
Differential Equations

and

Discrete Mathematics

Simon Salamon

Mathematical Institute

University of Oxford

October 1996



c© October 1996

Mathematical Institute
24–29 St Giles’, Oxford, OX1 3LB



Preface

These notes accompany the first-year Oxford course of the same title. They are
not of course meant to substitute the lectures themselves, which are likely to provide a
less theoretical approach to the subject, with more emphasis on simple applications and
problem-solving. Material from the course is covered in roughly the order of the lectures
synopsis, though a number of subsections (at least those starred) could be omitted on a
first reading.

The notes are designed to be read at leisure during the course of the entire academic
year, and some of the explanations will make more sense after exposure to other series
of lectures. For example, no effort has been made to elaborate on the concept of a
limit, which recurs at various points. The notes also touch on a number of major topics
which will be more properly covered elsewhere, such as partial differential equations and
probability. Moreover, Euclid’s algorithm is described in the Institute lecture notes [9].

There is an initial temptation to regard the course as split into two utterly distinct
parts, with calculus (§§1–6) forming part one, and combinatorics and algorithms (§§7–
12) part two. I believe this to be mistaken, since there is a definite interchange of ideas
between these two parts, and this has been emphasized here. The designers of the course
were well aware of links between difference equations and generating functions, the algo-
rithmic nature of Euler’s method for approximating solutions to differential equations,
and so on. On the other hand, for learning and revision, the contents might profitably
be sliced into quarters (§§1–3, §§4–6, §§7–9, §§10–12).

Much of the material provides an ideal setting for experimenting with computer
packages and, conversely, a greater understanding of the theory can be gained with the
help of a machine. For this reason, most exercise sections include one or two problems
with Maple, although the latter does not form part of the course and (with one exception
in §12.2) has been excluded from the main body of text. For best results, precede each
exercise with the command restart; to wipe out earlier definitions. Most of the graphics
survived from earlier years of the course, and were plotted with Mathematica.

I am grateful to Richard Bird for some helpful comments, and to Chris Prior for his
patience in reading and correcting parts of an earlier draft.

S.M.S.

September 1996
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1 Elementary Calculus

1.1 Differentiation

Let y = y(x) be a function expressing y in terms of x. Its derivative, written
dy

dx
or

y′ , is the new function whose value at x = a equals the gradient of the graph of y at a.

This value, written
dy

dx
(a) or

dy

dx
|a or y′(a), can be expressed by a limit:

y′(a) = lim
x→a

y(x)− y(a)
x− a . (1.1)

This formula can be used to work out the derivatives of some simple functions from first
principles. For example, if y =

√
x then

y′(a) = lim
x→a

√
x−√a
x− a = lim

x→a

1√
x +
√
a

=
1

2
√
a
.

Understanding when limits exist and what properties they enjoy is accomplished in
another course, but since limits will occur several times in these notes, we include a
precise definition.

Let a be a fixed number. If f(x) equals (y(x)− y(a))/(x− a), or indeed any other
function, the limit of f as x tends to a is said to exist and equal ` ∈ R if for any number
ε > 0 (however small it may be) there exists δ > 0 such that

0 < |x− a| < δ ⇒ 0 ≤ |f(x)− `| < ε.

It is important to note that in this test x is not allowed to equal a; indeed in many
situations (including the one at hand) f(a) is not even defined. On the other hand, if
f(a) is defined and equal to the limit ` then the function f is said to be continuous at

a. For example, (sin x)/x is undetermined when x = 0, though

lim
x→0

sin x

x
= sin′(0) (1.2)

is known to equal cos 0 = 1. If we define f(x) to equal (sin x)/x for x 6= 0 and set
f(0) = 1 then f is continuous at all points of R, as indicated by the unbroken graph in
Figure 1.

There are a number of rules that enable one to differentiate complicated functions
quickly. The first is so obvious that it is often not stated explicitly, namely that the
derivative of a sum of two functions is the sum of the individual derivatives. A slightly
more general version of this rule is the

Linearity Property If a1, a2 are constants and y1, y2 are functions then

d

dx
(a1y1 + a2y2) = a1

dy1

dx
+ a2

dy2

dx
.

This will be of fundamental importance in seeking solutions to differential equations.

1



Figure 1: Extending
sin x

x
to x = 0
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Product Rule If u, v are functions, then

d

dx
(uv) =

du

dx
v + u

dv

dx
.

Since
d

dx
(x) = 1, the product rule may be used repeatedly to prove that for any positive

integer n,
d

dx
(xn) = nxn−1. (1.3)

Of course, this result is valid when n is replaced by any r ∈ R, and is relevant to the
generalized binomial theorem, discussed in the sequel.

Chain Rule If u, v are functions then

d

dx
(v(u(x)) = v′(u(x)).u′(x). (1.4)

The function that assigns x to v(u(x)) is called the composition of u with v , and is
sometimes written v◦u so that (1.4) translates into the neat identity (v◦u)′ = (v′◦u)u′ .
The chain rule will take on further significance in the discussion of partial derivatives in
§6.2.

The above rules are powerful in combination. They are all needed, for example, to
compute higher derivatives of the function ex

2

, given that ex is a function equal to its
own derivative:

2



(
d

dx

)2

(ex
2

) =
d

dx
(ex

2

.2x)

=
d

dx
(ex

2

).2x + ex
2

.
d

dx
(2x)

= 2(2x2 + 1)ex
2

.

1.2 Higher derivatives

Assuming that y′(a) exists for all a, one may differentiate the function y ′ to get the
second derivative

y′′ = (y′)′ =
d

dx

(
dy

dx

)
=
d2y

dx2

of y . When this process is iterated, the kth derivative of y (for k any positive integer)
is written in one of the ways

y(k),

(
d

dx

)k
y,

dky

dxk
, Dky.

Some of this notation dates back to the seventeenth century, although ‘D ’ is common
in computer packages. For consistency, one also defines the ‘0th derivative’ y(0) to equal
the original function y .

Let k, n be integers with 1 ≤ k ≤ n. Applying (1.3) repeatedly shows that
(
d

dx

)k
xn = n

k
xn−k, (1.5)

where the coefficient on the right is defined by

n
k

= n(n− 1)(n− 2) · · · (n− k + 1). (1.6)

In particular, n
n

= n! is the factorial that equals the product of the positive integers
from 1 to n inclusive. In this context, recall

Definition 1.2.1 The binomial coefficient
(
n
k

)
equals

n!

k!(n− k)! =
n
k

k!
.

The definition (1.6) (due to [4, §2.6]) has the great advantage that it makes sense when

n is replaced by any real number r ; r
k

is read ‘r to the k falling’, and will be used
again in §7.3.

A polynomial is a function of the form

y(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0, (1.7)

where the ak are real (or possibly complex) constants. It has degree n if the ‘leading
coefficient’ an is non-zero, and is called monic of degree n if an = 1. The polynomial
(1.7) has y(k) = 0 for all k > n, whereas

y(k)(0) = k!ak, 1 ≤ k ≤ n. (1.8)

3



Thus, a polynomial of degree n is completely determined by the values of itself and first
n derivatives at 0. For functions that are not polynomials though, higher derivatives
tend to become more and more complicated.

The expression (1 + x)n clearly defines a monic polynomial of degree n in x. Evalu-
ating its higher derivatives using the chain rule and (1.5) yields the binomial theorem:

Proposition 1.2.2 If n is a positive integer, then

(1 + x)n =
n∑

k=0

(
n
k

)
xk.

Well-known extensions of this result to the case in which the exponent n is no longer a
positive integer will be discussed in §7.4.

1.3 Integration

The word ‘integration’ is often used simply to mean the reverse of differentiation,
and a first exposure to the subject generally consists of taking a function f and trying
to find a function y such that f(x) = y′(x). If one is confident that y exists one writes

y(x) =

∫
f(x)dx + c.

This is an ‘indefinite integral’ specified only up to the addition of a constant c, even
though the latter is often omitted.

The following scheme, in which an arrow represents the process of differentiation,
indicates that the natural logarithm function, ln x, fills in the ‘gap’ when integrating
powers of x.

ln x ← x ln x−x ←
↙

← − 6

x4
← 2

x3
← − 1

x2
← 1

x
1 ← x ← 1

2
x2 ← 1

6
x3 ←

↙
0

Like 1/x, the function ln x is not defined for x = 0. In fact both ln x and ln(−x) are
valid integrals of 1/x, though only one will be real depending on the sign of x. For this
reason, one often writes ∫

1

x
dx = ln |x|+ c, (1.9)

though at times the absolute value signs can be a hindrance (see Example 2.1.2).

The rules given in §1.1 give rise to corresponding ones for computing integrals. If a, b
are constants and u, v functions then certainly

∫
(au(x) + bv(x))dx = a

∫
u(x)dx+ b

∫
v(x)dx.

4



Integration by parts is a restatement of the product rule. If u, v are functions of x
then ∫

du

dx
v(x)dx = u(x)v(x) −

∫
u(x)

dv

dx
dx.

Setting du/dx = y and abbreviating the notation gives the more practical version
∫
yv = (

∫
y)v −

∫
(
∫
y)v′.

For example, taking y to be the sine function,
∫
x sin xdx = (− cos x)x−

∫
(− cos x).1dx = −x cos x+ sin x+ c. (1.10)

This last function is then the ‘general solution’ of the equation y ′(x) = x sin x.

Substitution allows one to ‘cancel’ dx’s in the sense that
∫
f(u(x))

du

dx
dx =

∫
f(u)du

when integrating a ‘function of a function’ of x.

This is a re-interpretation of the chain rule in which f(u) plays the role of dv/du. As
an example, taking u = cos gives

∫
tan xdx =

∫
sin x

cos x
dx = −

∫
1

u

du

dx
dx = −

∫
1

u
du

⇒
∫

tanxdx = − ln |u|+ c = − ln | cosx|+ c.

Problem 1.3.1 Use the substitution u(x) = tan( 1
2
x) to evaluate

∫
csc xdx, where

csc x = cosecx = 1/(sin x).

Solution. Standard trigonometric identities imply that

sin x =
2u

1 + u2
, cos x =

1− u2

1 + u2
.

Using the first of these, and the fact that

du

dx
= 1

2
sec2( 1

2
x) = 1

2
(1 + u2)

gives ∫
csc xdx =

∫
1

u

du

dx
dx =

∫
1

u
du

= ln |u|+ c

= ln | tan(1
2
x)|+ c.

2

5



1.4 Definite integrals

To avoid the nuisance of constants of integration, one sets

y(x) =

∫ x

a

f(t)dt (1.11)

to represent the unique function whose derivative is f(x) and which satisfies the extra
condition that y(a) = 0. For fixed x, the right-hand side of (1.11) is a ‘definite integral’
which may be interpreted geometrically as the area lying under the graph of f between
a and x.

Figure 2:

a    a+h

f(a)

f(x)

x 

To see why computing such areas acts as the inverse of differentiation, first apply
(1.1) to obtain

d

dx

(∫ x

0

f(t)dt

) ∣∣∣
a

= lim
ε→0

1

ε

(∫ a+ε

a

f(t)dt

)
.

The second integral is interpreted as the area of a tiny strip of width ε and height
roughly f(a) (see Figure 2), so the right-hand limit equals f(a). But this must also be
the value of the left-hand side if differentiation is to be the inverse of integration. (Strictly
speaking, these arguments are only valid if f is a continuous function at x = a.)

Inequalities are preserved by definite integrals in the sense that

u(x) ≤ v(x)⇒
∫ b

a

u(x)dx ≤
∫ b

a

v(x)dx, a ≤ b.

This can be useful in showing that a given area is finite. For example, since e−t
2 ≤ e−t

for all t ≥ 1, ∫ x

1

e−t
2

dt ≤
∫ x

1

e−tdx = −e−x + e−1, x ≥ 1. (1.12)

6



Taking the limit of both sides as x→∞ gives
∫ ∞

1

e−t
2

dt ≤ lim
x→∞

(e−1 − e−x) = e−1 = 0.367 . . .

where the ‘infinite integral’ represents the total area under the graph of e−t
2

to the right
of the line t = 1 (see Figure 3). On the other hand, it is known that

∫ ∞

0

e−x
2

= 1
2

√
π = 0.886 . . .

and the function

y(x) =
2√
π

∫ x

0

e−t
2

dt (1.13)

plays a special role in probability theory.

Figure 3: e−t
2

, e−t and e−t/t

-1 0 1 2 3 4 5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Finding indefinite integrals is much harder than finding derivatives, in the sense that
it is impossible to express the integrals of many simple functions in terms of familiar
functions. A similar example of this type is the integral

∫ x

1

e−t

t
dt, (1.14)

whose value is sandwiched between each side of the inequality in (1.12).

1.5 Exercises

1. (i) Prove that (1.3) holds when n is replaced by a positive fraction p/q by setting
yq = xp .

7



(ii) Deduce the quotient rule (u/v)′ = (u′v − uv′)/v2 from the chain and product rules
and (1.3) for n = −1.

2. (i) Prove that the derivative of ln(csc x+ cotx) is − csc x. How do you reconcile this

with the answer in Problem 1.3.1? Find

∫
sec xdx.

(ii) Simplify the function arctan

(
sin x

1 + cos x

)
by differentiation, or otherwise.

3. Let x > 0. Find the derivative of y = xx , by first taking logs, or otherwise. The
minimum value of xx occurs when x is the unique solution a of the equation y ′(x) = 0;
find a and sketch the graph of xx .

4. Express each of the following integrals in terms of the function (1.14):

(i)

∫
1

ln x
dx, (ii)

∫
e−x

2

x
dx, (iii)

∫
ln(ln x)dx.

5. Using the notation of (1.6), show that (r + 1)
n − rn = nr

n−1
. In what way is this

analogous to (1.3)?

6. Tables of standard derivatives and integrals are stored in Maple. Check to see that
the following give expected results:

D(tan); int(tan(x),x);

D(sec); int(sec(x),x);

D(csc); int(csc(x),x);

D(ln); int(ln(x),x);

D(arcsin); int(arcsin(x),x);

D(arctan); int(arctan(x),x);

D(arctanh); int(arctanh(x),x);

diff(E^x,x); int(x*exp(x),x);

diff(ln(ln(x)),x); int(ln(ln(x)),x);

7. Run separately the three 1-line programs

y:= x->x^3*ln(x)^2: for k to 9 do (D@@k)(y) od;

ln: for k to 5 do y:=int("(x),x): x->y od: y;

for k to 5 do int(1/(1+x^k),x) od;

and explain what these accomplish.

8. Investigate values of the function (1.13) by

for k from 0 to 5 by .1 do

evalf(int(exp(-x^2),x=0..k))

od;

Carry out a similar analysis for (1.14).

8



2 Introduction to Differential Equations

2.1 First examples

The viewpoint of this course is that the term ‘integration’ actually refers to the process
of solving any equations involving derivatives. For example, given the two equations

(i) y′ = cot x,

(ii) y′ + 2y = y2,

not only can one say that
‘ln | sin x| is an integral of cot x’,

but also
‘y ≡ 2 is an integral of (ii)’.

The symbol ‘≡’ is used to emphasize that the ‘2’ is being regarded as a function rather
than just a number; the constant function 2 (or for that matter 0) is an obvious solution
of (ii). In (i) any other solution is obtained by adding on a constant, though in (ii) the
non-constant solutions are harder to discern.

The following equation can be rapidly solved by undoing double differentiation.

Example 2.1.1
d2y

dx2
+ sin x = 0 or y′′(x) = − sin x.

Integrating gives
y′(x) = cos x+ c1,

⇒ y(x) = sin x+ c1x+ c2.

Here c1 and c2 are constants, included to give the most general solution; in fact c1 =
y′(0)− 1 and c2 = y(0). 2

In this example, we might interpret x as time and y as the distance travelled by some
particle. Then y′ = ẏ represents velocity and y′′ = ÿ acceleration, the latter perhaps
specified by some applied sinusoidal force. (Differentiations with respect to time are
conventionally denoted by dots, following Newton.) If the particle has an initial velocity
of 5 units, then the appropriate ‘initial conditions’ are

y(0) = 0, ẏ(0) = 5,

which give rise to the ‘particular solution’ y(x) = sin x + 4x.

Slightly less straightforward, but still much simpler than (ii) above, is

Example 2.1.2

y′ + 2y = 0 or
dy

dx
= −2y

9



One approach to solving this is to separate the variables and plonk down integral signs
without thinking what one is doing, so as to give

∫
1

y
dy = −2

∫
dx.

One deduces that
ln y = −2x + c, or y(x) = be−2x,

where c and b = ec are constants. In fact, be−2x is the general solution in the sense
that any solution of the differential equation must equal this for some value of b. On the
other hand, the use of the logarithm is a bit artificial, and it is not completely obvious
that dividing by y does not eliminate a solution. Also, the constant b can certainly be
negative even though c must then be a complex number; this explains why the absolute
signs of (1.9) are inappropriate. 2

A more convincing way of obtaining the general solution in Example 2.1.2 is to spot
that the positive function e−2x is one solution, and then suppose that y(x) = u(x)e−2x

is another. The equation becomes

0 = y′ + 2y = (u′ − 2u)e−2x + 2ue−2x = u′e−2x,

and is equivalent to u′ ≡ 0, which means that u is a constant. Thus be−2x is indeed
the general solution, and we shall use this technique again and again in cases where one
solution of an equation is already known. One should note that the implication

u′ ≡ 0 ⇒ u constant (2.1)

actually underlies all the integration steps we have already made; although it appears
obvious it is strictly speaking a consequence of the

Mean Value Theorem for differentiable functions. This states that for any a, b, the
‘average’ rate of change (u(b)−u(a))/(b−a) equals u′(c) for at least one point c between
a and b.

2.2 Classification of equations

Definition 2.2.1 An ordinary differential equation (ODE) of order n is an equation of
the form

F (x, y, y′, y′′, . . . , y(n)) = 0,

where n is the order of the highest derivative actually appearing. The equation is said
to be linear if it has the form

g(x) + f0(x)y(x) + f1(x)y
′(x) + · · ·+ fn(x)y

(n)(x) = 0

for suitable functions g, f0, f1, . . . , fn .

In a linear equation, if one pretends that x is a constant, F is a just a sum of multiples of
y and its derivatives. A linear equation is called homogeneous if g ≡ 0, and the linearity
property of §1.1 implies the important

10



Proposition 2.2.2 If y1, y2 are solutions of a linear homogeneous ODE then c1y1 +c2y2

is also a solution for any constants c1, c2 . 2

Example 2.1.2 is defined by the function F (x, y, y′) = 2y+ y′ , and is as nice an ODE
as one can imagine: first order, linear and homogeneous. By comparison, here are some
nastier ones:

(i) y(1 + (y′)2) = 1 is non-linear first order,

(ii) y′′ + sin y = 0 is non-linear second order,

(iii) y′′′ + y = x sin x is linear third order.

Equation (ii) is much harder to solve than the superficially similar Example 2.1.1, and
is the ODE that governs the oscillations of a simple pendulum. For small values of y ,
its solutions are approximated by those of the linear equation y ′′ + y = 0, namely

y(x) = a sin x + b cos x = k sin(x+ φ), (2.2)

that give rise to what is referred to as simple harmonic motion.

The word ‘ordinary’ distinguishes these equations from partial differential equations,
involving functions of more than one variable (see §6.4).

Definition 2.2.3 A first-order ODE is separable if it can be written in the form

g(y)
dy

dx
= h(x), or more informally g(y)dy = h(x)dx,

for some functions g, h.

In this case, the substitution rule implies that

∫
g(y)dy =

∫
h(x)dx+ c,

and solutions are obtained provided one can evaluate the two integrals. However, such
solutions may be ‘implicit’, that is to say they relate x and y but do not express y
directly as a function of x.

Problem 2.2.4 Solve the equations

(i) (1 + y2)y′ = 1− x2,

(ii) (1− x2)y′ = 1 + y2.

Solution. Equation (i) implies

∫
(1 + y2)dy =

∫
(1− x2)dx+ c

⇒ y + 1
3
y3 = x− 1

3
x3 + c.

11



The last line is quite acceptable as a conclusion; in theory it could be used to express
y directly in terms of x using square and cube roots but this might not help much in
practice. By contrast, the separable equation (ii) leads to

∫
1

1 + y2
dy =

∫
1

1− x2
dx+ c

which, at least for |x| < 1, has an explicit solution

y = tan

(
ln

√
1 + x

1− x + c

)
= tan(arctanhx + c)

(u = arctanhx is equivalent to x = tanhu = (e2u − 1)/(e2u + 1).) 2

Sometimes a first-order ODE can be rendered separable by an easy change of variable.
An important class consists of equations of the form

dy

dx
= f

(y
x

)
, (2.3)

where f is an arbitrary function. The right-hand side is an example of a homogeneous

function of x, y (this more precise use of the word ‘homogeneous’ is explained in §6.3).
Setting u = y/x converts (2.3) into the separable equation

x
du

dx
+ u = f(u),

and allows one to tackle a variety of examples (see §2.5).

2.3 First-order linear equations

This section will undertake a systematic investigation of the pair of linear equations
in ‘standard form’

y′ + f(x)y = 0 (2.4)

y′ + f(x)y = g(x) (2.5)

In both cases, the coefficient of y′ equals 1 and in the notation of Definition 2.2.1,
f0 = −f and f1 ≡ −1. This is no real restriction, as one may in general divide through
by the coefficient function of y′ provided one does not get upset if f or g are then
undefined at particular points (see consequences of this in Problem 2.3.3).

The first equation is said to be the homogeneous equation associated with the second,
and is obviously separable. It implies that

ln y =

∫
1

y
dy = −

∫
f(x)dx+ a.

Whence
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Proposition 2.3.1 The general solution of (2.4) is

y(x) = ce−
R

f(x)dx,

where c is an arbitrary constant. 2

Next, consider the non-homogeneous equation (2.5). Guided by the argument at the
end of §2.1, we seek a solution in the form y = ue−

R

f for some function u (we have
suppressed the x’s to save energy). Using all the calculus rules from §1.1,

u′ = (ye
R

f)′ = y′e
R

f + y (e
R

f .f)

= e
R

f .(y′ + f y)

= e
R

f .g,

and in theory we can integrate to determine u and so y .

To save having to remember the definition of u, to solve (2.5) in practice, one needs
only remember to multiply both sides by the ‘integrating factor’

I(x) = e
R

f(x)dx (2.6)

For this converts the non-homogeneous equation into (in fuller notation)

d

dx
(I(x)y(x)) = I(x)g(x)

⇒ I(x)y(x) =

∫
I(x)g(x)dx+ c

⇒ y(x) = I(x)−1

∫
I(x)g(x)dx + cI(x)−1. (2.7)

Taking c = 0 we see that

y1(x) = I(x)−1

∫
I(x)g(x)dx

is a particular solution of (2.5), whereas cI(x)−1 is the general solution of (2.4). In fact
if y1 and y2 are both solutions of (2.5), then y1 − y2 is a solution of (2.4); conversely,
y1 + ce−

R

f will solve (2.5) for any constant c. The same argument shows that

Proposition 2.3.2 The general solution of a linear non-homogeneous equation equals
any particular solution of it plus the general solution of the associated homogeneous
equation.
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Problem 2.3.3 Solve the initial value problem (IVP for short)

{
xy′ + 2y = sin x,

y(π) = 0

Solution. First we put the equation into standard form by dividing through by x:

y′ +
2

x
y =

sin x

x
. (2.8)

The integrating factor is
I(x) = e

R

(2/x)dx = e2 ln x = x2,

giving
(x2y)′ = x2y′ + 2xy = x sin x.

One might have spotted that multiplying the original equation by x was all that was
needed to transform the left-hand side into an exact derivative, though it is sometimes
quicker to compute (2.6) methodically without thinking too hard. From (1.10),

x2y = sin x− x cos x + c,

giving the general solution

y =
sin x− x cos x

x2
+

c

x2
.

To solve the initial condition we need

0 =
0− π(−1)

π2
+

c

π2
⇒ c = −π,

so that finally
y(x) = (sin x− x cos x− π)/x2.

2

Writing the last ODE as
dy

dx
=

sin x− 2y

x

shows that one is actually prescribing the gradient or slope of a curve at each point
(x, y) in the plane. For example, our answer with c = −π has slope 0 at (π, 0), and
diverges as x → 0. Graphs of solutions for several different value of c illustrate that
there is exactly one solution of the differential equation passing through a given point,
but that this solution may not ‘extend’ for all values of x (see Figure 4). The assertion
that a first-order differential equation possesses, under fairly general conditions, a unique
solution passing through any point in the plane is an important theorem in more advanced
treatments of the subject [2, §2.11].

