 +6α2α3 +5α2

3

)
+α1 +α2 +α3

subject to α1 ≥ 0,α2 ≥ 0,α3 ≥ 0 and −α1 −α2 +α3 = 0.
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7. Linear models 7.3 Support vector machines

Example 7.5, p.215 Two maximum-margin classifiers II

t Using the equality constraint we can eliminate one of the variables, say α3,
and simplify the objective function to

argmax
α1,α2,α3

−1

2

(
20α2

1 +32α1α2 +16α2
2

)+2α1 +2α2

t Setting partial derivatives to 0 we obtain −20α1 −16α2 +2 = 0 and
−16α1 −16α2 +2 = 0 (notice that, because the objective function is
quadratic, these equations are guaranteed to be linear).

t We therefore obtain the solution α1 = 0 and α2 =α3 = 1/8. We then have

w = 1/8(x3 −x2) =
(

0
−1/2

)
, resulting in a margin of 1/||w|| = 2.

t Finally, t can be obtained from any support vector, say x2, since
y2(w ·x2 − t ) = 1; this gives −1 · (−1− t ) = 1, hence t = 0.
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7. Linear models 7.3 Support vector machines

Example 7.5, p.215 Two maximum-margin classifiers III

We now add an additional positive at (3,1). This gives the following data
matrices:

X′ =


−1 −2

1 −2
−1 −2

3 1

 X′X′T =


5 3 5 −5
3 5 3 1
5 3 5 −5

−5 1 −5 10


t It can be verified by similar calculations to those above that the margin

decreases to 1 and the decision boundary rotates to w =
(

3/5
−4/5

)
.

t The Lagrange multipliers now are α1 = 1/2, α2 = 0, α3 = 1/10 and
α4 = 2/5. Thus, only x3 is a support vector in both the original and the
extended data set.
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7. Linear models 7.3 Support vector machines

Allowing margin errors I

The idea is to introduce slack variables ξi , one for each example, which allow
some of them to be inside the margin or even at the wrong side of the decision
boundary.

w∗, t∗,ξ∗i =argmin
w,t ,ξi

1

2
||w||2+C

n∑
i=1

ξi

subject to yi (w ·xi − t ) ≥ 1−ξi and ξi ≥ 0,1 ≤ i ≤ n

t C is a user-defined parameter trading off margin maximisation against slack
variable minimisation: a high value of C means that margin errors incur a
high penalty, while a low value permits more margin errors (possibly
including misclassifications) in order to achieve a large margin.

t If we allow more margin errors we need fewer support vectors, hence C
controls to some extent the ‘complexity’ of the SVM and hence is often
referred to as the complexity parameter.
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7. Linear models 7.3 Support vector machines

Allowing margin errors II

The Lagrange function is then as follows:

Λ(w, t ,ξi ,αi ,βi ) = 1

2
||w||2+C

n∑
i=1

ξi −
n∑

i=1
αi (yi (w ·xi − t )− (1−ξi ))−

n∑
i=1

βi ξi

= Λ(w, t ,αi )+
n∑

i=1
(C −αi −βi )ξi

t For an optimal solution every partial derivative with respect to ξi should be
0, from which it follows that the added term vanishes from the dual problem.

t Furthermore, since both αi and βi are positive, this means that αi cannot
be larger than C :

α∗
1 , . . . ,α∗

n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to 0 ≤αi≤C and
n∑

i=1
αi yi = 0
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7. Linear models 7.3 Support vector machines

Three cases for the training instances

What is the significance of the upper bound C on the αi multipliers?

t Since C −αi −βi = 0 for all i , αi =C implies βi = 0. The βi multipliers
come from the ξi ≥ 0 constraint, and a multiplier of 0 means that the lower
bound is not reached, i.e., ξi > 0 (analogous to the fact that α j = 0 means
that x j is not a support vector and hence w ·x j − t > 1).

t In other words, a solution to the soft margin optimisation problem in dual
form divides the training examples into three cases:

αi = 0 these are outside or on the margin;
0 <αi <C these are the support vectors on the margin;
αi =C these are on or inside the margin.

t Notice that we still have w =∑n
i=1αi yi xi , and so both second and third

case examples participate in spanning the decision boundary.
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7. Linear models 7.3 Support vector machines

Figure 7.9, p.218 Soft margins
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(left) The soft margin classifier learned with C = 5/16, at which point x2 is about to

become a support vector. (right) The soft margin classifier learned with C = 1/10: all

examples contribute equally to the weight vector. The asterisks denote the class means,

and the decision boundary is parallel to the one learned by the basic linear classifier.
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7. Linear models 7.3 Support vector machines

Example 7.6, p.218 Soft margins I

t Recall that the Lagrange multipliers for the classifier in Figure 7.8 (right) are
α1 = 1/2, α2 = 0, α3 = 1/10 and α4 = 2/5. So α1 is the largest multiplier,
and as long as C >α1 = 1/2 no margin errors are tolerated.

t For C = 1/2 we have α1 =C , and hence for C < 1/2 we have that x1

becomes a margin error and the optimal classifier is a soft margin classifier.

t The upper margin reaches x2 for C = 5/16 (Figure 7.9 (left)), at which point

we have w =
(

3/8
−1/2

)
, t = 3/8 and the margin has increased to 1.6.

Furthermore, we have ξ1 = 6/8,α1 =C = 5/16,α2 = 0,α3 = 1/16 and
α4 = 1/4.
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7. Linear models 7.3 Support vector machines

Example 7.6, p.218 Soft margins II

t If we now decrease C further, the decision boundary starts to rotate
clockwise, so that x4 becomes a margin error as well, and only x2 and x3

are support vectors. The boundary rotates until C = 1/10, at which point we

have w =
(

1/5
−1/2

)
, t = 1/5 and the margin has increased to 1.86.

Furthermore, we have ξ1 = 4/10 and ξ4 = 7/10, and all multipliers have
become equal to C (Figure 7.9 (right)).

t Finally, when C decreases further the decision boundary stays where it is,
but the norm of the weight vector gradually decreases and all points
become margin errors.
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7. Linear models 7.3 Support vector machines

Important point to remember

A minimal-complexity soft margin classifier summarises the classes by their
class means in a way very similar to the basic linear classifier.
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

What’s next?

7 Linear models
The least-squares method

Multivariate linear regression
Regularised regression ?
Using least-squares regression for classification ?

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers
Going beyond linearity with kernel methods ?
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

Figure 7.10, p.220 Scores from a linear classifier
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We can think of a linear classifier as a projection onto the direction given by w, here

assumed to be a unit vector. w ·x− t gives the signed distance from the decision

boundary on the projection line. Also indicated are the class means µ⊕ and µª, and the

corresponding mean distances d⊕ and dª.
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

? Deriving the logistic function I

Let d
⊕

denote the mean distance of the positive examples to the decision
boundary: i.e., d

⊕ = w ·µ⊕− t , where µ⊕ is the mean of the positive examples
and w is unit length.

t It would not be unreasonable to expect that the distance of positive
examples to the decision boundary is normally distributed around this
mean.Under this assumption, the probability density function of d is

P (d |⊕) = 1p
2πσ

exp
(
− (d−d

⊕
)2

2σ2

)
.

t Similarly, the distances of negative examples to the decision boundary can
be expected to be normally distributed around d

ª = w ·µª− t , with
d
ª < 0 < d

⊕
. We will assume that both normal distributions have the same

variance σ2.

t Suppose we now observe a point x with distance d(x). We classify this
point as positive if d(x) > 0 and as negative if d(x) < 0, but we want to
attach a probability p̂(x) = P (⊕|d(x)) to these predictions.
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

? Deriving the logistic function II

t Using Bayes’ rule we obtain

P (⊕|d(x)) = P (d(x)|⊕)P (⊕)

P (d(x)|⊕)P (⊕)+P (d(x)|ª)P (ª)
= LR

LR +1/clr

where LR is the likelihood ratio obtained from the normal score
distributions, and clr is the class ratio. We will assume for simplicity that
clr = 1 in the derivation below.

t Furthermore, assume for now that σ2 = 1 and d
⊕ =−d

ª = 1/2 (we will
relax this in a moment). We then have

LR = P (d(x)|⊕)

P (d(x)|ª)
= exp

(−(d(x)−1/2)2/2
)

exp
(−(d(x)+1/2)2/2

)
= exp

(−(d(x)−1/2)2/2+ (d(x)+1/2)2/2
)= exp(d(x))

and so

P (⊕|d(x)) = exp(d(x))

exp(d(x))+1
= exp(w ·x− t )

exp(w ·x− t )+1
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

Logistic calibration

In order to obtain probability estimates from a linear classifier outputting distance
scores d , we convert d into a probability by means of the mapping

d 7→ exp(d)

exp(d)+1

or, equivalently,

d 7→ 1

1+exp(−d)

This S-shaped or sigmoid function is called the logistic function; it finds
applications in a wide range of areas (Figure 7.11).
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

Figure 7.11, p.222 The logistic function
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0.75

1

d

p̂(+|d)

The fat red line indicates the standard logistic function p̂(d) = 1
1+exp(−d) ; this function

can be used to obtain probability estimates if the two classes are equally prevalent and

the class means are equidistant from the decision boundary and one unit of variance

apart. The steeper and flatter red lines show how the function changes if the class

means are 2 and 1/2 units of variance apart, respectively. The three blue lines show how

these curves change if d0 = 1, which means that the positives are on average further

away from the decision boundary.
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

? Logistic calibration: the general case I

Suppose now that d
⊕ =−d

ª
as before, but we do not assume anything about

the magnitude of these mean distances or of σ2. In this case we have

LR = exp

(
−(d(x)−d

⊕
)2 + (d(x)−d

ª
)2

2σ2

)

= exp

2d
⊕

d(x)−
(
d
⊕)2 −2d

ª
d(x)+

(
d
ª)2

2σ2

= exp
(
γd(x)

)

with γ= (d
⊕−d

ª
)/σ2 a scaling factor that rescales the weight vector so that the

mean distances per class are one unit of variance apart. In other words, by
taking the scaling factor γ into account, we can drop our assumption that w is a
unit vector.
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

? Logistic calibration: the general case II

If we also drop the assumption that d
⊕

and d
ª

are symmetric around the
decision boundary, then we obtain the most general form

LR = P (d(x)|⊕)

P (d(x)|ª)
= exp

(
γ(d(x)−d0)

)
γ= d

⊕−d
ª

σ2 = w · (µ⊕−µª)

σ2 , d0 = d
⊕+d

ª

2
= w · (µ⊕+µª)

2
− t

d0 has the effect of moving the decision boundary from w ·x = t to
x = (µ⊕+µª)/2, that is, halfway between the two class means. The logistic
mapping thus becomes d 7→ 1

1+exp(−γ(d−d0)) .
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

Example 7.7, p.222 Logistic calibration of a linear classifier

Logistic calibration has a particularly simple form for the basic linear classifier,
which has w =µ⊕−µª. It follows that

d
⊕−d

ª = w · (µ⊕−µª)

||w|| = ||µ⊕−µª||2
||µ⊕−µª|| = ||µ⊕−µª||

and hence γ= ||µ⊕−µª||/σ2. Furthermore, d0 = 0 as (µ⊕+µª)/2 is already
on the decision boundary. So in this case logistic calibration does not move the
decision boundary, and only adjusts the steepness of the sigmoid according to
the separation of the classes. Figure 7.12 illustrates this for some data sampled
from two normal distributions with the same diagonal covariance matrix.
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

Figure 7.12, p.223 Logistic calibration of a linear classifier

The surface shows the sigmoidal probability estimates resulting from logistic calibration

of the basic linear classifier on random data satisfying the assumptions of logistic

calibration.
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7. Linear models 7.4 Obtaining probabilities from linear classifiers

Figure 7.13, p.224 ? Isotonic calibration of a linear classifier
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(left) ROC curve and convex hull of the same model and data as in Figure 7.12. (right)
The convex hull can be used as a non-parametric calibration method. Each segment of

the convex hull corresponds to a plateau of the probability surface.
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7. Linear models 7.5 Going beyond linearity with kernel methods ?

What’s next?

7 Linear models
The least-squares method

Multivariate linear regression
Regularised regression ?
Using least-squares regression for classification ?

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers
Going beyond linearity with kernel methods ?
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7. Linear models 7.5 Going beyond linearity with kernel methods ?

Example 7.8, p.225 ? Learning a quadratic decision boundary

t The data in Figure 7.14 (left) is not linearly separable, but both classes have
a clear circular shape. Figure 7.14 (right) shows the same data with the
feature values squared.

t In this transformed feature space the data has become linearly separable,
and the perceptron is able to separate the classes. The resulting decision
boundary in the original space is a near-circle.

t Also shown is the decision boundary learned by the basic linear classifier in
the quadratic feature space, corresponding to an ellipse in the original
space.

In general, mapping points back from the feature space to the instance space is
non-trivial. E.g., in this example each class mean in feature space maps back to
four points in the original space, owing to the quadratic mapping.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 325 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


7. Linear models 7.5 Going beyond linearity with kernel methods ?

Figure 7.14, p.225 ? Learning a quadratic decision boundary
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(left) Decision boundaries learned by the basic linear classifier and the perceptron using

the square of the features. (right) Data and decision boundaries in the transformed

feature space.
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7. Linear models 7.5 Going beyond linearity with kernel methods ?

? ‘Kernelising’ the perceptron I

The perceptron algorithm is a simple counting algorithm – the only operation that
is somewhat involved is testing whether example xi is correctly classified by
evaluating yi

∑|D|
j=1α j y j xi ·x j .

t The key component of this calculation is the dot product xi ·x j .

t Assuming bivariate examples xi =
(
xi , yi

)
and x j =

(
x j , y j

)
for notational

simplicity, the dot product can be written as xi ·x j = xi x j + yi y j .

t The corresponding instances in the quadratic feature space are
(
x2

i , y2
i

)
and

(
x2

j , y2
j

)
, and their dot product is

(
x2

i , y2
i

) · (x2
j , y2

j

)
= x2

i x2
j + y2

i y2
j .

t This is almost equal to
(xi ·x j )2 = (xi x j + yi y j )2 = (xi x j )2 + (yi y j )2 +2xi x j yi y j , but not quite
because of the third term of cross-products.
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7. Linear models 7.5 Going beyond linearity with kernel methods ?

? ‘Kernelising’ the perceptron II

t We can capture this term by extending the feature vector with a third featurep
2x y . This gives the following feature space:

φ(xi ) =
(
x2

i , y2
i ,
p

2xi yi

)
φ(x j ) =

(
x2

j , y2
j ,
p

2x j y j

)
φ(xi ) ·φ(x j ) = x2

i x2
j + y2

i y2
j +2xi x j yi y j = (xi ·x j )2

t We now define κ(xi ,x j ) = (xi ·x j )2, and replace xi ·x j with κ(xi ,x j ) in the
dual perceptron algorithm to obtain the kernel perceptron (Algorithm 7.4).

t This would work for many other kernels satisfying certain conditions.
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7. Linear models 7.5 Going beyond linearity with kernel methods ?

Algorithm 7.4, p.226 ? Kernel perceptron

Algorithm KernelPerceptron(D,κ) – perceptron training algorithm using a kernel.

Input : labelled training data D in homogeneous coordinates;
kernel function κ.

Output : coefficients αi defining non-linear decision boundary.
1 αi ← 0 for 1 ≤ i ≤ |D|;
2 converged←false;
3 while converged = false do
4 converged←true;
5 for i = 1 to |D| do
6 if yi

∑|D|
j=1α j y jκ(xi ,x j ) ≤ 0 then

7 αi ←αi +1;
8 converged←false;
9 end

10 end
11 end
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7. Linear models 7.5 Going beyond linearity with kernel methods ?

? Other kernels I

We can define a polynomial kernel of any degree p as κ(xi ,x j ) = (xi ·x j )p . This
transforms a d -dimensional input space into a high-dimensional feature space,
such that each new feature is a product of p terms (possibly repeated).

If we include a constant, say κ(xi ,x j ) = (xi ·x j +1)p , we would get all
lower-order terms as well. So, for example, in a bivariate input space and setting
p = 2 the resulting feature space is

φ(x) =
(
x2, y2,

p
2x y,

p
2x,

p
2y,1

)
with linear as well as quadratic features.
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7. Linear models 7.5 Going beyond linearity with kernel methods ?

? Other kernels II

An often-used kernel is the Gaussian kernel, defined as

κ(xi ,x j ) = exp

(
−||xi −x j ||2

2σ2

)

where σ is a parameter known as the bandwidth.

Notice that the soft margin optimisation problem (Equation 7.12) is defined in
terms of dot products between training instances and hence the ‘kernel trick’ can
be applied to SVMs:

α∗
1 , . . . ,α∗

n = argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y jκ(xi ,x j )+
n∑

i=1
αi

subject to 0 ≤αi≤C and
n∑

i=1
αi yi = 0
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7. Linear models 7.5 Going beyond linearity with kernel methods ?

? Other kernels III

t The decision boundary learned with a non-linear kernel cannot be
represented by a simple weight vector in input space. Thus, in order to
classify a new example x we need to evaluate yi

∑n
j=1α j y jκ(x,x j ) which

is an O(n) computation involving all training examples, or at least the ones
with non-zero multipliers α j .

t This is why support vector machines are a popular choice as a kernel
method, since they naturally promote sparsity in the support vectors.

t Although we have restricted attention to numerical features here, kernels
can be defined over discrete structures, including trees, graphs, and logical
formulae, opening the way to extending geometric models to non-numerical
data.
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8. Distance-based models

What’s next?

