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9. Poincaré polynomials



1. Quaternionic symmetric spaces

Classical compact ones of real dimension 4n :

HPn =
Sp(n+ 1)

Sp(n)× Sp(1)

Gr2(Cn+2) =
SU(n+ 2)

S(U(n)× U(2))

Gr4(Rn+4) =
SO(n+ 4)

SO(n)× SO(4)
.

Exceptional ones of real dimensions 8,28,40,64,112 :

G2

SO(4)
,

F4

Sp(3)Sp(1)
,

E6

SU (6)Sp(1)
,

E7

Spin(12) Sp(1)
,

E8

E7 Sp(1)
.

Gr2(Cn+2) and Gr4(R6) are also Kähler manifolds.

The others have b2 = 0, and cannot admit an almost

complex structure (Gauduchon-Moroianu-Semmelmann).
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Wolf explained the series in 1965. Given a compact

simple Lie algebra g, choose a highest root subalgebra

su(2)=sp(1) . Then

H = KSp(1) = {g ∈ G : Ad(g)(su(2)) = su(2)}.

Moreover,

M =
G

KSp(1)
=
G

H

is symmetric and G/KU(1) is a holomorphic contact

manifold, the ‘adjoint variety’.

If G is centreless, K ⊆ Sp(n)r and

H ⊆ Sp(n)r ×Z2
Sp(1)l = Sp(n)Sp(1) ⊆ SO(4n).

Definition. A QK manifold is a Riemannian manifold

of dimension 4n, with n > 2, whose holonomy group

H equals Sp(n)Sp(1) or a subgroup thereof.
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The isotropy representations of these spaces have

special merit, and crop up in different fields.

For each Wolf space G/KSp(1), we get a symplectic

representation K → End(C2n).

Example. Consider e6 = su(6)⊕ sp(1)⊕ m, where

mc = Λ3,0 ⊗Σ = C40

is the tangent space and Σ = C2. But E6 also acts

on

C27 = (Λ1,0 ⊗Σ) ⊕ Λ0,2

= 6 + 6 + 15

= 〈ai〉 ⊕ 〈bj〉 ⊕ 〈cij〉

giving Schläfli’s configuration of

the 27 lines on a cubic surface:
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Theorems. (Alekseevsky 1968-70) All compact QK
homogeneous spaces arise from Wolf’s construction.
There exist homogeneous non-symmetric QK spaces
with s < 0 (amplified by Cortés).

(i) QK does not imply Kähler! �

(ii) If H ( Sp(n)Sp(1) then M must be symmetric.

(iii) One normally excludes the HK case H⊆Sp(n).

(iv) M should be self-dual and Einstein when n=1.

Any QK curvature tensor R belongs to

S2(sp(n)⊕ sp(1)) ∼= S2sp(n)⊕ sp(n)sp(1)⊕ S2sp(1).

Most summands are Bianchi-inconsistent, and

R = RHK ⊕ sR0, RHK ∈ S4E ⊂ S2sp(n).

Corollary. M is necessarily Einstein. It is locally HK
iff the scalar curvature s vanishes.

QK really means ‘nearly HK’ because of the analogy

Calabi-Yau ←→ nearly-Kähler (e.g. S6)
hyperkähler ←→ quaternion-Kähler (e.g. HPn)
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2. The twistor space

Let M be QK. Its complexified tangent space is

(TmM)c = E ⊗H, E=Cn, H=C2.

The reduction to Sp(n)Sp(1) equips TmM with a

2-sphere

Zm = {aI + bJ + cK : a2 + b2 + c2 = 1}

of almost complex structures, where IJ =K =−JI .

We have

End(TM) ⊃ Z ∼= P(H).

Equivalently, Z is a subbundle of the rank 3 vector

bundle with fibre

Vm = {aω1 + b ω2 + c ω3 : a, b, c ∈ R} ⊂ Λ2T ∗mM.

Theorem.The tautological almost complex structure

on Z determined by the (Levi-Civita) horizotal distri-

bution is integrable. So Z is a complex manifold

(generalizing the AHS construction in dimension 4).
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Twistor space exists over any quaternionic manifold,

one with a GL(n,H)Sp(1) -structure and torsion-free

connection (Bérard Bergery).

Over any quaternionic manifold, we can choose a local

basis I, J,K with I integrable and IJ = K = −JI.
This makes QK manifolds very close to being complex

and (if s > 0 ) Kähler.

There is the notion of instanton over a quaternionic

manifold M4n, namely a bundle (F,∇) with ‘self-dual’

curvature, which lifts holomorphically over Z .