The right-hand side of (2.8) extends to a continuous function which has finite values
for all x (see (1.2)). However, the coefficient of y is unbounded as x→ 0, which explains
why most solutions also have this defect. Only when c = 0, do we obtain a solution,
namely (sin x − x cos x)/x2 , which tends to a finite limit as x → 0; indeed, l’Hôpital’s
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Figure 4: Solutions for c = −3π,−2π,−π, 0, π, 2π, 3π
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rule implies that this limit is 0, so that the corresponding graph passes through the
origin.

We shall return to the graphical interpretation of ODE’s in §5.1.

2.4 Reduction of order

The next stage is to consider the second-order linear equations

y′′(x) + f1(x)y
′(x) + f0(x)y(x) = 0 (2.9)

y′′(x) + f1(x)y
′(x) + f0(x)y(x) = g(x) (2.10)

and attempt an analysis based on Proposition 2.3.2. This time there is no systematic
way to solve the homogeneous equation (2.9), but if a solution of it is known, a familiar
technique can be used to find a solution of the non-homogeneous equation (2.10).

Lemma 2.4.1 Let y1 be a solution of (2.9) and u a function such that y2 = uy1 is a
solution of (2.10). Then v = u′ satisfies the first-order linear equation

y1v
′ + (2y′1 + f1y1)v = g.
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Proof. One has
y′2 = u′y1 + uy′1,

y′′2 = u′′y1 + 2u′y′1 + uy′′1 ,

and by assumption y′′1 + f1y
′
1 + f0y1 = 0. Substituting into (2.10) gives the result. 2

Example 2.4.2

y′′ + y = cot x.

A solution of the associated homogeneous equation is obviously given by sin x, so let
y(x) = u(x) sin x, and v(x) = u′(x). The lemma implies that

(sin x)v′ + 2(cos x)v = cot x

⇒ d

dx
((sin x)2v) = sin x cot x = cos x

⇒ v(x) = csc x + c csc2 x.

Setting c = 0 gives

u(x) =

∫
csc xdx = ln tan( 1

2
x) = − ln(csc x+ cot x)

(see Problem 1.3.1), so that for x > 0 a solution is ln(tan( 1
2
x)) sin x. 2

The lemma can also be applied to obtain a second solution of (2.9), given a first:

Problem 2.4.3 Verify that e2x is a solution of the equation

xy′′ − (x + 1)y′ − 2(x− 1)y = 0,

and find a second solution of the form y = ue2x .

Solution. The verification amounts to checking that 4x−2(x+1)−2(x−1) = 0. Dividing
by x and using Lemma 2.4.1,

e2xv′ +
(
4e2x − (1 + 1

x
)e2x

)
v = 0

⇒ v′ +

(
3− 1

x

)
v = 0.

The integrating factor is e3x−lnx = e3x/x, so

v(x) = cxe−3x

⇒ u(x) = −1
3
cxe−3x + 1

3
c

∫
e−3xdx = −1

3
c(x + 1

3
)e−3x.

Taking c = −9 gives the second solution y(x) = e−x(3x+ 1). 2
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Given two distinct solutions y1, y2 to the homogeneous second-order linear equation
(2.9), it is important to know if these are proportional or ‘linearly dependent’ in the
sense that

ay1 + by2 ≡ 0, (2.11)

for some constants a, b, not both zero. For example there are many identities involving
trigonometric functions that might obscure such a relationship. Differentiating (2.11)
gives ay′1 + by′2 ≡ 0, and it follows that

y1y
′
2 − y2y

′
1 ≡ 0. (2.12)

The function on the left, denoted W (y1, y2) is called the Wronskian of y1, y2 , and often
assumes a simple form even if the individual solutions are complicated.

Conversely, it can be shown that if y1, y2 are solutions of (3.1) that are not propor-
tional, then W (y1, y2) is actually nowhere zero on any interval in which the functions
f0, f1 are continuous [6, §2.7]. The latter condition is not satisfied by the equation in
Problem 2.4.3 at x = 0, which tallies with the fact that

W (e2x, e−x(3x + 1)) = −9xex,

vanishes when x = 0.

2.5 Exercises

1. Verify that the given function is a solution of the corresponding ODE for x > 0:

(i) 1
4
x2(3− 2 lnx), y′′ + ln x = 0;

(ii) 1
4
x2 − 3, y′ =

√
y + 3;

(iii) e−x , y(iv) = y + y′ + y′′ .

In each case, by inspection or otherwise, find a solution of the same equation not equal
to the one given.

2. Find general solutions of the following first-order ODE’s:

(i) yy′ = x2 ;

(ii) (x2 − 1)y′ = x3y ;

(iii) y′ + (cot x)y = csc x;

(iv) y′ = 1 + x+ y2 + xy2 ;

(v) (sin y)y′ = cos x.

3. By setting y = eu , find a solution of xy′ = y (x2− ln y) satisfying y(1) = 1. For which
values of x is the solution valid?

4. Use the treatment of (2.3) to find general solutions of the equations

(i) y′ =
x− y
x + y

;

(ii) 2x2y′ = x2 + y2 (an obvious solution is y(x) = x);
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(iii) y′ =
x2 + 3y2

2xy
;

5. Verify that x2 is a solution to x2y′′ − 3xy′ + 4y = 0, and find another by setting
y = x2u. Equations of this type are discussed in §3.3.

6. The distance r of a planet from its sun satisfies

r̈ =
a

r3
− b

r2
,

where a, b are positive constants, and a dot denotes differentiation with respect to time
t. By considering d(ṙ2)/dt, show that s = r2 satisfies s̈ = 2b/

√
s + c, where c is another

constant. Try to spot a solution of this second equation when c = 0.

7. Verify that, for each fixed c, the function

f:= (x,c)->2/(c*exp(2*x)+1):

is a solution of the equation (ii) at the start of §2.1. In what sense is this the ‘general’
solution? Sketch the curves

seq(f(x,4*k),k=-2..2):

plot({"},x=-.5..1.5);
and try to enlarge the picture by modifiying the constants and range.

8. (i) Let k ∈ R. Show that the substitution u = y1−k reduces the ODE y′ + y = yk to
a linear equation, and solve it.

(ii) Investigate the equation

eq:= D(y)(x)+y^j=y^k:

by assigning integers to j and k then solving, such as

j:=2: k:=3:

dsolve(eq,y(x));
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3 Constant Coefficients

3.1 The characteristic equation

In §2.4, we saw that knowledge of one solution of a homogeneous linear equation led
to others. In this section we shall explain how to solve the rather special equation

y′′(x) + py′(x) + qy(x) = 0 (3.1)

in which p, q are real constants. In the next, we shall return to the non-homogeneous
version in which the right-hand side is replaced by an assigned function g(x).

We can express (3.1) in the somewhat abbreviated form

(D2 + pD + q)y = 0,

where the symbol D denotes d/dx. The expression in parentheses can now be factored
by treating D as an ordinary variable, and the outcome determines the type of solutions.

Definition 3.1.1 The auxiliary or characteristic equation associated with (3.1) is the
equation λ2 + pλ+ q = 0.

This is a quadratic equation in λ, with ‘characteristic roots’

λ1 =
−p+

√
p2 − 4q

2
, λ2 =

−p−
√
p2 − 4q

2
,

which coincide iff p2 = 4q and are non-real iff p2 < 4q . The characteristic equation
therefore takes the form

(λ− λ1)(λ− λ2) = 0, so

{
λ1 + λ2 = −p,
λ1λ2 = q.

Using the normal rules for expanding brackets, (3.1) can now be written as

(D − λ1)(D − λ2)y = 0;

for the left-hand side equals

DDy −Dλ2y − λ1Dy + λ1λ2y = D2y − (λ1 + λ2)Dy + λ1λ2y.

The last step only works because λ2 is constant; this allows one to say Dλ2y = λ2Dy .

Proposition 3.1.2 The general solution of (3.1) is given by

y =

{
c1e

λ1x + c2e
λ2x, if λ1 6= λ2,

(c1x + c2)e
λ1x, if λ1 = λ2,

where c1, c2 are arbitrary constants.

19



Proof. Let u denote the function (D − λ2)y , so that

(D − λ1)u = 0, or u′ − λ1u = 0;

this is a first-order linear homogeneous equation with general solution u(x) = aeλ1x ,
where a is a constant. From the definition of u,

y′ − λ2y = aeλ1x,

which has integrating factor I(x) = e−λ2x and, from (2.7), general solution

y(x) = I(x)−1

∫
I(x)aeλ1xdx+ bI(x)−1

= aeλ2x

∫
e(λ1−λ2)xdx+ beλ2x.

The result follows from integrating the last line, in which one must distinguish the two
cases λ1 6= λ2 and λ1 = λ2 . 2

Note the consistency between Propositions 2.2.2 and 3.1.2: if y1 and y2 are solutions
of (3.1) then so is c1y1 + c2y2 .

We next illustrate what happens when the roots of the characteristic equation are
not real.

Example 3.1.3 The displacement y of a mass on a spring moving in a fluid at time x
is governed by the equation

y′′ + 2y′ + 5y = 0.

The characteristic equation λ2 +2λ+5 = 0 has roots (−2±
√

4− 20)/2 = −1±2i. The
general solution is therefore

c1e
(−1+2i)x + c2e

(−1−2i)x = e−x(c1e
2ix + c2e

−2ix).

Using the de Moivre formula
eiθ = cos θ + i sin θ,

this may be rewritten as

e−x(c1(cos 2x + i sin 2x) + c2(cos 2x− i sin 2x)) = e−x(a1 cos 2x+ a2 sin 2x)), (3.2)

where a1 = c1 +c2 and a2 = i(c1−c2). Given the nature of the problem, we must restrict
the ‘general’ solution to be real by taking a1, a2 ∈ R (and thereby allowing c1, c2 to be
complex conjugates).

The coefficient of y′ in the original equation arises from viscosity. If it were zero,
the exponential term in the solution would be absent and the motion would be purely
sinusoidal with continuing oscillations of equal magnitude as in (2.2). As it is, the e−x

factor causes the magnitude of the oscillations to decay, and this phenomenon is referred
to as ‘damping’. 2
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Figure 5: Underdamped motion
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We shall always suppose that the constants p, q defining the ODE (3.1) are real. The
behaviour of solutions then depends crucially on the sign of ∆ = p2 − 4q . To explain
this, suppose that p > 0. If ∆ > 0, no oscillations occur, and any motion represented
by the solutions is said to be ‘overdamped’. The ‘critical’ case ∆ = 0 corresponding to
λ1 = λ2 is best regarded as a limiting case of overdamped motion. By contrast, if ∆ < 0
then λ1 = − 1

2
p± ir where r = 1

2

√
4q − p2 is a real number, and the general solution of

(3.1) is
e−px/2(a1 cos rx+ a2 sin rx).

The motion is said to be ‘underdamped’; this is illustrated in Figure 5 by the solution
(3.2) with a1 = 0, a2 = 1.

3.2 Undetermined coefficients

Consider the non-homogeneous equation

y′′(x) + py′(x) + qy(x) = g(x), (3.3)

in which p, q are once again constants, and g is an assigned function. Proposition 2.2.2
applies to the pair of equations (3.1) and (3.3), so to fully solve (3.3) we need only find
a particular solution of it. For many functions g , the most efficient way to do this is to
make an informed guess involving constants (the so-called ‘undetermined coefficients’)
which are subsequently evaluated by substitution.

Provided that the coefficients on the left-hand side are constant, this technique pro-
vides an easier alternative to the one based on Lemma 2.4.1, and will be illustrated in
the series of problems below.
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Problem 3.2.1 Solve the IVP
{
y′′ − 4y′ + 4y = sin x,

y(0) = 0 = y′(0).

Solution. Step 1: The characteristic equation is λ2 − 4λ+ 4 = 0 or (λ− 2)2 = 0. Hence
λ1 = λ2 = 2, and the associated homogeneous equation has general solution

y(x) = (c1x+ c2)e
2x.

Step 2: Seek a particular solution y1 of the given non-homogeneous ODE. Given that
repeated derivatives of sin x are multiples of itself or cos x, it is natural to try y1 =
A sin x+ B cos x, where A,B are constants to be determined from the equation

(−A sin x− B cos x)− 4(A cos x− B sin x) + 4(A sin x+B cos x) = sin x

⇒ (3A+ 4B) sin x+ (−4A + 3B) cosx = sin x.

Since this must hold for all x, we get (for example, by taking x to equal π
2
, 0 respectively)

3A+ 4B = 1

−4A + 3B = 0

}
⇒ A = 3

25 , B = 4
25 .

Step 3: Find the values of c1, c2 that satisfy the initial conditions. In fact,

y(0) = 4
25 + c2 ⇒ c2 = − 4

25 ,

y′(0) = 3
25 + c1 + 2c2 ⇒ c1 = 1

5 ,

so the final answer is

y(x) = 1
25

(
3 sinx + 4 cos x+ (5x− 4)e2x

)
.

The graph of this function in Figure 6 shows how the exponential part dominates when
x > 0 and the sinusoidal part when x < 0. 2

We have already used the fact that D = d/dx is a linear operator in the sense that

D(c1y1 + c2y2) = c1Dy1 + c2Dy2

whenever c1, c2 are constants and y1, y2 are functions. The same applies to the differential
operator

L = D2 + pD + q.

The function u(x) = eαx (α a constant) satisfies

Du = αu
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which says that D transforms u to a multiple of itself. This is a very special situation,
and one refers to u as an eigenvector of the linear operator D . An analogous situation
characterizes the equations

R1(v1) = v1,

R2(v2) = −v2,

in which R1 is a rotation of 3-dimensional space with axis parallel to a vector v1 and R2 is
a reflection in a plane perpendicular to a vector v2 . Note that D2 acts by multiplication
by α2 on u, so and

Lu = (D2 + pD + q)u = (α2 + pα + q)u,

showing that the exponential function u is also an eigenvector for L.

We can rewrite the last equation as

L

(
1

α2 + pα + q
eαx
)

= eαx,

which tells us that eαx/(α2 + pα + q) = eαx/((α − λ1)(α − λ2)) is a particular solution
of the non-homogeneous equation

y′′ + py′ + qy = eαx.

This works provided that α is different from λ1 and λ2 ; for the other cases it is easily
verified that Ly = eαx has a particular solution





1

α− λ2
xeαx, if α = λ1 6= λ2,

1
2x

2eαx, if α = λ1 = λ2.

(3.4)

Problem 3.2.2 Find a particular solution of

y′′ − 5y′ + 6y = ex + e2x + e3x.

Solution. The characteristic equation is 0 = (λ2 − 5λ + 6) = (λ − 2)(λ − 3). Let
L = D2 − 5D + 6. Then

(i) a particular solution of Ly = ex is y1 = 1
(1−5+6) e

x ;

(ii) a particular solution of Ly = e2x is y2 = 1
2−3

xe2x ;

(iii) a particular solution of Ly = e3x is y3 = 1
3−2xe

3x .

Since L(y1+y2+y3) = Ly1+Ly2+Ly3 , the final solution is obtained by adding everything
together and is

y1 + y2 + y3 = 1
2
ex − xe2x + xe3x.

2
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Figure 6: (3 sinx + 4 cosx + (5x− 4)e2x)/25

-10 -8 -6 -4 -2 2

-0.2

0.2

0.4

0.6

0.8

Illustrated above is the common practice of multiplying a ‘first guess’ at a particular
solution by x if it involves a solution of the homogeneous equation. One needs to multiply
by x again if the characteristic equation has repeated roots.

? 3.3 Further techniques

The following result can save time in determining coefficients of particular solutions.

Lemma 3.3.1 If L = D2 + pD + q then Ly = 0 ⇒ L(xy) = 2y′ + py .

Proof. L(xy) = (xy)′′ + p(xy)′ + qxy = x(y′′ + py′ + qy) + 2y′ + py . 2

Here is a sequel to Example 3.1.3:

Problem 3.3.2 Find a particular solution of

y′′ + 2y′ + 5y = x2(1 + sin x) + e−x cos 2x.

Solution. We take each of the three terms on the right separately.

(i) For x2 , try A+Bx + Cx2 . This gives

2C + 2(B + 2Cx) + 5(A+Bx + Cx2) = x2

⇒ 5C = 1, 5B + 4C = 0, 5A + 2B + 2C = 0

⇒ A = − 2
125
, B = − 4

25
, C = 1

5
.
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(ii) For x2 sin x, try (A+Bx+Cx2) sinx+(D+Ex+Fx2) cos x. In general, a polynomial
of degree n times sin or cos necessitates trying a linear combination of sin and cos with
coefficients that are also polynomials of degree n. A tedious calculation gives A = 29

250
,

B = − 7
25

, C = 1
5
, D = 28

250
, E = 1

25
and F = − 1

10
.

(iii) For e−x cos 2x, note that y = e−x(A sin 2x+ B cos 2x) is no good as it is a solution
of the associated homogeneous equation. Instead we try xy , and use the lemma:

L(xy) = 2e−x(2A cos 2x− 2B sin 2x) + (−2 + 2)e−x(A sin 2x+B cos 2x) = e−x cos 2x

⇒ A = 1
4
, B = 0.

Adding everything together, a solution is

1
250

(
−4− 40x+ 50x2 + (29−70x+50x2) sin x + (28+10x−25x2) cos x

)
+ 1

4xe
−x sin 2x.

2

The reduction of constant coefficient equations to the algebra of the characteristic
equation extends to arbitrary degree. This is because any ODE

y(n) + pn−1y
(n−1) + · · ·+ p1y

′ + p0y = 0

with pi constant can be factorized as

(D − λ1)(D − λ2) · · · (D − λn)y = 0, (3.5)

where λi ∈ C are the roots (in any order) of the associated monic polynomial with
coefficients pi . Any function yi satisfying (D−λi)yi will therefore be a solution of (3.5),
and the general solution will in fact be a linear combination of these yi , plus any ‘extra’
solutions of the form xkyi in the case of repeated roots.

Example 3.3.3

y(iv) − 2y′′′ + 2y′ − y = ex.

The characteristic polynomial is

0 = λ4 − 2λ3 + 2λ− 1 = (λ− 1)3(λ+ 1),

so the roots are 1 (repeated thrice) and −1. In line with Proposition 3.1.2, the general
solution of the homogeneous equation is therefore

(c1 + c2x + c3x
2)ex + c4e

−x.

Futhermore, to find a particular solution of the non-homogeneous equation, we need to
try y(x) = Ax3ex which gives 12Aex = ex . Thus the general solution is

(c1 + c2x+ c3x
2 + 1

12
x3)ex + c4e

−x.

2
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With hindsight, it was obvious that eλx is a solution of the constant coefficient
equation y′′ + py′ + qy = 0 when λ2 + pλ + q = 0. There is an analogous family of
second-order linear ODE’s for which xλ is equally obviously a solution for suitable λ.
These are the Euler-Cauchy equations

x2y′′ + pxy′ + qy = 0 (3.6)

where p, q are again constants. Setting y(x) = xλ gives the ‘new’ characteristic equation

λ2 + (p− 1)λ+ q = 0. (3.7)

The question arises as to what happens when (3.7) has repeated roots, as for instance
in the equation

x2y′′ + 3xy′ + y = 0,

which has 1/x as one solution. We could find an extra solution of the form u(x)xλ with
the aid of Lemma 2.4.1, but here we shall follow a much quicker route. If (3.7) has two
roots λ1 = λ and λ2 = λ+ ε then we might expect

lim
ε→0

xλ+ε − xλ
ε

= xλ ln x

to be a solution, given that the quotient is, for any ε 6= 0. (The limit is evaluated by
differentiating xλ = eλ ln x with respect to λ). It is easily verified that this is correct, and
we have the following analogue of Proposition 3.1.2:

Proposition 3.3.4 The general solution of (3.6) is given by

y =

{
c1x

λ1 + c2x
λ2 , if λ1 6= λ2,

(c1 ln x+ c2)x
λ1 , if λ1 = λ2,

where λ1, λ2 are the roots of (3.7) and c1, c2 are arbitrary constants.

3.4 Exercises

1. The equations

(i) y′′ − 2y′ + 5y = e2x sin x;

(ii) y′′ − 2y′ + 5y = x sin x;

(iii) y′′ − 2y′ + 5y = xex sin 2x

all have the same characteristic roots. Find a particular solution in each case. Why is
your answer to (iii) simpler than might have been expected?

2. Solve the IVP {
y′′ − 2y′ + y = ex + xex,
y(0) = 0 = y′(0),
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given that the equation has a particular solution of the form (Ax +B)x2ex .

3. Find second-order ODE’s with solutions

(i) aex + be2x + x sin x,

(ii) a sin 2x+ b cos 2x+ ex ,

in which a, b are arbitrary constants.

4. Verify that y1(x) = ex is a solution of xy′′ − (x + 2)y′ + 2y = 0, and show that
the equation also admits a solution of the form y2(x) = x2 + Ax + B . Compute the
Wronskian (2.12) of these two solutions.

5. Solve the IVP {
x2y′′ + 2xy′ − 6y = x,

y(1) = 0 = y′(1).

6. Without determining the coefficients, write down the general form of a particular
solution of the ODE

y′′ + 3y′ − 4y = g(x)

when g(x) equals (i) (1+x)3 , (ii) x3ex , and (iii) x3ex sin x. Check your answers starting
with

eq:= (D@@2)(y)(x)+3*D(y)(x)-4*y=(1+x)^3:

dsolve(eq,y(x));

7. Carry out the IVP computation

eq:= (D@@2)(y)(x)-2*D(y)(x)+5*y=4*exp(x):

dsolve({eq,y(0)=1,D(y)(0)=1},y(x));
Simplify the answer by hand into something more reasonable.

8. Find a particular solution of the equation y′′ + cy = tan x for c = 4:

eq:= (D@@2)(y)(x)-4*y=tan(x):

dsolve(eq,y(x));

Experiment to see for which other values of the constant c there exists a solution in
terms of familiar functions.
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4 Difference Equations

4.1 Analogies with ODE’s

Consider the array

0 1 4 9 16 25 36 49 . . . . . .
1 3 5 7 9 11 13

2 2 2 2 2 2
0 0 0 0 0

formed by listing perfect squares and taking successive differences. Let yn denote the
nth term in the top row, starting from 0 (so that y0 = 0, y1 = 1, . . .). The fact that the
third row is all 2’s tells us that for example

2 = (y3 − y2)− (y2 − y1) = y3 − 2y2 + y1,

or more generally that
yn+2 − 2yn+1 + yn = 2. (4.1)

This is an example of a second-order difference equation.

We shall soon see that the general solution of (4.1) is

yn = n2 + c1n+ c2, (4.2)

where c1, c2 are arbitrary constants. The solution of a difference equation like (4.1) is a
sequence of real numbers (y0, y1, y2, . . .), that we may think of as a function defined on
the set N = {0, 1, 2, 3, . . .} of natural numbers (including 0), so that

f : N −→ R

n 7→ yn = y(n).

The ‘graph’ of this function would consist of the points (n, yn) for n = 0, 1, 2, . . .. (It
is important to understand the distinction between a sequence (y0, y1, y2, . . .), and its
underlying set {y0, y1, y2, . . .} in which the order is irrelevant and any repetitions are
ignored; thus a set does not define a function.)

Taking differences is in some ways analogous to differentiation, and one might define
the ‘derivative’ of a sequence yn to be the new sequence defined by y′n = yn+1 − yn .
However, for our purposes, given the original sequence

y = (y0, y1, y2, y3, . . .),

it will be more convenient to define the ‘shifted sequences’

Sy = (y1, y2, y3, y4, . . .)

S2y = (y2, y3, y4, y5, . . .)

· · · · · ·
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by means of the operator S which replaces each term of y by its Successor, or equivalently
Shifts the sequence one place to the left. Our original equation (4.1) becomes

S2y − 2Sy + y = g, or (S − 1)2y = g,

where g stands for the constant sequence (2, 2, 2, . . .) (whose underlying set is {2}), and
we are adding sequences and multiplying them by constants in an obvious term-wise
fashion.

More generally, let p, q be real numbers and consider the difference equations

yn+2 + pyn+1 + qyn = 0 (4.3)

yn+2 + pyn+1 + qyn = gn, (4.4)

where (g0, g1, g2, . . .) is an assigned sequence, and the problem is to find yn . In the first
example, gn was equal to 2 for all n; more interesting might be the sequence defined by

gn = 3 + (−1)n =

{
4, n even,
2, n odd.