8 Distance-based models
Neighbours and exemplars
Nearest-neighbour classification
Distance-based clustering

K -means algorithm
Clustering around medoids
Silhouettes

Hierarchical clustering
From kernels to distances ?
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8. Distance-based models

Definition 8.1, p.234 Minkowski distance I

If X =Rd , the Minkowski distance of order p > 0 is defined as

Disp (x,y) =
(

d∑
j=1

|x j − y j |p
)1/p

= ||x−y||p

where ||z||p =
(∑d

j=1 |z j |p
)1/p

is the p-norm (sometimes denoted Lp norm) of
the vector z. We will often refer to Disp simply as the p-norm.

t The 2-norm refers to the familiar Euclidean distance

Dis2(x,y) =
√√√√ d∑

j=1
(x j − y j )2 =

√
(x−y)T(x−y)

which measures distance ‘as the crow flies’.
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8. Distance-based models

Definition 8.1, p.234 Minkowski distance II

t The 1-norm denotes Manhattan distance, also called cityblock distance:

Dis1(x,y) =
d∑

j=1
|x j − y j |

This is the distance if we can only travel along coordinate axes.

t If we now let p grow larger, the distance will be more and more dominated
by the largest coordinate-wise distance, from which we can infer that
Dis∞(x,y) = max j |x j − y j |; this is also called Chebyshev distance.
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8. Distance-based models

Definition 8.1, p.234 Minkowski distance III

t You will sometimes see references to the 0-norm (or L0 norm) which counts
the number of non-zero elements in a vector. The corresponding distance
then counts the number of positions in which vectors x and y differ. This is
not strictly a Minkowski distance; however, we can define it as

Dis0(x,y) =
d∑

j=1
(x j − y j )0 =

d∑
j=1

I [x j = y j ]

under the understanding that x0 = 0 for x = 0 and 1 otherwise.

t If x and y are binary strings, this is also called the Hamming distance.
Alternatively, we can see the Hamming distance as the number of bits that
need to be flipped to change x into y.

t For non-binary strings of unequal length this can be generalised to the
notion of edit distance or Levenshtein distance.
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8. Distance-based models

Figure 8.3, p.235 Circles and ellipses

(left) Lines connecting points at order-p Minkowski distance 1 from the origin for (from

inside) p = 0.8; p = 1 (Manhattan distance, the rotated square in red); p = 1.5; p = 2

(Euclidean distance, the violet circle); p = 4; p = 8; and p =∞ (Chebyshev distance, the

blue rectangle). Notice that for points on the coordinate axes all distances agree. For the

other points, our reach increases with p; however, if we require a rotation-invariant

distance metric then Euclidean distance is our only choice. (right) The rotated ellipse

xTRTS2Rx = 1/4; the axis-parallel ellipse xTS2x = 1/4; and the circle xTx = 1/4.
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8. Distance-based models

Definition 8.2, p.235 Distance metric

Given an instance space X , a distance metric is a function Dis : X ×X →R

such that for any x, y, z ∈X :

t distances between a point and itself are zero: Dis(x, x) = 0;

t all other distances are larger than zero: if x 6= y then Dis(x, y) > 0;

t distances are symmetric: Dis(y, x) = Dis(x, y);

t detours can not shorten the distance: Dis(x, z) ≤ Dis(x, y)+Dis(y, z).

If the second condition is weakened to a non-strict inequality – i.e., Dis(x, y) may
be zero even if x 6= y – the function Dis is called a pseudo-metric.
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8. Distance-based models

Figure 8.4, p.236 The triangle inequality
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(left) The green circle connects points the same Euclidean distance (i.e., Minkowski

distance of order p = 2) away from the origin as A. The orange circle shows that B and C

are equidistant from A. The red circle demonstrates that C is closer to the origin than B,

which conforms to the triangle inequality. (middle) With Manhattan distance (p = 1), B

and C are equally close to the origin and also equidistant from A. (right) With p < 1

(here, p = 0.8) C is further away from the origin than B; since both are again equidistant

from A, it follows that travelling from the origin to C via A is quicker than going there

directly, which violates the triangle inequality.
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8. Distance-based models

Example 8.1, p.237 ? Elliptical distance

Consider the following matrices

R =
(

1/
p

2 1/
p

2
−1/

p
2 1/

p
2

)
S =

(
1/2 0

0 1

)
M =

(
5/8 −3/8
−3/8 5/8

)
The matrix R describes a clockwise rotation of 45 degrees, and the diagonal
matrix S scales the x-axis by a factor 1/2. The equation

(SRx)T(SRx) = xTRTSTSRx = xTRTS2Rx = xTMx = 1/4

describes a shape which, after clockwise rotation of 45 degrees and scaling of
the x-axis by a factor 1/2, is a circle with radius 1/2 – i.e., the ‘ascending’ ellipse
in Figure 8.3 (right). The ellipse equation is (5/8)x2 + (5/8)y2 − (3/4)x y = 1/2.
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8. Distance-based models

? Mahalanobis distance

Often, the shape of the ellipse is estimated from data as the inverse of the
covariance matrix: M =Σ−1. This leads to the definition of the Mahalanobis
distance

DisM (x,y|Σ) =
√

(x−y)TΣ−1(x−y)

Using the covariance matrix in this way has the effect of decorrelating and
normalising the features.

Clearly, Euclidean distance is a special case of Mahalanobis distance with the
identity matrix I as covariance matrix: Dis2(x,y) = DisM (x,y|I).
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8. Distance-based models 8.1 Neighbours and exemplars

What’s next?

8 Distance-based models
Neighbours and exemplars
Nearest-neighbour classification
Distance-based clustering

K -means algorithm
Clustering around medoids
Silhouettes

Hierarchical clustering
From kernels to distances ?
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8. Distance-based models 8.1 Neighbours and exemplars

Means and distances I

Theorem (The arithmetic mean minimises squared Euclidean distance)

The arithmetic mean µ of a set of data points D in a Euclidean space is the
unique point that minimises the sum of squared Euclidean distances to those
data points.

Proof.

We will show that argminy
∑

x∈D ||x−y||2 =µ, where || · || denotes the 2-norm.
We find this minimum by taking the gradient (the vector of partial derivatives with
respect to yi ) of the sum and setting it to the zero vector:

∇y
∑

x∈D
||x−y||2 =−2

∑
x∈D

(
x−y

)=−2
∑

x∈D
x+2|D|y = 0

from which we derive y = 1
|D|

∑
x∈D x =µ.
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8. Distance-based models 8.1 Neighbours and exemplars

Means and distances II

t You may wonder what happens if we drop the square here: wouldn’t it be
more natural to take the point that minimises total Euclidean distance as
exemplar?

t This point is known as the geometric median, as for univariate data it
corresponds to the median or ‘middle value’ of a set of numbers. However,
for multivariate data there is no closed-form expression for the geometric
median, which needs to be calculated by successive approximation.

t In certain situations it makes sense to restrict an exemplar to be one of the
given data points. In that case, we speak of a medoid, to distinguish it from
a centroid which is an exemplar that doesn’t have to occur in the data.

t Finding a medoid requires us to calculate, for each data point, the total
distance to all other data points, in order to choose the point that minimises
it. Regardless of the distance metric used, this is an O(n2) operation for n
points.
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8. Distance-based models 8.1 Neighbours and exemplars

Figure 8.5, p.239 Centroids and medoids
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data points
squared 2−norm centroid (mean)
2−norm centroid (geometric median)
squared 2−norm medoid
2−norm medoid
1−norm medoid

A small data set of 10 points, with circles indicating centroids and squares indicating

medoids (the latter must be data points), for different distance metrics. Notice how the

outlier on the bottom-right ‘pulls’ the mean away from the geometric median; as a result

the corresponding medoid changes as well.
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8. Distance-based models 8.1 Neighbours and exemplars

The basic linear classifier is distance-based

t The basic linear classifier constructs the decision boundary as the
perpendicular bisector of the line segment connecting the two exemplars
(one for each class).

t An alternative, distance-based way to classify instances without direct
reference to a decision boundary is by the following decision rule: if x is
nearest to µ⊕ then classify it as positive, otherwise as negative; or
equivalently, classify an instance to the class of the nearest exemplar.

t If we use Euclidean distance as our closeness measure, simple geometry
tells us we get exactly the same decision boundary (Figure 8.6 (left)).

t So the basic linear classifier can be interpreted from a distance-based
perspective as constructing exemplars that minimise squared Euclidean
distance within each class, and then applying a nearest-exemplar decision
rule.
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8. Distance-based models 8.1 Neighbours and exemplars

Figure 8.6, p.240 Two-exemplar decision boundaries

(left) For two exemplars the nearest-exemplar decision rule with Euclidean distance

results in a linear decision boundary coinciding with the perpendicular bisector of the line

connecting the two exemplars. (right) Using Manhattan distance the circles are

replaced by diamonds.
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8. Distance-based models 8.1 Neighbours and exemplars

Figure 8.7, p.240 Three-exemplar decision boundaries

(left) Decision regions defined by the 2-norm nearest-exemplar decision rule for three

exemplars. (right) With Manhattan distance the decision regions become non-convex.
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8. Distance-based models 8.1 Neighbours and exemplars

Example 8.2, p.241 Two neighbours know more than one

Figure 8.8 (left) gives a Voronoi tesselation for five exemplars. Each line segment
is part of the perpendicular bisector of two exemplars. There are

(5
2

)= 10 pairs of
exemplars, but two of these pairs are too far away from each other so we
observe only eight line segments in the Voronoi tesselation.
If we now also take the second-nearest exemplars into account, each Voronoi
cell is further subdivided: for instance, since the central point has four
neighbours, the central cell is divided into four subregions (Figure 8.8 (middle)).
You can think of those additional line segments as being part of the Voronoi
tesselation that results when the central point is removed. The other exemplars
have only three immediate neighbours and so their cells are divided into three
subregions. We thus obtain 16 ‘2-nearest exemplar’ decision regions, each of
which is defined by a different pair of nearest and second-nearest exemplars.
Figure 8.8 (right) shades each of these regions according to the two nearest
exemplars spanning it.
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8. Distance-based models 8.1 Neighbours and exemplars

Figure 8.8, p.241 One vs two nearest neighbours

(left) Voronoi tesselation for five exemplars. (middle) Taking the two nearest exemplars

into account leads to a further subdivision of each Voronoi cell. (right) The shading

indicates which exemplars contribute to which cell.
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8. Distance-based models 8.1 Neighbours and exemplars

Distance-based models

To summarise, the main ingredients of distance-based models are

t distance metrics, which can be Euclidean, Manhattan, Minkowski or
Mahalanobis, among many others;

t exemplars: centroids that find a centre of mass according to a chosen
distance metric, or medoids that find the most centrally located data point;
and

t distance-based decision rules, which take a vote among the k nearest
exemplars.

In the next subsections these ingredients are combined in various ways to obtain
supervised and unsupervised learning algorithms.
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8. Distance-based models 8.2 Nearest-neighbour classification

What’s next?

8 Distance-based models
Neighbours and exemplars
Nearest-neighbour classification
Distance-based clustering

K -means algorithm
Clustering around medoids
Silhouettes

Hierarchical clustering
From kernels to distances ?
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8. Distance-based models 8.2 Nearest-neighbour classification

Nearest-neighbour classifier

t kNN uses the training data as exemplars, so training is O(n) (but prediction
is also O(n)!)

t 1NN perfectly separates training data, so low bias but high variance

t By increasing the number of neighbours k we increase bias and decrease
variance (what happens when k = n?)

t Easily adapted to real-valued targets, and even to structured objects
(nearest-neighbour retrieval). Can also output probabilities when k > 1

t Warning: in high-dimensional spaces everything is far away from everything
and so pairwise distances are uninformative (curse of dimensionality)

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 353 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


8. Distance-based models 8.2 Nearest-neighbour classification

Figure 8.9, p.244 Three-, five- and seven-nearest neighbour

(left) Decision regions of a 3-nearest neighbour classifier; the shading represents the

predicted probability distribution over the five classes. (middle) 5-nearest neighbour.

(right) 7-nearest neighbour.
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8. Distance-based models 8.2 Nearest-neighbour classification

Figure 8.10, p.245 Distance weighting

(left) 3-nearest neighbour with distance weighting on the data from Figure 8.9. (middle)
5-nearest neighbour. (right) 7-nearest neighbour.
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8. Distance-based models 8.3 Distance-based clustering

What’s next?

8 Distance-based models
Neighbours and exemplars
Nearest-neighbour classification
Distance-based clustering

K -means algorithm
Clustering around medoids
Silhouettes

Hierarchical clustering
From kernels to distances ?
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8. Distance-based models 8.3 Distance-based clustering

Definition 8.3, p.245 Scatter

Given a data matrix X, the scatter matrix is the matrix

S = (
X−1µ

)T (
X−1µ

)= n∑
i=1

(
Xi ·−µ

)T (
Xi ·−µ

)
where µ is a row vector containing all column means of X. The scatter of X is
defined as Scat(X) =∑n

i=1 ||Xi ·−µ||2, which is equal to the trace of the scatter
matrix (i.e., the sum of its diagonal elements).
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8. Distance-based models 8.3 Distance-based clustering

Within-cluster and between-cluster scatter

Imagine that we partition data D into K subsets D1 ] . . .]DK = D , and let µ j

denote the mean of D j . Let S be the scatter matrix of D , and S j be the scatter
matrices of D j .
t These scatter matrices then have the relationship S =∑K

j=1 S j +B.
t B is the between-cluster scatter matrix that results by replacing each point

in D with the corresponding centroid µ j : it describes the spread of the
centroids.

t Each S j is called a within-cluster scatter matrix and describes the
compactness of the j -th cluster.

t It follows that the traces of these matrices can be decomposed similarly:

Scat(D) =
K∑

j=1
Scat(D j )+

K∑
j=1

|D j | ||µ j −µ||2

t The K -means problem is to find a partition that minimises the first term (or
maximises the second term).
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8. Distance-based models 8.3 Distance-based clustering

Example 8.3, p.246 Reducing scatter by partitioning data I

Consider the following five points centred around (0,0): (0,3), (3,3), (3,0),
(−2,−4) and (−4,−2). The scatter matrix is

S =
(

0 3 3 −2 −4
3 3 0 −4 −2

)


0 3
3 3
3 0
−2 −4
−4 −2

=
(

38 25
25 38

)

with trace Scat(D) = 76. If we cluster the first two points together in one cluster
and the remaining three in another, then we obtain cluster means µ1 = (1.5,3)
and µ2 = (−1,−2) and within-cluster scatter matrices

S1 =
(

0−1.5 3−1.5
3−3 3−3

)(
0−1.5 3−3
3−1.5 3−3

)
=

(
4.5 0
0 0

)

S2 =
(

3− (−1) −2− (−1) −4− (−1)
0− (−2) −4− (−2) −2− (−2)

) 3− (−1) 0− (−2)
−2− (−1) −4− (−2)
−4− (−1) −2− (−2)

=
(

26 10
10 8

)
with traces Scat(D1) = 4.5 and Scat(D2) = 34.
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Example 8.3, p.246 Reducing scatter by partitioning data II

Two copies of µ1 and three copies of µ2 have, by definition, the same centre of
gravity as the complete data set: (0,0) in this case. We thus calculate the
between-cluster scatter matrix as

B =
(

1.5 1.5 −1 −1 −1
3 3 −2 −2 −2

)


1.5 3
1.5 3
−1 −2
−1 −2
−1 −2

=
(

7.5 15
15 30

)

with trace 37.5. Alternatively, if we treat the first three points as a cluster and put
the other two in a second cluster, then we obtain cluster means µ′

1 = (2,2) and
µ′

2 = (−3,−3), and within-cluster scatter matrices

S′1 =
(

0−2 3−2 3−2
3−2 3−2 0−2

) 0−2 3−2
3−2 3−2
3−2 0−2

=
(

6 −3
−3 6

)

S′2 =
( −2− (−3) −4− (−3)

−4− (−3) −2− (−3)

)( −2− (−3) −4− (−3)
−4− (−3) −2− (−3)

)
=

(
2 −2
−2 2

)
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8. Distance-based models 8.3 Distance-based clustering

Example 8.3, p.246 Reducing scatter by partitioning data III

with traces Scat(D ′
1) = 12 and Scat(D ′

2) = 4. The between-cluster scatter matrix
is

B′ =
(

2 2 2 −3 −3
2 2 2 −3 −3

)


2 2
2 2
2 2
−3 −3
−3 −3

=
(

30 30
30 30

)

with trace 60. Clearly, the second clustering produces tighter clusters whose
centroids are further apart.
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8. Distance-based models 8.3 Distance-based clustering

Algorithm 8.1, p.248 K -means clustering

Algorithm KMeans(D,K ) – K -means clustering using Euclidean distance Dis2.

Input : data D ⊆Rd ; number of clusters K ∈N.
Output : K cluster means µ1, . . . ,µK ∈Rd .

1 randomly initialise K vectors µ1, . . . ,µK ∈Rd ;
2 repeat
3 assign each x ∈ D to argmin j Dis2(x,µ j );

4 for j = 1 to K do
5 D j ← {x ∈ D|x assigned to cluster j };
6 µ j = 1

|D j |
∑

x∈D j
x;

7 end
8 until no change in µ1, . . . ,µK ;
9 return µ1, . . . ,µK ;
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8. Distance-based models 8.3 Distance-based clustering

Figure 8.11, p.248 K -means clustering
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(left) First iteration of 3-means on Gaussian mixture data. The dotted lines are the

Voronoi boundaries resulting from randomly initialised centroids; the violet solid lines are

the result of the recalculated means. (middle) Second iteration, taking the previous

partition as starting point (dotted line). (right) Third iteration with stable clustering.
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8. Distance-based models 8.3 Distance-based clustering

Example 8.4, p.248 Clustering MLM data

Refer back to the MLM data set in Table 1.4 (it is also helpful to look at its
two-dimensional approximation in Figure 1.7). When we run K -means on this
data with K = 3, we obtain the clusters {Associations,Trees,Rules},
{GMM,naive Bayes}, and a larger cluster with the remaining data points. When
we run it with K = 4, we get that the large cluster splits into two:
{kNN,Linear Classifier,Linear Regression} and
{Kmeans,Logistic Regression,SVM}; but also that GMM gets reallocated to the
latter cluster, and naive Bayes ends up as a singleton.
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8. Distance-based models 8.3 Distance-based clustering

Example 8.5, p.249 Stationary points in clustering

Consider the task of dividing the set of numbers {8,44,50,58,84} into two
clusters. There are four possible partitions that 2-means can find:

t {8}, {44,50,58,84};

t {8,44}, {50,58,84};

t {8,44,50}, {58,84}; and

t {8,44,50,58}, {84}.