Examples. If F =H , removing the zero section,

U = H∗/Z2 (fibre RP3 × R+ )

has an H∗ -invariant hypercomplex structure (Swann).

If M is QK (in particular, Einstein) then E is an

instanton, and TM ∼= E ⊗H is quaternionic, but not

(?) itself QK.
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A host of associated bundles can be constructed over

a quaternionic manifold M :

S 4n+3 ↪→ U 4n+4

↓ ↘ µ

Z4n+2 ↪→ V 4n+3

↘ ↙

M4n

Z is the twistor space with fibre CP1 ∼= S2.

V is the span of I, J,K, fibre R3 =sp(1) .

U =H/Z2 is hyper-complex; it has both HK and QK

metrics if M is QK with s > 0.

S has fibre SO(3) ; it is 3-Sasakian if M is QK> 0

and can be smooth even if M is an orbifold (Galicki).
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3. Fano contact manifolds

When M4n is a Wolf space, its twistor space

Z =
G

KU(1)
π−→

G

KSp(1)
= M.

is an adjoint orbit in g, polarized by a holomorphic line

bundle L. Each fibre π−1(m) is a rational curve CP1

with normal bundle 2nO(1) (whereas L|CP1
∼= O(2) ).

Wolf pointed out that Z has a holomorphic contact

structure θ ∈ H0(Z,Ω1(L)), so

0 6= θ ∧ (dθ)n ∈ H0(Z,O(κ ⊗ Ln+1),

and κ ∼= Ln+1. There is a holomorphic short exact

sequence

0→ D → TZ
θ−→ L→ 0

of vector bundles, in which D is horizontal. In fact,

D ∼= L1/2 ⊗ π∗E .

Example. CP2n+1(→ HPn) has L = O(2), but in

general Z is Fano of index n+ 1.
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The twistor dictionary in general:

M QK, s 6= 0 Z complex contact

point vertical rational curve

complex structure holomorphic section

Killing field X s ∈ H0(Z,O(L))

Dirac operator ∂ on Λ0,∗ ⊗O(−n)

s > 0 Z Kähler-Einstein

s > 0, compact Z contact Fano

minimal 2-sphere contact rational curve

b2(M) + 1 = b2(Z)

Interpretation of solutions to linear field equations as

elements of Čech cohomology is the essence of the

Penrose programme.

Big questions.

(i) Is every contact Fano manifold homogeneous?

(True under additional assumptions: Beauville et al.)

(ii) Is every positive QK manifold (meaning complete

with s > 0 ) symmetric?
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4. Twistor configurations

In the Penrose fibration

CP3 ⊃ CP3 \ CP1 → CP1y y
S4 = HP1 ⊃ H = R4,

conformal geometry is encoded into holomorphic data

invariant by j (the antipodal map on each fibre S2 ).

A holomorphic section over U ⊂ H is the same as an

orthogonal complex structure on U .

Applications. (i) Any OCS over R4 \ {p1, . . . , pn} is

conformally constant.

(ii) This is false for R6 = R4 × R2 , which inherits an

OCS from CP3 !

(iii) A smooth quadric in CP3 has at most 2 twistor

lines, unless j -invariant. A smooth cubic surface in

CP3 has at most 5 twistor lines (out of the 27 ).

Recent illustrations of the 4-dimensional theory:
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The function H 3 q 7→ q2 + qi (Gentili-S-Stoppato)

Discriminants of cubic surfaces (Armstrong-S)
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An example exploiting CP7 → HP3 (Hoggar 1998).

Consider 3 finite groups acting projectively on H4 :

• V1, multiplication by 1, i, j, k ∈ Sp(1)r

• V2, double sign changes of the coordinates

• V3, double transpositions of the coordinates

The product

A = V1 × V2 × V3

acts as (Z2)6 on CP7 . Fix unit quaternions

p = 1
2(1 + i+ j − k), q = 1

2(1 + i− j − k).

Proposition. The orbit A · [0, p, q, j] is a SIC-POVM:

it consists of 64 points mutually equidistant in CP7

projecting to ? points in HP3 .

Such SIC-POVM’s of (n+1)2 points are conjectured

to exist in CPn for all n (Zauner 1999).
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5. QK reduction

For an Sp(n)Sp(1) -structure, the space of 2-forms is

(Λ2T ∗mM)c ∼= S2E ⊕ S2H ⊕ (Λ2
0E⊗S

2H),

where V = S2H = sp(1) is locally spanned by ω1, ω2, ω3 .

There is an invariant 4-form

Ω =
3∑

r=1

ωr ∧ ωr.

Lemma. If n > 3 the condition dΩ = 0 implies that

∇Ω = 0 and M is QK (Swann).