(4.5)

The equation (4.3) is the homogeneous equation assiociated to (4.4). The linearity
property of the the operators S and S2 + pS + q ensures that, just as for differential
equations,

Proposition 4.1.1 The general solution of (4.4) equals any particular solution plus the
general solution of (4.3).

The general solution of (4.2) has precisely this form. Had we guessed that An2 was a par-
ticular solution of (4.1) for some undetermined coefficient A, we could have substituted
this to obtain

yn+2 − 2yn+1 + yn = A(n+ 2)2 − 2A(n + 1)2 + An2 = 2A,

and confirm that A = 1.

4.2 Fibonacci type equations

Consider the homogeneous difference equation (4.3), in which p and q are constants.
Note this this is really a recurrence relation in that it expresses the nth term

yn = −pyn−1 − qyn−2

as a function of the preceding terms.

Proposition 4.2.1 The general solution to (4.3) is given by

yn =

{
c1λ1

n + c2λ2
n, if λ1 6= λ2,

(c1n+ c2)λ1
n, if λ1 = λ2,

where c1, c2 are arbitrary constants and (as in §3.1) λ1 and λ2 are the roots of the
characteristic equation λ2 + pλ+ q = 0.
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Proof. Briefly, if λ1 is a root of the characteristic equation, then λn+2
1 +pλn+1

1 +qλn1 = 0,
and λ1

n solves (4.3). If λ is a repeated root then 2λn+2+pλn+1 vanishes, and this implies
that nλn is also a solution. By linearity, the sequences (yn) defined above solve (4.3) for
all values of c1, c2 . Given any other solution (ỹn) of (4.3), one may choose the constants
c1, c2 such that (xn = yn − ỹn) is a solution with x0 = x1 = 0, and it follows easily that
xn = 0 for all n. 2

A more honest proof that works without prior knowledge of the solutions is given at
the end of this section. Consider next two simple examples:

(i) The homogeneous equation yn+2− 2yn+1 + yn = 0 associated with the one in §4.1 has
characteristic equation (λ− 1)2 = 0 and therefore general solution

(c1n+ c2)1
n = c1n+ c2,

as claimed.

(ii) It is obvious that the general solution of yn+2 + yn = 0 has the form

(a, b,−a,−b, a, b,−a,−b, . . .)
⇒ y2n = (−1)na, y2n+1 = (−1)nb,

where y0 = a and y1 = b are arbitrary. Alternatively, the roots of the characteristic
equation are ±i, and so according to Proposition 4.2.1, yn = c1i

n + c2(−i)n , which
amounts to the same thing if we set a = c1 + c2 and b = i(c1 − c2). In general, if
λ1, λ2 = ρe±iθ are complex (assuming always that p, q are real), the solution of (4.3) is
better expressed in the form

ρn(a1 cos nθ + a2 sin nθ),

in analogy to (3.2).

A celebrated solution of a difference equation is the Fibonacci sequence

(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .)

which solves the ‘initial value problem’
{
Fn+2 − Fn+1 − Fn = 0,

F0 = 0, F1 = 1.
(4.6)

Thus, Fn denotes the nth Fibonacci number with the convention that F1 = 1 = F2 .
The characteristic equation is

λ2 − λ− 1 = 0,

and has roots

φ =
1 +
√

5

2
, φ̂ =

1−
√

5

2

The positive root φ = 1.61803 . . . is the so-called golden ratio, and φ̂ = 1− φ. Many of
the graphs of these notes (such as Figure 7) are automatically framed by an imaginary
rectangle whose sides are in the proportion φ : 1, as this is meant to be an especially
pleasing shape. A rectangle of size φ× 1 can be divided into a smaller rectangle of the
same shape plus a unit square. 2
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The previous proposition yields

Corollary 4.2.2 Fn =
1√
5
(φn − φ̂n).

Proof. To derive the Fibonacci numbers from the general solution c1φ
n + c2φ̂

n , we need
to satisfy the initial conditions

{
0 = F0 = c1 + c2 ⇒ c2 = −c1,
1 = F1 = c1(φ− φ̂) ⇒ c1 = 1/

√
5.

2

This corollary has some interesting consequences. Firstly, since |φ̂n/
√

5| < 0.5 for all
n ≥ 0, we have

Fn =
1√
5
φn to the nearest integer.

Also

lim
n→∞

Fn
Fn−1

= lim
n→∞

φn − φ̂n
φn−1 − φ̂n−1

= lim
n→∞

1−
(
φ̂/φ

)n

1−
(
φ̂/φ

)n−1 · φ = φ, (4.7)

as |φ̂/φ| < 1. This result is illustrated in Figure 7 which plots the points

{(Fn−1

n
,
Fn
n

) : 1 ≤ n ≤ 10},

and shows that the ratio of successive Fibonacci numbers converges very quickly to φ.

Figure 7: y = φx
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Algebraic proof of Proposition 4.2.1. The homogeneous difference equation (4.3) can be
written (S2 + pS + q)y = 0, and as in §3.1, we split this into two first-order equations

(S − λ1)u = 0, where u = (S − λ2)y.

The general solution of the first is determined by writing

un = λ1un−1 = λ1
2un−2 = · · · = λ1

nu0.

Since (S − λ2)y = u, we now get

yn = λ2yn−1 + u0λ1
n−1

= λ2(λ2yn−2 + u0λ1
n−2) + u0λ1

n−1

= λ2
2yn−2 + u0(λ1

n−1 + λ1
n−2λ2)

· · · · · ·

= λ2
ny0 + u0(λ1

n−1 + λ1
n−2λ2 + · · ·+ λ2

n−1).

This is in the familiar form of the general solution of a first-order homogeneous equation,
plus a particular solution of a non-homogeneous equation which we must now sum.

There are two cases. If λ1 = λ2 , we get

yn = λ2
ny0 + u0.nλ1

n−1 = (c1n + c2)λ1
n,

where c1, c2 are constants. If λ1 6= λ2 then we can use the identity

xn − 1 = (x− 1)(xn−1 + xn−2 + · · · + x + 1) (4.8)

with x = λ1/λ2 to get

yn = λ2
ny0 + u0

λ1
n − λ2

n

λ1 − λ2
= c1λ1

n + c2λ2
n,

with different constants, but as required. 2

4.3 Worked problems

Notice that the Fibonacci numbers 8, 13, 21 satisfy 21.8 − 132 = 168 − 169 = −1.
This is generalized by

Problem 4.3.1 Prove Cassini’s relations

Fn+1Fn−1 − Fn2 = (−1)n. (4.9)

Solution. Since F0 = 0 and F1 = 1 = F2 , (4.9) holds when n = 1. To complete a proof
by induction we shall deduce from (4.9) the corresponding equation with n replaced by
n+ 1. To do this, we first use the equation in (4.6) twice, and then apply (4.9):

Fn+2Fn = Fn+1(Fn+1 − Fn−1) + Fn
2

= Fn+1
2 − (Fn

2 + (−1)n) + Fn
2.

Rearranging gives the required equation

Fn+2Fn − Fn+1
2 = (−1)n+1.

2
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We now return to applications of Proposition 4.2.1. The following should be compared
to (3.4); it can be proved by straightforward verification.

Lemma 4.3.2 Let L = S2 + pS + q , and let g denote the sequence with nth term
gn = αn . Then Ly = g has a particular solution

yn =





1

(α− λ1)(α− λ2)
αn, if λ1 6= α 6= λ2,

1

α− λ2
nαn−1, if α = λ1 6= λ2,

1
2n

2αn−2, if α = λ1 = λ2.

2

Problem 4.3.3 Solve the IVP{
yn+2 − 5yn+1 + 6yn = 1 + 2n + 3n,

y0 = 0 = y1,

and determine lim
n→∞

(yn+1/yn).

Solution. The equation is analogous to the ODE of Problem 3.2.2, and its characteristic
equation has roots 2 and 3. We use the lemma above:

(i) To get the term 1 = 1n on the right, take y1 = 1
(1−2)(1−3) ;

(ii) to get 2n take y2 = 1
2−3n2n−1 ;

(iii) to get 3n take y3 = 1
3−2n3n−1 .

The general solution of the non-homogeneous equation is therefore

yn = y1 + y2 + y3 + (general solution of Ly = 0)

= 1
2
− 2n−1n+ 3n−1n + c22

n + c33
n.

Finally,
y0 = 1

2
+ c2 + c3 ⇒ c3 = −c2 − 1

2

y1 = 1
2
− 1 + 1 + 2c2 + 3c3 ⇒ c2 = −1, c3 = 1

2
.

Therefore,
yn = 1

2
− 2n−1n + 3n−1n− 2n + 1

2
.3n

= 1
2
− (n + 2)2n−1 + (n+ 3

2
)3n−1.

(4.10)

Proceeding exactly as in (4.7),

yn+1

yn
=

1
2
( 1

3
)n−1 − 2(n+ 3)( 2

3
)n−1 + 3(n+ 5

2
)

1
2
( 1

3
)n−1 − (n+ 2)( 2

3
)n−1 + (n+ 3

2
)
.

Since nλn → 0 whenever |λ| < 1, we obtain

lim
n→∞

yn+1

yn
= lim

n→∞
3
1 + 5

2n

1 + 3
2n

= 3,

which equals the characteristic root of greatest magnitude. 2
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Problem 4.3.4 Find an expression for the general term of the sequence defined by

yn+2 + 2yn+1 + yn =

{
4, n even,
2, n odd,

and satisfying y0 = y1 = y2 .

Solution. First spot that the right-hand side of the equation equals gn , in the notation
of (4.5). The characteristic roots are both −1, so a general solution of the homogeneous
equation is given by (a1 + a2n)(−1)n . Moreover,

(i) a particular solution of yn+2 + 2yn+1 + yn = 3 is (obviously) 3
4
, and

(ii) a particular solution of yn+2 +2yn+1 + yn = (−1)n is (from Lemma 4.3.2) 1
2
n2(−1)n .

The general solution of the non-homogeneous equation is therefore

3
4

+ (a1 + a2n + 1
2
n2)(−1)n.

The condition y0 = y1 = y2 becomes

3
4

+ a1 = 3
4
− (a1 + a2 + 1

2
) = 3

4
+ (a1 + 2a2 + 2) ⇒ a1 = 1

4
, a2 = −1,

and the final solution is

yn =

{
1− n + 1

2
n2, n even,

1
2

+ n− 1
2
n2, n odd.

(4.11)

2

Having found the general formulae (4.10),(4.11) in the previous problems, one might
be tempted to determine the yn that satisfy the respective difference equations with n
a negative integer. This amounts to ‘completing’ the solution backwards from y0 , and
shows more clearly how the magnitude of the roots of the characteristic equation affects
the behaviour of solutions. For the first problem, we obtain a solution

(. . . , 2147
3888

, 235
432

, 13
27
, 11

36
, 0, 0, 3, 21, 101, 415, 1567, . . .)

in which the negative terms are all fractional. By contrast, the second problem gives rise
to a doubly-infinite sequence symmetric about the term y1 :

(. . . , 25, −17, 13, −7, 5, −1, 1, 1, 1, −1, 5, −7, 13, −17, 25, −31, 41, . . .).

Another difference between the two solutions is that the integer function (4.10) can be
extended to a function of a real variable by merely replacing n by x. Finding such an
explicit function assuming the values (4.11) at integer points is much harder.

4.4 Exercises

1. Make a list of the ‘backwards Fibonacci numbers’ Fn that satisfy (4.6) for n ≤ −1.
State and prove a formula that relates these to the ordinary Fibonacci numbers.

2. Find general solutions of the difference equations
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(i) yn+2 − 5yn+1 + 6yn = 1;

(ii) yn+2 − 4yn+1 + 4yn = 2nn.

In each case, determine also the unique solution satisfying y0 = 0 = y1 .

3. Find solutions with y0 = 1 for the first-order difference equations

(i) yn − 2yn−1 = 1;

(ii) yn + 2yn−1 = 1.

Does there exist a formula for the solution of yn − nyn−1 = 1?

4. Find general solutions to the equations

(i) yn+2 − yn = f(n), where f(n) = 5 when n is even and f(n) = 3 when n is odd;

(ii) pyn+2 − yn+1 + qyn + 2 = 0, where p, q are constants such that 0 < p < q < 1 and
p+ q = 1.

5. Prove the identity
Fm+n = Fm+1Fn + FmFn−1 (4.12)

for all m,n ∈ Z, using the method of Problem 4.3.1.

6. Let δ be the length of the indicated diagonals of a regular pentagon with side 1 unit.
Show that (i) δ cos( 2

5
π) = 1

2
, and (ii) 2δ2(1− cos(1

5
π)) = 1. Deduce that δ = φ. What

is the length of each side of the smaller pentagon?

7. Cassini’s equation (4.9) is an example of a non-linear difference equation. Investigate
other solutions such as

y[1]:=1: y[2]:=3:

for n from 2 to 10 do

y[n+1]:= (y[n]^2+(-1)^n)/y[n-1]

od;

8. Find the general solution of the equation yn+3 + 2yn+2 − yn+1 − 2yn = n using the
routine

eq:= y(n+3)+2*y(n+2)-y(n+1)-2*y(n)=n:

ic:= y(0)=a,y(1)=b,y(2)=c:

rsolve({eq,ic},y);
What is the simplest particular solution you can find?
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5 Numerical Solutions

5.1 Euler’s method

Many differential equations cannot be solved exactly, and in applied mathematical
problems it is often necessary to make do with approximate or numerical solutions. In
this section we shall investigate simple methods for finding these, but we first discuss
the geometrical significance of an ODE.

Figure 8: Assigning slopes

x=1.5

Example 5.1.1
dy

dx
= x2 + y2. (5.1)

If the term ‘x2 ’ were missing, the equation would be very easy and would admit solutions
y = 1/(c − x) where c is a constant. As it is, (5.1) is a difficult non-linear equation,
though it does have a simple interpretation. The equation is asserting that the slope of
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any solution passing through the point (x, y) equals the square of the distance of that
point from the origin. An accurate sketch then enables one to make a reasonable guess
at solutions, at least those near the origin. For example, Figure 8 indicates that the
solution y(x) to (5.1) satisfying the initial condition y(0) = 0 has y(1.5) equal, at least
roughly, to 1.5. Below, we shall explain a method that allows y(1.5) to be approximated
more accurately. 2

Consider more generally the IVP

{
y′ = f(x, y),
y(x0) = y0,

where f is a given function and x0, y0 are given numbers. The solution is the curve
passing through (x0, y0) whose slope at any point (x, y) equals f(x, y). Choose a small
distance h (called the ‘step size’) and let x1 = x0 + h. If we use the tangent line to the
curve at (x0, y0) to approximate the curve, then for small h

y1 = y0 + hf(x0, y0)

should be close to the true value y(x1) of the solution at x = x1 (see Figure 9).

Figure 9: Tangent approximation

   0
  y

  y
1

0                                1x                          x

Euler’s method repeats the above idea with n steps, and calculates yn recursively.
To approximate the true value y(x0 + `) of the solution at x = x0 + ` in n steps, one
sets h = `/n and puts into action the scheme
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Start with x0 y0

Define x1 = x0 + h y1 = y0 + hf(x0, y0)

x2 = x1 + h y2 = y1 + hf(x1, y1)

· · · · · ·

xi = xi−1 + h yi = yi−1 + hf(xi−1, yi−1)

· · · · · ·
xn = xn−1 + h yn = yn−1 + hf(xn−1, yn−1)

To determine the approximation y2 , we repeat the first step replacing x0, y0 by x1, y1 .
Whilst y0 was the true value of the solution at x0 , y1 is only an approximation to the
true value y(x1). What is worse, f(x1, y1) is the slope of a solution passing through
(x1, y1), not the value f(x1, y(x1)) we should really use. Nonetheless the method can
work quite well if h is small and n correspondingly large.

A word about notation: The subscript i is used above to indicate the general step,
and the key formula is the one in the box. We shall always use n to denote the total

number of steps, so that xn = x0 + ` and yn denotes the final approximation.

The application of Euler’s method is an example of an algorithm, a methodical pro-
cedure that takes input, carries out a finite number of steps with a clearly-defined stop,
and produces output. The input consists of the values of h, n, x0, y0 , and the most rele-
vant output is the value of yn . The intermediate steps are unambiguous and the whole
process can be readily converted into a computer program that is capable of determining
the approximation yn with n very large.

Returning to Example 5.1.1, we shall first approximate the value of the solution
satisfying y(0) = 0 at x = 1.5 using Euler’s method with 15 steps. So take n = 15 and
h = 0.1.

Start with x0 = 0 y0 = 0

Define x1 = 0.1 y1 = 0 + 0.1(0 + 0) = 0

x2 = 0.2 y2 = 0 + 0.1(0.01 + 0) = 0.001

x3 = 0.3 y3 = 0.001 + 0.1(0.04 + 0.000001) = 0.005 . . .

x4 = 0.4 y4 = 0.014 . . .

· · · · · ·
x10 = 1.0 y10 = 0.292 . . .

· · · · · ·
x15 = 1.5 y15 = 1.213 . . .

Data in the table below was obtained using the Maple program given in §5.4, though
it took an office machine a few minutes to report back y1500 .
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n 1 15 150 1500 15000
an 0 1.213 . . . 1.479 . . . 1.513 . . . 1.517 . . .

Actually, the true solution satisfies 1.5174 < y(1.5) < 1.5175. As it happens, solutions of
(5.1) can be expressed in terms of so-called Bessel functions, although numerical methods
are still needed to evaluate these. The rather näıve plot in Figure 8 conceals a much
more complicated picture further out from the origin. In fact, the solution with y(0) = 0
tends to infinity as x approaches about 2, and solutions of the ODE to the right of this
become increasingly steep and rapidly divergent (see §5.4).

5.2 Theoretical examples

The simplest type of initial value problem on which to try out Euler’s method is

{
y′ = f(x),
y(a) = 0,

(5.2)

where a is a constant chosen to suit the definition of the function f . In this case, one
is merely attempting to approximate the definite integral (1.11). With step size h, we
obtain

xi = a+ ih, yi = yi−1 + hf(a+ ih),

and with a total of n steps each of size `/n,

Lemma 5.2.1 The true value y(a+ `) is approximated by

yn =
`

n

n−1∑

i=0

f(a+
i`

n
).

This amounts to approximating the area under the graph of f by means of n rectangles
of width h. Although a silly application of Euler’s method, proceeding blindly can give
some intriguing summation formulae.

For example, taking f(x) = 1/x, a = 1, ` = 1 gives

yn =
2n−1∑

i=n

1

i
as an approximation to y(2) = ln 2. (5.3)

For example, y10 = 1
10

+ 1
11

+ 1
12

+ · · · + 1
19

= 0.718 . . ., compared to the true value of

ln 2 = .6931 . . .. It is well known that the infinite series
∞∑
i=1

1
i

diverges, which means that

given any number M (however large) the finite sum starting from i = 1

Hn =
n∑

i=1

1

i
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is greater than M for some n. (Infinite series are discussed a bit more in §7.4.) The
sum Hn is called the nth harmonic number and it is easy to show that

1

n
< Hn − lnn < 1, n ≥ 2 (5.4)

(see §5.4). This means that Hn , though unbounded, grows extremely slowly; incredibly
for example, H1000 < 8. The validity of (5.3) is an easy consequence of the following
much stronger statement that is beyond the scope of the course:

Theorem 5.2.2 The limit lim
n→∞

(Hn − lnn) exists and equals a number γ = 0.5772 . . .

(called Euler’s constant). 2

The most popular illustration of Euler’s formula is to the IVP

{
y′ − y = 0,
y(0) = 1,

(5.5)

which has the exact solution y(x) = ex . Similar techniques can be successfully applied
to non-homogeneous ODE’s like y′ + y = eαx .

Problem 5.2.3 Apply Euler’s method to (5.5) to approximate y(1) = e.

Solution. With step size h, the key formula is

yi = yi−1 + hf(xi−1, yi−1) = yi−1(1 + h),

which is an easy first-order difference equation. Working backwards, without expressing
h in terms of n at this stage to avoid confusion, we get

yn = (1 + h)yn−1

= (1 + h)2yn−2

· · · · · ·

= (1 + h)ny0.

Now fix n and take h = 1/n to give

yn =

(
1 +

1

n

)n

as the sought-after approximation to e. 2

This time, provided we quote some results from calculus, it is relatively easy to prove
that the method works:
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Proposition 5.2.4 Let an =

(
1 +

1

n

)n
. Then lim

n→∞
an = e.

Proof. We have

ln an = n ln(1 +
1

n
) =

ln(1 + ε)− ln 1

ε
,

where ε = 1/n. This means that

lim
n→∞

ln an = ln′(1) =
1

1
= 1

(using the definition of the derivative, or a special case of l’Hôpital’s rule). Hence

lim
n→∞

an = lim
n→∞

exp(ln an) = exp
(

lim
n→∞

ln an

)
= e.

This last step is valid because the function x 7→ ex is continuous (see §1.1). 2

Like the previous approximation (5.3), this is inaccurate unless we take n to be very
large. The table in the next section shows that n needs to be about 104 to get an correct
to only 3 decimal places.

? 5.3 An improvement

The relation between Euler’s method and approximating definite integrals extends to
the general case. Integrating the equation y ′ = f(x, y) between xi−1 and xi = xi−1 + h
gives

y(xi)− y(xi−1) =

∫ xi

xi−1

dy

dx
dx =

∫ xi

xi−1

f(x, y(x))dx, (5.6)

where y(x) is the true solution. The right-hand integral in (5.6) is approximated by
the area hf(xi−1, y(xi−1)) of the rectangle of width h and height equal to the value of
the integrand at xi−1 . However, we do not know y(xi−1) and need to replace it by the
previous approximation yi−1 to give the new approximation

y(xi)− yi−1 ≈ hf(xi−1, yi−1).

This turns out to be the Euler formula.

Taking a trapezium instead of a rectangle in an attempt to evaluate (5.6) gives a
seemingly better approximation

y(xi)− yi−1 ≈ 1
2
h (f(xi−1, yi−1) + f(xi, y(xi))) .

But it is y(xi) we are after, and if we are unable to solve for it explicitly, it makes sense to
replace its occurrence on the right by the old Euler approximation yi−1 + hf(xi−1, yi−1).
This yields

Heun’s formula

yi = yi−1 + 1
2
h(s1 + s2), where

{
s1 = f(xi−1, yi−1),

s2 = f(xi, yi−1 + hs1).
(5.7)

Figure 10 shows the first step graphically. The old approximation is first applied for the
whole step in order to find the value of f at its endpoint. This value is then used to
change the slope of the tangent line for the second half of the step.
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Figure 10: Improved first step

x                          x0                                1 

slope = s2

   

 y1

Returning to the equation y′ = y , we have s1 = yi−1 , s2 = yi−1 + hyi−1 , and

yi = yi−1 + 1
2
h(yi−1 + yi−1 + hyi−1)

= yi−1(1 + h + 1
2
h2).

This leads to

bn =

(
1 +

1

n
+

1

2n2

)n

as an approximation to e. The difference |bn − e| is referred to as the ‘absolute error’,
and the ratio |bn − e|/e as the ‘relative error’, of the approximation. In §9.3, we shall
prove that

lim
n→∞

6n2 |bn − e|
e

= 1, (5.8)

which means that the relative error is decreasing roughly like 1/(6n2) as n gets large.

The formula corresponding to (5.8) for the old approximation an in Proposition 5.2.4
would have an n instead of the quadratic term n2 , which makes it poorer.

n an bn
1 2 2.5
5 2.48832 2.702708 . . .

10 2.593742 . . . 2.714080 . . .
100 2.704813 . . . 2.718236 . . .

1000 2.716923 2.718281376
10000 2.718145 2.718281824
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This is apparent in the table, in which the correct digits of e are underlined; if n is made
10 times as big, an generally improves by 1 decimal place, but bn improves by 2.

The improved Euler method is still too inaccurate for serious use, although it is the
prototype of more complicated ‘predictor-corrector’ methods. Most computer packages
perform numerical integration with the so-called Runge-Kutta method, which is a re-
finement yielding quartic rather than quadratic accuracy [6, §20.1]. One version of this
is defined below.

5.4 Exercises

1. The function e−5x is the unique solution of the equation y′+5y = 0 satisfying y(0) = 1.
Approximate e−5 by applying Euler’s method to this equation on the interval 0 ≤ x ≤ 1;
take step size equal to (i) 0.5, (ii) 0.2, (iii) 0.1, and comment on the outcomes.