It is easy to verify that each of these establishes a stationary point for 2-means,
and hence will be found with a suitable initialisation. Only the first clustering is
optimal; i.e., it minimises the total within-cluster scatter.
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8. Distance-based models 8.3 Distance-based clustering

Figure 8.12, p.249 Sub-optimality of K -means
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(left) First iteration of 3-means on the same data as Figure 8.11 with differently initialised

centroids. (right) 3-means has converged to a sub-optimal clustering.
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Algorithm 8.2, p.250 K -medoids clustering

Algorithm KMedoids(D,K ,Dis) – K -medoids clustering using arbitrary distance
metric Dis.

Input : data D ⊆X ; number of clusters K ∈N;
distance metric Dis : X ×X →R.

Output : K medoids µ1, . . . ,µK ∈ D , representing a predictive clustering of X .
1 randomly pick K data points µ1, . . . ,µK ∈ D ;
2 repeat
3 assign each x ∈ D to argmin j Dis(x,µ j );

4 for j = 1 to k do
5 D j ← {x ∈ D|x assigned to cluster j };
6 µ j = argminx∈D j

∑
x′∈D j

Dis(x,x′);
7 end
8 until no change in µ1, . . . ,µK ;
9 return µ1, . . . ,µK ;
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Algorithm 8.3, p.251 Partitioning around medoids clustering

Algorithm PAM(D,K ,Dis) – Partitioning around medoids clustering using arbi-
trary distance metric Dis.

Input : data D ⊆X ; number of clusters K ∈N;
distance metric Dis : X ×X →R.

Output : K medoids µ1, . . . ,µK ∈ D , representing a predictive clustering of X .
1 randomly pick K data points µ1, . . . ,µK ∈ D ;
2 repeat
3 assign each x ∈ D to argmin j Dis(x,µ j );

4 for j = 1 to k do
5 D j ← {x ∈ D|x assigned to cluster j };

6 end
7 Q ←∑

j
∑

x∈D j Dis(x,µ j );

8 for each medoid m and each non-medoid o do
9 calculate the improvement in Q resulting from swapping m with o;

10 end
11 select the pair with maximum improvement and swap;
12 until no further improvement possible;
13 return µ1, . . . ,µK ;
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Figure 8.13, p.251 Scale-sensitivity of K -means
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(left) On this data 2-means detects the right clusters. (right) After rescaling the y-axis,

this configuration has a higher between-cluster scatter than the intended one.
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8. Distance-based models 8.3 Distance-based clustering

Silhouettes I

t For any data point xi , let d(xi ,D j ) denote the average distance of xi to the
data points in cluster D j , and let j (i ) denote the index of the cluster that xi

belongs to.

t Furthermore, let a(xi ) = d(xi ,D j (i )) be the average distance of xi to the
points in its own cluster D j (i ), and let b(xi ) = mink 6= j (i ) d(xi ,Dk ) be the
average distance to the points in its neighbouring cluster.

t We would expect a(xi ) to be considerably smaller than b(xi ), but this
cannot be guaranteed.

t So we can take the difference b(xi )−a(xi ) as an indication of how
‘well-clustered’ xi is, and divide this by b(xi ) to obtain a number less than
or equal to 1.
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Silhouettes II

t It is, however, conceivable that a(xi ) > b(xi ), in which case the difference
b(xi )−a(xi ) is negative. This describes the situation that, on average, the
members of the neighbouring cluster are closer to xi than the members of
its own cluster.

t In order to get a normalised value we divide by a(xi ) in this case. This
leads to the following definition:

s(xi ) = b(xi )−a(xi )

max(a(xi ),b(xi ))

t A silhouette then sorts and plots s(x) for each instance, grouped by cluster.
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Figure 8.14, p.252 Silhouettes
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(left) Silhouette for the clustering in Figure 8.13 (left), using squared Euclidean distance.

Almost all points have a high s(x), which means that they are much closer, on average,

to the other members of their cluster than to the members of the neighbouring cluster.

(right) The silhouette for the clustering in Figure 8.13 (right) is much less convincing.
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8. Distance-based models 8.4 Hierarchical clustering

What’s next?

8 Distance-based models
Neighbours and exemplars
Nearest-neighbour classification
Distance-based clustering

K -means algorithm
Clustering around medoids
Silhouettes

Hierarchical clustering
From kernels to distances ?
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8. Distance-based models 8.4 Hierarchical clustering

Example 8.6, p.253 Hierarchical clustering of MLM data

We continue Example 8.4. A hierarchical clustering of the MLM data is given in
Figure 8.15. The tree shows that the three logical methods at the top form a
strong cluster. If we wanted three clusters, we get the logical cluster, a second
small cluster {GMM,naive Bayes}, and the remainder. If we wanted four
clusters, we would separate GMM and naive Bayes, as the tree indicates this
cluster is the least tight of the three (notice that this is slightly different from the
solution found by 4-means). If we wanted five clusters, we would construct
{Linear Regression,LinearClassifier} as a separate cluster. This illustrates the
key advantage of hierarchical clustering: it doesn’t require fixing the number of
clusters in advance.
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Figure 8.15, p.253 Hierarchical clustering example
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Trees

Rules

Associations

A dendrogram (printed left to right to improve readability) constructed by hierarchical

clustering from the data in Table 1.4.
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8. Distance-based models 8.4 Hierarchical clustering

Definition 8.4, p.254 Dendrogram

Given a data set D , a dendrogram is a binary tree with the elements of D at its
leaves.

An internal node of the tree represents the subset of elements in the leaves of
the subtree rooted at that node.

The level of a node is the distance between the two clusters represented by the
children of the node.

Leaves have level 0.
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8. Distance-based models 8.4 Hierarchical clustering

Definition 8.5, p.254 Linkage function I

A linkage function L : 2X ×2X →R calculates the distance between arbitrary
subsets of the instance space, given a distance metric Dis : X ×X →R.

The most common linkage functions are as follows:

Single linkage defines the distance between two clusters as the smallest
pairwise distance between elements from each cluster.

Complete linkage defines the distance between two clusters as the largest
pointwise distance.

Average linkage defines the cluster distance as the average pointwise
distance.

Centroid linkage defines the cluster distance as the point distance between
the cluster means.
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Definition 8.5, p.254 Linkage function II

These linkage functions can be defined mathematically as follows:

Lsingle(A,B) = min
x∈A,y∈B

Dis(x, y)

Lcomplete(A,B) = max
x∈A,y∈B

Dis(x, y)

Laverage(A,B) =
∑

x∈A,y∈B Dis(x, y)

|A| · |B |
Lcentroid(A,B) = Dis

(∑
x∈A x

|A| ,

∑
y∈B y

|B |
)

Clearly, all these linkage functions coincide for singleton clusters:
L({x}, {y}) = Dis(x, y). However, for larger clusters they start to diverge.
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Definition 8.5, p.254 Linkage function III

For example, suppose Dis(x, y) < Dis(x, z), then the linkage between {x} and
{y, z} is different in all four cases:

Lsingle({x}, {y, z}) = Dis(x, y)

Lcomplete({x}, {y, z}) = Dis(x, z)

Laverage({x}, {y, z}) = (
Dis(x, y)+Dis(x, z)

)
/2

Lcentroid({x}, {y, z}) = Dis(x, (y + z)/2)
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Algorithm 8.4, p.255 Hierarchical agglomerative clustering

Algorithm HAC(D,L) – Hierarchical agglomerative clustering.

Input : data D ⊆X ; linkage function L : 2X ×2X →R defined in terms of
distance metric.

Output : a dendrogram representing a descriptive clustering of D .
1 initialise clusters to singleton data points;
2 create a leaf at level 0 for every singleton cluster;
3 repeat
4 find the pair of clusters X ,Y with lowest linkage l , and merge;
5 create a parent of X ,Y at level l ;
6 until all data points are in one cluster;
7 return the constructed binary tree with linkage levels;
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8. Distance-based models 8.4 Hierarchical clustering

Example 8.7, p.256 Linkage matters

We consider a regular grid of 8 points in two rows of four (Figure 8.16). We
assume that ties are broken by small irregularities. Each linkage function merges
the same clusters in the same order, but the linkages are quite different in each
case.

t Complete linkage gives the impression that D is far removed from the rest,
whereas by moving D very slightly to the right it would have been added to
E before C.

t With centroid linkage we see that E has in fact the same linkage as A and
B, which means that A and B are not really discernible as separate clusters,
even though they are found first.

t Single linkage seems preferable in this case, as it most clearly
demonstrates that there is no meaningful cluster structure in this set of
points.
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8. Distance-based models 8.4 Hierarchical clustering

Figure 8.16, p.256 Linkage matters
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(left) Complete linkage defines cluster distance as the largest pairwise distance between elements

from each cluster, indicated by the coloured lines between data points. (middle) Centroid linkage

defines the distance between clusters as the distance between their means. Notice that E obtains

the same linkage as A and B, and so the latter clusters effectively disappear. (right) Single

linkage defines the distance between clusters as the smallest pairwise distance. The dendrogram

all but collapses, which means that no meaningful clusters are found in the given grid configuration.
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8. Distance-based models 8.4 Hierarchical clustering

Figure 8.17, p.257 ? Non-monotonic dendrogram
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(left) Points 1 and 2 are closer to each other than to point 3. However, the distance

between point 3 to the centroid of the other two points is less than any of the pairwise

distances. (right) This results in a decrease in centroid linkage when adding point 3 to

cluster {1,2}, and hence a non-monotonic dendrogram. The other three linkage functions

are monotonic (the example also serves as an illustration why average linkage and

centroid linkage are not the same).
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8. Distance-based models 8.4 Hierarchical clustering

Figure 8.18, p.258 A spurious clustering
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(left) 20 data points, generated by uniform random sampling. (middle) The dendrogram

generated from complete linkage. The three clusters suggested by the dendrogram are

spurious as they cannot be observed in the data. (right) The rapidly decreasing

silhouette values in each cluster confirm the absence of a strong cluster structure. Point

18 has a negative silhouette value as it is on average closer to the green points than to

the other red points.
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8. Distance-based models 8.5 From kernels to distances ?

What’s next?

8 Distance-based models
Neighbours and exemplars
Nearest-neighbour classification
Distance-based clustering

K -means algorithm
Clustering around medoids
Silhouettes

Hierarchical clustering
From kernels to distances ?
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8. Distance-based models 8.5 From kernels to distances ?

? From kernels to distances I

Recall that a kernel is a function κ(xi ,x j ) =φ(xi ) ·φ(x j ) that calculates a dot
product in some feature space, but without constructing the feature vectors φ(x)
explicitly. Any learning method that can be defined purely in terms of dot
products of data points is amenable to such ‘kernelisation’.

We can apply the same ‘kernel trick’ to many distance-based learning methods.
The key insight is that Euclidean distance can be rewritten in terms of dot
products:

Dis2(x,y) = ||x−y||2 =
√

(x−y) · (x−y) =√
x ·x−2x ·y+y ·y

The two terms x ·x and y ·y have the effect of making the overall expression
translation-invariant (as the dot product isn’t).
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8. Distance-based models 8.5 From kernels to distances ?

? From kernels to distances II

Replacing the dot product with a kernel function κ, we can construct the
following kernelised distance:

Disκ(x,y) =√
κ(x,x)−2κ(x,y)+κ(y,y)

It turns out that Disκ defines a pseudo-metric (see Definition 8.2) whenever κ is
a positive semi-definite kernel.
(It is only a metric if the feature mapping φ is injective: suppose not, then some
distinct x and y are mapped to the same feature vector φ(x) =φ(y), from which
we derive κ(x,x)−2κ(x,y)+κ(y,y) =φ(x) ·φ(x)−2φ(x) ·φ(y)+φ(y) ·φ(y) = 0.)
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8. Distance-based models 8.5 From kernels to distances ?

Algorithm 8.5, p.259 ? ‘Kernelised’ K -means clustering

Algorithm Kernel-KMeans(D,K ) – K -means clustering using kernelised distance
Disκ.

Input : data D ⊆X ; number of clusters K ∈N.
Output : K -fold partition D1 ] . . .]DK = D .

1 randomly initialise K clusters D1, . . . ,DK ;
2 repeat
3 assign each x ∈ D to argmin j

1
|D j |

∑
y∈D j

Disκ(x,y);

4 for j = 1 to K do
5 D j ← {x ∈ D|x assigned to cluster j };
6 end
7 until no change in D1, . . . ,DK ;
8 return D1, . . . ,DK ;
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8. Distance-based models 8.5 From kernels to distances ?

? Cosine similarity

There is an alternative way to turn dot products into distances. Since the dot
product can be written as ||x|| · ||y||cosθ, where θ is the angle between the
vectors x and y, we define the cosine similarity as

cosθ = x ·y

||x|| · ||y|| =
x ·y√

(x ·x)(y ·y)

Cosine similarity differs from Euclidean distance in that it doesn’t depend on the
length of the vectors x and y.

On the other hand, it is not translation-independent, but assigns special status to
the origin: one way to think of it is as a projection onto a unit sphere around the
origin, and measuring distance on that sphere. Cosine similarity is usually turned
into a distance metric by taking 1−cosθ.
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9. Probabilistic models

What’s next?

9 Probabilistic models
The normal distribution and its geometric interpretations
Probabilistic models for categorical data

Using a naive Bayes model for classification
Training a naive Bayes model

Discriminative learning by optimising conditional likelihood ?
Probabilistic models with hidden variables

Expectation-Maximisation ?
Gaussian mixture models ?

Compression-based models ?
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9. Probabilistic models

Discriminative and generative probabilistic models

t Discriminative models model the posterior probability distribution P (Y |X ),
where Y is the target variable and X are the features. That is, given X they
return a probability distribution over Y .

t Generative models model the joint distribution P (Y , X ) of the target Y and
the feature vector X . Once we have access to this joint distribution we can
derive any conditional or marginal distribution involving the same variables.
In particular, since P (X ) =∑

y P (Y = y, X ) it follows that the posterior

distribution can be obtained as P (Y |X ) = P (Y ,X )∑
y P (Y =y,X ) .

t Alternatively, generative models can be described by the likelihood function
P (X |Y ), since P (Y , X ) = P (X |Y )P (Y ) and the target or prior distribution
(usually abbreviated to ‘prior’) can be easily estimated or postulated.

t Such models are called ‘generative’ because we can sample from the joint
distribution to obtain new data points together with their labels.
Alternatively, we can use P (Y ) to sample a class and P (X |Y ) to sample an
instance for that class.
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9. Probabilistic models

Example 9.1, p.263 Assessing uncertainty in estimates

Suppose we want to estimate the probability θ that an arbitrary e-mail is spam,
so that we can use the appropriate prior distribution.

t The natural thing to do is to inspect n e-mails, determine the number of
spam e-mails d , and set θ̂ = d/n; we don’t really need any complicated
statistics to tell us that.

t However, while this is the most likely estimate of θ – the maximum a
posteriori (MAP) estimate – this doesn’t mean that other values of θ are
completely ruled out.

t We model this by a probability distribution over θ (a Beta distribution in this
case) which is updated each time new information comes in. This is further
illustrated in Figure 9.1 for a distribution that is more and more skewed
towards spam.

t For each curve, its bias towards spam is given by the area under the curve
and to the right of θ = 1/2.
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9. Probabilistic models

Figure 9.1, p.264 Assessing uncertainty in estimates
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Each time we inspect an e-mail, we are reducing our uncertainty regarding the prior

spam probability θ. After we inspect two e-mails and observe one spam, the possible θ

values are characterised by a symmetric distribution around 1/2. If we inspect a third,

fourth, . . . , tenth e-mail and each time (except the first one) it is spam, then this

distribution narrows and shifts a little bit to the right each time. The distribution for n

e-mails reaches its maximum at θ̂MAP = n−1
n (e.g., θ̂MAP = 0.8 for n = 5).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 393 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


9. Probabilistic models

The Bayesian perspective I

Explicitly modelling the posterior distribution over the parameter θ has a number
of advantages that are usually associated with the ‘Bayesian’ perspective:

t We can precisely characterise the uncertainty that remains about our
estimate by quantifying the spread of the posterior distribution.

t We can obtain a generative model for the parameter by sampling from the
posterior distribution, which contains much more information than a
summary statistic such as the MAP estimate can convey – so, rather than
using a single e-mail with θ = θMAP, our generative model can contain a
number of e-mails with θ sampled from the posterior distribution.

t We can quantify the probability of statements such as ‘e-mails are biased
towards ham’ (the tiny shaded area in Figure 9.1 demonstrates that after
observing one ham and nine spam e-mails this probability is very small,
about 0.6%).
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9. Probabilistic models

The Bayesian perspective II

t We can use one of these distributions to encode our prior beliefs: e.g., if we
believe that the proportions of spam and ham are typically 50–50, we can
take the distribution for n = 2 (the lowest, symmetric one in Figure 9.1) as
our prior.

The key point is that probabilities do not have to be interpreted as estimates of
relative frequencies, but can carry the more general meaning of (possibly
subjective) degrees of belief.