Locally, QK metrics (with s>0 , s= 0 or s<0 ) can

be constructed from the quotient construction.

Suppose that M4n is a QK manifold with an isometric

U(1) action generating a Killing vector field X such

that LXΩ ≡ 0. Define a 2-form

µ = π(dX[) =
3∑

r=1
µrωr ∈ Γ(M,V ).
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Then

sXy Ω = dµ,

sXy µ = df,

where f = 1
2‖µ‖

2 . The triple f, µ,Ω gives rise to an

equivariantly closed 4-form

ΩX = fx2 − µsx+ Ωs2.

The 2-form µ determines a section

sµ ∈ H0(Z,O(L))

whose zero set consists of OCS’s ±Jµ on M \{f=0}.

Theorem. If U(1) acts freely then f−1(0)/U(1) has

a natural QK structure (Galicki-Lawson).

This extends naturally to an isometric action by a

Lie group G, and is a version of the Hyper-KähLeR

quotient construction.
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G2Q structures develop ideas from Atiyah-Witten’s

paper on M-theory.

Example. The diagonal action of S1 =U(1) ⊂ Sp(3)

on H3 gives rise to an SU(3) -equivariant picture

f−1(0)=S5 ⊂ HP2 \ CP2y y
CP2 ←− Λ2

−T
∗CP2 = X.

The 7-dimensional space X admits a complete metric

with holonomy G2 .

Theorem: Let M8 be QK with a free S1 action.

Then

(i) M\{f = 0} has an explicit Kähler metric (Haydys).

(ii) f−1(c)/S1 has half-flat structures (GNS).

(iii) M/S1 has a G2 -structure with dϕ ≡ 0.

The 3-form ϕ is a modification of X y Ω, and gives

G2 holonomy when the gradients of f and ‖X‖ are

parallel.
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6. Nilpotency

If M4n is a QK manifold with an isometry group G

of dimension `, then

gc
∼= H0(Z,O(L)).

The morphism

Φ :Z − → P(g∗c)

z 7→ [s1(z), . . . , s`(z)],

is a contact moment map for the action of Gc .

Dichotomy. If ℘ ∈ Skg∗ is G -invariant, either

(a) ℘ 6∈ ker(Skg∗c → H0(Z,O(Lk))∗) , or

(b) Φ(Z) lies in the zero set of ℘.

In (a), the image of ℘ vanishes on k local sections of

Z →M each of which determines a G-invariant OCS

of type aI+bJ+cK. If these are absent, (b) asserts

that Φ(Z) lies inside the nilpotent variety in P(g∗c).
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Any nilpotent orbit in g∗c arises from an su(2) ⊂ g :

U = (AdGc)(e) ⊂ gc, e =
(

0 1
0 0

)
∈ sl(2,C).

Such orbit admits a HK metric (Kronheimer), but only
if U is minimal is U /C∗ compact. In this case, it is
the twistor space Z that fibres over M = G/KSp(1).

The fundamental 3-form 〈[X,Y ], Z〉 on a compact Lie
algebra g defines a function f : Gr3(g)→ R for which

(i) V ∈ Gr3(g) is critical iff V is a subalgebra;

(ii) f is maximal on the Wolf space of minimal su(2) ’s;

(iii) one can compute Hess(f) at any critical V.

Example. For G = SU(3) , we have:

su(2) ⊂ su(3), G(V ) =
ṠU(3)

U(2)
= CP2

so(3) ⊂ su(3), G(V ) =
ṠU(3)

SO(3)
= L5.

In the second case, su(3)c ∼= Σ2 ⊕Σ4, and

TVGr3(g) ∼= V ⊗ V ⊥ ∼= Σ2 ⊗Σ4 ∼= Σ2 ⊕Σ4 ⊕Σ6

+ 0 −
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TVGr3(g) ∼= V ⊗ V ⊥ ∼= Σ2 ⊗Σ4 ∼= Σ2 ⊕Σ4 ⊕Σ6

+ 0 −

The associated unstable manifold M8 is the union

of L5 and the upward flow lines of the vector field

grad f. It is diffeomorphic to a rank 3 vector bundle

over L5 with fibre Σ2, and

TcM
8 ∼= Σ2 ⊕Σ4 ∼= Σ3 ⊗H.

In fact, M8 is locally symmetric:

G2

SO(4)
\ CP2 3:1

—−→ M8.

Theorem. For G compact simple, f is a Morse-

Bott function on Gr3(g). The unstable manifold de-

termined by an su(2) is QK with twistor space P(U ) ,

where U is the associated nilpotent orbit.