2. Apply Euler’s method with 10 steps to the ODE y′ = (ln x)y , in order to approximate
the value y(2) of the solution satisfying y(1) = 1. Compare your answer with the true
value.

3. Apply Euler’s method to the IVP





y′ =
y

x
+ x3(y − x)2,

y(1) = −4,

on the interval 1 ≤ x ≤ 2. Calculate the resulting approximation to the value of the
solution at x = 2, using step size equal to (i) 0.5 and (ii) 0.2.

4. Find the exact value of y(2) in the previous question by first substituting y = u + x
and then applying a technique from §2.5.

5. (i) By considering the area under the graph of 1/x, prove that

n∑

j=2

1

j
<

∫ n

1

1

x
dx <

n−1∑

j=1

1

j
, n ≥ 2,

and deduce (5.4).

(ii) Assuming Theorem 5.2.2, prove that lim
n→∞

2n−1∑
i=n

1
i

= ln 2.

6. Euler’s method can easily be run in Maple. Approximate the solution to y ′ = x2 +y2

by first defining

f:= (x,y)->x^2+y^2:

x(0):=0: y(0):=0:

h:=0.001: n:=1500:

and computing
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for i from 0 to n-1 do

x(i+1):= x(i)+h:

y(i+1):= y(i)+h*f(x(i),y(i))

od;

7. Let y(x) denote the solution to (5.1) satisfying y(0) = 0, plotted in Figure 8. By
comparing y(x) to 1/( 5

2
− x), and given that y(1.5) > 1, show that y becomes infinite

for x < 5
2
. Investigate the solution starting with

eq:= D(y)(x)=x^2+y^2:

dsolve({eq,y(0)=0},y(x)):
assign("):

plot(y(x),x=0..4);

8. The Runge-Kutta method is a generalization of (5.7) involving a combination of four
approximations to y(xi), as specified by the program

for i from 0 to n-1 do

s1:= h*f(x(i),y(i)):

s2:= h*f(x(i)+h/2,y(i)+s1/2):

s3:= h*f(x(i)+h/2,y(i)+s2/2):

s4:= h*f(x(i)+h,y(i)+s3):

x(i+1):= x(i)+h:

y(i+1):= y(i)+(s1+2*s2+2*s3+s4)/6

od;

Try this out on (5.5) by supplying appropriate input.
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6 Partial Derivatives

6.1 Functions of two variables

Let
f(x, y) =

y

x
.

We may think of f as a quantity which depends on two variables x, y , each of which can
change independently. A physical example of such dependence arises when x and y are
the volume and temperature of a gas, and f(x, y) represents its pressure. For the ideal
equation of state asserts that volume times pressure is proportional to temperature.

Definition 6.1.1 The partial derivative of f with respect to x is defined by treating y
temporarily as a constant and differentiating f(x, y) as a function of x.

One writes
∂f

∂x
(or fx) = − y

x2
;

this is a new function of two variables, and in the above example measures the rate of
change of pressure with respect to volume when the temperature is maintained constant.
The precise mathematical definition of the partial derivative with respect to x is

∂f

∂x

∣∣∣
(a,b)

= fx(a, b) = lim
x→a

f(x, b)− f(a, b)

x− a

(equal in the example to −b/a2 ). Similarly, the partial derivative with respect to y is
given by

∂f

∂y

∣∣∣
(a,b)

= fy(a, b) = lim
y→b

f(a, y)− f(a, b)

y − b
(equal to 1/a).

We may also define various higher partial derivatives:

∂

∂x
(
∂f

∂x
) =

∂2f

∂x2
= (fx)x = fxx =

2y

x3
,

∂

∂y
(
∂f

∂x
) =

∂2f

∂y∂x
= (fx)y = fxy = − 1

x2
,

∂

∂x
(
∂f

∂y
) =

∂2f

∂x∂y
= (fy)x = fyx = − 1

x2
,

∂2f

∂y2
= fyy = 0.

This illustrates an important result, namely that for all common functions one has

∂2f

∂y∂x
=

∂2f

∂x∂y
, or fxy = fyx;

i.e., the ‘mixed’ second-order partial derivatives are equal. The precise statement is
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Theorem 6.1.2 Let f(x, y) be a function of two variables such that f, fx, fy, fxy, fyx
are defined and continuous on some rectangle with centre (a, b). Then

fxy(a, b) = fyx(a, b).

2

We shall not prove this result which relies on the concept of continuity in the context of
R2 . Instead, we remark that the function

g(x, y) =





x3y − y3x

x2 + y2
, if (x, y) 6= (0, 0),

0, if x = 0 = y
(6.1)

furnishes a counterexample with gxy(0, 0) 6= gyx(0, 0) (see §6.5).

6.2 The chain rule

Suppose that x = cos t and y = 2 sin t. We may regard x, y as coordinates of a
particle moving around the ellipse x2 + (y2/4) = 1. Then

f(x, y) =
y

x
=

2 sin t

cos t
= 2 tan t

becomes a function of t and we are at liberty to compute the ordinary derivative of f
with respect to t, which is of course 2 sec2 t. The proposition immediately below asserts
that this derivative with respect to t equals

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
, or fx.x

′(t) + fy.y
′(t),

which evaluates to

−y
x2

(− sin t) +
1

x
(2 cos t) =

2 sin2 t+ 2 cos2 t

cos2 t
= 2 sec2 t,

as expected.

Proposition 6.2.1 If h(t) = f(x(t), y(t)) then h′(t) = fxx
′(t) + fyy

′(t).

Proof of a special case. Suppose that
{
x(t) = a+ ct,
y(t) = b+ dt,

so that h(t) = f(a+ ct, b+ dt). Then

h′(0) = lim
ε→0

f(a+ cε, b+ dε) [−f(a, b + dε) + f(a, b+ dε)] − f(a, b)

ε
.

Now,

f(a+ cε, b+ dε)− f(a, b+ dε) = cε.fx(a + λ1cε, b+ dε), λ1 ∈ (0, 1),
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by applying the mean value theorem to the function t 7→ f(t, b+ dε) (λ1 depends on ε).
Therefore

h′(0) = lim
ε→0

[fx(a+ λ1cε, b+ dε)c+ fy(a, b+ λ2dε)d], λ2 ∈ (0, 1),

= fx(a, b)c+ fy(a, b)d,

provided fx, fy are continuous as functions of two variables. This is the required answer,
as c = x′(t) and d = y′(t). The general proof of the proposition is not so different as
x(t) can be approximated by the linear function x(0)+x′(0)t, and y(t) similarly, though
one would need to use Proposition 6.3.1 below and continuity of x′, y′ . 2

The following more complicated situation can be omitted on a first reading. Suppose
now that x and y both depend themselves on three variables s, t, u, so that

h(s, t, u) = f(x(s, t, u), y(s, t, u)).

Then in the language of partial derivatives, Proposition 6.2.1 gives




hs = fxxs + fyys,
ht = fxxt + fyyt,
hu = fxxu + fyyu.

These equations are best interpreted using a matrix scheme, regarding the function h as
a composition of mappings from right to left:

R1 f←− R2 ←− R3

h(s, t, u) ←
(
x(s, t, u)
y(s, t, u)

)
←




s
t
u




The chain rule then expresses the partial derivatives of h as the matrix product

(hs, ht, hu) = (fx, fy)

(
xs xt xu
ys yt yu

)
.

6.3 Homogeneous functions

Consider the function
θ = arctan(

y

x
)

that represents the angle in polar coordinates of a point (x, y) in the plane. Then

θx =
1

1 + ( y
x
)2
.
−y
x2

=
−y

x2 + y2
. (6.2)

To see this, put u = y/x and use the chain rule of §1.1 and the fact that dθ/du =
1/(du/dθ) = sec2 θ = 1 + u2 . Similarly,

θy =
1

1 + ( y
x
)2
.
1

x
=

x

x2 + y2
. (6.3)

This example illustrates a more modest type of chain rule involving more than one
variable:
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Proposition 6.3.1 If h(x, y) = g(f(x, y)) then

{
hx = g′(f(x, y))fx,
hy = g′(f(x, y))fy.

In contrast to Proposition 6.2.1, no proof is required beyond that of the ordinary chain
rule in §1.1.

Definition 6.3.2 A function f of two variables is said to be homogeneous of weight w
if

f(tx, ty) = twf(x, y), t ∈ R

(valid at least for all x, y, t for which f(tx, ty) is defined).

For example, ax+by is homogeneous of weight 1, as is r(x, y) =
√
x2 + y2 if one restricts

to t > 0. On the other hand, y/x and θ are homogeneous of weight 0. Further,

xn + xn−1y + xn−2y2 + · · ·+ yn =
xn+1 − yn+1

x− y (6.4)

is homogeneous of weight n (cf. (4.8)). More generally, a homogeneous polynomial of

degree n is a sum of the form
n∑
i=0

aix
iyn−i .

Equations (6.2),(6.3) together imply that xθx + yθy = 0. A similar result emerges if
we let p(x, y) = xiyn−i denote one of the terms in (6.4), and compute

xpx + ypy = x.ixi−1.yn−i + y.xi(n− i)yn−i−1 = nxiyn−i.

These formulae are special cases of what is appropriately called Euler’s formula:

Proposition 6.3.3 If f(x, y) is homogeneous of weight w then

xfx + yfy = wf.

Proof. Fix c, d and let h(t) = f(tc, td) = twf(c, d). From Proposition 6.2.1,

h′(t) = fx(tc, td)c+ fy(tc, td)d = wtw−1f(c, d),

and putting t = 1 gives

cfx(c, d) + dfy(c, d) = wf(c, d).

This is a more precise statement of Euler’s formula which avoids the confusion between
subscripts and variables. 2

An analogous formula hold for functions of 3 or more variables. Let f(x, y, z) be
a function defined at each point (x, y, z) of 3-dimensional space. The corresponding
homogeneity condition f(tx, ty, tz) = twf(x, y, z) has a geometrical interpretation: it
implies that the values of f on the radial line joining the point (x, y, z) to the origin are

48



determined by the single number f(x, y, z). Using the dot product for vectors, Euler’s
equation for a homogeneous function of 3 variables can be expressed in the neat form

(x, y, z) · (∇f) = wf, (6.5)

where

∇f = (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
), (6.6)

is the gradient of f [6, §8.9]. The left-hand side of (6.5) represents a ‘directional deriva-
tive’ of f in the radial direction.

? 6.4 Some partial differential equations

Let c be a constant and g a function of 1 variable. Set f(x, y) = x + cy , and

h(x, y) = g(f(x, y)) = g(x+ cy). (6.7)

This is exactly the situation of Proposition 6.3.1, in which there is a composition of
mappings:

h : R
g←− R

f←− R
2.

Thus, {
hx = g′.1
hy = g′.c

and

{
hxx = (g′)x = g′′

hyy = (g′c)y = g′′c2,

and, for any choice of g , h(x, y) is a solution of

hyy − c2hxx = 0. (6.8)

Equation (6.8) is the 1-dimensional wave equation with y representing time, and x
displacement. It is easy to prove that its general solution has the form

h(x, y) = g1(x+ cy) + g2(x− cy) (6.9)

(see §6.5). Taking for example g1 = g2 = sin gives a ‘stationary wave’ 2 sin x cos(cy).
Similar solutions can also be found by substituting h(x, y) = h1(x)h2(y) into (6.8); the
variables ‘separate’ leaving the two ODE’s

h′′1 = ah1, h′′2 = ac2h2,

where a is a constant. If a < 0 then these admit trigonometric solutions as in (2.2).

We have been tacitly assuming that c ∈ R. But now let c = i =
√
−1 so that

f(x, y) = x+ iy = ζ , say. Then (6.7) provides a solution to Laplace’s equation

hxx + hyy = 0 (6.10)

provided the derivative g′(ζ) make sense with ζ a complex variable, and the method
works when g is one of many standard functions:
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Proposition 6.4.1 If ζ = x + iy , the real and imaginary parts of ζn (for any n ∈ Z),
eζ and ln ζ all satisfy (6.10). 2

We do not justify this theoretically, since it is an easy matter to verify the solutions in
each case. For example, the real and imaginary parts of ζ2 are x2 − y2 and 2xy and
obviously solve (6.10). For ζn with n > 2, see §6.5. Also

eζ = ex+iy = ex(cos y + i sin y),

giving solutions ex cos y , ex sin y .

The situation for
ln ζ = ln(reiθ) = ln r + iθ

is more tricky, as θ = arctan(y/x) is ambiguous and ln ζ is actually a ‘multivalued’
function. But there is no ambiguity about

ln r = 1
2

ln(x2 + y2)

which does solve (6.10). The quickest way to see this is to note (e.g. by differentiating the
equation r2 = x2 + y2 partially with respect to x) that rx = x/r . Then (ln r)x = x/r2

and

(ln r)xx + (ln r)yy =
(
− 2x2

r4
+

1

r2

)
+
(
− 2y2

r4
+

1

r2

)
= 0.

An extension of the last calculation concerns a problem relevant to the theory of
gravitation:

Problem 6.4.2 Find a function g such that if r now denotes
√
x2 + y2 + z2 then

h(x, y, z) = g(r) solves the 3-dimensional Laplace equation hxx + hyy + hzz = 0.

Solution. To start, we have

hx = g′(r)rx = g′
x

r
,

and so

hxx = (g′)x
x

r
+ g′

1

r
+ g′(− x

r2
)
x

r
= g′′

x2

r2
+ g′(

1

r
− x2

r3
),

with similar expressions for hyy and hzz . Adding all three,

hxx + hyy + hzz = g′′ + g′(
3

r
− 1

r
) = g′′ +

2

r
g′ ;

the ‘3’ here really arises as the dimension of the space we are considering. To solve
Laplace’s equation, we need

0 = r2(g′′ +
2

r
g′) = (r2g′)′ ⇒ g′ =

c1
r2

⇒ g(r) = −c1
r

+ c2.

In particular 1/r is a solution. 2
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6.5 Exercises

1. (i) Compute the partial derivatives fx, fy, fxx, fxy, fyx, fyy of the function f(x, y) =
ex sin y , and verify that fxy = fyx .

(ii) Compute the partial derivatives gx, gy of (6.1), being careful to adopt the correct
definition to find their values at (0, 0). Then prove that gxy(0, 0) = −1 and gyx(0, 0) = 1.

2. Cartesian coordinates x, y and polar coordinates r, θ are related by the equations
x = r cos θ , y = r sin θ , with r ≥ 0 and 0 ≤ θ < 2π .

(i) Compute the partial derivatives xr, xθ, yr, yθ .

(ii) Express each of r, θ as a function of x, y and compute the corresponding partial
derivatives rx, ry, θx, θy .

What is the relationship between the matrices

(
xr xθ
yr yθ

)
,

(
rx ry
θx θy

)
?

3. The coordinates of a particle moving in the plane are x(t) = 2 cos t and y(t) = sin t,
where t denotes time. Verify that the particle moves along the ellipse f ≡ 0 where
f(x, y) = x2 + 4y2 − 4, and sketch this curve.

Compute the partial derivatives fx, fy and verify that fxx
′(t)+fyy

′(t) = 0 for points on
the curve. Evaluate the vectors (x′(t), y′(t)) and (fx, fy) when (i) t = 0, (ii) t = π/4,
and represent them as arrows emanating from the corresponding point (x(t), y(t)) on
your sketch.

4. Let u = x+ cy and v = x− cy . Show that (6.8) transforms into huv = 0, and deduce
the general solution (6.9).

5. Let ζ = x + iy . Show that the real part of ζn equals
bn/2c∑
k=0

(−1)k
(
n
2k

)
xn−2ky2k , where

bn/2c means the largest integer less than or equal to n/2. Deduce that this function is
a solution of Laplace’s equation (6.10).

6. (i) Let f(x, t) = y(
x

2
√
t
), where y is defined by (1.13). Prove that f satisfies the heat

equation
fxx = ft.

If f is defined as before, but with y arbitrary, what ODE needs to be satisfied by y for
f to satisfy the same PDE?

(ii) Find solutions to the heat equation in the form h1(x)h2(t).

7. Carry out the computation

x:= r*cos(t): y:= r*sin(t):

diff(f(x,y),r$2)+diff(f(x,y),r)/r+diff(f(x,y),t$2)/r^2:

simplify(");

and explain its relevance to Laplace’s equation (6.10).
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8. Figure 11 exhibits Dirac’s electron equation in an unusual setting. It actually rep-
resents a system of four first-order PDE’s, as ψ stands for complex-valued functions
ψi(x1, x2, x3, t), i = 1, 2, 3, 4, each depending on spatial coordinates x1, x2, x3 and time
t. The symbols σ, ρ1, ρ3 denote 4 × 4 matrices, m is a constant, and ∇ encodes the
operators ∂i = ∂/∂xi as in (6.6). Written out in full the equations become

i




∂ψ1

∂t
∂ψ2

∂t
∂ψ3

∂t
∂ψ4

∂t


 =




i




0 0 ∂3 ∂1 − i∂2

0 0 ∂1 + i∂2 −∂3

∂3 ∂1 − i∂2 0 0
∂1 + i∂2 −∂3 0 0


+




m 0 0 0
0 m 0 0
0 0 −m 0
0 0 0 −m











ψ1

ψ2

ψ3

ψ4




Find a solution in which ψ1 and ψ2 are both non-zero.

Figure 11

52



7 Binomial Coefficients

7.1 Pascal’s triangle

Consider the expansion

(1 + x1)(1 + x2)(1 + x3)

= 1 + x1 + x2 + x3︸ ︷︷ ︸ + x2x3 + x3x1 + x1x2︸ ︷︷ ︸ + x1x2x3

∅ {xi} {xi, xj} X

consisting of 23 terms, each corresponding to an indicated subset of X = {x1, x2, x3}.
Putting x1 = x2 = x3 = x gives the familiar identity

(1 + x)3 = 1 + 3x+ 3x2 + x3 = x0 + 3x1 + 3x2 + x3.

Thus, the coefficient of xk counts the number of subsets of size k , for 0 ≤ k ≤ 3.

From the binomial theorem (Proposition 1.2.2) we know more generally that the
coefficient of xk in (1 + x)n equals

n
k

k!
=

n!

k!(n− k)! =
(
n
k

)
. (7.1)

The above argument condenses into

Lemma 7.1.1 The binomial coefficient
(
n
k

)
equals the number of subsets of size k in a

set of size n. 2

This result may be regarded as giving an alternative definition of the coefficients
(
n
k

)
.

Expressed in the more usual way,
(
n
k

)
is the number of ways of choosing k objects from

a total of n, without regard to order. In older books this number is denoted nCk . By
contrast, the number of ways of choosing k objects from n in order (sometimes called

‘ordered selection without repetition’) equals n
k
, and this is also denoted nPk or (n)k .

A more convincing proof of the binomial theorem can be given directly by induction
on n. The following homogeneous form of the theorem is easily seen to be equivalent to
Proposition 1.2.2.

Proposition 7.1.2

(x+ y)n =

n∑

k=0

n!

(n− k)!k!x
kyn−k (7.2)

Proof. First observe that when n = 0, (7.2) becomes the equation 1 = 0!
0!0! . We deem

this to be true by defining
0! = 1 and 00 = 1 (7.3)
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Figure 12:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

(the latter is needed in case x + y = 0). Now suppose that (7.2) is true for a particular
value of n, and consider

(x+ y)n+1 =

n∑

k=0

n!

(n− k)!k!x
kyn−k(x+ y)

=

n∑

j=1

(
n!

(n− j)!j! +
n!

(n− j + 1)!(j − 1)!

)
xjyn+1−j + xn+1 + yn+1

=

n∑

j=1

n!
n− j + 1 + j

(n− j + 1)!j!
xjyn+1−j + xn+1 + yn+1

=

n+1∑

j=0

(n + 1)!

(n+ 1− j)!j!x
jyn+1−j.

The calculations are consistent with (7.3), and the last sum is simply (7.2) with n
replaced by n+1. Starting with n = 0 and proceeding by induction therefore establishes
the validity of (7.2) for all non-negative integers n. 2

Many properties of the binomial coefficients are apparent from their triangular display
in Figure 12 (discussed by Pascal in about 1650). The significance of the underlined and
boxed numbers are explained in §7.4 and §7.5 respectively.

Lemma 7.1.3 The following identities are valid for 0 ≤ k ≤ n:

(i)
(
n
k

)
=
(

n
n−k

)
;

(ii)
(
n
k

)
+
(
n
k−1

)
=
(
n+1
k

)
;

(iii)
n∑
j=0

(
n
j

)
= 2n .
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Proof. Each identity can be justified in two ways, depending whether the binomial
coefficient is defined by factorials, or using Lemma 7.1.1.

(i) is obvious from the symmetry in the factorial formula. From the point of view
of subsets, the result reflects the fact that we may associate to a subset S of X =
{1, 2, . . . , n} of size k its complement Sc = X \ S of size n− k .

(ii) is the addition formula that formed the crucial step in the proof of Proposition 7.1.2,
and is extended by the convention that

(
n
k

)
= 0 whenever k < 0 or k > n. It corresponds

to the fact that when we choose k elements from the set

{1, 2, 3, . . . , n+ 1} = X ∪ {n + 1},

we may first decide whether or not to choose the element n+ 1.

(iii) follows by setting x = y = 1 in Proposition 7.1.2, and reflects the fact that the total
number of subsets of X is obviously 2n as each element is either ‘in’ or ‘out’. 2

7.2 Probabilities

Motivated by Lemma 7.1.3(iii), suppose now that x + y = 1, so that

n∑

k=0

(
n
k

)
xkyn−k = 1. (7.4)

In this section we wish to regard x and y as the probabilities of complementary events.
Consider a situation consisting of a finite number of equally-likely outcomes to an ex-
periment, so that if the experiment is repeated n times the number of possible outcomes
will be raised to the power n. The probability of a particular result is defined informally
to be

number of outcomes yielding that result

total number of outcomes
.

It provides a way of ‘measuring’ the size of a subset of the set of all outcomes.

Suppose, for example, that a pair of dice is used to determine moves in a certain
board game. If the dice have different colours, we can specify 36 different outcomes,
each with probability 1/36. If we are desperate for two numbers that add up to 7, then
the probability of success is easily seen to be x = 6/36 = 1/6, and of failure y = 5/6.
If the dice are now thrown n times, there is a probability of xkyn−k that the outcomes
will follow a particular sequence such as

(7,∗,∗,7,7,. . . ,7,∗)

with k 7’s and n− k totals different from 7 (indicated by the symbol ∗).
The probability that there will be a total of exactly k 7’s amongst the n throws (let

us call this eventuality Ek ) equals
(
n
k

)
xkyn−k , since the binomial coefficient counts the

number of ways of choosing k from n. Seen in this light, the binomial formula (7.4)
simply asserts that the probabilities of the ‘mutually exclusive’ events Ek sum to 1.

A simpler case is that in which x = y = 1/2, as with tossing an unbiased coin. The
rows of Pascal’s triangle confirm that, naturally enough, the most likely of the events Ek
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are now those with k about half of n. As n gets large this favouring of middle values of
k is represented by Figure 13 in which the points

{(k
n
,
n

2n
(
n
k

)
) : 0 ≤ k ≤ n}

have been plotted for 1 ≤ n ≤ 100.

Figure 13: Binomial plots
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Problem 7.2.1 A poker player is dealt a hand of 5 cards from a conventional pack of
52, and the order of the 5 cards is immaterial. How many of the possible hands are

(i) flushes (meaning that all 5 cards belong to only one of the 4 suits)?

(ii) straights or runs (meaning that the cards are 5 consecutive ones in the list A,2,3,4,5,6,
7,8,9,10,J,Q,K,A)? Estimate the respective probabilities.

Solution. (i) To count the number of different (hands that are) flushes, we choose the
suit and then the 5 cards from a possible 13. So the number is

4 ·
(
13
5

)
= 4 · 13 · 12 · 11 · 10 · 9

1 · 2 · 3 · 4 · 5 = 5148,

and the probability
5148(

52
5

) =
5148

2598960
= 0.00198 . . . (7.5)

is about 1 in 500. Alternatively, whatever the first card is, the next card must be one of
12 in the remaining 51, and so on; this gives directly the probability of a flush as

12

51
· 11

50
· 10

49
· 9

48
=

4.13!47!

52!8!
,

which gives the same answer.