Consequently, we can attach a probability distribution to almost anything: not just
features and targets, but also model parameters and even models.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 395 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


9. Probabilistic models

Bayes-optimality

A classifier is Bayes-optimal if it always assigns argmaxy P∗(Y = y |X = x) to an
instance x, where P∗ denotes the true posterior distribution.

t For example, we can perform experiments with artificially generated data for
which we have chosen the true distribution ourselves: this allows us to
experimentally evaluate how close the performance of a model is to being
Bayes-optimal.

t Alternatively, the derivation of a probabilistic learning method usually makes
certain assumptions about the true distribution, which allows us to prove
theoretically that the model will be Bayes-optimal provided these
assumptions are met. For example, later on in this chapter we will state the
conditions under which the basic linear classifier is Bayes-optimal.
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9. Probabilistic models

Model selection I

The choice of a single model, often referred to as model selection, does not
necessarily lead to Bayes-optimality – even if the model chosen is the one that
performs best under the true distribution.

To illustrate this, let m∗ be the best probability estimation tree we have learned
from a sufficient amount of data. Using m∗ we would predict
argmaxy P (Y = y |M = m∗, X = x) for an instance x, where M is a random
variable ranging over the model class m∗ was chosen from.

However, these predictions are not necessarily Bayes-optimal since

P (Y |X = x) = ∑
m∈M

P (Y , M = m|X = x) by marginalising over M

= ∑
m∈M

P (Y |M = m, X = x)P (M = m|X = x) by the chain rule

= ∑
m∈M

P (Y |M = m, X = x)P (M = m) by independence of M and X
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9. Probabilistic models

Model selection II

Here, P (M) can be interpreted as a posterior distribution over models after
seeing the training data (the MAP model is therefore
m∗ = argmaxm P (M = m)).

The final expression in the preceding derivation tells us to average the
predictions of all models, weighted by their posterior probabilities.

Clearly, this distribution is only equal to P (Y |M = m∗, X = x) if P (M) is zero for
all models other than m∗, i.e., if we have seen sufficient training data to rule out
all but one remaining model. This is obviously unrealistic.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 398 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

What’s next?

9 Probabilistic models
The normal distribution and its geometric interpretations
Probabilistic models for categorical data

Using a naive Bayes model for classification
Training a naive Bayes model

Discriminative learning by optimising conditional likelihood ?
Probabilistic models with hidden variables

Expectation-Maximisation ?
Gaussian mixture models ?

Compression-based models ?
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

The normal distribution

The univariate normal or Gaussian distribution has the following probability
density function:

P (x|µ,σ) = 1p
2πσ

exp

(
− (x −µ)2

2σ2

)
= 1

E
exp

(
−1

2

[ x −µ
σ

]2
)
= 1

E
exp

(
−z2/2

)
, E =p

2πσ

The distribution has two parameters: µ, which is the mean or expected value, as
well as the median (i.e., the point where the area under the density function is
split in half) and the mode (i.e., the point where the density function reaches its
maximum); and σ, which is the standard deviation and determines the width of
the bell-shaped curve.
The multivariate normal distribution over d -vectors x = (x1, . . . , xd )T ∈Rd is

P (x|µ,Σ) = 1

Ed
exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
, Ed = (2π)d/2

√
|Σ|
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

Mixture model I

Suppose the values of x ∈R follow a mixture model: i.e., each class has its own
probability distribution (a component of the mixture model). We will assume a
Gaussian mixture model, which means that the components of the mixture are
both Gaussians. We thus have

P (x|⊕) = 1p
2πσ⊕ exp

(
−1

2

[
x −µ⊕

σ⊕

]2
)

P (x|ª) = 1p
2πσª exp

(
−1

2

[
x −µª

σª

]2
)

where µ⊕ and σ⊕ are the mean and standard deviation for the positive class,
and µª and σª are the mean and standard deviation for the negative class. This
gives the following likelihood ratio:

LR(x) = P (x|⊕)

P (x|ª)
= σª

σ⊕ exp

(
−1

2

[(
x −µ⊕

σ⊕

)2

−
(

x −µª

σª

)2
])
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

Mixture model II

Let’s first consider the case that both components have the same standard
deviation, i.e., σ⊕ =σª =σ. We can then simplify the exponent in LR(x) as
follows:

− 1

2σ2

[
(x −µ⊕)2 − (x −µª)2]=− 1

2σ2

[
x2 −2µ⊕x +µ⊕2 − (x2 −2µªx +µª2)

]
=− 1

2σ2

[
−2(µ⊕−µª)x + (µ⊕2 −µª2)

]
= µ⊕−µª

σ2

[
x − µ⊕+µª

2

]
The likelihood ratio can thus be written as LR(x) = exp

(
γ(x −µ)

)
, with two

parameters: γ= (µ⊕−µª)/σ2 is the difference between the means in proportion
to the variance, and µ= (µ⊕+µª)/2 is the midpoint between the two class
means. It follows that the maximum-likelihood decision threshold (the value of x
such that LR(x) = 1) is xML =µ.
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

Example 9.2, p.268 Mixture model with unequal variances

If σ⊕ 6=σª, the x2 terms in LR(x) do not cancel. This results in two decision
boundaries and a non-contiguous decision region for one of the classes.

t Suppose µ⊕ = 1, µª = 2 and σª = 2σ⊕ = 2, then
LR(x) = 2exp

(−[(x −1)2 − (x −2)2/4]/2
)= 2exp

(
3x2/8

)
.

t It follows that the ML decision boundaries are x =±(8/3) ln2 =±1.85. As
can be observed in Figure 9.2, these are the points where the two
Gaussians cross.

t In contrast, if σª =σ⊕ then we get a single ML decision boundary at
x = 1.5.
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

Figure 9.2, p.268 Mixture model with unequal variances
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If positive examples are drawn from a Gaussian with mean and standard deviation 1 and

negatives from a Gaussian with mean and standard deviation 2, then the two

distributions cross at x =±1.85. This means that the maximum-likelihood region for

positives is the closed interval [−1.85,1.85], and hence the negative region is

non-contiguous.
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

Example 9.3, p.269 Bivariate Gaussian mixture

Throughout the example we assume µ1
⊕ =µ2

⊕ = 1 and µ1
ª =µ2

ª =−1.
(i) If all variances are 1 and both correlations are 0, then the ML decision
boundary is given by
(x1 −1)2 + (x2 −1)2 − (x1 +1)2 − (x2 +1)2 =−2x1 −2x2 −2x1 −2x2 = 0, i.e.,
x1 +x2 = 0 (Figure 9.3 (left)).
(ii) If σ1

⊕ =σ1
ª = 1, σ2

⊕ =σ2
ª =p

2 and ρ⊕ = ρª =p
2/2, then the ML

decision boundary is (x1 −1)2 + (x2 −1)2/2−p
2(x1 −1)(x2 −1)/

p
2− (x1 +

1)2 − (x2 +1)2/2+p
2(x1 +1)(x2 +1)/

p
2 =−2x1 = 0 (Figure 9.3 (middle)).

(iii) If all variances are 1 and ρ⊕ =−ρª = ρ, then the ML decision boundary is
given by
(x1−1)2+(x2−1)2−2ρ(x1−1)(x2−1)−(x1+1)2−(x2+1)2−2ρ(x1+1)(x2+1) =
−4x1 −4x2 −4ρx1x2 −4ρ = 0, i.e., x1 +x2 +ρx1x2 +ρ = 0, which is a
hyperbole. Figure 9.3 (right) illustrates this for ρ = 0.7.
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

Figure 9.3, p.269 Bivariate Gaussian mixture
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(left) If the features are uncorrelated and have the same variance, maximum-likelihood

classification leads to the basic linear classifier, whose decision boundary is orthogonal

to the line connecting the means. (middle) As long as the per-class covariance matrices

are identical, the Bayes-optimal decision boundary is linear – if we were to decorrelate

the features by rotation and scaling, we would again obtain the basic linear classifier.

(right) Unequal covariance matrices lead to hyperbolic decision boundaries, which

means that one of the decision regions is non-contiguous.
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

When is the basic linear classifier Bayes-optimal? I

The general form of the likelihood ratio can be derived as

LR(x) =
√

|Σª|
|Σ⊕| exp

(
−1

2

[
(x−µ⊕)T(Σ⊕)−1(x−µ⊕)− (x−µª)T(Σª)−1(x−µª)

])
where µ⊕ and µª are the class means, and Σ⊕ and Σª are the covariance
matrices for each class.

Assume that Σ⊕ =Σª = I (i.e., in each class the features are uncorrelated and
have unit variance), then we have

LR(x) = exp

(
−1

2

[
(x−µ⊕)T(x−µ⊕)− (x−µª)T(x−µª)

])
= exp

(
−1

2

[||x−µ⊕||2 −||x−µª||2])
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

When is the basic linear classifier Bayes-optimal? II

It follows that LR(x) = 1 for any x equidistant from µ⊕ and µª. But this means
that the ML decision boundary is a straight line at equal distances from the class
means – in which we recognise our old friend, the basic linear classifier! In other
words, for uncorrelated, unit-variance Gaussian features, the basic linear
classifier is Bayes-optimal.

More generally, as long as the per-class covariance matrices are equal, the ML
decision boundary will be linear, intersecting µ⊕−µª in the middle, but not at
right angles if the features are correlated. This means that the basic linear
classifier is only Bayes-optimal in this case if we first decorrelate and normalise
the features.

With non-equal class covariances the decision boundary will be hyperbolic. So,
the three cases in Figure 9.3 generalise to the multivariate case.
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9. Probabilistic models 9.1 The normal distribution and its geometric interpretations

? From distances to probabilities, and back

The multivariate normal distribution essentially translates distances into

probabilities (DisM (x,y|Σ) =
√

(x−y)TΣ−1(x−y) denotes the Mahalanobis
distance introduced in Chapter 8):

P (x|µ,Σ) = 1

Ed
exp

(
−1

2

(
DisM (x,µ|Σ)

)2
)

Conversely, we see that the negative logarithm of the Gaussian likelihood can be
interpreted as a squared distance:

− lnP (x|µ,Σ) = lnEd + 1

2

(
DisM (x,µ|Σ)

)2

The intuition is that the logarithm transforms the multiplicative probability scale
into an additive scale (which, in the case of Gaussian distributions, corresponds
to a squared distance).
Since additive scales are often easier to handle, log-likelihoods are a common
concept in statistics.
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? Maximum-likelihood estimation

Suppose we want to estimate the mean µ of a multivariate Gaussian distribution
with given covariance matrix Σ from a set of data points X . The principle of
maximum-likelihood estimation states that we should find the value of µ that
maximises the joint likelihood of X . Assuming that the elements of X were
independently sampled, the joint likelihood decomposes into a product over the
individual data points in X , and the maximum-likelihood estimate can be found
as follows:

µ̂= argmax
µ

∏
x∈X

P (x|µ,Σ)

= argmax
µ

∏
x∈X

1

Ed
exp

(
−1

2

(
DisM (x,µ|Σ)

)2
)

using Equation 9.4

= argmin
µ

∑
x∈X

[
lnEd + 1

2

(
DisM (x,µ|Σ)

)2
]

taking negative logarithms

= argmin
µ

∑
x∈X

(
DisM (x,µ|Σ)

)2 dropping constant term and factor

We thus find that the maximum-likelihood estimate of the mean of a multivariate
distribution is the point that minimises the total squared Mahalanobis distance to
all points in X .
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9. Probabilistic models 9.2 Probabilistic models for categorical data

Categorical random variables I

Categorical variables or features (also called discrete or nominal) are ubiquitous
in machine learning.

t Perhaps the most common form of the Bernoulli distribution models
whether or not a word occurs in a document. That is, for the i -th word in our
vocabulary we have a random variable Xi governed by a Bernoulli
distribution. The joint distribution over the bit vector X = (X1, . . . , Xk ) is
called a multivariate Bernoulli distribution.

t Variables with more than two outcomes are also common: for example,
every word position in an e-mail corresponds to a categorical variable with
k outcomes, where k is the size of the vocabulary. The multinomial
distribution manifests itself as a count vector: a histogram of the number of
occurrences of all vocabulary words in a document. This establishes an
alternative way of modelling text documents that allows the number of
occurrences of a word to influence the classification of a document.
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Categorical random variables II

Both these document models are in common use. Despite their differences, they
both assume independence between word occurrences, generally referred to as
the naive Bayes assumption.

t In the multinomial document model, this follows from the very use of the
multinomial distribution, which assumes that words at different word
positions are drawn independently from the same categorical distribution.

t In the multivariate Bernoulli model we assume that the bits in a bit vector
are statistically independent, which allows us to compute the joint
probability of a particular bit vector (x1, . . . , xk ) as the product of the
probabilities of each component P (Xi = xi ).

t In practice, such word independence assumptions are often not true: if we
know that an e-mail contains the word ‘Viagra’, we can be quite sure that it
will also contain the word ‘pill’. Violated independence assumptions violate
the quality of probability estimates but may still allow good classification
performance.
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Probabilistic decision rules

We have chosen one of the possible distributions to model our data X as coming
from either class.

t The more different P (X |Y = spam) and P (X |Y = ham) are, the more
useful the features X are for classification.

t Thus, for a specific e-mail x we calculate both P (X = x|Y = spam) and
P (X = x|Y = ham), and apply one of several possible decision rules:

maximum likelihood (ML) – predict argmaxy P (X = x|Y = y);
maximum a posteriori (MAP) – predict argmaxy P (X = x|Y = y)P (Y = y);
recalibrated likelihood – predict argmaxy wy P (X = x|Y = y).

The relation between the first two decision rules is that ML classification is
equivalent to MAP classification with a uniform class distribution. The third
decision rule generalises the first two in that it replaces the class distribution with
a set of weights learned from the data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 414 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


9. Probabilistic models 9.2 Probabilistic models for categorical data

Example 9.4, p.276 Prediction using a naive Bayes model I

Suppose our vocabulary contains three words a, b and c, and we use a
multivariate Bernoulli model for our e-mails, with parameters

θ⊕ = (0.5,0.67,0.33) θª = (0.67,0.33,0.33)

This means, for example, that the presence of b is twice as likely in spam (+),
compared with ham.
The e-mail to be classified contains words a and b but not c, and hence is
described by the bit vector x = (1,1,0). We obtain likelihoods

P (x|⊕) = 0.5·0.67·(1−0.33) = 0.222 P (x|ª) = 0.67·0.33·(1−0.33) = 0.148

The ML classification of x is thus spam.
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Example 9.4, p.276 Prediction using a naive Bayes model II

In the case of two classes it is often convenient to work with likelihood ratios and
odds.

t The likelihood ratio can be calculated as

P (x|⊕)

P (x|ª)
= 0.5

0.67

0.67

0.33

1−0.33

1−0.33
= 3/2 > 1

t This means that the MAP classification of x is also spam if the prior odds
are more than 2/3, but ham if they are less than that.

t For example, with 33% spam and 67% ham the prior odds are
P (⊕)
P (ª) = 0.33

0.67 = 1/2, resulting in a posterior odds of

P (⊕|x)

P (ª|x)
= P (x|⊕)

P (x|ª)

P (⊕)

P (ª)
= 3/2 ·1/2 = 3/4 < 1

In this case the likelihood ratio for x is not strong enough to push the
decision away from the prior.
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Example 9.4, p.276 Prediction using a naive Bayes model III

Alternatively, we can employ a multinomial model. The parameters of a
multinomial establish a distribution over the words in the vocabulary, say

θ⊕ = (0.3,0.5,0.2) θª = (0.6,0.2,0.2)

The e-mail to be classified contains three occurrences of word a, one single
occurrence of word b and no occurrences of word c, and hence is described by
the count vector x = (3,1,0). The total number of vocabulary word occurrences is
n = 4. We obtain likelihoods

P (x|⊕) = 4!
0.33

3!

0.51

1!

0.20

0!
= 0.054 P (x|ª) = 4!

0.63

3!

0.21

1!