Problem. Describe the resulting metrics explicitly.
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7. Index theory

Let M4n be a Wolf space or a positive QK manifold
with a Lie group G of isometries. Its virtual Spin(4n)
representation is

∆+ −∆− = Λn0(E −H) =
⊕

p+q=n

(−1)pRp,q,

where Rp,q=Λp0E ⊗ S
qH.

The coupled Dirac operator

Γ(M,∆+ ⊗Rp,q) −→ Γ(M,∆− ⊗Rp,q)

has index ip,q =
∫
Mch(Rp,q)Â(M) . The following is a

G -equivariant statement:

Theorem. (−1)pip,q =


0 if p+q < n,

b2p−2 + b2p if p+q = n,

dimG p=0, q=n+2.

Thus ip,n−p arises from cohomology on which G acts
trivially (an example of Witten rigidity).

Whilst i0,n+2 arises from the adjoint representation.
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Index theory gives a linear constraint on the Betti

numbers and estimates on the isometry group, in

terms of characteristic classes including u ∈ H4(M,Z)

that represents Ω.

Example. If dimM = 8 then b2 + 1 = b4. The map

S2(H2)→ H4 then restricts the value of b2. Moreover

dimG = 5 +
∫
Mu

2.

If b4 = 1 then

dimG =


5 + 16 = dim Sp(3),
5 + 9 = dimG2,

5 + 4 = dim Sp(1)3,
5 + 1 = dim SO(4),

corresponding to

HP2 =
Sp(3)

Sp(2)×Sp(1)
,

G2

SO(4)
,

HP2

(Z2)2
, ?

Only the first two spaces are non-singular.
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8. Towards a classification

Let M4n be a compact positive QK manifold.

The odd Betti numbers b2p+1 of M4n all vanish.

Theorem. If b2(M) > 0 then M is isometric to the

Wolf space Gr2(Cn+2) (LeBrun-S, Wísniewski).

If b2(Z) > 1 there exists a family of rational curves

on Z transverse to the fibres over M, and a Fano

contraction

Z −→ CPn+1

with its fibres tangent to the contact distribution D.

This in fact forces Z = P(T ∗CPn+1).

Dichotomy. Ignoring HPn , a QK manifold M is spin

iff n is even.
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Let M4n be a compact positive QK manifold.

If n is even, M is spin and Â(M) = 0 because s > 0.

Theorem. A positive QK manifold M8 is isometric

to a Wolf space (Poon-S).

An attempt to push this to dimension 12 and 20 using

elliptic genera needs the assumption Â = 0 (Herrera,

corrected by Amann-Dessai).

Theorem. If b4 = 1 and 3 6 n 6 6 then M ∼= HPn

(S, Amann).

All exceptional Wolf spaces have b4 = 1, including

G2/SO(4) (n=2) and F4/Sp(3)Sp(1) (n=7) .

Question. Does a positive QK manifold M4n neces-

sarily admit an isometry group of positive dimension?

Yes, at least if n 6 4 (or if n = 5 and Â = 0 ). But,

if n is odd, must the Â genus vanish?
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9. Poincaré polynomials

Given an oriented compact manifold M , consider

P (t) = 1 + b1t+ b2t
2 + b3t

3 + · · ·

and suppose χ =P (−1) 6= 0. Then

logP (−1 + t) = log χ − d t+ φ t2 + · · ·

where d = dimM, and 16φ = 4P ′′(−1)/χ − d2. By

construction, this coefficient is additive for products:

φ(M ×N) = φ(M) + φ(N).

Theorems.

(i) If M4n is compact HK then χ =0 or φ = −5
6n.

(ii) If Md=G/H is an irreducible compact symmetric

space of type ADE or any Hermitian symmetric space,

φ= 1
12(cox(g)−2)d (Fino-S).

(iii) If M4n is an ADE Wolf space then φ = 1
3n

2.
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Example. The signature of an ADE Wolf space
equals its rank: b+2n = b2n = r, and χ equals the
number 1

2(dimG− r) of positive roots.

E8/E7Sp(1) has 8 primitive coho classes σk ∈ H4k(M,R)

H56(M,R) =
〈
σk ∪ u14−k : k = 0,3,5,6,8,9,11,14

〉
,

exhibiting ‘secondary Poincaré duality’ about k = 7 :

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
• • • • • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • •

• • • • • • • • •
• • • • • • •

• • • • • •
• • • •

•

Question. Is the intersection form S2(H56(M,Z))→Z
diagonalizable or the E8 lattice? (Hirzebruch-Sladowy)

PS (Herrera, Weingart) The quaternionic volume is:∫
M u28 = 23.32.52.7.31.37.41.43.47.53

= 5! 9! 57!
19!23!29! = 63468758442600
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