56



(ii) To count the number of runs, we choose a lowest card, which can be any one of
A,2,3,. . . ,10, and then suits for each of the 5. This gives a probability of

10 · 45

(
52
5

) =
10240

2598960
= 0.00394 . . . ,

almost twice (7.5). 2

A famous example of a probability calculation with a surprising result is the so-called
birthday paradox:

Example 7.2.2 Let bd(k) be the probability that no two persons in a group of k share

the same birthday. Then bd(k) = 365
k
/365k .

This formula (that uses the notation (1.6)) is based on the ideal assumption that birth-
days are equally distributed throughout the year and that none occur on 29 February.
If the persons are placed in order and asked to call out their birthday one at a time, the
total number of outcomes conceivable is 365n . The number of these needed to prevent
a common birthday is

365 · 364 · 363 · · · (365− k + 1) = 365
k
,

whence the result.

In fact bd(15) < 0.75, bd(23) < 0.5 and bd(32) < 0.25. 2

7.3 Generalized binomial coefficients

We know that the coefficient of xk in (1 + x)n equals

nk

k!
=
n(n− 1) · · · (n− k + 1)

k!
(7.6)

whenever 1 ≤ k ≤ n ∈ N. Given that the definition of the numerator n
k

makes sense
when n is replaced by an arbitrary real number r , we make

Definition 7.3.1 For any r ∈ R and k ∈ N,

(
r
k

)
=





rk

k!
=
r(r − 1)(r − 2) · · · (r − k + 1)

k(k − 1)(k − 2) · · ·1 , k > 0,

1, k = 0,

0, k < 0.

These may be called ‘binomial coefficients with real exponent r ’. For instance,

(
4
6

)
=

4.3.2.1.0(−1)

6.5.4.3.2.1
= 0,
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(
1/2
4

)
=

1
2
(− 1

2
)(− 3

2
)(− 5

2
)

4.3.2.1
= − 5

128 .

Note that
(
r
0

)
equals 1 for all r by definition; this is consistent with (7.3).

Many of the familiar identities involving ordinary binomial coefficients have their
counterparts in which the exponent is negative. This is often thanks to

Lemma 7.3.2
(
−n
k

)
= (−1)k

(
n+k−1

k

)
.

Proof. A straightforward application of the definition:

(−n)(−n− 1) · · · (−n− k + 1)

k!
= (−1)k

(n+ k − 1)(n+ k − 2) · · ·n
k!

.

2

This lemma will be used in §7.4, together with

Lemma 7.3.3
(
n+k−1

k

)
equals the coefficient of xk in (1 + x+ x2 + · · ·+ xk)n .

Proof. This coefficient coincides with the coefficient of xk+n in

xn.(1 + x + x2 + · · ·+ xk)n = (x + x2 + x3 + · · ·+ xk+1)n,

and equals the number of ways of choosing n positive integers a1, . . . , an with sum k+n
(so 1 ≤ ai ≤ k + 1). This is also the number of ways of placing n − 1 crosses strictly
between 0 and k + n (ai being the distance between adjacent crosses or endpoints):

| | | × × × × |

The answer is
(
n+k−1
n−1

)
=
(
n+k−1

k

)
. 2

Somewhat more surprising is the way in which the generalized coefficients with r =
−1/2 reduce to the ‘middle’ binomial coefficients:

Lemma 7.3.4 (−4)k
(
−1/2
k

)
=
(
2k
k

)
.

Proof.
(
−1/2
k

)
=

(−1
2
)(−3

2
) · · · (−2k+1

2
)

k!

= (−1)k
1 · 3 · 5 · · · (2k − 1)

2kk!
· 2 · 4 · 6 · · · 2k
(1 · 2 · 3 · · ·k)2k

= (−1)k
(2k)!

22k(k!)2

= (−1
4
)k
(
2k
k

)
.

2
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7.4 Infinite series

First, a digression. Let a = (a0, a1, a2, . . .) be a sequence of real numbers, and let

sn =
n∑
i=0

ai be the so-called partial sums. Then s = (s0, s1, s2, . . .) is a new sequence. If

s converges to `, which simply means that lim
n→∞

sn exists and equals `, one writes

∞∑

i=0

ai = `,

and says that the infinite series converges to `. As an example, suppose that |x| < 1 so
that xn → 0 as n→∞. Taking ai = xi and using the formula

1 + x + x2 + · · ·+ xn =
1− xn+1

1− x =
1

1− x −
xn+1

1− x,

that follows from (4.8), yields

Lemma 7.4.1

∞∑

i=0

xi =
1

1− x for |x| < 1. 2

In general, an = sn − sn−1 , and if s converges it follows that lim
n→∞

an = 0. The

converse is false though; an obvious counterexample is given by the harmonic series
∞∑
i=1

1
i
, which diverges in a way made precise by Theorem 5.2.2. In fact, for |x| < 1 it is

legitimate to integrate the last lemma to get

x+ 1
2
x2 + 1

3
x3 + · · · =

∞∑

i=1

1

i
xi =

∫ x

0

1

1− tdt = − ln(1− x),

and as x approaches 1 the logarithm becomes infinite. Incidentally, one can also differ-
entiate the lemma to obtain (after multiplying both sides by x) the useful formula

∞∑

i=1

ixi =
x

(1− x)2
. (7.7)

Lemmas from §7.3 show that (−1)k
(
−n
k

)
is the coefficient of xk in the expansion

(1 + x + x2 + x3 + · · ·+ xk + · · ·)n =
(∑

i≥0

xi
)n

=

(
1

1− x

)n
.

It follows that if |x| < 1 then

(1− x)−n =
∞∑

k=0

(
−n
k

)
(−x)k, n ≥ 1,

and combined with Proposition 1.2.2,
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(1 + x)n =

∞∑

k=0

(
n
k

)
xk, for all n ∈ Z

This is the binomial theorem for integer exponents.

Some simple instances are worth memorizing:

1

(1− x)2
=

∞∑

k=0

(
−2
k

)
(−x)k =

∞∑

k=0

(
2+k−1
k

)
xk

=

∞∑

k=0

(k + 1)xk

= 1 + 2x+ 3x2 + 4x3 + 5x4 + · · ·

Similarly, the expansion

1

(1− x)3
= 1 + 3x+ 6x2 + 10x3 + 15x4 + 21x5 + · · · (7.8)

involves the so-called triangle numbers.

In fact, Taylor’s theorem may be used to prove the following ‘generalized binomial
theorem’:

Theorem 7.4.2 Let r ∈ R and |x| < 1. Then
∑
k≥0

(
r
k

)
xk converges to (1 + x)r , i.e.

(1 + x)r =
∞∑

k=0

(
r
k

)
xk.

2

As an illustration, Lemma 7.3.4 yields

1√
1− 4x

=
∞∑

k=0

(
2k
k

)
xk = 1 + 2x+ 6x2 + 20x3 + 70x4 + 252x5 + · · ·

Referring back to Figure 12 shows what has been accomplished in this section. The bino-
mial coefficents with which we began specified the row entries of the triangle, whereas the
most recent formulae provide (in the language of §8.1) generating functions for columns
and diagonals.

7.5 Exercises

1. Let n ≥ 3 be a positive integer.

(i) Use Proposition 1.2.2 to show that
n∑
j=0

(−1)j
(
n
j

)
= 0.
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(ii) By first differentiating, show that
n∑
j=1

(−1)jj
(
n
j

)
= 0.

(iii) Is it true that
n∑
j=1

(−1)jj2
(
n
j

)
= 0?

2. Further to Problem 7.2.1, how many hands are running flushes (both (i) and (ii))? How
many hands are ‘full houses’, meaning three cards are of one value and the remaining
two of another (such K9KK9)?

3. The National Lottery consists in individuals choosing 6 numbers between 1 and 49,
after which 7 numbers in the same range are drawn at random. A first prize is given for
having chosen (in any order) the first 6 numbers drawn, and a second prize for having
chosen (in any order) the 7th number drawn and any 5 of the first 6. Find the respective
probabilities p1, p2 of success.

4. (i) Let k, n ∈ N. Prove the ‘negative’ version of Lemma 7.1.3(ii), namely that
(
−n
k

)
=
(
−n−1
k

)
+
(
−n−1
k−1

)
.

(ii) Applying Lemma 7.3.2 (with m = n + k) and (i) repeatedly, show that

k∑

j=0

(−1)j
(
m
j

)
= (−1)k

(
m−1
k

)
.

5. A construction toy consists of 100 bricks of the same size but with varying numbers
of the colours black, red and yellow. Show that there are 4851 different ways of putting
together such a pack so that there is at least one brick of each colour. (It may help to
know that 4851 is a binomial coefficient.) How many packs are there if it is no longer
necessary that all colours be represented?

6. Let k, n be integers with 1 ≤ k ≤ n. Prove the property
(
n−1
k−1

)(
n
k+1

)(
n+1
k

)
=
(
n−1
k

)(
n
k−1

)(
n+1
k+1

)
,

illustrated by the boxed numbers in Figure 12.

7. A total of n straight lines are drawn in the plane such that no two are parallel, and
no three meet in a single point. Find the resulting number (i) a of points of intersection,
(ii) b of line segments (finite or infinite), and (harder) (iii) c of regions (finite or infinite)
the plane is divided into. Deduce that a− b + c = 1.

8. (i) Let bd(k) be as in Example 7.2.2. Use the inequality 1 − x ≤ e−x (valid for all
x ∈ R) to prove that ln bd(k) ≤ −

(
k
2

)
/365.

(ii) Compare the resulting estimate for bd(k) with its true value as follows:

for k to 30 do

evalf([k,product(365-i,i=0..k-1)/365^k,exp(-k*(k-1)/730)])

od;
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8 Generating Functions

8.1 Closed forms for sequences

Consider the following problem: Given a sequence (a0, a1, a2, . . .), try to express

∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

as a function g(x) in ‘closed form’. If this is possible, the series is likely to converge
for |x| sufficiently small, though in any case g(x) is called the generating function (GF)
for the sequence. The theory of such generating functions is more concerned with for-
mal manipulations, rather than worrying about questions of convergence which we shall
return to in §9.3.

The concept is illustrated by some common GF’s that arise from §7.4:

1

1− x is the GF of (1, 1, 1, 1, 1, . . .),

1

1 + λx
" (1,−λ, λ2,−λ3, λ4, . . .),

1/
√

1− 4x " (1, 2, 6, 20, 70, 252, . . .).

To these we may add

ex is the GF of (1, 1, 1
2! ,

1
3! ,

1
4! , . . .),

− ln(1− x) " (0, 1, 1
2
, 1

3
, 1

4
, . . .),

sin x " (0, 1, 0,− 1
3!
, 0, 1

5!
, . . .).

The above examples illustrate

Lemma 8.1.1 If g(x) is the GF of (a0, a1, a2, . . .) then

g′(x) is the GF of (a1, 2a2, 3a3, . . .), and
∫
g(x) " (?, a0,

1
2
a1,

1
3
a2, . . .).

2

It is often convenient to write ex as exp x. The equation exp′ = exp reflects the
fact that the sequence (1, 1, 1

2!
, 1

3!
, 1

4!
, . . .) is unchanged by the ‘differentiation’ operation

described in the lemma. Rewriting Proposition 7.1.2 in the form

1

n!
(x+ y)n =

n∑

k=0

(
1

k!
xk
)(

1

(n− k)!y
n−k

)
(8.1)
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corresponds to the equation

exp(x+ y) = exp x · exp y.

Problem 8.1.2 Use generating functions to show that
n∑

k=0

(
n
k

)2
=
(
2n
n

)
.

Solution. We have

(1 + x)n =

n∑

j=0

(
n
j

)
xj, (1 + 1

x
)n =

n∑

k=0

(
n
k

) 1
xk .

It follows that
n∑
k=0

(
n
k

)2
equals the constant term in

(1 + x)n(1 + 1
x
)n =

1

xn
(1 + x)2n,

which gives the required answer. 2

Just how ‘closed’ a GF needs to be is a matter for debate, and therein lies the
usefulness of the concept. Consider for example the sum

g(x) =
∞∑

j=1

xj

1− xj (8.2)

This may be expanded as a power series a0 + a1x+ a2x
2 + · · · by applying Lemma 7.4.1

to each denominator. The coefficient ak is then obtained by summing from j = 1 to
j = k (there is no need to go any further), and equals the number of ways of writing xk

as (xj)i , or k as ij , for 1 ≤ i ≤ k . We may therefore usefully regard (8.2) as the GF for
the sequence

(0, 1, 2, 2, 3, 2, 4, 1, 4, 3, 4, 2, . . .)

whose nth term is the number of positve-integer divisors of n (starting with a0 = 0).
The entry 2 characterizes the prime numbers, and 3 the squares of primes. The symbol
∞ in (8.2) is purely symbolic; it does not matter that the series does not converge since
we may get as many coefficients as we need with a finite sum. More complicated sums
of this type are discussed in [5, §17.10].

On the other hand, one can often guarantee convergence of a sequence, and increase
the likelihood of finding a closed form as follows. One says that (a0, a1, a2, . . .) is bounded

if there exists C > 0 such that |ak| ≤ C for all k ≥ 0. In this case, by comparison with
the exponential series in which ak = 1 for all k , the corresponding series

h(x) =

∞∑

k=0

ak
k!
xk

converges for all x ∈ R. The function h(x) is then called the exponential generating

function of the original sequence (a0, a1, a2, . . .). Thus,

ex is the exponential GF of (1, 1, 1, 1, . . .),

cos x " (1, 0,−1, 0, 1, 0, . . .),

(1 + x)r " (1, r, r
2
, r

3
, . . .), r ∈ R.
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Example 8.1.3 The exponential GF for the sequence (B0, B1, B2, B3, . . .) of Bernoulli
numbers is x/(ex − 1).

This defines the kth Bernoulli number by the formula

x

ex − 1
=

∞∑

k=0

Bk

k!
xk (8.3)

Now,
ex − 1 = x(1 + 1

2!x+ 1
3!x

2 + 1
4!x

3 + · · ·),
and so the left-hand side of (8.3) may be expanded as

(
1 + 1

2!
x + 1

3!
x2 + 1

4!
x3 + · · ·

)−1
= 1 +

∞∑

j=1

(−1)j
(

1
2!
x + 1

3!
x2 + · · ·

)j

= 1− 1
2
x + 1

12
x2 − 1

720
x4 + · · ·

It follows that B0 = 1, B1 = − 1
2
, B2 = 1

6
, B3 = 0 and B4 = − 1

30
.

In fact, one can show that Bk = 0 whenever k ≥ 3 is odd. To see this, it suffices to
observe that

x

ex − 1
+
x

2

is unchanged when x is replaced by −x. 2

8.2 Derangements

A permutation of X = {1, 2, . . . , n} is a reordering of its elements, i.e. a bijective
map from the set to itself. An element i ∈ X is called a fixed point of f if f(i) = i.

Definition 8.2.1 A derangement is a permutation in which no object stays in the same
place, or a bijection of X with no fixed points. The number of derangements of n objects
will be denoted by dn .

It is easy to see that d1 = 0, d2 = 1, d3 = 2, and d4 = 9. The last number may be
thought of as the number of ways of changing the places of 4 persons at a dinner table
so that no-one stays in the same seat (similar problems tax the minds of Oxford tutors).

An amusing application is the following. Two 52-card decks of playing cards are
shuffled and placed next to each other face up on a table. The two top cards (one from
each deck) are inspected together to see if they coincide or ‘snap’ (such as 4♣, 4♣), and
then discarded. This process is repeated until all cards have been looked at in pairs, and
one asks:

What is the probability of getting through the decks with no snaps?

We need regard only the second deck as shuffled (in one of 52! ways). The number of
shuffles with no snaps is then by definition d52 , so the answer is d52/52!. We shall see
that this is almost exactly 1/e, which being less than 1

2
means (perhaps surprisingly)

that at least one snap is more likely than not.
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Proposition 8.2.2 The exponential GF of the sequence (d0, d1, d2, . . .) is e−x/(1− x).
Proof. Let 0 ≤ k ≤ n. The number of permutations of {1, 2, . . . , n} with exactly k
fixed points equals

(
n
k

)
dn−k , though for this to work for k = n we need to define d0 = 1.

Therefore
n! = dn + ndn−1 +

(
n
2

)
dn−2 + · · ·+

(
n
n−2

)
1 + 0 + 1

=
n∑

k=0

(
n

n−k

)
dk

⇒ 1 =
n∑

k=0

dk
k!
· 1

(n− k)! .

The right-hand side equals the coefficient of xn in

( ∞∑

k=0

dk
k!
xk
)( ∞∑

j=0

1

j!
xj

)
= h(x)ex,

where h(x) is the sought-after exponential GF. Thus,

1 + x + x2 + x3 + · · · = h(x)ex, (8.4)

and the result follows from Lemma 7.4.1. 2

Combining the expansion e−x = 1 − x + 1
2!x

2 − 1
3!x

3 + · · · with (8.4) gives the key
formula

dn
n!

= 1− 1 +
1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
=

n∑

k=2

(−1)k

k!
(8.5)

For example,

1
120d5 = 1

2 −
1
6 + 1

24 −
1

120 ⇒ d5 = 60− 20 + 5− 1 = 44,

and in this way we may fill in some more values:

n dn dn/n!
0 1 1
1 0 0
2 1 0.5
3 2 0.333333 . . .
4 9 0.375
5 44 0.366666 . . .
6 265 0.368055 . . .
7 1854 0.367857
8 14833 0.367881
9 133496 0.367879

10 1334961 0.367879

52 ∼ 3.1067 1/e to 69 places
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Remark. In the proof of Proposition 8.2.2, we used the following useful fact:

g(x) is the GF of a = (a0, a1, a2, . . .)
h(x) is the GF of b = (b0, b1, b2, . . .)

}

⇒ g(x)h(x) is the GF of c = (c0, c1, c2, . . .), where cn =
n∑
k=0

akbn−k.

The sequence c is called the convolution of a and b; another example is (8.1).

8.3 The inclusion-exclusion principle

If X1, · · · , Xn are subsets of a set X , we shall use the notation

Xij = Xi ∩Xj, Xijk = Xi ∩Xj ∩Xk, etc.,

provided that i < j < k < · · ·. For n = 3, the Venn diagram

X

X

X1

2

3

shows that

|X1 ∪X2 ∪X3| = |X1|+ |X2|+ |X3| − |X23| − |X31| − |X12|+ |X123|.
This equation generalizes in an obvious way:

Proposition 8.3.1

|X1 ∪ · · · ∪Xn| =
∑

i

|Xi| −
∑

i<j

|Xij|+
∑

i<j<k

|Xijk| − · · · − (−1)n|X12···n|.

Proof. We must check that each element x in the union X1∪· · ·∪Xn is counted exactly
once on the right-hand side. This is correct for the following reason. Suppose, for sake
of argument, that

x belongs to exactly 5 of the Xi

⇒ x "
(
5
2

)
" Xij

⇒ x "
(
5
3

)
" Xijk

· · · · · ·
Then on the right-hand side of the equation we are trying to prove, the number of times
x is counted equals

(
5
1

)
−
(
5
2

)
+
(
5
3

)
−
(
5
4

)
+
(
5
5

)

= 1−
((

5
0

)
−
(
5
1

)
+
(
5
2

)
−
(
5
3

)
+
(
5
4

)
−
(
5
5

))
= 1− (1− 1)5 = 1.

2
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In practice, Xi may denote the number of objects of the set X having a particular
property ‘Pi ’. Then Xij denotes the set of objects possessing at least property Pi and
property Pj , and so on. The number of objects in the set having none of the n properties
equals |X| − |X1 ∪ · · · ∪Xn|, which can be calculated by means of the proposition.

As an application, let Xi denote the set of permutations f of {1, 2, . . . , n} such that
f(i) = i. Then

|Xi| = (n− 1)!, |Xij| = (n− 2)!, etc.

The number of non-derangements of {1, 2, . . . , n} is then

n!− dn = |X1 ∪ · · · ∪Xn| =
(
n
1

)
(n− 1)!−

(
n
2

)
(n− 2)! +

(
n
3

)
(n− 3)!− · · · ∓ 1

= n!
(
1− 1

2!
+ 1

3!
− · · · ∓ 1

n!

)
.

This is consistent with (8.5), either of which provide the formulae

dn =

n∑

i=2

(−1)in
n−i

= n
n−2 − nn−3

+ n
n−4 − · · · ± 1

and
dn = ndn−1 + (−1)n. (8.6)

An instance of the latter is clearly visible near the bottom of the table in §8.2.

Problem 8.3.2 How many anagrams of ABCDEFGH contain at least one of the pairs
AB,CD,EF,GH (such as BACHDEFG)?

Solution. To proceed with the help of Proposition 8.3.1, let

X1 = { permutations in which AB persists },
X2 = { " CD " },
X3 = { " EF " },
X4 = { " GH " }.

To belong to X1 a permutation must move AB as a single entity (think of scrabble letters
glued together), so |Xi| = 7!. Similarly,

|Xij| = 6!, |Xijk| = 5!, |Xijk`| = 4!

The answer is therefore

(
4
1

)
7!−

(
4
2

)
6! +

(
4
3

)
5!−

(
4
4

)
4! = 16296.

2

8.4 Difference equations revisited
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In this section, we shall find the generating function F (x) for the Fibonacci sequence

(F0, F1, F2, F3, . . .) = (0, 1, 1, 2, 3, 5, 8, . . .)

defined by the difference equation Fn+2 − Fn+1 − Fn = 0, or

S2F − SF − F = 0, (8.7)

where SF and S2F are the shifted sequences which start with F1 and F2 respectively
(see §4.1).

Since F (x) = F0 + F1x + F2x
2 + · · ·, with F0 = 0 and F1 = 1, the GF’s of SF and

S2F are respectively

1

x
F (x) = F1 + F2x + F3x

2 + · · ·
1

x2
F (x)− 1

x
= F2 + F3x + F4x

2 + · · ·

Thus (8.7) becomes

1

x2
F (x)− 1

x
− 1

x
F (x)− F (x) = 0

⇒ F (x)− x− xF (x)− x2F (x) = 0,

and so

F (x) =
x

1− x− x2
(8.8)

We may check this answer with the aid of Lemma 7.4.1, in the same sort of way that
we treated (8.2). For

F (x) =
x

1− (1 + x)x
= x+ (1 + x)x2 + (1 + x)2x3 + (1 + x)3x4 + · · ·

= x+ x2 + 2x3 + 3x4 + 5x5 + · · ·
as expected. Notice that the x on top in (8.8) is not terribly important; it merely ensures
that F2 equals 1 rather than 2.

Equation (8.8) also leads to an independent proof of Corollary 4.2.2, since

x

1− x− x2
=

x

(1− φx)(1− φ̂x)
=

1√
5

(
1

1− φx −
1

1− φ̂x

)
,

where φ, φ̂ are the roots of x2 − x− 1 = 0. This gives

F (x) =
1√
5

(
(1 + φx+ φ2x2 + · · ·)− (1 + φ̂x+ φ̂2x2 + · · ·)

)

⇒ Fn =
1√
5
(φn − φ̂n).

A similar technique can be applied effectively to solve the other difference equations
discussed in §4.3. It is also possible to tackle some difference equations with non-constant
coefficients using generating functions, and Lemma 8.1.1 can be useful for this purpose.
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Problem 8.4.1 A positive integer consisting of e even digits and o odd digits is assigned

the ‘value’ 2e + o. Find the generating function v(x) =
∞∑
k=1

vkx
k , where vk denotes the

number of positive integers with value k .

Solution. Since there are 5 even digits and 5 odd ones, the number of k -digit ‘integers’
with value n equals the coefficient of xn in (5x+5x2)k (which is of course zero if n < k).
But this includes numbers which start with the digit 0 which are not permitted. To
correct for this, we need to subtract x2 times the coefficient of xn−2 in (5x + 5x2)k−1 .
Hence,

v(x) =

∞∑

k=1

(5x+ 5x2)k − x2

∞∑

k=0

(5x + 5x2)k =
5x + 4x4

1− 5x− 5x2
,

by Lemma 7.4.1. 2

8.5 Exercises

1. Let n ≥ 2. By multiplying both sides of the defining equation (8.3) for the Bernoulli

numbers by ex − 1, prove that
n−1∑
j=0

(
n
j

)
Bj = 0. Use this to check that B4 = − 1

30
and to

find B6 and B8 .

2. If the decks in §8.2 each contain only 10 cards to start with (e.g. A to 10 of clubs), is
the chance of at least one snap less or greater than with the 52-card decks?