0.20

0!
= 0.1728

The likelihood ratio is
(0.3

0.6

)3 (0.5
0.2

)1 (0.2
0.2

)0 = 5/16. The ML classification of x is
thus ham, the opposite of the multivariate Bernoulli model. This is mainly
because of the three occurrences of word a, which provide strong evidence for
ham.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 417 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


9. Probabilistic models 9.2 Probabilistic models for categorical data

Figure 9.4, p.278 Uncalibrated threshold of naive Bayes
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(left) ROC curves produced by two naive Bayes classifiers. Both models have similar

ranking performance and yield almost the same – more or less optimal – MAP decision

threshold. (right) On a different data set from the same domain, the multinomial model’s

MAP threshold is slightly better, hinting at somewhat better calibrated probability

estimates. But since the slope of the accuracy isometrics indicates that there are about

four positives for every negative, the optimal decision rule is in fact to always predict

positive.
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9. Probabilistic models 9.2 Probabilistic models for categorical data

Important point to remember

An often overlooked consequence of having uncalibrated probability estimates
such as those produced by naive Bayes is that both the ML and MAP decision
rules become inadequate.
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Table 9.1, p.280 Training data for naive Bayes

E-mail #a #b #c Class

e1 0 3 0 +
e2 0 3 3 +
e3 3 0 0 +
e4 2 3 0 +
e5 4 3 0 −
e6 4 0 3 −
e7 3 0 0 −
e8 0 0 0 −

E-mail a? b? c? Class

e1 0 1 0 +
e2 0 1 1 +
e3 1 0 0 +
e4 1 1 0 +
e5 1 1 0 −
e6 1 0 1 −
e7 1 0 0 −
e8 0 0 0 −

(left) A small e-mail data set described by count vectors. (right) The same data set

described by bit vectors.
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Example 9.5, p.279 Training a naive Bayes model I

Consider the following e-mails consisting of five words a, b, c, d , e:

e1: b d e b b d e
e2: b c e b b d d e c c
e3: a d a d e a e e
e4: b a d b e d a b

e5: a b a b a b a e d
e6: a c a c a c a e d
e7: e a e d a e a
e8: d e d e d

We are told that the e-mails on the left are spam and those on the right are ham,
and so we use them as a small training set to train our Bayesian classifier.

t First, we decide that d and e are so-called stop words that are too common
to convey class information.

t The remaining words, a, b and c, constitute our vocabulary.
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Example 9.5, p.279 Training a naive Bayes model II

For the multinomial model, we represent each e-mail as a count vector, as in
Table 9.1 (left).

t In order to estimate the parameters of the multinomial, we sum up the count
vectors for each class, which gives (5,9,3) for spam and (11,3,3) for ham.

t To smooth these probability estimates we add one pseudo-count for each
vocabulary word, which brings the total number of occurrences of
vocabulary words to 20 for each class.

t The estimated parameter vectors are thus
θ̂⊕ = (6/20,10/20,4/20) = (0.3,0.5,0.2) for spam and
θ̂ª = (12/20,4/20,4/20) = (0.6,0.2,0.2) for ham.
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Example 9.5, p.279 Training a naive Bayes model III

In the multivariate Bernoulli model e-mails are represented by bit vectors, as in
Table 9.1 (right).

t Adding the bit vectors for each class results in (2,3,1) for spam and (3,1,1)
for ham.

t Each count is to be divided by the number of documents in a class, in order
to get an estimate of the probability of a document containing a particular
vocabulary word.

t Probability smoothing now means adding two pseudo-documents, one
containing each word and one containing none of them.

t This results in the estimated parameter vectors
θ̂⊕ = (3/6,4/6,2/6) = (0.5,0.67,0.33) for spam and
θ̂ª = (4/6,2/6,2/6) = (0.67,0.33,0.33) for ham.
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Figure 9.5, p.282 Density estimation
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(left) Examples of three density estimators on 20 points sampled from a normal

distribution with zero mean and unit variance (dotted line)). A histogram is a simple

non-parametric method which employs a fixed number of equal-width intervals. A kernel

density estimator (in red) applies interpolation to obtain a smooth density function. The

solid bell curve (in blue) is obtained by estimating the sample mean and variance,

assuming the true distribution is normal. (right) Here, the 20 points are sampled

uniformly from [−2,2], and the non-parametric methods generally do better.
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9. Probabilistic models 9.3 Discriminative learning by optimising conditional likelihood ?

? Logistic regression I

The logistic regression model is is related to the logistically calibrated linear
classifier:

p̂(x) = exp(w ·x− t )

exp(w ·x− t )+1
= 1

1+exp(−(w ·x− t ))

Assuming the class labels are y = 1 for positives and y = 0 for negatives, this
defines a Bernoulli distribution for each training example:

P (yi |xi ) = p̂(xi )yi (1− p̂(xi ))(1−yi )

It is important to note that the parameters of these Bernoulli distributions are
linked through w and t , and consequently there is one parameter for every
feature dimension, rather than for every training instance.
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? Logistic regression II

The likelihood function is

CL(w, t ) =∏
i

P (yi |xi ) =∏
i

p̂(xi )yi (1− p̂(xi ))(1−yi )

This is called conditional likelihood to stress that it gives us the conditional
probability P (yi |xi ) rather than P (xi ) as in a generative model.

t Notice that our use of the product requires the assumption that the y-values
are independent given x; but this is not nearly as strong as the naive Bayes
assumption of x being independent within each class.

t As usual, the logarithm of the likelihood function is easier to work with:

LCL(w, t ) =∑
i

yi ln p̂(xi )+ (1− yi ) ln(1− p̂(xi )) = ∑
x⊕∈Tr⊕

ln p̂(x⊕)+ ∑
xª∈Trª

ln(1− p̂(xª))
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? Logistic regression III

We want to maximise the log-conditional likelihood with respect to these
parameters, which means that all partial derivatives must be zero:

∇wLCL(w, t ) = 0

∂

∂t
LCL(w, t ) = 0

It turns out that the partial derivative of LCL with respect to t has a simple form:

∂

∂t
LCL(w, t ) = ∑

x⊕∈Tr⊕
(p̂(x)−1)+ ∑

xª∈Trª
p̂(xª)

= ∑
xi∈Tr

(p̂(xi )− yi )

t For the optimal solution this partial derivative is zero. What this means is
that, on average, the predicted probability should be equal to the proportion
of positives pos.
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? Logistic regression IV

t Notice that grouping models such as probability estimating trees have this
property by construction, as they set the predicted probability equal to the
empirical probability in a segment.

t A very similar derivation leads to

∂

∂w j
LCL(w, t ) = ∑

xi∈Tr
(yi − p̂(xi ))xi j

Setting this partial derivative to zero expresses another, feature-wise
calibration property.
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? Training a logistic regression model

In order to train a logistic regression model we need to find

w∗, t∗ = argmax
w,t

CL(w, t ) = argmax
w,t

LCL(w, t )

This can be shown to be a convex optimisation problem, which means that there
is only one maximum. A range of optimisation techniques can be applied. One
simple approach is inspired by the perceptron algorithm and iterates over
examples, using the following update rule:

w = w+η(yi − p̂i )xi

where η is the learning rate. Notice the relationship with the partial derivative in
Equation 9.5. Essentially, we are using single examples to approximate the
direction of steepest ascent.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 430 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


9. Probabilistic models 9.3 Discriminative learning by optimising conditional likelihood ?

Figure 9.6, p.283 ? Logistic regression compared
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(left) On this data set, logistic regression (in blue) outperforms the basic linear classifier

(in red) and the least squares classifier (in orange) because the latter two are more

sensitive to the shape of the classes, while logistic regression concentrates on where the

classes overlap. (right) On this slightly different set of points, logistic regression is

outperformed by the other two methods because it concentrates too much on tracking

the transition from mostly positive to mostly negative.
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Example 9.6, p.285 ? Univariate logistic regression

Consider the data in Figure 9.7 with 20 points in each class.

t Although both classes were generated from normal distributions, class
overlap in this particular sample is less than what could be expected on the
basis of the class means.

t Logistic regression is able to take advantage of this and gives a much
steeper sigmoid than the basic linear classifier with logistic calibration which
is entirely formulated in terms of class means and variance.

t Also shown are the probability estimates obtained from the convex hull of
the ROC curve; this calibration procedure is non-parametric and hence
better able to detect the limited class overlap.
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Figure 9.7, p.286 ? Univariate logistic regression
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Logistic regression (in red) compared with probability estimates obtained by logistic

calibration (in blue) and isotonic calibration (in green); the latter two are applied to the

basic linear classifier (estimated class means are indicated by circles). The

corresponding three decision boundaries are shown as vertical dotted lines.
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

Hidden variables I

Suppose you are dealing with a four-class classification problem with classes A,
B , C and D .

t If you have a sufficiently large and representative training sample of size n,
you can use the relative frequencies in the sample nA , . . . ,nD to estimate
the class prior p̂ A = nA/n, . . . , p̂D = nD /n.

t Conversely, if you know the prior and want to know the most likely class
distribution in a random sample of n instances, you would use the prior to
calculate expected values E [nA] = p A ·n, . . . ,E [nD ] = pD ·n.

t So, complete knowledge of one allows us to estimate or infer the other.
However, sometimes we have a bit of knowledge about both.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 435 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


9. Probabilistic models 9.4 Probabilistic models with hidden variables

Hidden variables II

For example, we may know that p A = 1/2 and that C is twice as likely as B ,
without knowing the complete prior. And we may know that the sample we saw
last week was evenly split between A∪B and C ∪D , and that C and D were
equally large, but we can’t remember the size of A and B separately. What
should we do?

t Formalising what we know about the prior, we have p A = 1/2; pB =β, as
yet unknown; pC = 2β, since it is twice pB ; and pD = 1/2−3β, since the
four cases need to add up to 1.

t Furthermore: nA +nB = a +b = s, nC = c and nD = d , with s, c and d
known. We want to infer a, b and β: however, it seems we are stuck in a
chicken-and-egg problem.
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Hidden variables III

If we knew β we would have full knowledge about the prior and we could use that
to infer expected values for a and b:

E [a]

E [b]
= 1/2

β
E [a]+E [b] = s

from which we could derive

E [a] = 1

1+2β
s E [b] = 2β

1+2β
s

So, for example, if s = 20 and β= 1/10, then E [a] = 16 2
3 and E [b] = 3 1

3 .
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Hidden variables IV

Conversely, if we knew a and b, then we could estimate β by
maximum-likelihood estimation, using a multinomial distribution for a, b, c and d :

P (a,b,c,d |β) = K (1/2)aβb(2β)c (1/2−3β)d

lnP (a,b,c,d |β) = lnK +a ln(1/2)+b lnβ+ c ln(2β)+d ln(1/2−3β)

Here, K is a combinatorial constant that doesn’t affect the value of β which
maximises the likelihood. Taking the partial derivative with respect to β gives

∂

∂β
lnP (a,b,c,d |β) = b

β
+ 2c

2β
− 3d

1/2−3β

Setting to 0 and solving for β finally gives

β̂= b + c

6(b + c +d)

So, for example, if b = 5 and c = d = 10, then β̂= 1/10.
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Hidden variables V

The way out of this chicken-and-egg problem is by Expectation-Maximisation,
which iterates the following two steps: (i) calculate an expected value of the
missing frequencies a and b from an assumed or previously estimated value of
the parameter β; and (ii) calculate a maximum-likelihood estimate of the
parameter β from assumed or expected values of the missing frequencies a and
b. These two steps are iterated until a stationary configuration is reached.

t So, if we start with a = 15, b = 5 and c = d = 10, then we have just seen
that β̂= 1/10. Plugging this into the equations for E [a] and E [b] gives us
E [a] = 16 2

3 and E [b] = 3 1
3 . These give a new maximum-likelihood estimate

β̂= 2/21, which in turn gives E [a] = 16.8 and E [b] = 3.2, and so on.

t A stationary configuration with β= 0.0948, a = 16.813 and b = 3.187 is
reached in fewer than 10 iterations.

t In this simple case this is a global optimum that is reached regardless of the
starting point, essentially because the relationship between b and β is
monotonic. However, this is not normally the case.
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

? The general form of Expectation-Maximisation I

The problem that we have just discussed is an example of a problem with
missing data, where the full data Y separates into observed variables X and
hidden variables Z (also called latent variables). We also have model
parameter(s) θ, which is β in the example. Denote the estimate of θ in the t -th
iteration as θt . We have two relevant quantities:

t the expectation E
[

Z |X ,θt
]

of the hidden variables given the observed
variables and the current estimate of the parameters (so in the previous
example the expectations of a and b depend on s and β);

t the likelihood P (Y |θ), which is used to find the maximising value of θ.

In the likelihood function we need values for Y = X ∪Z . We obviously use the
observed values for X , but we need to use previously calculated expectations for
Z . This means that we really want to maximise P (X ∪E[

Z |X ,θt
] |θ), or

equivalently, the logarithm of that function.
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

? The general form of Expectation-Maximisation II

We now make the assumption that the logarithm of the likelihood function is
linear in Y . For any linear function f , f (E [Z ]) = E[

f (Z )
]

and thus we can bring
the expectation outside in our objective function:

lnP (X ∪E[
Z |X ,θt ]|θ) = E[

lnP (X ∪Z |θ)|X ,θt ]= E[
lnP (Y |θ)|X ,θt ]

This last expression is usually denoted as Q(θ|θt ), as it essentially tells us how
to calculate the next value of θ from the current one:

θt+1 = argmax
θ

Q(θ|θt ) = argmax
θ

E
[
lnP (Y |θ)|X ,θt ]

Similar to the example above, we iterate over assigning an expected value to the
hidden variables given our current estimates of the parameters, and
re-estimating the parameters from these updated expectations, until a stationary
configuration is reached. We can start the iteration by initialising either the
parameters or the hidden variables in some way.
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

? EM applied to Gaussian mixtures I

A common application of Expectation-Maximisation is to estimate the parameters
of a Gaussian mixture model from data.

t In such a model the data points are generated by K normal distributions,
each with their own mean µ j and covariance matrix Σ j , and the proportion
of points coming from each Gaussian is governed by a prior
τ = (τ1, . . . ,τK ).

t If each data point in a sample were labelled with the index of the Gaussian
it came from this would be a straightforward classification problem, which
could be solved easily by estimating each Gaussian’s µ j and Σ j separately
from the data points belonging to class j .

t However, we are now considering the much harder predictive clustering
problem in which the class labels are hidden and need to be reconstructed
from the observed feature values.
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

? EM applied to Gaussian mixtures II

t A convenient way to model this is to have for each data point xi a Boolean
vector zi = (zi 1, . . . , zi K ) such that exactly one bit zi j is set to 1 and the rest
set to 0, signalling that the i -th data point comes from the j -th Gaussian.

t Using this notation we can adapt the expression for the multivariate normal
distribution to obtain a general expression for a Gaussian mixture model:

P (xi ,zi |θ) =
K∑

j=1
zi jτ j

1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −µ j )TΣ−1

j (xi −µ j )

)

Here, θ collects all the parameters τ, µ1, . . . ,µK and Σ1, . . . ,ΣK .

t The interpretation as a generative model is as follows: we first randomly
select a Gaussian using the prior τ , and then we invoke the corresponding
Gaussian using the indicator variables zi j .
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

? EM applied to Gaussian mixtures III

In order to apply Expectation-Maximisation we form the Q function:

Q(θ|θt ) = E[
lnP (X∪Z|θ)|X,θt ]= E[

ln
n∏

i=1
P (xi ∪zi |θ)

∣∣∣∣∣X,θt

]
= E

[
n∑

i=1
lnP (xi ∪zi |θ)

∣∣∣∣∣X,θt

]

= E
 n∑

i=1
ln

K∑
j=1

zi j τ j
1

(2π)d/2
√

|Σ j |
exp

(
−1

2
(xi −µ j )TΣ−1

j (xi −µ j )

)∣∣∣∣∣∣X,θt

= . . .

=
n∑

i=1

K∑
j=1

E
[

zi j

∣∣∣X,θt
](

lnτ j −
d

2
ln(2π)− 1

2
ln |Σ j |−

1

2
(xi −µ j )TΣ−1

j (xi −µ j )

)

The last line shows the Q function in the desired form, involving on the one hand
expectations over the hidden variables conditioned on the observable data X and
the previously estimated parameters θt , and on the other hand expressions in θ
that allow us to find θt+1 by maximisation.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 444 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


9. Probabilistic models 9.4 Probabilistic models with hidden variables

? EM applied to Gaussian mixtures IV

The Expectation step of the EM algorithm is thus the calculation of the expected
values of the indicator variables E

[
zi j

∣∣X,θt
]
.

t The hard cluster assignment of K -means is changed into a soft assignment
– one of the ways in which Gaussian mixture models generalise K -means.

t Now, suppose that K = 2 and we expect both clusters to be of equal size
and with equal covariances. If a given data point xi is equidistant from the
two cluster means (or rather, our current estimates of these), then clearly
E
[

zi 1|X,θt
]= E[

zi 2|X,θt
]= 1/2.

t In the general case these expectations are apportioned proportionally to the
probability mass assigned to the point by each Gaussian:

E
[

zi j
∣∣X,θt ]= τt

j f (xi |µt
j ,Σt

j )∑K
k=1τ

t
k f (xi |µt

k ,Σt
k )

where f (x|µ,Σ) stands for the multivariate Gaussian density function.
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

? EM applied to Gaussian mixtures V

For the Maximisation step we optimise the parameters in the Q-function.

t Notice there is no interaction between the terms containing τ j and the
terms containing the other parameters, and so the prior distribution τ can
be optimised separately:

τ t+1 = argmax
τ

n∑
i=1

K∑
j=1

E
[

zi j
∣∣X,θt ] lnτ j under the constraint

K∑
j=1

τ j = 1

t The optimal value can be shown to be achieved by

τt+1
j = 1

n

n∑
i=1

E
[

zi j
∣∣X,θt ]
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

? EM applied to Gaussian mixtures VI

The means and covariance matrices can be optimised for each cluster
separately:

µt+1
j ,Σt+1

j = argmax
µ j ,Σ j

n∑
i=1

E
[

zi j

∣∣∣X,θt
](

−1

2
ln |Σ j |−

1

2
(xi −µ j )TΣ−1

j (xi −µ j )

)

= argmin
µ j ,Σ j

n∑
i=1

E
[

zi j

∣∣∣X,θt
](

1

2
ln |Σ j |+

1

2
(xi −µ j )TΣ−1

j (xi −µ j )

)

t This describes a generalised version of the problem of finding the point that
minimises the sum of squared Euclidean distances to a set of points
(Theorem 8.1). While that problem is solved by the arithmetic mean, here
we simply take the weighted average over all the points:

µt+1
j =

∑n
i=1E

[
zi j

∣∣X,θt
]

xi∑n
i=1E

[
zi j

∣∣X,θt
]
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

? EM applied to Gaussian mixtures VII

t Similarly, the covariance matrix is computed as a weighted average of
covariance matrices obtained from each data point, taking into account the
newly estimated mean:

Σt+1
j =

∑n
i=1E

[
zi j

∣∣X,θt
]

(xi −µt+1
j )(xi −µt+1

j )T∑n
i=1E

[
zi j

∣∣X,θt
]

t Notice this allows for clusters of different shapes, unlike the K -means
algorithm which assumes that all clusters have the same spherical shape.
Consequently, the boundaries between clusters will not be linear, as they
are in the clusterings learned by K -means.
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9. Probabilistic models 9.4 Probabilistic models with hidden variables

Figure 9.8, p.292 EM for univariate Gaussian mixture
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(left) The blue line shows the true Gaussian mixture model from which the 10 points on

the x-axis were sampled; the colour of the points indicates whether they came from the

left or the right Gaussian. The other lines show convergence of

Expectation-Maximisation to a stationary configuration from a random initialisation.