3. Observe that (8.6) implies the formula dn = (n−1)(dn−1+dn−2). Prove this directly by
considering the effect of a permutation f of {1, 2, . . . , n} on the last digit n, considering
two cases: (i) f(f(n)) = n, (ii) f(f(n)) 6= n.

4. Let n, p, q be positive integers with p, q prime. Show that the number of integers
between 1 and n inclusive that are not divisible by p or q equals

n− bn
p
c − bn

q
c+ b n

pq
c,

where bxc denotes the largest integer less than or equal to x. Does this formula work if
p and q are not both prime? Use Proposition 8.3.1 to extend the formula to the case of
three primes, and count the number of integers between 1 and 1000 that are divisible by
none of 5,7,11.

5. Explain why there are 7! permutations of A,B,C,D,E,F,G,H,I,J in which the word
BEAD appears. Show that there are exactly 3583560 permutations of the same ten
letters in which neither of the words BEAD, JIG appear.

6. Let n be a positive integer. A partition of n is an equation of the form

n = a1 + a2 + · · ·+ ak, 1 ≤ k ≤ n,
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where ai ∈ N and 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak . Let pn denote the number of distinct
partitions of n, and let p0 = 1.

(i) Show that pn equals the number of solutions (b1, b2, . . . , bn) to the equation
n∑
j=1

jbj = n

where each bj ≥ 0 is a non-negative integer.

(ii) Deduce that the generating function of (p0, p1, p2, . . .) equals
∞∏
k=1

(1− xk)−1 .

7. (i) Determine the first few values of pn :

p:= product(1/(1-x^k),k=1..10):

series(p,x=0,10);

(ii) Compute

series((5*x+4*x^2)/(1-5*x-5*x^2),x=0,10);

and find a recursion relation satisfied by the integers vk of Problem 8.4.1.

8. Further to (8.2), let

f(x):= sum(x^j/(1-x^j)^2,j=1..20):

g(x):= sum(j*x^j/(1-x^j),j=1..20):

Explain why

series(f(x),x=0,20);

series(g(x),x=0,20);

give the same answer. What do the coefficients of this power series represent?
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9 Asymptotic Notation

9.1 ‘O’ Terminology

In this section we shall be concerned with the behaviour of sequences of real numbers,
denoted (an), (bn), (xn) etc., as n becomes very large.

Definition 9.1.1 an = O(bn) means that there exists C > 0 and N ∈ N such that
|an| ≤ C|bn| for all n ≥ N , or more informally,

‘|an|/|bn| is bounded as n→∞’.

This implies that

|an| ≤ C ′|bn| for all n ≥ 0, where C ′ = max{C, |a0|
|b0| , · · · ,

|aN−1|
|bN−1| },

provided no bi is zero, but C ′ may be much less convenient to find than C and N . For
example n20/2n → 0 as n→∞ since 20 lnn− n ln 2→ −∞, so n20 = O(2n). Indeed,

n20 ≤ 1.2n, for n ≥ N, where N = 144, and

n20 ≤ C ′2n, for n ≥ 0, where C ′ = 3.3× 1020.

Definition 9.1.2 an = Ω(bn) means the same as ‘bn = O(an)’, and an = Θ(bn) means
the same as ‘an = O(bn) and an = Ω(bn)’.

It follows that an = Θ(bn) if and only if there exist c, C > 0 and N ∈ N such that
c|bn| ≤ |an| ≤ C|bn|, n ≥ N .

Recall that, if a > 1, logarithms to base a are defined by

x = loga y ⇐⇒ y = ax. (9.1)

Of particular importance are the choices a = 2, e, 10. In these notes, we use

ln to denote the ‘natural logarithm’ loge,
log " ‘common logarithm’ log10, and
lg " ‘binary logarithm’ log2.

One deduces from (9.1) that

loga x =
ln x

ln a
.

It follows from this formula that loga n = Θ(lnn), and ln, log and lg may be used
interchangeably in formulae involving O or Ω.

Definition 9.1.3 an ∼ bn means |an|/|bn| → 1 as n→∞.

It is an exercise in the ε, δ language that an ∼ bn implies an = Θ(bn). For instance, let
an = 4n3 − 3n+ 1, so that an is positive for n ≥ 0. Then

an
n3

= |4− 3

n2
+

1

n3
| ≤ 4 +

3

n2
+

1

n3
≤ 8, n ≥ 1,
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so an = O(n3). More careful examination before applying the absolute value signs reveals
that an/n

3 < 4 for n ≥ 1. Moreover, an/n
3 → 4 as n → ∞, so actually an ∼ 4n3 . A

less simple example follows from Theorem 5.2.2, which implies that (Hn− ln n)/ lnn→ 0
and

Hn ∼ lnn.

The above terminology is summarized by the scheme:

O ←− Θ −→ Ω
↑
∼

Its real importance lies in the disregard of the precise values of the constants involved
and the behaviour of finitely many terms of the sequence. This philosophy is emphasized
by the following

Problem 9.1.4 A sequence (xn) is defined recursively by setting

xn = 2xbn/2c + n, n ≥ 1,

and x0 = 0, so that it begins

(0, 1, 4, 5, 12, 13, 16, 17, 32, 33, . . .).

(The notation b c is defined in (10.2).) Prove that xn = O(n lgn).

Solution. We shall establish this result by showing by induction that xn ≤ cn lg n for
some c > 0. Suppose firstly that this is true for all n ≤ N − 1, with N a fixed integer.
Then

xN = 2xbN/2c +N ≤ 2cbN2 c lg(bN2 c) +N

≤ cN(lgN − 1) +N

= cN lgN +N(1− c).
The induction is therefore successful provided that c ≥ 1. Now we look at the first terms
of the sequence: ignore x0, x1 , but notice that x2 = 4 satisfies x2 ≤ c2 lg 2 = 2c provided
c ≥ 2. In conclusion then, xn ≤ 2n lg n for all n ≥ 2. 2

9.2 Rates of convergence

The next result helps in the examples that follow it.

Lemma 9.2.1 lim
x↓0

x ln x = 0.

Proof. The notation tells us quite reasonably to restrict to positive values of x in
evaluating the limit. The derivative 1 + ln x of x ln x is negative for x < 1/e, so there
exists c > 0 such that −c < x ln x < 0 for 0 < x < 1. Putting x = y2 with y > 0,

|x ln x| = 2y|y ln y| ≤ 2cy, 0 < x < 1,

and the right-hand side tends to 0 as x ↓ 0. 2
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Examples 9.2.2 (i) Taking x = 1/n (for n ∈ N) in the lemma gives (lnn)/n → 0 as
n→∞. This also gives the well-known result that n1/n = e(ln n)/n → 1 as n→∞. Now
(ey − 1)/y tends to exp′(0) = 1 as y → 0, and taking y = (lnn)/n gives

n1/n − 1 = O

(
lnn

n

)

(ii) The sequence

bn =

(
1 +

1

n
+

1

2n2

)n
(9.2)

was introduced in §5.3 as an approximation to e. Problem 9.3.2 below implies that

|bn − e| = O(
1

n2
) (9.3)

(iii) Suppose that the mapping f : [0, 1] → [0, 1] is a contraction, i.e. there exists a
constant k < 1 such that

|f(x)− f(y)| ≤ k|x− y|, for all x, y ∈ [0, 1].

The contraction mapping theorem (or rather its proof) states that in these circumstances,
if x0 ∈ [0, 1] is chosen and xn is defined inductively by xn = f(xn−1) for all n ≥ 1, then
xn converges to the unique point s ∈ [0, 1] such that f(s) = s. It is also known that

|xn − s| ≤
kn

1− k |x1 − x0|,

and we can extract the essence of this formula by stating that

|xn − s| = O(kn)

2

Each of the boxed equations gives some estimate on how quickly the relevant sequence
approaches its limit, and we may now compare these different rates of convergence. For
example, 1/n2 = O((lnn)/n) because 1/(n lnn) is bounded (indeed it tends to 0) as
n → ∞. Dealing with kn is slightly harder, but knn2 = n2e−n| lnk| is bounded as
n→∞, and so kn = O(1/n2). These relations can be summarized by the single line

O(kn) = O(
1

n2
) = O(

lnn

n
), (9.4)

in which we have begun to widen the scope of (some would say abuse) the ‘O’ notation.

In (9.4), the expression O(bn) is best understood as representing the set

O(bn) = { (an) : |an|/|bn| is bounded as n→∞}
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of sequences which are ‘smaller or comparable’ to bn . Each equality sign in (9.4) is then
understood as really standing for the subset symbol ‘⊆’. As a slight extension of this
idea, we can rewrite (9.3) as

bn = e + O(
1

n2
), (9.5)

by interpreting the equality as roughly ‘∈’ and

e+ O(
1

n2
) = {(e+ cn) : |cn|n2 is bounded as n→∞}.

The syntax (9.5) is very common and leads to no confusion, provided one remembers the
secret meanings of ‘=’ and never swaps the left and right-hand sides of an equation.

We can fill in (9.4) so as to form a whole scale of sequences that converge to 0. For
example, in the array

O(
1

n2
) = O(

1

n lnn
) = O(

1

n
) = O(

lnn

n
) = O(

1

lnn
) = O(

1

ln lnn
),

the further to the right a sequence is, the more slowly it converges to zero.

? 9.3 Power series estimates

The ‘O’ notation can be applied equally well to a continuous variable x in place of
n, to describe the behaviour of a function g(x) as x approaches a fixed value or ∞. All
the previous conventions apply except that it is essential to include the limiting value of
x, in order to avoid ambiguity.

In the following result, O(xp+1) means any function f(x) (or set of functions) such
that f(x)/xp+1 is bounded as x→ 0.

Proposition 9.3.1 Suppose that
∞∑
n=0

anx
n converges to a function g(x) whenever |x| is

sufficiently small. Then for any p ∈ N,

g(x) =

p∑

k=0

akx
k + O(xp+1) as x→ 0.

Proof. For this we need to know that a power series possesses a radius of convergence
R with the property that it converges when |x| < R and does not converge for |x| > R.
The value of R is determined by the limiting behaviour of the coefficients of the series
[6, §14.2]. In our case,

1

xp+1

(
g(x)−

p∑

k=0

akx
k

)
=

∞∑

j=0

aj+p+1x
j,

and the right-hand side converges, as it has the same radius of convergence as the original
sum. 2
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For example,

ex = 1 + x + 1
2! x

2 + · · ·+ 1
p!x

p + O(xp+1) as x→ 0, (9.6)

though the corresponding statement would be blatantly false for x→∞. The equation
(9.6) is equivalent to asserting that

ex − 1− x− · · · − 1
p!
xp

xp+1
= O(1),

i.e. that the left-hand side is bounded. This can also be deduced by applying l’Hôpital’s
rule p+ 1 times; each time the numerator is differentiated it remains zero when x = 0.

More generally, the hypotheses of the proposition imply that

ak =
g(k)(0)

k!

in analogy to (1.8), and what results is the so-called Maclaurin series of g(x). We may
revert to a discrete variable by replacing x by 1/n to give

g(
1

n
) =

p∑

k=0

ak
nk

+ O(
1

np+1
) as n→∞. (9.7)

We next use this as the basis for some more advanced manipulation that displays the
power of the ‘O’ notation.

Problem 9.3.2 Prove that (9.2) satisfies

bn = e

(
1− 1

6n2
+ O(

1

n3
)

)
.

Solution. As a first step, write

bn = e. exp (− 1 + n ln(1 +
1

n
+

1

2n2
)). (9.8)

The series ln(1 + x) = −
∞∑
k=1

(−1)kxk/k converges for |x| < 1, so from (9.7),

ln (1 +
1

n
+

1

2n2
) = (

1

n
+

1

2n2
)− 1

2(
1

n
+

1

2n2
)2 + 1

3(
1

n
+

1

2n2
)3 + O(

1

n4
)

=
1

n
− 1

6n3
+ O(

1

n4
).

Subsituting this into (9.8) gives

bn = e. exp (− 1

6n2
+ O(

1

n3
)),

and the result follows from (9.6). 2
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In all the asymptotic expansions above, the left-hand side approaches a finite limit
as n→∞; below we shall meet some examples where this is no longer true.

9.4 Stirling’s formula

In this section, we shall examine the behaviour of large factorials. Obviously, n! < nn

for all n ≥ 2, so without effort one obtains the crude estimate

n! = O(nn).

The following result gives much more precise information about the behaviour of n! for
large n.

Theorem 9.4.1

n! ∼
√

2πn
(n
e

)n
as n→∞.

2

This can be restated in the form

(n!)2 ∼ 2πn2n+1e−2n

⇒ lim
n→∞

(n!)2n−2n−1e2n = 2π.

Let
Sn =

√
2πn(n/e)n

denote Stirling’s ‘approximation’ to n!. This is a bit of a misnomer, as both Sn and n!
are unbounded as n→∞, though the theorem asserts that

|Sn
n!
− 1| = |Sn − n!|

n!
→ 0 as n→∞. (9.9)

In other words, the relative error tends to zero; this is shown in the table. By contrast,
the absolute error |Sn − n!| definitely does not tend to 0; it is in fact unbounded.

n n! Sn |Sn − n!|/n!
1 1 0.92 . . . 0.077 . . .
2 2 1.9 . . . 0.040 . . .
3 6 5.8 . . . 0.027 . . .
4 24 23 . . . 0.020
5 120 118 0.016
6 720 710 0.013
7 5040 4980 0.011
8 40320 39902 0.010
9 362880 359536 0.009

10 3628800 3598695 0.008
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Moreover,

ln

(
Sn
n!

)
= lnSn − ln(n!) = 1

2
ln(2π) + 1

2
lnn+ n lnn− n− ln(n!)

The left-hand side tends to 0 as n→∞, and dividing throughout by n lnn,

1− ln(n!)

n lnn
→ 0,

whence

Corollary 9.4.2

ln(n!) ∼ n lnn as n→∞.
It is a false step to exponentiate both sides of the corollary to conclude that n! ∼ nn . In
fact, Theorem 9.4.1 implies that n!/nn → 0 as n→∞. 2

Some motivation helps to relate Stirling’s formula to a more elementary topic, namely
the relatively well-known identities

n∑

k=1

k = 1
2
n(n + 1),

n∑

k=1

k2 = 1
6
n(2n+ 1)(n+ 1).

These are special cases of the more general formula

n∑

k=1

kp =
1

p+ 1

p∑

k=0

(
p+1
k

)
Bk(n+ 1)p+1−k,

valid for any p ≥ 1, where Bk are the Bernoulli numbers defined in §8.1. Analogous
summation formulae exist for sums of other functions, and Stirling’s approximation can
be deduced from such a formula for

ln(n!) =

n∑

k=2

ln k.

In fact,

lnSn − ln(n!) = −
p∑

k=1

B2k

2k(2k − 1)n2k−1
+ O(

1

n2p+1
), (9.10)

an equation also valid for any p ≥ 1 [4, §9.6].

9.5 Exercises

1. Show that, as n→∞,

(i) n1/n = 1 + ln n
n

+ O(( ln n
n

)2), and

(ii) n(n1/n − 1)− lnn → 0 .
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2. Explain why an ∼ bn does not in general imply that ean ∼ ebn . Does it imply that√
an + 1 ∼

√
bn + 1?

3. Decide which of the following estimates are true or false:

(i)
n∑
j=1

j = O(n),
n∑
j=1

j = Ω(n);

(ii) lg(n+ 1) = O(lg n), lg(n+ 1) = Ω(lg n);

(iii)
2n−1∑
j=1

1
j

= O(n),
2n∑
j=2

1
j

= Ω(n).

4. Explain what the following statements mean and prove them:

(i) O(an + bn) = O(an) + O(bn);

(ii) O(an
2) = O(an)

2 ;

(iii) O(O(an)) = O(an).

5. A sequence (xn) is defined recursively by setting xn = xbn/2c + 1 for n ≥ 1, and

x0 = 0. Determine xn by hand for 1 ≤ n ≤ 20, and prove that xn = Θ(lgn) by showing
separately by induction that there exists

(i) a constant C such that xn ≤ C lgn for all n ≥ 2;

(ii) a constant c such that xn ≥ c lg n for all n ≥ 2.

6. Use Stirling’s formula to show that
(
2n
n

)
∼ 4n/

√
nπ as n→∞, and rearrange this so

as to obtain

lim
n→∞

1√
n
· 2 · 4 · 6 · · · (2n− 2) · 2n
1 · 3 · 5 · · · (2n− 3) · (2n− 1)

=
√
π.

Deduce that π can be expressed as an infinite product 2 · 2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· · ·

7. Assuming (9.10), show that

n! = Sn exp

(
1

12n
+ O(

1

n3
)

)
,

and deduce that |Sn − n!|/n! = O(1/n).

8. Determine the constants

(i) k = lim
n→∞

n(Hn − lnn− γ),

(ii) ` = lim
n→∞

n2(Hn − lnn− γ − k

n
),

by experiment. (γ is called gamma in Maple.)
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10 Euclid’s Algorithm

10.1 Integer division

Let N = {0, 1, 2, 3, . . .} denote the set of natural numbers including 0 (i.e. Non-
negative integers). Given a, b ∈ N, one writes a|b to mean ‘a divides b’, i.e.

there exists c ∈ N such that ac = b.

If a|b, we also say that ‘a is a divisor or factor of b’. It is then immediate that for any
a, b, c ∈ N,

(i) a|a,

(ii) a|b, b|a⇒ a = b,

(iii) a|b, b|c⇒ a|c.
A relation on a set, like division on N or inequality ≤ on N or R, satisfying these
properties is called a partial order.

The reflexivity (i) and transitivity (iii) are identical to the corresponding properties
in the definition of an equivalence relation, though (ii) above is the ‘opposite’ of the
symmetry property because it says that a and b can only be related to each other if they
are equal. To prove this, suppose that b = ac1 and a = bc2 ; then a = ac1c2 and (unless
a = 0 = b), c1c2 = 1 forcing c1 = 1 = c2 .

Division amongst the numbers {1, 2, 3, . . . , 16} is indicated in Figure 14. In a diagram
of this type, a line joining a (below) to b (above) indicates not only that a|b but also
that there is no c such that a|c and c|b. Notice that the hierarchy is unrelated to the
usual ordering ≤ on integers; indeed if we were to include 0 it would go at the top of
the diagram, not the bottom, since a|0 for any a ∈ N, whereas 0 divides only itself.

Figure 14: Division as a partial order
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Definition 10.1.1 Let a, b ∈ N. Then d ∈ N is called the highest common factor or
greatest common divisor (written d = gcd(a, b)) of a, b if

(i) d|a and d|b;
(ii) e|a, e|b⇒ e|d.

Because condition (ii) reads e|d and not e ≤ d, it is not completely obvious that any
pair (a, b) has such a d. On the other hand, if d1, d2 ∈ N both satisfy (i) and (ii) then
d1|d2 and d2|d1 , so d1 = d2 and the definite article ‘the’ is justified – greatest common
divisors are unique.

In Figure 14, the gcd of two numbers occurs when paths downwards from them first

meet; for instance 3 = gcd(12, 15). The row of numbers above 1 are the ‘primes’:

Definition 10.1.2 Let p ∈ N and p ≥ 2. Then p is a prime number if and only if the
only factors of p in N are 1 and p.

Thus, if p is prime then for any a ∈ N we must have gcd(p, a) = 1 or gcd(p, a) = p.
It is a well-known fact (Theorem 10.3.1 below) that any positive integer can be uniquely
factored as a product of prime numbers, and given such factorizations of a and b it may
be easy to spot gcd(a, b). For example

5432 = 23.7.97,
2345 = 5.7.67

}
⇒ gcd(5432, 2345) = 7.

However the precise steps in this implication need further analysis, and we do not wish
to assume the factorization theorem at this stage, as its use does not provide an effective
procedure for computing the gcd of large numbers.

Let us add that
gcd(a, 0) = a for all a ∈ N. (10.1)

This follows immediately from Definition 10.1.1, since a|a and a|0, and if e|a and e|0
then it is a tautology that e|a.

Lemma 10.1.3 Given a, b ∈ N with b > 0, there exist unique q, r ∈ N such that

a = qb+ r, with 0 ≤ r < b.

Proof. We shall regard this result as fairly self evident, though a precise recipe for a
computer to determine the quotient q is called the ‘division algorithm’ (see [9]). It can
be reduced to the task of finding bxc for x ∈ R, where bxc denotes the largest integer
less than or equal to x and is read ‘the floor of x’:

bxc ≤ x < bxc + 1, bxc ∈ Z. (10.2)

Given a, b, we may take q = ba/bc and r = a − qb. The fact that 0 ≤ r < b follows
from setting x = a/b in (10.2) and multiplying both sides by b. Given two solutions
(q, r), (q′, r′) to the problem,

(q − q′)b = r − r′ ⇒ b|(r − r′),

which contradicts the assumptions unless r = r′ and b = b′ . 2
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If a and a′ have the same remainder r = r′ when they are divided by b then one
says that a is congruent to a′ modulo b, and this is written

a ≡ a′ mod b, or a ≡ a′ (b). (10.3)

For fixed b, (10.3) defines an equivalence relation on Z. If the equivalence class containing
a is denoted a, it is easy to see that x + y = x+y , and x · y = x·y . These equations allow
‘modular’ addition and multiplication to be defined on the set Zb = {0, 1, 2, 3, . . . , b− 1}
of equivalence classes.

The next result is a consequence of the previous lemma.

Corollary 10.1.4 Let a, b ∈ N. Then gcd(a, b) exists and equals the least positive
integer in the set {ua+ vb : u, v ∈ Z}.
Proof. Let d denote the least positive integer of the form ua + vb with u, v ∈ Z. We
claim that d|a. For the lemma allows us to write

a = qd+ r, 0 ≤ r < d,

which implies that r too can also be expressed in the form ua + vb. Since r < d, the
only possibility is that r = 0, as required. Similarly d|b. Finally, if e|a and e|b then e
must divide any number of the form ua+ vb, and d in particular. 2

10.2 Computing greatest common divisors

Proposition 10.2.1 Given a, b ∈ N, with b > 0 and r as in Lemma 10.1.3,

gcd(a, b) = gcd(b, r).

Proof. Let d = gcd(a, b). First note that not only is d|b true, but also d|r because d|a
and r = a− qb; thus d is at least a common divisor of b and r . To show that it is the
greatest, suppose that e|b and e|r . Then e|(qb + r) so e is a common divisor of a and
b; by definition of d we have e|d. Therefore d = gcd(b, r). 2

This simple result provides the key step that enables one to compute the gcd of two
numbers by repeatedly applying Lemma 10.1.3. The result is Euclid’s algorithm which
we now illustrate.

Problem 10.2.2 Compute the greatest common divisor of 5432 and 2345.

Solution. We begin with a = 5432, b = 2345, find r and then repeat the same process
having first replaced a by b and b by r . The work can be laid out as follows, in which
diagonal arrows represent the replacements:
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a q.b r

5432 = 2.2345 + 742 gcd(5432, 2345)

↙ ↙ ‖
2345 = 3.742 + 119 gcd(2345, 742)

↙ ↙ ‖
742 = 6.119 + 28 gcd(742, 119)

↙ ↙ ‖
119 = 4.28 + 7 gcd(119, 28)

↙ ↙ ‖
28 = 4.7 + 0 gcd(28, 7) = 7.

The process stops as soon as the remainder becomes 0, since in that line b must divide a
and gcd(a, b) = gcd(b, 0) = 0. Tracing the equalities of the last column back we obtain
gcd(5432, 2345) = 7. 2

Remark. Notice that if one interchanges the two numbers in the above example, the
process is ‘self-correcting’ in the sense that it resorts to the above after one extra line.
This expresses the obvious fact that gcd(a, b) = gcd(b, a):

2345 = 0.5432 + 2345 gcd(2345, 5432)

↙ ↙ ‖
5432 = 2.2345 + 742 gcd(5432, 2345)

The above algorithm is the world’s oldest, dating from 300BC. It can be described by a
flow diagram (see §12.1) that illustrates the key features of an algorithm mentioned in
§5.1. However, only in middle of this century, with the advent of electronic computers,
was the study of algorithms taken seriously and developed further. Nowadays this study
is a vital area on the borderline between mathematics and computation.

The existence of u, v ∈ Z such that 7 = 5432u + 2345v , guaranteed by Corollary
10.1.4, can also be inferred by tracing back the calculations that led to 7 as the gcd.
Indeed, we see that

7 + 4.28 − 119 = 0
− 4(28 + 6.119 − 742) = 0

25(119 + 3.742 − 2345) = 0
−79(742 + 2.2345 − 5432) = 0

7 −183.2345 + 79.5432 = 0

Thus one solution is u = 79 and v = −183. A more systematic way of finding u and v
can be incorporated into the algorithm itself; the result is the so-called ‘extended Euclid
algorithm’. We shall omit the details, which can be found in the Maple manual [11]
and in [9].
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Turning Figure 14 upside down leads to the following concept that is ‘dual’ to the
gcd:

Definition 10.2.3 Let a, b ∈ N. Then m ∈ N is called the lowest common multiple

(written m = lcm(a, b)) of a, b if

(i) a|m and b|m;

(ii) a|n, b|n⇒ m|n.

Proposition 10.2.4

lcm(a, b) =
ab

gcd(a, b)
.

Proof. Given a, b ∈ N, let d = gcd(a, b) and let m = ab/d. Since a/d and b/d are whole
numbers, we have a|m and b|m so m is at least a common multiple. Now recall that
d = ua + vb for some u, v ∈ Z, and suppose that a|n and b|n. Setting ac1 = n = bc2
gives

dn = (ua+ vb)n = ab(uc2 + vc1),

and so m divides n. Therefore m = lcm(a, b). 2

? 10.3 Prime numbers

If p is a prime number, then for any a ∈ N, gcd(p, a) equals p or 1. Combined
with Corollary 10.1.4 this leads to what is effectively an alternative definition of prime
number that is exploited in more advanced algebra:

Proposition 10.3.1 p is a prime number if and only if

p|(ab) with a, b ∈ N ⇒ p|a or p|b. (10.4)

Proof. If p is not prime then p = ab where a, b > 1 and certainly (10.4) is false. So let
p be prime, and suppose that p|(ab). If gcd(p, a) = p then p|a. Otherwise gcd(p, a) = 1
and there exist u, v ∈ Z such that

up+ va = 1 ⇒ (ub)p+ v(ab) = b.

The last equation implies that p|b. 2

Two integers a, b are said to be relatively prime or coprime if gcd(a, b) = 1.

Proposition 10.3.2 Suppose that a, b, c are integers with a, b coprime and b > 0. Then
the congruence xa ≡ c mod b has an integer solution x with 0 ≤ x < b.

Proof. We need to find x, k ∈ Z such that xa = c + kb. By assumption, there exist
u, v ∈ Z such that

ua+ vb = 1 ⇒ (cu)a = c− (cv)b,

and we may take x to equal cu minus a suitable multiple of b.
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Theorem 10.3.3 Any integer a ≥ 2 can be written in exactly one way as

a = pr11 p
r2
2 · · · prkk , (10.5)

where p1 < p2 < · · · < pk are primes and ri ≥ 1.

Proof. The existence of the factorization (10.5) is established by induction on a. It is
obvious if a = 2. In general, if a is not itself prime it can be factored into the product
of two smaller numbers for which factorization may be hypothesized. But then a itself
is factored.

To prove the uniqueness of the factorization, we need property (10.4). For suppose
that

pr11 p
r2
2 · · ·prkk = qs11 q

s2
2 · · · qs`

` ,

where p1 < p2 < · · · < pk and q1 < q2 < · · · < q` . Since p1 divides the left-hand side,
it must divide the right and writing the latter as a product in various ways one sees
eventually that p1 must divide at least one of q1, . . . , q` . If p1|qi then since qi is prime it
must be that p1 = qi . But then the corresponding equation q1 = pj is impossible unless
i = 1. Hence p1 = q1 , and the argument may be completed by induction. 2

Figure 15: Pn and x ln x
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A corollary to Theorem 10.3.3 is the well-known fact that there are infinitely many
prime numbers. For if {P1, P2, . . . , Pn} were a complete list of primes, the number

1 +

n∏

i=1

Pi

would have no prime factors. In any case, let Pn denote the nth prime number, so that
P1 = 2. It is a much more difficult problem to understand how fast the prime numbers
grow, and thereby ‘approximate’ Pn in analogy to Stirling’s formula in §9.4. This is
accomplished by the so-called prime number theorem [5, §1.8], one version of which is
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Theorem 10.3.4 Pn ∼ n lnn.

This is illustrated by Figure 15; the plots of primes and the graph of x ln x diverge
sufficently slowly that the ratio Pn/(n lnn) approaches 1. The function n lnn will play
an important role in the study of algorithms in §12.2. Observe also the first big ‘gap’:
there are no prime numbers between P30 = 113 and P31 = 127.

10.4 Polynomial division

In this section we shall consider polynomials

A = A(x) = A0 + A1x + A2x
2 + · · ·+ Anx

n

in which the coefficients Ai are real or complex numbers. Recall (cf. (1.7)) that A has
degree n if An 6= 0, and is monic if An = 1. Polynomials of degree 0 are just numbers
or constants, and polynomials of degree 1 are called linear.

Lemma 10.4.1 Given monic polynomials A,B , there exist unique polynomials Q,R
such that

A = QB +R, with 0 ≤ degR < degB.

If A,B are real, so are Q,R.

Proof. If degA < degB , one may simply take R = A and Q = 0. Suppose inductively
that the result is true whenever degA < α, irrespective of B . Now take degA = α and
degB = β with α ≥ β . Since deg(A − Bxα−β) < α, there exist by assumption Q′, R
such that

A− Bxα−β = Q′B +R, or A = QB +R, with 0 ≤ degR < degB,

as required. Uniqueness of Q,R follows from the fact that A and B are monic. 2

A number λ (real or complex) is called a root of a polynomial A if it satisfies the
equation A(λ) = 0. In this situation, A is really being regarded as a function from R,
or C, to itself. Lemma 10.4.1 allows us to write

A(x) = Q(x)(x− λ) +R,

where R is constant and zero if λ is a root of A. Whence the ‘remainder theorem’: λ is
a root of A if and only if A(x) is divisible by x− λ.

The fundamental theorem of algebra asserts that any polynomial A with complex
coefficients has a root λ = λ1 ∈ C. It follows by induction that

A(x) = (x− λ1)(x− λ2) · · · (x− λn), λi ∈ C, (10.6)

where n = degA, though the roots λi need not of course be distinct. Using (10.6) and
taking complex conjugates, it is easy to see that a polynomial with real coefficients can
always be factored into linear and quadratic polynomials with real coefficients. It follows
that there are no ‘prime’ (the correct word is irreducible) real polynomials of degree
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greater than 2, though the situation is very different if one restricts to polynomials with
integer coefficients (see §10.5).

A version of Euclid’s algorithm works for real or complex polynomials, and also monic
polynomials with integer coefficients. Strictly speaking one should first discuss each case
separately, though for simplicity we restrict now to the case of real coefficients. One
may then define the greatest common divisor of A,B following Definition 10.1.1, but if
D1, D2 satisfy (i) and (ii) then all one may say is that D1 = aD2 for some a ∈ R. We
shall therefore write gcd(A,B) = D only if D satisfies the additional property of being
monic.

The proof of Proposition 10.4.1 shows that

Proposition 10.4.2 If A,B are real monic polynomials of degree α ≥ β then

gcd(A,B) = gcd(A− Bxα−β, B).

2

This is a simpler analogue of Proposition 10.2.1 than one might expect, and gives rise to
a painless method for computing the greatest common divisor of two polynomials that
we now illustrate.

Problem 10.4.3 Find gcd(2x8 + 3x7 + 1, x5 + x4 − x3 − 1).

Solution. The gcd is computed by applying the proposition repeatedly, swapping the
order of A,B and multiplying by constants where appropriate. The answer is

gcd(2x8 + 3x7 + 1− 2x3(x5 + x4 − x3 − 1), x5 + x4 − x3 − 1)

= gcd(x7 + 2x6 + 2x3 + 1− x2(x5 + x4 − x3 − 1), x5 + x4 − x3 − 1)

= gcd(x6 + x5 + 2x3 + x2 + 1− x(x5 + x4 − x3 − 1), x5 + x4 − x3 − 1)

= gcd(x4 + 2x3 + x2 + x+ 1, x5 + x4 − x3 − 1− x(x4 + 2x3 + x2 + x + 1))

= gcd(x4 + 2x3 + x2 + x+ 1, 0).

The answer is therefore x4 + 2x3 + x2 + x+ 1, which by the remainder theorem actually
equals (1 + x)(x3 + x2 + 1). 2

10.5 Exercises

1. Use Euclid’s algorithm to find the greatest common divisor of

(i) 682, 545; (ii) 5432, 8730; (iii) 6765, 10946.

Retrace your steps in (i) so as to find integers u, v such that 682u+ 545v = 1.

2. Let A(x) = 2x12 + 3x3 + 1 and B(x) = x9 − x8 + x7 + x3 + 1. Find the greatest
common divisor, D , of A,B , and polynomials U, V such that UA + V B = D .
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3. Let p be a prime number, and k a positive integer. Prove that

(i)
(
p
k

)
is divisible by p provided 1 ≤ k ≤ p− 1;

(ii)
(
kp
p

)
is divisible by p if and only if k is.

4. Suppose that a, b ∈ N and that d = gcd(a, b) = ua + vb. Show that the general
solution of the equation xa+ yb = d with x, y ∈ Z is

x = u+
m

a
k, y = v − m

b
k,

where k is an arbitrary integer and m = lcm(a, b).

5. Let a, b, c ∈ N. Using the defining properties of gcd, prove that

gcd(gcd(a, b), c) = gcd(a, gcd(b, c)).

Explain why this number can reasonably be called the greatest common divisor of a, b
and c. Determine its value when a = 5432, b = 8730 and c = 460.

6. Euclid’s algorithm is already encoded into Maple using the command gcd. Nonethe-
less, try out the homemade version

gcd1:= proc(a,b)

if b=0 then a

else print(b); gcd1(b,a-b*trunc(a/b)) fi

end:

Compute gcd1(100!+1,100^100-1); and modify the program to find out how many
times b is printed.

7. Explain why the following algorithm also computes gcd’s of positive integers:

gcd2:= proc(a,b)

if a<b then gcd2(b,a)

elif a=b then a

else gcd2(a-b,b) fi

end:

Is it as effective as gcd1?

8. (i) Find out how many irreducible integer-polynomial factors 1 + xk has:

for k to 20 do k; factor(1+x^k) od;

For which values of k are there only 1 or 2 factors? Try to answer the same question for
1− xk before running the corresponding program.

(ii) Interpret the output from

for k to 100 do

if x^k+x+1=Factor(x^k+x+1) mod 2 then print(k) fi

od;
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11 Graphical Optimization

11.1 Graphs

Graphs are basically networks of points joined by lines. Whilst this course is not
concerned with graph theory as such, we need some basic notions to understand the
algorithms discussed below and the following will suit our purposes.

Definitions 11.1.1 (i) A graph consists of a set V and a symmetric relation ∼ on V .

Thus u ∼ v ⇒ v ∼ u, and we interpret elements of V as vertices and join u, v by an
edge if and only if u ∼ v . An edge is therefore an unordered pair {u, v} (also denoted
euv or uv) of vertices with u ∼ v , and the set of edges is denoted by E .

This definition excludes the possibility of multiple edges, though if one were to drop
the qualification ‘symmetric’ one would get a digraph in which each edge is assigned a
direction. To keep things simple we also exclude loops by assuming that v ∼ v is false
for all v ∈ V , i.e. ∼ is ‘anti-reflexive’. It therefore follows that |E| ≤

(
|V|
2

)
.

(ii) A path is a sequence of vertices (v0, v1, v2, . . . , vn) with vi ∼ vi+1 (0 ≤ i ≤ n − 1)
and v0, . . . , vn distinct, except that v0 is allowed to equal vn if n ≥ 3. A cycle is a closed
path, meaning vn = v0 (so n ≥ 3).

Figure 16:

vu w

z

y

x

Figure 16 illustrates a graph with

V = {u, v, w, x, y, z}, E = {eux, euy, euz, evx, . . .},

|V| = 6 and |E| = 10. The sequence (y, v, z, y, u) is not a path, since it passes through
an intermediate vertex twice (it’s called a trail!), whereas (u, x, w, z, v, y, u) is a cycle.

(iii) A graph is connected if there exists a path between any two vertices. A tree is a
connected graph with no cycles.

Proposition 11.1.2 A connected graph G has |E| ≥ |V| − 1, and if G is a tree then
|E| = |V| − 1.

88



Proof. Regard the edges of G as matchsticks or pieces of wire that are all separated,
so that their endpoints form a total of 2|E| vertices. Rebuild G by choosing an edge to
start with, and adding back one edge at a time, so that the partially-constructed graph
is connected at each stage. Each time one of the |E| − 1 edges is added back, the total
number of vertices drops by 1 or 2. Thus,

|V| ≤ 2|E| − (|E| − 1) = |E|+ 1. (11.1)

If in the process of rebuilding, both ends of some edge need to be attached to the
partially-constructed graph, then G must have a cycle. This cannot happen if G is a
tree, so in that case there must be equality in (11.1). 2

Any two vertices of a tree are connected by a unique path, because two such paths
would together give rise to a cycle. Trees crop up in many instances in computing;
consider for example a file directory structure. On the other hand, a human family tree
need not be a tree in the above sense; for example, the parents of King George V were
both descendants of George II, providing an Anglo-Danish cycle.

Definition 11.1.3 A graph is weighted if a positive number w(e) > 0 is assigned to
each e ∈ E . The weight of a subset E ′ of E is then the sum of the weights of its elements:

w(E ′) =
∑

e∈E ′

w(e).

There are many possible interpretations of weighted graphs. The most obvious are those
in which the vertices represent geographical locations, and the edges correspond to ex-
isting transport routes, with w the time or distance associated to each. A variant is that
in which edges represent potential routes under construction, with w the corresponding
cost.

Figure 17: A weighted graph
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Example 11.1.4 The graph in Figure 17 is weighted by the first 24 digits of π (which
conveniently contain no zeros) in a snake-like fashion, commencing bottom left. This is
somewhat artificial but it will serve well to illustrate the problems below. The square
formed by E ′ = {AC,CE,EB,BA} has w(E ′) = 10, whereas w(E) = 115. 2

11.2 Kruskal’s algorithm

In this course, we shall be mostly concerned with the following problem that arises
when one is given a connected weighted graph G :

Of all the subsets of E that connect all the vertices together, find one of least weight.

A solution to this problem necessarily forms a tree, since if there were a cycle at least
one of its edges could be removed without depriving any vertex. Thus, we shall call a
solution to the problem a minimum spanning tree (MST); it is also called a minimum

connector.

Applications that help visualize this problem include the construction of a network of
irrigation canals or other utilities linking various sites, and electronic circuitry involving
joint connections between a number of components.

Theorem 11.2.1 Given a connected weighted graph, an MST is obtained by successively
choosing an edge of least weight not already selected, and discarding it if a cycle is formed.

This procedure is called Kruskal’s algorithm, though its discovery is attributed to
Boruvka in 1926. Choices may be involved if some edges have the same weight, and
the solution is not then unique. To make the procedure trully methodical, one needs a
strategy to select the successive edges of least weight, and in practice this might exploit
the concept of a heap described in §12.3. However, on a modestly-sized graph, it suffices
to place the edges in some linear order so that in the event of edges having equal weight
one can choose the edge that comes first in this ordering.

Returning to Figure 17, we order the edges diagonally starting bottom left, follow-
ing successive digits of π . The set of edges characterizing the MST constructed using
Theorem 11.2.1 is then

EK = {AB,BE︸ ︷︷ ︸
1

, DJ, IK,MN︸ ︷︷ ︸
2

, AC,EH, IL, JK︸ ︷︷ ︸
3

, BF, LO,OP︸ ︷︷ ︸
4

, EI︸︷︷︸
5

, NL︸︷︷︸
6

, FG︸︷︷︸
8

},

where the weights of each edge are indicated. Edges CE, FH,DI,NP,HM are discarded
as they form cycles, and by the time FG is added all the vertices have been connected.
The solution is illustrated in Figure 18, and has w(EK) = 51. 2

The original graph has |V| = 16, |E| = 24. It is an example of a ‘planar graph’
(meaning that when drawn on paper every intersection of edges is a vertex unlike in
Figure 16), and in this case one always has

|E| − |V| = (number of regions including the outside)− 2. (11.2)

By contrast, the MST has |EK| = 15 = |V| − 1 as predicted by Proposition 11.1.2. The
solution is not unique – we could replace the edge NL of weight 6 by PN , though NL
happened to come first in our ordering.
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Figure 18: A minimum spanning tree
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Kruskal’s algorithm epitomizes a characteristic of a class of algorithms, namely it is
‘greedy’ in the sense that it makes choices that appear to be best at every stage. It is by
no means obvious that these choices really do turn out to be best for the final solution,
and thus one needs to verify the algorithm’s ‘correctness’ by giving a

Proof of Theorem 11.2.1. Given the graph, the theorem constructs a subset EK ⊆ E
defining a spanning tree as in the example; the question is whether EK is minimal. A
MST certainly exists, and if it is not unique we can choose one that has the largest
number of edges in common with EK ; let E ′ be the set of edges of this MST.

Figure 19:
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Choose an edge e = euv in EK \ E ′ with w(e) as small as possible. The unique path
in E ′ from u to v must contain an edge e′ = e′xy in E ′ \ EK . (See Figure 19 where edges
in E ′ are shown solid, and ones in EK dashed). Similarly, the path in EK from x to y
contains an edge e′′ in EK \ E ′ (conceivably e′′ = e).
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Then w(e′) ≥ w(e) for otherwise w(e′) < w(e) ≤ w(e′′), and e′ would have been added
before e in the construction of EK (as e′′ is absent at that stage of the algorithm).
Exchanging e′ for e,

(E ′ \ {e′}) ∪ {e}
is a spanning tree with total weight no greater than w(E ′), and so an MST with more
edges in common with EK . This is a contradiction. 2

11.3 Prim’s algorithm

In the construction of EK above, the graph that eventually turns into the spanning
tree may be disconnected at intermediate stages. (Typically it consists of a disjoint union
of trees, referred to as a forest.) The following method, due independently to Jarńık and
Prim, gets round this defect and gives a way of ‘growing’ an MST.

Theorem 11.3.1 Let G be a weighted graph. Choose any vertex to start, and succes-
sively add edges of least weight joining a vertex already in the tree to one ‘outside’. The
result defines an MST for G . 2

The procedure is effectively the same as for Kruskal’s algorithm, except that one restricts
attention to edges connected to ones already chosen. Because of this, Prim’s algorithm
has the big advantage that it can be performed from the adjacency matrix, without
visualizing the graph. The adjacency matrix of a graph with n vertices is the symmetric
n× n matrix with entries w(eij) where eij is the edge joining vertex i to vertex j . By
convention, the entry 0 means i 6∼ j (though it might be more accurate to use ∞ for
this purpose).

Figure 20:
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Example 11.3.2 Below is the adjacency matrix corresponding to the mini-version of
Figure 17 illustrated in Figure 20. It is followed by an application of the matrix inter-
pretation of Prim’s algorithm, starting from vertex D .
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A B C D E F H I L

A
B
C
D
E
F
H
I
L




0 1 3 0 0 0 0 0 0
1 0 0 0 1 4 0 0 0
3 0 0 9 5 0 0 0 0
0 0 9 0 0 0 0 6 0
0 1 5 0 0 0 3 5 0
0 4 0 0 0 0 5 0 0
0 0 0 0 3 5 0 0 9
0 0 0 6 5 0 0 0 3
0 0 0 0 0 0 9 3 0








Delete column D
Circle a smallest positive number in row D
Store the corresponding edge DI





Delete column I
Circle a smallest positive number remaining in rows D,I
Store the corresponding edge IL





Delete column L
Circle a smallest positive number remaining in rows D,I,L
Store the corresponding edge IE

. . . . . .

A MST is finally determined by the edge subset

EP = {DI, IL, IE,EB,BA,AC,EH,BF},

with w(EP) = 6 + 3 + 5 + 1 + 1 + 3 + 3 + 4 = 26. Whereas EB had to be chosen before
BA, edge AC was chosen before EH only out of respect for the ordering we adopted in
the previous section. 2

We have not justified Prim’s algorithm, which again exploits the greedy principle.
The success of the latter can be extended to a wider class of mathematical objects called
‘matroids’. This theory builds on the analogy between subsets of E (of a given graph) for
which there are no cycles, and subsets of linearly independent vectors in a vector space
[4, §17.4]. Both types of subset exhibit the ‘exchange’ property that is used in linear
algebra to prove that any maximal set of linearly independent vectors has the same size,
namely the dimension of the space. The analogue for a connected graph is that any MST
has |V| − 1 edges.

The general procedure for Prim’s algorithm can be represented by a flow diagram, in
which V ′ and E ′ are the vertex and edge subsets of the tree at each stage of its growth.
To make it methodical, a strategy is once again required to select and extract a suitable
edge of least weight at each stage.
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Input
V ′ = {v0}, E ′ = ∅,
Adjacency matrixy

Does V ′ equal V?
YES−→ Output E ′yNO

Select an edge euv with
u ∈ V ′, v ∈ V \ V ′

and w(euv) minimal

↓
Replace V ′ by V ′ ∪ {v}
Replace E ′ by E ′ ∪ {euv}

? 11.4 Other problems

Drawing by numbers

One of the most natural of all graphical optimization tasks is the Shortest Path

Problem. Namely, given a weighted graph containing vertices u, v , find a path from one
to the other of least total weight (also called length). In symbols,

Find {u = v0, v1, v2, . . . , vn = v} with
n−1∑

i=0

w(vivi+1) minimal. (11.3)

As an example, the shortest path from A to P in Figure 17 has a length of 18, and is
illustrated in Figure 21 together with the shortest paths (and their lengths) from A to
all other vertices.

Given u, (11.3) is solved simultaneously for every v by Dijkstra’s algorithm, which
proceeds by assigning temporary labels to vertices indicating the lengths of shortest paths
using only some of the edges. The algorithm starts by labelling u with 0 and all other
vertices with ∞. At each intermediate stage, one ‘examines’ the vertex (or one of the
vertices) x with the least label, n, of those that have not already been examined. The
label of each vertex y such that x ∼ y is then replaced by n + w(exy) if this is smaller.
When all the vertices have been examined, every vertex z is automatically labelled with
the length of the shortest path from u to z .

The shortest paths themselves are found by including every edge exy for which
w(exy) = |`(x) − `(y)|, where `(x) denotes the final label assigned to x. (Hence the
title of this subsection.) More explanation and verification can be found in [6, §22.3] and
[12, §8.2].
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Figure 21: Shortest paths from A
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Selling by cycles

Given a connected weighted graph G , the Travelling Salesperson Problem consists
of finding a cycle that passes through every vertex exactly once (assuming that such a
‘Hamiltonian’ cycle exists) of least total weight or length. This an example of a problem
for which there is no known algorithm, other than checking through a list of all potential
solutions (that would be prohibitive for large graphs). However, an estimate on the
length of a winning cycle can be derived from knowledge of minimal spanning trees of
certain subgraphs as follows.

Let C = (v0, v1, . . . , vn−1, v0) be a solution; thus n ≥ 3 and we have distinguished
one of the vertices, namely v0 , on the cycle. Let G ′ be the graph formed from G by
removing v0 and all edges joining v0 . Then (v1, . . . , vn−1) is a spanning tree for G ′ , so

w(C) ≥ (weight of an MST for G ′) + w(v0v1) + w(vn−1v0)

≥ (weight of an MST for G ′) + (smallest two weights attached to v0).

Figure 22: Salesperson’s cycle
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If v0 = G in our original example then from Figure 18 it is clear that G ′ has an MST
of weight 51− 8 = 43. So without knowing C we can predict that

w(C) ≥ 43 + 8 + 9 = 60,

which is not far off the mark. Actually, Figure 17 possesses exactly 6 cycles that pass
through every vertex once and only once (to see this, first note that all four ‘corners’
must be included). The shortest one is shown in Figure 22 and has length 65.

Working by zeros

A rather different class of problems can be illustrated by a weighted graph G in which
the set of vertices is the disjoint union of two disjoint subsets V1, V2 with |V1| = |V2| = n,
and each element of V1 is joined by exactly one edge to each element of V2 . (Ignoring
the edge from y to z and adding weights, the graph in Figure 16 is of this type.) The
problem is then to find a subset E ′ of n edges providing a bijective correspondence
between V1 and V2 , and with w(E ′) minimal. This becomes a matter of optimal ‘job
assignment’ if V1 represents a set of jobs to be done, V2 a set of workers available, and
w(eux) measures the unsuitability of giving job u to worker x.