(right) This plot shows four stationary configurations for the same set of points. The EM

algorithm was run for 20 iterations; the thickness of one of the lines demonstrates that

this configuration takes longer to converge.
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9. Probabilistic models 9.5 Compression-based models ?

What’s next?

9 Probabilistic models
The normal distribution and its geometric interpretations
Probabilistic models for categorical data

Using a naive Bayes model for classification
Training a naive Bayes model

Discriminative learning by optimising conditional likelihood ?
Probabilistic models with hidden variables

Expectation-Maximisation ?
Gaussian mixture models ?

Compression-based models ?
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9. Probabilistic models 9.5 Compression-based models ?

? Compression-based models I

Consider the maximum a posteriori decision rule again:

yMAP = argmax
y

P (X = x|Y = y)P (Y = y)

Taking negative logarithms, we can turn this into an equivalent minimisation:

yMAP = argmin
y

− logP (X = x|Y = y)− logP (Y = y)

t If an event has probability p of happening, the negative logarithm of p
quantifies the information content of the message that the event has indeed
happened.

t We write IC(X |Y ) =− log2 P (X |Y ) and IC(Y ) =− log2 P (Y ).
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9. Probabilistic models 9.5 Compression-based models ?

? Compression-based models II

t The unit of information depends on the base of the logarithm: it is
customary to take logarithms to the base 2, in which case information is
measured in bits.

t For example, if you toss a fair coin once and tell me it came up heads, this
contains − log2 1/2 = 1 bit of information; if you roll a fair die once and let
me know it came up six, the information content of your message is
− log2 1/6 = 2.6 bits.
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9. Probabilistic models 9.5 Compression-based models ?

Example 9.7, p.293 ? Information-based classification

Y P (Viagra= 1|Y ) IC (Viagra= 1|Y ) P (Viagra= 0|Y ) IC (Viagra= 0|Y )

spam 0.40 1.32 bits 0.60 0.74 bits
ham 0.12 3.06 bits 0.88 0.18 bits

If Y is uniformly distributed then IC(Y = spam) = IC(Y = ham) = 1 bit, and

argmin
y

(
IC(Viagra= 1|Y = y)+ IC(Y = y)

)= spam

argmin
y

(
IC(Viagra= 0|Y = y)+ IC(Y = y)

)= ham

If ham is four times as likely as spam then IC(Y = spam) = 2.32 bit and
IC(Y = ham) = 0.32 bit, so now
argminy

(
IC(Viagra= 1|Y = y)+ IC(Y = y)

)= ham.
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9. Probabilistic models 9.5 Compression-based models ?

Definition 9.1, p.294 ? Minimum description length principle

Let L(m) denote the length in bits of a description of model m, and let L(D|m)
denote the length in bits of a description of data D given model m (both
measured by some near-optimal code L). According to the minimum description
length principle, the preferred model is the one minimising the description length
of model and data given model:

mMDL = argmin
m∈M

(L(m)+L(D|m))

What encoding to use in order to determine the model complexity L(m) is often
not straightforward and to some extent subjective. This is similar to the Bayesian
perspective, where we need to define a prior distribution on models. The MDL
viewpoint offers a concrete way of defining model priors by means of codes.
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What’s next?

10 Features
Kinds of feature

Calculations on features
Categorical, ordinal and quantitative features
Structured features

Feature transformations
Thresholding and discretisation
Normalisation and calibration
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10. Features

Features, also called attributes, are defined as mappings fi : X →Fi from the
instance space X to the feature domain Fi .

t We can distinguish features by their domain: common feature domains
include real and integer numbers, but also discrete sets such as colours,
the Booleans, and so on.

t We can also distinguish features by the range of permissible operations.
For example, we can calculate a group of people’s average age but not their
average blood type, so taking the average value is an operation that is
permissible on some features but not on others.

t Although many data sets come with pre-defined features, they can be
manipulated in many ways. For example, we can change the domain of a
feature by rescaling or discretisation; we can select the best features from a
larger set and only work with the selected ones; or we can combine two or
more features into a new feature.
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10. Features 10.1 Kinds of feature

What’s next?

10 Features
Kinds of feature

Calculations on features
Categorical, ordinal and quantitative features
Structured features

Feature transformations
Thresholding and discretisation
Normalisation and calibration
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10. Features 10.1 Kinds of feature

Feature statistics

Three main categories are statistics of central tendency, statistics of dispersion
and shape statistics. Each of these can be interpreted either as a theoretical
property of an unknown population or a concrete property of a given sample –
here we will concentrate on sample statistics.

Starting with statistics of central tendency, the most important ones are

t the mean or average value;

t the median, which is the middle value if we order the instances from lowest
to highest feature value; and

t the mode, which is the majority value or values.
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10. Features 10.1 Kinds of feature

Statistics of dispersion

t Two well-known statistics of dispersion are the variance or average squared
deviation from the (arithmetic) mean, and its square root, the standard
deviation. Variance is additive, while standard deviation is expressed on the
same scale as the feature itself.

t A simpler dispersion statistic is the difference between maximum and
minimum value, which is called the range. A natural statistic of central
tendency to be used with the range is the midrange point, which is the
mean of the two extreme values.

t Other statistics of dispersion include percentiles. The p-th percentile is the
value such that p per cent of the instances fall below it. If p is a multiple of
25 the percentiles are also called quartiles, and if it is a multiple of 10 the
percentiles are also called deciles. The general term is quantiles. Once we
have quantiles we can measure dispersion as the distance between
different quantiles. For instance, the interquartile range is the difference
between the third and first quartile (i.e., the 75th and 25th percentile).
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10. Features 10.1 Kinds of feature

Example 10.1, p.301 Percentile plot

Suppose you are learning a model over an instance space of countries, and one
of the features you are considering is the gross domestic product (GDP) per
capita. Figure 10.1 shows a so-called percentile plot of this feature.

In order to obtain the p-th percentile, you intersect the line y = p with the dotted
curve and read off the corresponding percentile on the x-axis. Indicated in the
figure are the 25th, 50th and 75th percentile.

Also indicated is the mean (which has to be calculated from the raw data). As
you can see, the mean is considerably higher than the median; this is mainly
because of a few countries with very high GDP per capita. In other words, the
mean is more sensitive to outliers than the median, which is why the median is
often preferred to the mean for skewed distributions like this one.
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10. Features 10.1 Kinds of feature

Figure 10.1, p.302 Percentile plot
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Percentile plot of GDP per capita for 231 countries (data obtained from

wolframalpha.com by means of the query ‘GDP per capita’).The vertical dotted

lines indicate, from left to right: the first quartile ($900); the median ($3600); the mean

($11 284); andthe third quartile ($14 750). The interquartile range is $13 850, while the

standard deviation is $16 189.
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10. Features 10.1 Kinds of feature

Cumulative probability distribution

By interpreting the y-axis as probabilities, the plot can be read as a cumulative
probability distribution: a plot of P (X ≤ x) against x for a random variable X . For
example, the plot shows that P (X ≤µ) is approximately 0.70, where µ= $11284
is the mean GDP per capita. In other words, if you choose a random country the
probability that its GDP per capita is less than the average is about 0.70.

Since GDP per capita is a real-valued feature, it doesn’t necessarily make sense
to talk about its mode, since if you measure the feature precisely enough every
country will have a different value. We can get around this by means of a
histogram, which counts the number of feature values in a particular interval or
bin.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 462 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


10. Features 10.1 Kinds of feature

Figure 10.2, p.303 Histogram
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A histogram of the data from Example 10.1. The left-most bin is the mode, with well over

a third of the countries having a GDP per capita of not more than $2000. This

demonstrates that the distribution is extremely right-skewed (i.e., has a long right tail),

resulting in a mean that is considerably higher than the median.
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Skewness and kurtosis I

The skew and ‘peakedness’ of a distribution can be measured by shape statistics
such as skewness and kurtosis. The main idea is to calculate the third and fourth
central moment of the sample.

In general, the k-th central moment of a sample {xi , . . . , xn} is defined as
mk = 1

n

∑n
i=1(xi −µ)k , where µ is the sample mean.

t The first central moment is the average deviation from the mean – this is
always zero, as the positive and negative deviations cancel each other out.

t The second central moment is the average squared deviation from the
mean, otherwise known as the variance.

t The third central moment m3 can again be positive or negative.
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10. Features 10.1 Kinds of feature

Skewness and kurtosis II

Skewness is then defined as m3/σ3, where σ is the sample’s standard
deviation. A positive value of skewness means that the distribution is
right-skewed, which means that the right tail is longer than the left tail. Negative
skewness indicates the opposite, left-skewed case.

Kurtosis is defined as m4/σ4. As it can be shown that a normal distribution has
kurtosis 3, people often use excess kurtosis m4/σ4 −3 as the statistic of
interest. Positive excess kurtosis means that the distribution is more sharply
peaked than the normal distribution.

In the GDP per capita example we can calculate skewness as 2.12 and excess
kurtosis as 2.53. This confirms that the distribution is heavily right-skewed, and
also more sharply peaked than the normal distribution.
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Categorical, ordinal and quantitative features

Given these various statistics we can distinguish three main kinds of feature:
those with a meaningful numerical scale, those without a scale but with an
ordering, and those without either.

t We will call features of the first type quantitative; they most often involve a
mapping into the reals (another term in common use is ‘continuous’).

t Features with an ordering but without scale are called ordinal features. The
domain of an ordinal feature is some totally ordered set, such as the set of
characters or strings. Another common example are features that express a
rank order: first, second, third, and so on. Ordinal features allow the mode
and median as central tendency statistics, and quantiles as dispersion
statistics.

t Features without ordering or scale are called categorical features (or
sometimes ‘nominal’ features). They do not allow any statistical summary
except the mode. One subspecies of the categorical features is the Boolean
feature, which maps into the truth values true and false.
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10. Features 10.1 Kinds of feature

Table 10.1, p.304 Kinds of feature

Kind Order Scale Tendency Dispersion Shape

Categorical × × mode n/a n/a
Ordinal

p × median quantiles n/a
Quantitative

p p
mean range, interquartile range,

variance, standard devia-
tion

skewness, kurtosis

Kinds of feature, their properties and allowable statistics. Each kind inherits the statistics

from the kinds above it in the table. For instance, the mode is a statistic of central

tendency that can be computed for any kind of feature.
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Important point to remember

Tree models ignore the scale of quantitative features, treating them as ordinal.
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Example 10.4, p.306 Structured features

Suppose an e-mail is represented as a sequence of words. This allows us to
define, apart from the usual word frequency features, a host of other features,
including:

t whether the phrase ‘machine learning’ – or any other set of consecutive
words – occurs in the e-mail;

t whether the e-mail contains at least eight consecutive words in a language
other than English;

t whether the e-mail is palindromic, as in ‘Degas, are we not drawn onward,
we freer few, drawn onward to new eras aged?’

Furthermore, we could go beyond properties of single e-mails and express
relations such as whether one e-mail is quoted in another e-mail, or whether two
e-mails have one or more passages in common.
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10. Features 10.2 Feature transformations

What’s next?

10 Features
Kinds of feature

Calculations on features
Categorical, ordinal and quantitative features
Structured features

Feature transformations
Thresholding and discretisation
Normalisation and calibration
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10. Features 10.2 Feature transformations

Table 10.2, p.307 Feature transformations

↓ to, from → Quantitative Ordinal Categorical Boolean

Quantitative normalisation calibration calibration calibration
Ordinal discretisation ordering ordering ordering
Categorical discretisation unordering grouping
Boolean thresholding thresholding binarisation

An overview of possible feature transformations. Normalisation and calibration adapt

the scale of quantitative features, or add a scale to features that don’t have one.

Ordering adds or adapts the order of feature values without reference to a scale. The

other operations abstract away from unnecessary detail, either in a deductive way

(unordering, binarisation) or by introducing new information (thresholding,

discretisation).
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10. Features 10.2 Feature transformations

Example 10.5, p.308 Thresholding I

Consider the GDP per capita feature plotted in Figure 10.1 again. Without
knowing how this feature is to be used in a model, the most sensible thresholds
are the statistics of central tendency such as the mean and the median. This is
referred to as unsupervised thresholding.
In a supervised learning setting we can do more. For example, suppose we want
to use the GDP per capita as a feature in a decision tree to predict whether a
country is one of the 23 countries that use the Euro as their official currency (or
as one of their currencies). Using the feature as a ranker, we can construct a
coverage curve (Figure 10.3 (left)). We see that for this feature the mean is not
the most obvious threshold, as it splits right in the middle of a run of negatives. A
better split is obtained at the start of that run of negatives, or at the end of the
following run of positives, indicated by the red points at either end of the mean
split. More generally, any point on the convex hull of the coverage curve
represents a candidate threshold; which one to choose is informed by whether
we put more value on picking out positives or negatives.
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Example 10.5, p.308 Thresholding II

Figure 10.3 (right) shows the same feature with a different target: whether a
country is in the Americas. We see that part of the curve is below the ascending
diagonal, indicating that, in comparison with the whole data set, the initial
segment of the ranking contains a smaller proportion of American countries. This
means that potentially useful thresholds can also be found on the lower convex
hull.
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10. Features 10.2 Feature transformations

Figure 10.3, p.308 Thresholding
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(left) Coverage curve obtained by ranking countries on decreasing GDP per capita,

using 23 Euro countries as the positive class. The orange split sets the threshold equal

to the mean and the green split sets the threshold equal to the median. The red points

are on the convex hull of the coverage curve and indicate potentially optimal splits when

the class label is taken into account. (right) Coverage curve of the same feature, using

50 countries in the Americas as the positive class.
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10. Features 10.2 Feature transformations

Example 10.6, p.310 Discretisation by recursive partitioning I

Consider the following feature values, which are ordered on increasing value for
convenience.

Instance Value Class

e1 −5.0 ª
e2 −3.1 ⊕
e3 −2.7 ª
e4 0.0 ª
e5 7.0 ª
e6 7.1 ⊕
e7 8.5 ⊕
e8 9.0 ª
e9 9.0 ⊕
e10 13.7 ª
e11 15.1 ª
e12 20.1 ª
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Example 10.6, p.310 Discretisation by recursive partitioning II

This feature gives rise to the following ranking: ª⊕ªªª⊕⊕[ª⊕]ªªª, where the
square brackets indicate a tie between instances e8 and e9.

t Tracing information gain isometrics through each possible split, we see that
the best split is ª⊕ªªª⊕⊕[ª⊕]|ªªª.

t Repeating the process once more gives the discretisation
ª⊕ªªª|⊕⊕[ª⊕]|ªªª.
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Figure 10.4, p.311 Recursive partitioning
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(left) A coverage curve visualising the ranking of four positive and eight negative

examples by a feature to be discretised. The curved lines are information gain isometrics

through possible split points; the solid isometric indicates the best split [4+,5−][0+,3−]

according to information gain. (middle) Recursive partitioning proceeds to split the

segment [4+,5−] into [1+,4−][3+,1−]. (right) If we stop here, the blue curve visualises

the discretised (but still ordinal) feature.
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10. Features 10.2 Feature transformations

Algorithm 10.1, p.311 Recursive partitioning

Algorithm RecPart(S, f ,Q) – supervised discretisation by means of recursive
partitioning.

Input : set of labelled instances S ranked on feature values f (x); scoring
function Q.

Output : sequence of thresholds t1, . . . , tk−1.
1 if stopping criterion applies then return ∅;
2 ;
3 Split S into Sl and Sr using threshold t that optimises Q ;
4 Tl = RecPart(Sl , f ,Q);
5 Tr = RecPart(Sr , f ,Q);
6 return Tl ∪ {t }∪Tr ;
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Algorithm 10.2, p.312 Agglomerative merging

Algorithm AggloMerge(S, f ,Q) – supervised discretisation by means of agglom-
erative merging.

Input : set of labelled instances S ranked on feature values f (x); scoring
function Q.

Output : sequence of thresholds.
1 initialise bins to data points with the same scores;
2 merge consecutive pure bins ; // optional optimisation
3 repeat
4 evaluate Q on consecutive bin pairs;
5 merge the pairs with best Q (unless they invoke the stopping criterion);
6 until no further merges are possible;
7 return thresholds between bins;
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10. Features 10.2 Feature transformations

Example 10.7, p.312 Agglomerative merging using χ2 I

Algorithm 10.2 initialises the bins to ª|⊕|ªªª|⊕⊕|[ª⊕]|ªªª. We illustrate the
calculation of the χ2 statistic for the last two bins. We construct the following
contingency table:

Left bin Right bin

⊕ 1 0 1
ª 1 3 4

2 3 5

At the basis of the χ2 statistic lies a comparison of these observed frequencies
with expected frequencies obtained from the row and column marginals.
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10. Features 10.2 Feature transformations

Example 10.7, p.312 Agglomerative merging using χ2 II

t For example, the marginals say that the top row contains 20% of the total
mass and the left column 40%; so if rows and columns were statistically
independent we would expect 8% of the mass – or 0.4 of the five instances
– in the top-left cell.

t Following a clockwise direction, the expected frequencies for the other cells
are 0.6, 2.4 and 1.6. If the observed frequencies are close to the expected
ones, this suggests that these two bins are candidates for merging since the
split appears to have no bearing on the class distribution.

t The χ2 statistic sums the squared differences between the observed and
expected frequencies, each term normalised by the expected frequency:

χ2 = (1−0.4)2

0.4
+ (0−0.6)2

0.6
+ (3−2.4)2

2.4
+ (1−1.6)2

1.6
= 1.88
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10. Features 10.2 Feature transformations

Example 10.7, p.312 Agglomerative merging using χ2 III

t Going left-to-right through the other pairs of consecutive bins, the χ2 values
are 2, 4, 5 and 1.33. This tells us that the fourth and fifth bin are first to be
merged, leading to ª|⊕|ªªª|⊕⊕[ª⊕]|ªªª.

t We then recompute the χ2 values (in fact, only those involving the newly
merged bin need to be re-computed), yielding 2, 4, 3.94 and 3.94. We now
merge the first two bins, giving the partition ª⊕|ªªª|⊕⊕[ª⊕]|ªªª.

t This changes the first χ2 value to 1.88, so we again merge the first two
bins, arriving at ª⊕ªªª|⊕⊕[ª⊕]|ªªª (the same three bins as in Example
10.6).
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Normalisation and calibration I

Feature normalisation is often required to neutralise the effect of different
quantitative features being measured on different scales. If the features are
approximately normally distributed, we can convert them into tz-scores
(Background 9.1) by centring on the mean and dividing by the standard
deviation. If we don’t want to assume normality we can centre on the median and
divide by the interquartile range.