A successful algorithm for determining E ′ can be carried out in matrix form, in the
same spirit as Prim’s algorithm. The relevant part of the adjacency matrix of G is the
block in which the rows are labelled by elements of V1 and the columns by elements of
V2 . As an example, let

V1 = {F,B,A, C}, V2 = {H,L, I,D},

and let w(eux) equal the length of the shortest path from u to x in Figure 20. The new
adjacency block is then

H L I D

F
B
A
C




5 13 10 16
4 9 6 12
5 10 7 12
8 13 10 9




The first step consists of subtracting the least element of a row from all the elements
in that row. After this has been done for each row, one carries out the same procedure
on the columns, subtracting the least element in each column from all the elements in
that column. This reduces the above matrix to

H L I D

F
B
A
C




0 3 3 10
0 0 0 7
0 0 0 6
0 0 0 0




Because subtracting a constant from a given row or column does not affect the solution,
any choice of four 0’s such that no two are in the same row and no two in the same
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column (these are called ‘independent zeros’) now determines the four edges whose total
weight is least. There are two solutions above, namely

E ′ = {FH,BL,AI, CD} and {FH,AL,BI, CD},

both with the smallest value w(E ′) = 30 which happens to be the trace of the first
matrix.

In general, there is no guarantee that after the row and column subtractions, the
resulting matrix M = (mij) possesses n independent zeros. In this case, further steps
are required to complete the algorithm. Suppose that all the 0’s lie in a union of rows and
columns determined by respective subsets I and J of {1, 2, . . . , n} with |I| + |J | < n.
The set of entries of M is then the disjoint union

F+ ∪ F0 ∪ F−,

where mij ∈ F+ iff bith i ∈ I and j ∈ J , and mij ∈ F− iff both i /∈ I and j /∈ J . A
matrix M′ = (m′

ij) is formed by subtracting the least element f of F− from all elements
of F− and adding f to all elements of F+ , and it is easy to see that

∑

i,j

m′
ij <

∑

i,j

mij. (11.4)

IfM′ has n independent zeros their position gives the solution; if not the process can be
repeated, and (11.4) guarantees success after a finite number of steps. The correctness
of this algorithm is established in [1, §3.3].

11.5 Exercises

1. Apply Kruskal’s algorithm to Figure 17 but weighted instead

(i) by the first 24 digits 271828182845904523536029 of e, treating ‘0’ as ∞ (which
amounts to deleting the corresponding edges HM and MN );

(ii) equally, i.e. with all edges of weight 1.

In each case the resulting MST will depend (to a lesser or greater extent) on your ordering
of the edges.

2. A graph consists of 8 vertices labelled by the numbers 2, 3, 4, 5, 6, 7, 8, 9, and every
pair {i, j} (with i 6= j ) of vertices is joined by an edge of weight

(i) |i− j|;
(ii) ij ;

(iii) ij + 7|i− j|;
(iv) lcm(i, j).

In each of these four separate cases, find an MST by Prim’s algorithm, and represent it
by a sketch without attempting to draw the original graph.

3. Consider the following weighted graph. Its vertices are labelled BS, E, GP, H, KC ,
LS, NHG, OC, PC, SK, V , and correspond to 11 particular stations on intersections of
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the Bakerloo, Central, Circle, Piccadilly, and Victoria underground lines in London. Its
edges are the segments of these lines that join two vertices without passing through a
third, and the weight of an edge is assigned by counting each passage between adjacent
stations as 1 unit (e.g. H ↔ LS is 4). Find an MST using (i) Kruskal’s algorithm, and
(ii) Prim’s algorithm.

4. In the previous question, find the lengths of a shortest path from BS to each of the
other vertices. What is the length of a shortest cycle that passes through each vertex
exactly once?

5. Prove the formula (11.2) for planar graphs.

6. Is it a coincidence that the configuration of paths in Figure 21 forms a tree? Find the
configuration when Figure 17 is weighted by the digits 577215664901532860606512 of γ
(and deleting the edges corresponding to ‘0’).

7. (i) Determine by trial and error the 16 shortest paths in Figure 17 between each
vertex in V1 = {G,F,B,A} and each vertex in V2 = {P,O,K, J}. Write down the
corresponding lengths as a 4× 4 matrix M.

(ii) Let G be the weighted graph with vertex set V1∪V2 and 16 edges joining the elements
of V1 and V2 and adjacency matrix M as in §11.4. Find an optimal assignment E ′ .

8. Prove the inequality (11.4).
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12 Algorithm Analysis and Sorting

12.1 Efficiency of Euclid’s algorithm

Euclid’s algorithm was exploited in §10.2 to find the greatest common divisor of two
positive integers a, b. It consists in repeating what is essentially the same simple division
step until the remainder becomes zero. The whole process can be summarized by the
following flow diagram:

Input a, b
y

Is b zero?
YES−→ Output a

yNO

Find r = a− bba
b
c

y
Replace a by b
Replace b by r

In a computer program, the replacement operations would be represented by instructions
like a:=b; b:=r; and must be carried out in the correct order. For, if b is replaced by
r first, the old value of b will be lost and a will get replaced by r too.

Let t(a, b) denote the number of times the double replacement operation in the last
box is carried out, or equivalently the number of ‘loops’ that are executed. Observe
that t(a, b) is necessarily finite since each time b is replaced by r its size reduces; also
t(a, b) = 0 iff b = 0. Referring back to Problem 10.2.2, we see that t(a, b) is simply the
number of rows of the form a = qb+ r up to and including the first in which r = 0; thus

t(5432, 2345) = 5, t(2345, 5432) = 6.

On the other hand, t(a, b) can be deceptively small even when a and b are enormous;
for instance (using gcd1 from §10.5)

t(100! + 1, 100100 − 1) = 337. (12.1)

Without wanting to investigate the technicalities of how a computer accomplishes
the various steps of the algorithm, it is reasonable to suppose that t(a, b) will provide
a fair indication of the time taken to compute the greatest common divisor of a and b.
We are not interested in knowing exactly what the function t is, but merely some idea
of how it grows in size relative to a and b. The next result answers this question by
bringing together two topics central to the course, namely the Fibonacci numbers Fn
and asymptotic notation.
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Proposition 12.1.1

t(a, b) = O(lg b).

Proof. We may suppose that a > b > 0, for if a < b one extra loop reverses the roles of
a, b as explained in §10.2. We first show by induction on n that

t(a, b) = n ⇒ a ≥ Fn+2, b ≥ Fn+1

The statement is valid for n = 1 since if t(a, b) = 1 then b ≥ 1 = F2 and a ≥ 2 = F3 .
In general, write a = qb+ r with 0 ≤ r < b so that t(a, b) = t(b, r) + 1 and

b ≥ Fn+1, r ≥ Fn ⇒ a = qb + r ≥ Fn+1 + Fn = Fn+2, b ≥ Fn+1,

and the induction is successful.

Given b ≥ Fn+1 ≥ 2 with n = t(a, b), using Corollary 4.2.2, we get

φn < φn+1 <
√

5(b+ 1) ⇒ n lgφ ≤ 1
2
lg 5 + 2 lg b

⇒ n

lg b
≤ lg 5

2 lgφ lg b
+

2

lgφ
.

This means that there exists C > 0 such that t(a, b) ≤ C lg b for all b ≥ 2 (in fact C = 5
works) and the result follows from Definition 9.1.1. 2

A worst case scenario is exemplified by the Fibonacci numbers. If a = Fn+2 and
b = Fn+1 for some n, then Euclid’s algorithm requires n steps to arrive at a line with
remainder 0. This is because Fk divides Fk+1 once with remainder of Fk−1 for all k .
Consider, for instance, the frustrating 9-step calculation

gcd(F11, F10) = gcd(89, 55)
= gcd(55, 34)
= gcd(34, 21)
= gcd(21, 13)
= gcd(13, 8)
= gcd(8, 5)
= gcd(5, 3)
= gcd(3, 2)
= gcd(2, 1) = 1.

Nevertheless, the above proposition confirms that Euclid’s algorithm is remarkably ef-
fective at computing the greatest common divisor of a pair of large numbers.

The relative performance or ‘complexity’ of algorithms is often assessed in terms of
such an asymptotic upper bound on the number of basic operations needed to process
data of ‘size’ n. Strictly speaking, such a bound gives no information since the constant
C in Definition 9.1.1 could be enormous; in fact the choice of an optimal algorithm in
given circumstances will often depend on the data size. However, in many cases the
value of n dwarfs any hidden constant, and on an asymptotic scale we shall see that it
is too much to expect of other algorithms that they need ‘only’ O(lgn) operations.
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12.2 The sorting problem

In attempting to solve optimization problems of the type discussed in §11.3, one of
the most basic tasks required in practice is the ability to reorder a sequence of numbers
numerically. Indeed, to apply Prim’s algorithm on a computer one needs to take one step
in this direction to find a smallest number in rows of the adjacency matrix. In everyday
life, one often takes for granted the convenience of having data organized numerically,
and the effect of an operation that achieves this can even be seen on BBC at about
(currently) 8pm each Saturday night.

More precisely, the sorting problem consists in finding an algorithm or mechanical
procedure to arrange a sequence (a1, a2, . . . , an) of n real numbers into ascending nu-
merical order. This amounts to finding a permutation π of the set {1, 2, . . . , n} such
that

aπ(1) ≤ aπ(2) ≤ · · · ≤ aπ(n).

It is not a good idea though to embark on a list of all possible n! permutations, because
n! is so large in comparison to n (and each permutation would require up to n − 1
pairwise comparisons to check its validity). Instead, a brief study of some practical
sorting algorithms will illustrate the quest for more efficiency.

Example 12.2.1 The following program is run in Maple, after first defining y to be a
sequence of 10 real numbers:

for j from 1 to 9 do

for k from 10-j to 9 do

if y[k]>y[k+1] then y:=subsop(k=y[k+1],k+1=y[k],y) fi

od:

print(y)

od;

The rather complicated looking command on the third line after then merely redefines y
to be the new sequence obtained by swapping the kth and (k+ 1)st terms y[k],y[k+1]
of the old one.

If we input the sequence

y:=[8,3,5,9,2,6,5,1,7,4]:

and then the program, Maple produces the lines

[8, 3, 5, 9, 2, 6, 5, 1, 4, 7]
[8, 3, 5, 9, 2, 6, 5, 1, 4, 7]
[8, 3, 5, 9, 2, 6, 1, 4, 5, 7]
[8, 3, 5, 9, 2, 1, 4, 5, 6, 7]
[8, 3, 5, 9, 1, 2, 4, 5, 6, 7]
[8, 3, 5, 1, 2, 4, 5, 6, 7, 9]
[8, 3, 1, 2, 4, 5, 5, 6, 7, 9]
[8, 1, 2, 3, 4, 5, 5, 6, 7, 9]
[1, 2, 3, 4, 5, 5, 6, 7, 8, 9]
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The effect of the program is clear from examining the output. Each line is produced
from the previous one by moving an appropriate digit as far to the right as needed so
that there remains one less digit of the original sequence unsorted. 2

The above example requires a total of 1 + 2 + 3 + · · ·+ 9 = 45 single comparisons,
though with the given sequence only 26 swaps were actually made. The maximum
number of comparisons needed to sort a sequence of n numbers with the same method
is

1
2
n(n− 1) = O(n2). (12.2)

This is much ‘worse’ than Euclid’s O(lg n), and would require excessive time for large n,
even on a very powerful computer. For example, if each comparison is done in 10−6 of
a second, it would take well over an hour to order a modest 100000 numbers, neglecting
storage and accessing time. In the remainder of this section, we shall address the question
of to what extent there might exist other methods of sorting that improve on (12.2). This
has wide implications since, as remarked above, sorting is a constituent of many more
general algorithms.

For simplicity, we shall consider only those programs that are based on comparing
two numbers at a time. This rules out other methods that can for example be used if
all the numbers are positive integers, so that their own values can be exploited in the
ordering process. To sort n = 3 numbers (which need not be integers) as above one
actually mimics the following ‘decision tree’ in which a solid dot represents a comparison
of the two numbers underlined. If the first is less than or equal to the second, descend
to the right, if not descend to the left and interchange the two numbers. Eventually one
arrives at a square which outputs the correctly-ordered sequence. The tree has 3 ‘levels’,
so at most 3 comparisons are needed irrespective of the original order of the sequence.

Figure 23: Decision tree

(a2,a1,a3)   

(a1,a3,a2)

(a3,a1,a2)

           

(a1,a2,a3)

(a1,a2,a3)

(a1,a2,a3)(a1,a3,a2)

 (a2,a3,a1)      (a2,a1,a3)(a3,a2,a1)      (a3,a1,a2)                                    

Given a sorting algorithm for n numbers that proceeds by repeatedly comparing two
numbers at a time, let us denote the maximum number of comparisons needed by h(n).
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Proposition 12.2.2

h(n) = Ω(n lg n).

Proof. The procedure can always be represented by a decision tree as in Figure 23, but
with the maximum number of edges from top to bottom equal to h(n); thus there are
h(n) levels instead of 3. Even if all the branches of the tree are present the total number
of outputs cannot exceed 2h(n) . Each of the possible n! orderings may conceivably be
output in more than one place, but in any case the key inequality is

n! ≤ 2h(n)

This implies that

h(n) ≥ lg(n!) ⇒ h(n)

n lg n
≥ lg(n!)

n lgn
=

ln(n!)

n lnn
.

But the last term tends to 1 by Corollary 9.4.2, so certainly h(n) ≥ cn lg n for some
c > 0 and all n sufficiently large. 2

This result gives a theoretical asymptotic lower bound on h(n). Roughly speaking, it
says that however clever an algorithm we design, the best we can hope for is that the
time taken to sort n numbers will be proportional to n lg n. The function n lg n lies
between n and n2 (see the graphs in §12.4), but is ‘closer’ to n in the sense that if one
is prepared to wait 106 milliseconds ∼ 20 minutes for a result, one can probably wait
106 lg(106) milliseconds ∼ 5 1

2
hours, but not 1012 milliseconds ∼ 32 years!

? 12.3 MergeSort and HeapSort

In this section we shall show that there do exist sorting algorithms that achieve the
lower bound of Proposition 12.2.2. In other words, it is possible to sort n numbers in
such a way that the maximum number of comparisons needed is Θ(n lgn). This estimate
fits in snugly between those of Example 12.2.1 and Euclid’s algorithm.

Example 12.3.1 The ‘merging’ operation, denoted µ, combines two ordered sequences
of respective length m,n into a single ordered one of length m + n. For example,

µ((2, 3, 5, 8, 9), (1, 4, 5, 6, 7)) = (1, 2, 3, 4, 5, 5, 6, 7, 8, 9). (12.3)

The MergeSort function, denoted M , is then defined recursively by

M(a1, . . . , an) = µ(M(a1, . . . , abn/2c),M(abn/2c+1, . . . , an)), n ≥ 2,

and M(a1) = (a1) for n = 1.

The operation µ can easily be carried out methodically. The right-hand side of
(12.3) could have been arrived at by ‘stripping away’ numbers from the beginning of the
sequences on the left, repeatedly comparing the two initial numbers remaining at each
stage. After the half-way point

µ((. . . , 8, 9), (. . . , 5, 6, 7)) = (1, 2, 3, 4, 5, . . .),
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only the three comparisons between 8 and 5, 8 and 6, 8 and 7 are left to complete the
job. In general, using this method, one may merge sequences of length m,n using a
maximum of m + n− 1 comparisons.

The following scheme shows what happens when MergeSort is applied to the sequence
(8, 3, 5, 9, 2, 6, 5, 1, 7, 4) of Example 12.2.1; it is designed merely as a visual aid and is not
an accurate reflection of the order a computer might carry out the steps. The sequence is
first broken up into groups until all the subsequences have size 1, achieved in the middle
row. Then the operation µ is applied to recombine the groups in the same way.

8359265174

83592 65174

83 592 65 174

8 3 5 92 6 5 1 74

8 3 5 9 2 6 5 1 7 4

38 5 29 56 1 47

38 259 56 147

23589 14567

1234556789

2

MergeSort uses the ‘divide and conquer’ principle common to many other algorithms;
it breaks the problem up into smaller parts which can be tackled more easily. Related to
this is the concept of ‘modular’ design, whereby an algorithm is built up from subroutines
that can be inserted in various orders to form a whole. The merging operation µ, itself
accomplished by an algorithm described above, forms the building block in this case.

Proposition 12.3.2 The number h(n) of comparisons needed to MergeSort n numbers
satisfies h(n) = O(n lgn).

Proof. The MergeSort of n numbers can always be represented by the above scheme.
If 2k−1 < n ≤ 2k , there are k rows below the middle one, and the merging required to
pass from one row to the next involves less than 2k comparisons. Since k− 1 < lg n, the
total number of comparisons required is less than

k2k < (1 + lgn)21+lg n = 2(1 + lg n)n = O(n lg n).

2

Our final example has been included to illustrate an ingenious way of organizing data
in the implementation of an algorithm. This is based on the concept of a binary tree
which formalizes the structure of Figure 23, and has widespread applications. Further
details can be found in [3], from where the following summary is taken.

A binary tree is not strictly speaking a tree in the sense of §11.1. Rather it is a tree
with a finite number of vertices (also called nodes) and edges, plus some extra structure.
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First and foremost, a binary tree has a special node, called the root and (despite its
name) conventionally placed at the top of the diagram. The root is attached to 0, 1 or 2
edges which (provided at least one is present) are distinguished by the names ‘left’ and
‘right’. Each of these edges is then attached to the root of another binary tree, and in
this way the structure is defined inductively.

The existence of the root r allows one to define the ancestors of a given node x of
a binary tree as all the nodes that lie on the unique path from r to x. Moreover, x is
a child of y if y is an ancestor connected by a single edge to x, and each node has at
most a left child and a right child. Two binary trees are deemed to be different if the
same node has only a left child in one and a right child in the other (see §12.4). A node
with no children is called a leaf (shown by a square in Figure 23). Given a node x, we
shall denote by hx the number of ‘levels’ below x, i.e. the greatest number of edges on
a path from x to a leaf.

Example 12.3.3 A sequence of n numbers is first arranged as exemplified in Figure 24
for n = 10. The kth number is assigned to the kth node of a binary tree ordered a row
at a time from left to right, starting from node 1, the root. The kth node gives rise to
exactly two children, namely the 2kth and (2k + 1)st nodes, until the data runs out.

Such a structure is said to be a heap if the number assigned to each node is at least as
great as those assigned to its (0, 1 or 2) children. A heap may be regarded as a ‘partially
ordered display’; a maximum from the set of numbers will always be positioned at the
root of the heap, and can be extracted immediately.

Just as MergeSort was based on the merging operation, so the fundamental process
for HeapSort is ‘heapifying’ a given node x, which means moving numbers around so
that the data assigned to the binary tree with root x forms a heap. In carrying out this
process, it is assumed that the binary trees whose roots are the children of x already

form heaps. Heapifying a node x then consists in moving its number as far down the
tree as necessary, swapping it with the greatest of its two children until it dominates
both. The process requires a maximium of 2hx comparisons, where hx is defined above.

The HeapSort Algorithm has two parts:

Part I. This consists in converting the data into a heap. Starting from the bottom of the
tree and working backwards, nodes are heapified one at a time. In fact, node i has no
children if i > bn/2c, so one needs only start at node bn/2c and work backwards until
reaching the root r . By the time r has itself been heapified, the whole tree structure is
indeed a heap (see Figure 25).

Part II. For each i starting at n and finishing at 1, the number at the root is outputted
and (provided i ≥ 2) replaced by the number at the bottom remaining node i. This
node is then deleted from the tree along with its upward edge, and the root immediately
heapified. After part II is complete, all the elements of the original sequence have been
extracted in numerical order. (At the half-way stage in Figure 26, the operation for i = 6
has just been executed by extracting a 5 and moving 1 up to the root, which is about to
be heapified by interchanging 1 and the remaining 5.) 2
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Figure 24: Initial data
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Figure 25: A heap
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Figure 26: Output
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. . . ,5,6,7,8,9.

Let h = hr denote the number of levels below node 1, the root, so that

2h ≤ n < 2h+1. (12.4)

The number of comparisons needed to carry out part I of HeapSort is certainly no greater
than bn/2c.2h = O(n lgn), since each of the bn/2c nodes heapified has no more than h
levels below it. The number of comparisons needed for part II is no more than (n−1).2h,
so the overall bound for completing HeapSort is O(n lgn), just as for MergeSort.

The first part of this estimate can be improved:

Proposition 12.3.4 Given n numbers, the number of comparisons required to complete
part I of HeapSort is O(n).

Proof. In part I, the nodes that are heapified are (in reverse order): 1 (which has h
levels below it); 2,3 (which have h− 1 levels below); 4,5,6,7 (h− 2 levels below), and so
so. The maximum number of comparisons required to heapify a node x equals 2hx , so
the sum of these maxima is no greater than twice

1.h + 2.(h− 1) + 4.(h− 2) + · · ·+ 2h−1.1 =
h∑

i=1

2h−i.i

< 2h.

∞∑

i=1

i2−i

≤ 1
2
n,

using (7.7) and (12.4). 2

This result is expressed by saying that a heap can be built in ‘linear time’. It has
applications for the graphical algorithms discussed earlier, since the problem of selecting
an edge of least weight can be solved by organizing relevant data into a heap. With
this technique, it can be shown (see [3, §23]) that Prim’s algorithm can be implemented
with complexity O(|E| lg |V|), where |E| is the number of edges and |V| the number of
vertices of the graph.
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12.4 Exercises

1. The following procedure computes the nth Fibonacci number:

f:= proc(n)

if n<2 then n

else f(n-1)+f(n-2) fi

end:

(i) How many times is the recursive definition after else applied to compute f(8)?
Show that, if tn denotes the number of times this is applied to compute f(n) then
tn = tn−1 + tn−2 + 1. Deduce from §4.2 that tn = O(2n).

(ii) Make a table of some large integers n and the times a computer takes to output f(n).
Explain why inserting option remember: as a new second line drammatically improves
the results.

2. Let G be a weighted graph with n vertices. Show that the number of comparisons of
pairs of numbers needed to complete Prim’s algorithm from the adjacency matrix of G
is O(n2).

3. Let Cn denote the number of binary trees with n nodes, and let f(x) =
∞∑
k=0

Ckx
k be

its GF (with C0 = 1). The picture shows that C1 = 1, C2 = 2 and C3 = 5. Verify that
C4 = 14. By considering the root and its two subtrees, prove that xf(x)2−f(x)+1 = 0.
(A related example is carried out in [1, §4.1], but without the distinction between left
and right that exists for binary trees.)

4. Solve the quadratic equation for f(x) in the previous question. Expand the square

root, and prove that Cn = 1
n+1

(
2n
n

)
. Deduce from §9.4 that Cn = O(22n).

5. A comparison of the growth of the sequences n2 , n lgn and n is sometimes represented
by plotting their respective graphs with ‘log scales’ as in Figure 27. But exactly what
functions are being plotted here (there is a clue in §4.2)? And how would n2/ lgn and
n lg lg n fit into the picture?

6. Use the identity (4.12) to prove the remarkable equation

gcd(Fm, Fn) = Fd, where d = gcd(m,n).

7. Match up the following description of HeapSort in Maple with the vaguer English
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Figure 27:

description in the text. Heapifying node i of a binary tree representing the n terms of a
sequence x is given by the procedure

heapify:= proc(i,n,x)

local m,y: y:=x:

if 2*i<=n and y[2*i]>y[i] then m:=2*i else m:=i fi:

if 2*i+1<=n and y[2*i+1]>y[m] then m:=2*i+1 fi:

if m>i then y:=subsop(i=y[m],m=y[i],y); y:=heapify(m,n,y) fi:

y

end:

Part I is then accomplished by

for i from trunc(n/2) by -1 to 1 do

x:=heapify(i,n,x)

od;

and part II by

for i from n by -1 to 2 do

x:=subsop(1=x[i],i=x[1],x):

n:=n-1: x:=heapify(1,n,x)

od;

Try this out on the usual suspects

n:=10; x:=[8,3,5,9,2,6,5,1,7,4]:

8. Maple has its own built-in sorting command, which is in fact based on a variant of
MergeSort. Read ?sort to find out what this is capable of.
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