Sometimes feature normalisation is understood in the stricter sense of
expressing the feature on a [0,1] scale. If we know the feature’s highest and
lowest values h and l , then we can simply apply the linear scaling
f 7→ ( f − l )/(h − l ). We sometimes have to guess the value of h or l , and
truncate any value outside [l ,h]. For example, if the feature measures age in
years, we may take l = 0 and h = 100, and truncate any f > h to 1.
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Normalisation and calibration II

Feature calibration is understood as a supervised feature transformation adding
a meaningful scale carrying class information to arbitrary features. This has a
number of important advantages. For instance, it allows models that require
scale, such as linear classifiers, to handle categorical and ordinal features. It
also allows the learning algorithm to choose whether to treat a feature as
categorical, ordinal or quantitative. We will assume a binary classification
context, and so a natural choice for the calibrated feature’s scale is the posterior
probability of the positive class, conditioned on the feature.

The problem of feature calibration can thus be stated as follows: given a feature
F : X →F , construct a calibrated feature F c : X → [0,1] such that F c(x)
estimates the probability F c(x) = P (⊕|v), where v = F (x) is the value of the
original feature for x.
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Example 10.8, p.315 Calibration of categorical features

Suppose we want to predict whether or not someone has diabetes from
categorical features including whether the person is obese or not, whether he or
she smokes, and so on. We collect some statistics which tell us that 1 in every
18 obese persons has diabetes while among non-obese people this is 1 in 55
(data obtained from wolframalpha.com with the query ‘diabetes’).

If F (x) = 1 for person x who is obese and F (y) = 0 for person y who isn’t, then
the calibrated feature values are F c(x) = 1/18 = 0.055 and
F c(y) = 1/55 = 0.018.
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10. Features 10.2 Feature transformations

Example 10.9, p.317 ? Logistic calibration of two features I

Logistic feature calibration is illustrated in Figure 10.5. I generated two sets of 50
points by sampling bivariate Gaussians with identity covariance matrix, centred
at (2,2) and (4,4). I then constructed the basic linear classifier as well as two
parallel decision boundaries through the class means. Tracing these three lines
in calibrated space will help us understand feature calibration.
In the middle figure we see the transformed data in log-odds space, which is
clearly a linear rescaling of the axes. The basic linear classifier is now the line
F d

1 (x)+F d
2 (x) = 0 through the origin. In other words, for this simple classifier

feature calibration has removed the need for further training: instead of fitting a
decision boundary to the data, we have fitted the data to a fixed decision
boundary!
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Example 10.9, p.317 ? Logistic calibration of two features II

On the right we see the transformed data in probability space, which clearly has
a non-linear relationship with the other two feature spaces. The basic linear
classifier is still linear in this space, but actually this is no longer true for more
than two features. To see this, note that F c

1 (x)+F c
2 (x) = 1 can be rewritten as

exp
(
F d

1 (x)
)

1+exp
(
F d

1 (x)
) + exp

(
F d

2 (x)
)

1+exp
(
F d

2 (x)
) = 1

which can be simplified to exp
(
F d

1 (x)
)

exp
(
F d

2 (x)
)= 1 and hence to

F d
1 (x)+F d

2 (x) = 0. However, if we add a third feature not all cross-terms cancel
and we obtain a non-linear boundary .
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Figure 10.5, p.317 ? Logistic calibration of two features
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(left) Two-class Gaussian data. The middle line is the decision boundary learned by the

basic linear classifier; the other two are parallel lines through the class means. (middle)
Logistic calibration to log-odds space is a linear transformation; assuming unit standard

deviations, the basic linear classifier is now the fixed line F d
1 (x)+F d

2 (x) = 0. (right)
Logistic calibration to probability space is a non-linear transformation that pushes data

away from the decision boundary.
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? Important point to remember

Fitting data to a fixed linear decision boundary in log-odds space by means of
feature calibration can be understood as training a naive Bayes model.
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Figure 10.6, p.319 ? Calibrated feature densities
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Per-class distributions of a logistically calibrated feature for different values of d ′, the

distance between the uncalibrated class means in proportion to the feature’s standard

deviation. The red and blue curves depict the distributions for the positive and negative

class for a feature whose means are one standard deviation apart (d ′ = 1). The other

curves are for d ′ ∈ {0.5,1.4,1.8}.
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Example 10.10, p.319 Isotonic feature calibration

The following table gives sample values of a weight feature in relation to a
diabetes classification problem. Figure 10.7 shows the ROC curve and convex
hull of the feature and the calibration map obtained by isotonic calibration.

Weight Diabetes? Calibrated weight Weight Diabetes? Calibrated weight

130 ⊕ 0.83 81 ª 0.43
127 ⊕ 0.83 80 ⊕ 0.43
111 ⊕ 0.83 79 ª 0.43
106 ⊕ 0.83 77 ⊕ 0.43
103 ª 0.60 73 ª 0.40
96 ⊕ 0.60 68 ª 0.40
90 ⊕ 0.60 67 ⊕ 0.40
86 ª 0.50 64 ª 0.20
85 ⊕ 0.50 61 ª 0.20
82 ª 0.43 56 ª 0.20

For example, a weight of 80 kilograms is calibrated to 0.43, meaning that three
out of seven people in that weight interval have diabetes (after Laplace
correction).
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Figure 10.7, p.320 Isotonic feature calibration
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(left) ROC curve and convex hull of an uncalibrated feature. Calibrated feature values

are obtained from the proportion of positives in each segment of the ROC convex hull.

(right) The corresponding piecewise-constant calibration map, which maps the

uncalibrated feature values on the x-axis to the calibrated feature values on the y-axis.
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10. Features 10.2 Feature transformations

Example 10.11, p.320 ? Isotonic calibration of two features

Figure 10.8 shows the result of isotonic calibration on the same data as in
Example 10.9, both in log-odds space and in probability space. Because of the
discrete nature of isotonic calibration, even the transformation to log-odds space
is no longer linear: the basic linear classifier becomes a series of axis-parallel
line segments. This is also true in the opposite direction: if we imagine a linear
decision boundary in log-odds space or in probability space, this maps to a
decision boundary following the dotted lines in the original feature space.
Effectively, isotonic feature calibration has changed the linear grading model into
a grouping model.
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10. Features 10.2 Feature transformations

Figure 10.8, p.321 ? Isotonic calibration of two features
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(left) The data from Figure 10.5, with grid lines indicating the discretisation obtained by

isotonic feature calibration. (middle) Isotonically calibrated data in log-odds space.

(right) Isotonically calibrated data in probability space.
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11. Model ensembles

What’s next?

11 Model ensembles
Bagging and random forests
Boosting

Bias, variance and margins
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11. Model ensembles

Ensemble methods

In essence, ensemble methods in machine learning have the following two things
in common:

t they construct multiple, diverse predictive models from adapted versions of
the training data (most often reweighted or resampled);

t they combine the predictions of these models in some way, often by simple
averaging or voting (possibly weighted).
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11. Model ensembles 11.1 Bagging and random forests

What’s next?

11 Model ensembles
Bagging and random forests
Boosting

Bias, variance and margins
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11. Model ensembles 11.1 Bagging and random forests

Algorithm 11.1, p.332 Bagging

Algorithm Bagging(D,T,A ) – train an ensemble of models from bootstrap sam-
ples.

Input : data set D ; ensemble size T ; learning algorithm A .
Output : ensemble of models whose predictions are to be combined by voting or

averaging.
1 for t = 1 to T do
2 build a bootstrap sample D t from D by sampling |D| data points with

replacement;
3 run A on D t to produce a model Mt ;
4 end
5 return {Mt |1 ≤ t ≤ T }
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11. Model ensembles 11.1 Bagging and random forests

Figure 11.1, p.332 Bagging
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(left) An ensemble of five basic linear classifiers built from bootstrap samples with

bagging. The decision rule is majority vote, leading to a piecewise linear decision

boundary. (right) If we turn the votes into probabilities, we see the ensemble is

effectively a grouping model: each instance space segment obtains a slightly different

probability.
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11. Model ensembles 11.1 Bagging and random forests

Algorithm 11.2, p.333 Random forests

Algorithm RandomForest(D,T,d ) – train an ensemble of tree models from boot-
strap samples and random subspaces.

Input : data set D ; ensemble size T ; subspace dimension d .
Output : ensemble of tree models whose predictions are to be combined by

voting or averaging.
1 for t = 1 to T do
2 build a bootstrap sample D t from D by sampling |D| data points with

replacement;
3 select d features at random and reduce dimensionality of D t accordingly;
4 train a tree model Mt on D t without pruning;
5 end
6 return {Mt |1 ≤ t ≤ T }
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11. Model ensembles 11.2 Boosting

What’s next?

11 Model ensembles
Bagging and random forests
Boosting

Bias, variance and margins
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11. Model ensembles 11.2 Boosting

Example 11.1, p.334 Weight updates in boosting

t Suppose a linear classifier achieves performance as in the contingency
table on the left. The error rate is ε= (9+16)/100 = 0.25.

t We want to give half the weight to the misclassified examples. The following
weight updates achieve this: a factor 1/2ε= 2 for for the misclassified
examples and 1/2(1−ε) = 2/3 for the correctly classified examples.

Predicted ⊕ Predicted ª
Actual ⊕ 24 16 40
Actual ª 9 51 60

33 67 100

⊕ ª
⊕ 16 32 48
ª 18 34 52

34 66 100

t Taking these updated weights into account leads to the contingency table
on the right, which has a (weighted) error rate of 0.5.
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11. Model ensembles 11.2 Boosting

Algorithm 11.3, p.335 Boosting

Algorithm Boosting(D,T,A ) – train an ensemble of binary classifiers from reweighted
training sets.

Input : data set D ; ensemble size T ; learning algorithm A .
Output : weighted ensemble of models.

1 w1i ←1/|D| for all xi ∈ D ; // start with uniform weights
2 for t = 1 to T do
3 run A on D with weights wt i to produce a model Mt ;
4 calculate weighted error εt ;
5 if εt ≥ 1/2 then
6 set T ← t −1 and break
7 end

8 αt ←1
2 ln 1−εt

εt
; // confidence for this model

9 w(t+1)i ←wt i
2εt

for misclassified instances xi ∈ D ; // increase weight

10 w(t+1) j ← wt j

2(1−εt ) for correctly classified instances x j ∈ D ; // decrease

11 end
12 return M(x) =∑T

t=1αt Mt (x)
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11. Model ensembles 11.2 Boosting

Figure 11.2, p.336 Boosting
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(left) An ensemble of five boosted basic linear classifiers with majority vote. The linear

classifiers were learned from blue to red; none of them achieves zero training error, but

the ensemble does. (right) Applying bagging results in a much more homogeneous

ensemble, indicating that there is little diversity in the bootstrap samples.
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11. Model ensembles 11.2 Boosting

? Why those αt ?

The two weight updates for the misclassified instances and the correctly
classified instances can be written as reciprocal terms δt and 1/δt normalised
by some term Zt :

1

2εt
= δt

Zt

1

2(1−εt )
= 1/δt

Zt

From this we can derive

Zt = 2
√
εt (1−εt ) δt =

√
1−εt

εt
= exp(αt )

So the weight update for misclassified instances is exp(αt )/Zt and for correctly
classified instances exp(−αt )/Zt . Using the fact that yi Mt (xi ) =+1 for
instances correctly classified by model Mt and −1 otherwise, we can write the
weight update as

w(t+1)i = wt i
exp

(−αt yi Mt (xi )
)

Zt

which is the expression commonly found in the literature.
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11. Model ensembles 11.2 Boosting

Important points to remember

Low-bias models tend to have high variance, and vice versa.

Bagging is predominantly a variance-reduction technique, while boosting is
primarily a bias-reduction technique.

This explains why bagging is often used in combination with high-variance
models such as tree models (trandom forests in Algorithm 11.2), whereas
boosting is typically used with high-bias models such as linear classifiers or
univariate decision trees (also called decision stumps).
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12. Machine learning experiments

Machine learning experiments

Machine learning experiments pose questions about models that we try to
answer by means of measurements on data.
The following are common examples of the types of question we are interested
in:

t How does model m perform on data from domain D?

t Which of these models has the best performance on data from domain D?

t How do models produced by learning algorithm A perform on data from
domain D?

t Which of these learning algorithms gives the best model on data from
domain D?

Assuming we have access to data from domain D, we perform measurements
on our models using this data in order to answer these questions.
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12. Machine learning experiments 12.1 What to measure

Example 12.1, p.345 Expected accuracy I

Imagine your classifier achieves the following result on a test data set:

Predicted ⊕ Predicted ª
Actual ⊕ 60 20 80
Actual ª 0 20 20

60 40 100

This gives tpr = 0.75, tnr = 1.00 and acc = 0.80.

However, this is conditioned on having four times as many positives as
negatives. If we take the expectation over pos uniformly sampled from the unit
interval, expected accuracy increases to (tpr+ tnr)/2 = 0.88 = avg-rec. This is
higher because the test data under-emphasises the classifier’s good
performance on the negatives.
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12. Machine learning experiments 12.1 What to measure

Example 12.1, p.345 Expected accuracy II

Suppose you have a second classifier achieving the following result on the test
set:

Predicted ⊕ Predicted ª
Actual ⊕ 75 5 80
Actual ª 10 10 20

85 15 100

This gives tpr = 0.94, tnr = 0.50, acc = 0.85 and avg-rec = 0.72. These
experimental results tell you that the second model is better if the class
distribution in the test set is representative, but the first model should be chosen
if we have no prior information about the class distribution in the operating
context.
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12. Machine learning experiments 12.1 What to measure

Example 12.2, p.346 Precision and recall

The F-measure is the harmonic mean of precision and recall, which is 0.91.
Now consider the following contingency table:

Predicted ⊕ Predicted ª
Actual ⊕ 75 5 80
Actual ª 10 910 920

85 915 1000

We have a much higher number of true negatives and therefore a much higher
true negative rate and accuracy (both rounded to 0.99). On the other hand,
recall, precision and F-measure stay exactly the same.

This example demonstrates that the combination of precision and recall, and
therefore the F-measure, is insensitive to the number of true negatives and hence
implicitly asserts that true negatives are not relevant for your operating context.
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12. Machine learning experiments 12.1 What to measure

Example 12.3, p.347 Expected accuracy and AUC

Suppose a ranker obtains the following ranking on a small test set: ⊕⊕ªª⊕ª.
This corresponds to two ranking errors out of a possible nine, so has AUC = 7/9.
There are seven potential split points, corresponding to predicted positive rates
of (from left to right) 0,1/6, . . . ,5/6,1 and corresponding accuracies
3/6,4/6,5/6,4/6,3/6,4/6,3/6. The expected accuracy over all possible split
points is (3+4+5+4+3+4+3)/(6 ·7) = 26/42. On the other hand,
(2AUC−1)/4 = 5/36 and so n

n+1 (2AUC−1)/4+1/2 = 5/42+1/2 = 26/42.
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12. Machine learning experiments 12.1 What to measure

What to measure

Your choice of evaluation measures should reflect the assumptions you are
making about your experimental objective as well as possible contexts in which
your models operate. We have looked at the following cases:

t Accuracy is a good evaluation measure if the class distribution in your test
set is representative for the operating context.

t Average recall is the evaluation measure of choice if all class distributions
are equally likely.

t Precision and recall shift the focus from classification accuracy to a
performance analysis ignoring the true negatives.

t Predicted positive rate and AUC are relevant measures in a ranking context.
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12. Machine learning experiments 12.2 How to measure it

Measurements as random variables

When we measure something – say, a person’s height – several times, we expect
some variation to occur from one measurement to the next.

This variation can be modelled by treating our measurement as a random
variable characterised by its mean – the value we are trying to measure – and
variance σ2, both of which are unknown but can be estimated.

A standard trick is to average k measurements, as this gets the variance in your
estimate down to σ2/k. Crucially, this assumes that your measurements are
independent: if you are introducing a systematic error by using a faulty tape
measure, averaging won’t help!
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12. Machine learning experiments 12.2 How to measure it

Accuracy etc. as a random variable

Now suppose you are measuring a classifier’s accuracy from test data.

The natural model here is that each test instance represents a Bernoulli trial with
success probability a, the true but unknown accuracy of the classifier. We
estimate a by counting the number of correctly classified test instances A and
setting â = A/n; notice that A has a binomial distribution.

The variance of a single Bernoulli trial is a(1−a); averaged over n test instances
it is a(1−a)/n, assuming the test instances are chosen independently. We can
estimate the variance by plugging in our estimate for a, leading to an estimated
variance of â(1− â)/n.
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12. Machine learning experiments 12.2 How to measure it

Cross-validation I

We can improve our estimate by averaging k independent estimates âi and take
their sample variance 1

k−1

∑k
i=1(âi −a)2 instead, with a = 1

k

∑k
i=1 âi the sample

mean. (We divide by k −1 rather than k in the expression for the sample
variance, to account for the uncertainty in our estimate of the sample mean.)

How do we obtain k independent estimates of a? If we have plenty of data, we
can sample k independent test sets of size n and estimate a on each of them.
This test data needs to be separate from any training data used to build the
model or tune its parameters.

If we don’t have a lot of data, the following cross-validation procedure is often
applied: randomly partition the data in k parts or ‘folds’, set one fold aside for
testing, train a model on the remaining k −1 folds and evaluate it on the test fold.
This process is repeated k times until each fold has been used for testing once.
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Cross-validation II

This may seem curious at first since we are evaluating k models rather than a
single one, but this makes sense if we are evaluating a learning algorithm (whose
output is a model, so we want to average over models) rather than a single
model (whose outputs are instance labels, so we want to average over those).

By averaging over training sets we get a sense of the variance of the learning
algorithm (i.e., its dependence on variations in the training data), although it
should be noted that the training sets in cross-validation have considerable
overlap and are clearly not independent.

Once we are satisfied with the performance of our learning algorithm, we can run
it over the entire data set to obtain a single model.
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12. Machine learning experiments 12.2 How to measure it

Cross-validation III

Cross-validation is conventionally applied with k = 10, although this is somewhat
arbitrary. A rule of thumb is that individual folds should contain at least 30
instances, as this allows us to approximate the binomial distribution of the
number of correctly classified instances in a fold by a normal distribution. So if
we have fewer than 300 instances we need to adjust k accordingly.

Alternatively, we can set k = n and train on all but one test instance, repeated n
times: this is known as leave-one-out cross-validation (or the jackknife in
statistics). This means that in each single-instance ‘fold’ our accuracy estimate is
0 or 1, but by averaging n of those we get an approximately normal distribution
by the central limit theorem.

If we expect the learning algorithm to be sensitive to the class distribution we
should apply stratified cross-validation: this aims at achieving roughly the same
class distribution in each fold.
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Example 12.4, p.350 Cross-validation

The following table gives a possible result of evaluating three learning algorithms
on a data set with 10-fold cross-validation:

Fold Naive Bayes Decision tree Nearest neighbour

1 0.6809 0.7524 0.7164
2 0.7017 0.8964 0.8883
3 0.7012 0.6803 0.8410
4 0.6913 0.9102 0.6825
5 0.6333 0.7758 0.7599
6 0.6415 0.8154 0.8479
7 0.7216 0.6224 0.7012
8 0.7214 0.7585 0.4959
9 0.6578 0.9380 0.9279

10 0.7865 0.7524 0.7455

avg 0.6937 0.7902 0.7606
stdev 0.0448 0.1014 0.1248

The last two lines give the average and standard deviation over all ten folds.
Clearly the decision tree achieves the best result, but should we completely
discard nearest neighbour?
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12. Machine learning experiments 12.3 How to interpret it

Understanding the uncertainty in your measurements I

Suppose our estimate â follows a normal distribution around the true mean a
with standard deviation σ. Assuming for the moment that we know these
parameters, we can calculate for any interval the likelihood of the estimate falling
in the interval, by calculating the area under the normal density function in that
interval.

t For example, the likelihood of obtaining an estimate within ±1 standard
deviation around the mean is 68%. Thus, if we take 100 estimates from
independent test sets, we expect 68 of them to be within one standard
deviation on either side of the mean – or equivalently, we expect the true
mean to fall within one standard deviation on either side of the estimate in
68 cases. This is called the 68% confidence interval of the estimate.

t For two standard deviations the confidence level is 95% – these values can
be looked up in probability tables or calculated using statistical packages
such as Matlab or R.
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Understanding the uncertainty in your measurements II

Confidence intervals for normally distributed estimates are symmetric because
the normal distribution is symmetric, but this is not necessarily the case for other
distributions: e.g., the binomial distribution is asymmetric (except for p = 1/2).

In case of symmetry, we can easily change the interval into a one-sided interval:
for example, we expect the mean to be more than one standard deviation above
the estimate in 16 cases out of 100, which gives a one-sided 84% confidence
interval from minus infinity to the mean plus one standard deviation.
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Understanding the uncertainty in your measurements III

More generally, in order to construct confidence intervals we need to know (i) the
sampling distribution of the estimates, and (ii) the parameters of that distribution.

t We saw previously that accuracy estimated from a single test set with n
instances follows a scaled binomial distribution with variance â(1− â)/n.

t This would lead to asymmetric confidence intervals, but the skew in the
binomial distribution is only really noticeable if na(1−a) < 5: if that is not
the case the normal distribution is a good approximation for the binomial
one.

t So we usually use the binomial expression for the variance and use the
normal distribution to construct the confidence intervals.
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Example 12.5, p.351 Confidence interval

Suppose 80 out of 100 test instances are correctly classified.

We have â = 0.80 with an estimated variance of â(1− â)/n = 0.0016 or a
standard deviation of

p
â(1− â)/n = 0.04.

Notice nâ(1− â) = 16 ≥ 5 so the 68% confidence interval is estimated as
[0.76,0.84] in accordance with the normal distribution, and the 95% interval is
[0.72,0.88].

If we reduce the size of our test sample to 50 and find that 40 test instances are
correctly classified, then the standard deviation increases to 0.06 and the 95%
confidence interval widens to [0.68,0.92]. If the test sample drops to less than
30 instances we would need to construct an asymmetric confidence interval
using tables for the binomial distribution.
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A common misunderstanding about confidence intervals

Notice that confidence intervals are statements about estimates rather than
statements about the true value of the evaluation measure.

t The statement ‘assuming the true accuracy a is 0.80, the probability that a
measurement m falls in the interval [0.72,0.88] is 0.95’ is correct, but we
cannot reverse this to say ‘assuming a measurement m = 0.80, the
probability that the true accuracy falls in the interval [0.72,0.88] is 0.95’.

t To infer P (a ∈ [0.72,0.88]|m = 0.80) from P (m ∈ [0.72,0.88]|a = 0.80) we
must somehow invoke Bayes’ rule, but this requires meaningful prior
distributions over both true accuracies and measurements, which we don’t
generally have.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 527 / 540

http://www.cs.bris.ac.uk/~flach/mlbook/


12. Machine learning experiments 12.3 How to interpret it

Null hypothesis and p-value

We can, however, use similar reasoning to test a particular null hypothesis we
have about a.

t For example, suppose our null hypothesis is that the true accuracy is 0.5
and that the standard deviation derived from the binomial distribution is
therefore

p
0.5(1−0.5)/100 = 0.05.

t Given our estimate of 0.80, we then calculate the p-value, which is the
probability of obtaining a measurement of 0.80 or higher given the null
hypothesis.

t The p-value is then compared with a pre-defined significance level, say
α= 0.05: this corresponds to a confidence of 95%.

t The null hypothesis is rejected if the p-value is smaller than α; in our case
this applies since p = 1.9732 ·10−9.
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Significance testing in cross-validation: the paired t -test

t For a pair of algorithms we calculate the difference in accuracy on each
fold; this difference is normally distributed if the two accuracies are. Our null
hypothesis is that the true difference is 0, so that any differences in
performance are attributed to chance. We calculate a p-value using the
normal distribution, and reject the null hypothesis if the p-value is below our
significance level α.

t The one complication is that we don’t have access to the true standard
deviation in the differences, which therefore needs to be estimated. This
introduces additional uncertainty into the process, which means that the
sampling distribution is bell-shaped like the normal distribution but slightly
more heavy-tailed. This distribution is referred to as the t -distribution.

t The extent to which the t -distribution is more heavy-tailed than the normal
distribution is regulated by the number of degrees of freedom: in our case
this is equal to 1 less than the number of folds (since the final fold is
completely determined by the other ones).
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Example 12.6, p.353 Paired t -test

The numbers show pairwise differences in each fold. The null hypothesis in each
case is that the differences come from a normal distribution with mean 0 and
unknown standard deviation.

Fold NB−DT NB−NN DT−NN

1 -0.0715 -0.0355 0.0361
2 -0.1947 -0.1866 0.0081
3 0.0209 -0.1398 -0.1607
4 -0.2189 0.0088 0.2277
5 -0.1424 -0.1265 0.0159
6 -0.1739 -0.2065 -0.0325
7 0.0992 0.0204 -0.0788
8 -0.0371 0.2255 0.2626
9 -0.2802 -0.2700 0.0102
10 0.0341 0.0410 0.0069

avg -0.0965 -0.0669 0.0295
stdev 0.1246 0.1473 0.1278

p-value 0.0369 0.1848 0.4833

The p-value in the last line of the table is calculated by means of the
t -distribution with k −1 = 9 degrees of freedom, and only the difference between
the naive Bayes and decision tree algorithms is found significant at α= 0.05.
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Interpretation of results over multiple data sets I

The t -test is not appropriate for multiple data sets because performance
measures cannot be compared across data sets (they are not ‘commensurate’).
In order to compare two learning algorithms over multiple data sets we need to
use a test specifically designed for that purpose such as Wilcoxon’s signed-rank
test.

t The idea is to rank the performance differences in absolute value, from
smallest (rank 1) to largest (rank n).

t We then calculate the sum of ranks for positive and negative differences
separately, and take the smaller of these sums as our test statistic.

t For a large number of data sets (at least 25) this statistic can be converted
to one which is approximately normally distributed, but for smaller numbers
the critical value (the value of the statistic at which the p-value equals α)
can be found in a statistical table.
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Interpretation of results over multiple data sets II

t The Wilcoxon signed-rank test assumes that larger performance differences
are better than smaller ones, but otherwise makes no assumption about
their commensurability – in other words, performance differences are
treated as ordinals rather than real-valued.

t Furthermore, there is no normality assumption regarding the distribution of
these differences which means, among other things, that the test is less
sensitive to outliers.

t In statistical terminology the test is ‘non-parametric’ as opposed to a
parametric test such as the t -test which assumes a particular distribution.
Parametric tests are generally more powerful when that assumed
distribution is appropriate but can be misleading when it is not.
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Example 12.7, p.354 Wilcoxon’s signed-rank test

Data set NB−DT Rank

1 -0.0715 4
2 -0.1947 8
3 0.0209 1
4 -0.2189 9
5 -0.1424 6
6 -0.1739 7
7 0.0992 5
8 -0.0371 3
9 -0.2802 10

10 0.0341 2

The sum of ranks for positive differences is 1+5+2 = 8 and for negative
differences 4+8+9+6+7+3+10 = 47. The critical value for 10 data sets at the
α= 0.05 level is 8, which means that if the smallest of the two sums of ranks is
less than or equal to 8 the null hypothesis that the ranks are distributed the same
for positive and negative differences can be rejected. This applies in this case.
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Comparing multiple algorithms over multiple data sets I

If we want to compare k algorithms over n data sets we need to use specialised
significance tests to avoid that our confidence level drops with each additional
pairwise comparison between algorithms. The Friedman test is designed for
exactly this situation.

t Like the Wilcoxon signed-rank test it is based on ranked rather than
absolute performance, and hence makes no assumption regarding the
distribution of the performance measurements. The idea is to rank the
performance of all k algorithms per data set, from best performance (rank
1) to worst performance (rank k).

t Let Ri j denote the rank of the j -th algorithm on the i -th data set, and let
R j =

(∑
i Ri j

)
/n be the average rank of the j -th algorithm. Under the null

hypothesis that all algorithms perform equally these average ranks R j

should be the same.
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Comparing multiple algorithms over multiple data sets II

t In order to test this we calculate the following quantities:

the average rank R = 1
nk

∑
i j Ri j = k+1

2 ;

the sum of squared differences n
∑

j (R j −R)2; and

the sum of squared differences 1
n(k−1)

∑
i j (Ri j −R)2.

t There is an analogy with clustering here, in that the second quantity
measures the spread between the rank ‘centroids’ – which we want to be
large – and the third quantity measures the spread over all ranks. The
Friedman statistic is the ratio of the former and latter quantities.
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Example 12.8, p.356 Friedman test I

We use the data from Example 12.4, assuming it comes from different data sets
rather than cross-validation folds. The following table shows the ranks in
brackets:

Data set Naive Bayes Decision tree Nearest neighbour

1 0.6809 (3) 0.7524 (1) 0.7164 (2)
2 0.7017 (3) 0.8964 (1) 0.8883 (2)
3 0.7012 (2) 0.6803 (3) 0.8410 (1)
4 0.6913 (2) 0.9102 (1) 0.6825 (3)
5 0.6333 (3) 0.7758 (1) 0.7599 (2)
6 0.6415 (3) 0.8154 (2) 0.8479 (1)
7 0.7216 (1) 0.6224 (3) 0.7012 (2)
8 0.7214 (2) 0.7585 (1) 0.4959 (3)
9 0.6578 (3) 0.9380 (1) 0.9279 (2)
10 0.7865 (1) 0.7524 (2) 0.7455 (3)

avg rank 2.3 1.6 2.1
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Example 12.8, p.356 Friedman test II

We have R = 2, n
∑

j (R j −R)2 = 2.6 and 1
n(k−1)

∑
i j (Ri j −R)2 = 1, so the

Friedman statistic is 2.6.

The critical value for k = 3 and n = 10 at the α= 0.05 level is 7.8, so we cannot
reject the null hypothesis that all algorithms perform equally.

In comparison, if the average ranks were 2.7, 1.3 and 2.0, then the null
hypothesis would be rejected at that significance level.
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Post-hoc tests I

The Friedman test tells us whether the average ranks as a whole display
significant differences, but further analysis is needed on a pairwise level. This is
achieved by applying a post-hoc test once the Friedman test gives significance.

t The idea is to calculate the critical difference (CD) against which the
difference in average rank between two algorithms is compared.

t The Nemenyi test calculates the critical difference as follows:

CD = qα

√
k(k +1)

6n

where qα depends on the significance level α as well as k: for α= 0.05
and k = 3 it is 2.343, leading to a critical difference of 1.047 in our example.

t If the average ranks are 2.7, 1.3 and 2.0, then only the difference between
the first and second algorithm exceeds the critical difference.
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Post-hoc tests II

t A variant of the Nemenyi test called the Bonferroni–Dunn test can be
applied when we perform pairwise tests only against a control algorithm.

t The calculation of the critical difference is the same, except qα is adjusted
to reflect the fact that we make k −1 pairwise comparisons rather than
k(k −1)/2.

t For example, for α= 0.05 and k = 3 we have qα = 2.241, which is slightly
lower than the value used for the Nemenyi test, leading to a tighter critical
difference.
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Figure 12.1, p.357 Critical difference diagram94 CHAPTER 6. PREDICTIVE MULTI-CLASS SUBGROUP DISCOVERY

CD

CN2-MSD
CN2-SD

Ridor
PART
CN2

1 2 3 4 5

Figure 6.6: Post-hoc test (significance reported) comparing the average rank of
CN2-MSD and other rule learners with respect to the number of subgroups/rules.

CN2-MSD CN2 CN2-SD PART Ridor
1 12.70(1.00) 135.00(5.00) 23.50(3.00) 58.60(4.00) 14.00(2.00)
2 14.30(2.00) 151.30(5.00) 14.10(1.00) 82.70(3.00) 112.30(4.00)
3 44.00(3.00) 365.40(5.00) 12.30(1.00) 261.00(4.00) 43.00(2.00)
4 24.40(1.00) 979.00(3.00) 25.40(2.00) 1187.10(4.00) 1227.00(5.00)
5 8.20(1.00) 46.80(5.00) 10.70(2.00) 12.70(3.00) 14.90(4.00)
6 6.00(1.00) 71.70(5.00) 24.20(3.00) 19.70(2.00) 38.40(4.00)
7 3.90(2.00) 31.50(5.00) 6.70(4.00) 6.20(3.00) 3.30(1.00)
8 3.00(1.00) 258.00(5.00) 21.60(2.00) 119.70(4.00) 33.70(3.00)
9 29.10(2.00) 1443.40(5.00) 23.90(1.00) 760.40(4.00) 161.20(3.00)
10 8.70(1.00) 261.60(4.00) 27.50(2.00) 200.40(3.00) 2733.60(5.00)
Average 15.43(1.50) 374.37(4.70) 18.99(2.10) 270.85(3.40) 438.14(3.30)

Table 6.6: Comparing the number of CN2-MSD’s subgroups against the number of
rules produced by other rule learners (ranks in brackets) over 10 UCI data sets.

CD

REPTree
Pruned-RankFree-MSD

RankFree-MSD
J48

1 2 3 4

Figure 6.7: Post-hoc test (significance reported) comparing the average rank of
RankFree-MSD and Pruned-RankFree-MSD and other tree learners with respect
to the tree size.

7.4. EMPIRICAL EVALUATION 113

CD

MRSI
MRL
CN2

MRSU

1 2 3 4

Figure 7.11: Post-hoc test comparing the average rank of accuracies of MRL, MRSU ,
MRSI and CN2 methods over the multi-class relational data sets.

CD

MRL
MRSI
MRSU
CN2

1 2 3 4

Figure 7.12: Post-hoc test comparing the average rank of AUCs of MRL, MRSU , MRSI
and CN2 methods over the two-class relational data sets.

CD

CN2
MRL

MRSU
MRSI

1 2 3 4

Figure 7.13: Post-hoc test (no significance reported) comparing the average rank of
accuracies of MRL, MRSU , MRSI and CN2 methods over the two-class relational data
sets.

(top) Average ranks for each algorithm are plotted on the real axis. The critical

difference is shown as a bar above the figure, and any group of consecutively ranked

algorithms such that the outermost ones are less than the critical difference apart are

connected by a horizontal thick line. (bottom) Critical difference diagram for the

Bonferroni–Dunn test with CN2 as control. The critical differences are now drawn

symmetrically around the average rank of the control.
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