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1 Preliminaries

1.1. Course summary

A mixture of elementary and abstract ideas. . .

First part: Euclidean plane geometry

Postulates for distances, lines, angles and similar triangles.

Sums of angles, Pythagoras’ theorem, regular polygons.

Perpendicular bisectors, parallel lines, transversals.

Circles. Tangents, inscribed angles.

Second part: “Higher geometry”

Classification of isometries of the plane.

A bit of analytic geometry in 2 and 3 dimensions.

The sphere. Spherical triangles.

Hyperbolic geometry (which is like that on a sphere of radius
√
−1)

1.2. Historical perspective

600BC: Thales’ theorems. Ratios of intercepting line segments, angles subtended inside
a circle.

550BC Pythagoras’ theorem. Gives a simple construction of irrational lengths. But how
can one list triples of integers a, b, c so that a2 + b2 = c2 ?

300BC: The Elements. Euclid’s masterpiece (13 books, 6 on plane geometry) includes
the postulates:

E1. A straight line segment can be drawn joining any two points.

E2. Any straight line segment can be extended indefinitely to a straight line.

E3. Given any straight line segment, a circle can be drawn having the segment as radius and
one endpoint as center.

E4. All right angles are congruent.

E5. If two lines are drawn which intersect a third in such a way that the sum of the inner
angles on one side is less than two right angles, then the two lines must intersect each other
on that same side if extended far enough.
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The fifth requires one to imagine infinity. Repeated attempts were made to prove that
it either followed from the other postulates or is not “inevitable”. It is equivalent to

P5 (Playfair’s 1795 version: the Parallel Postulate). Given a line ` and a point P not on `
there is one and only one line through P that does not meet ` .

We shall investigate hyperbolic geometry in which there infinitely many lines through P
that do not meet `, and yet Euclid’s other postulates hold. It was discovered through
work of

• Gauss (1777–1855)
• Lobachevsky (1792–1856)

• Bolyai (1802–1860)

• Beltrami (1835–1900)

and others. Far-reaching generalizations were developed by

• Riemann (1826–1866)

who founded what is now called Riemannian geometry that was studied by

• Clifford (1845–1879, he was at King’s as a teenager), and

• Einstein (1879–1955)
to formulate the theory of General Relativity. Non-Euclidean geometry is nowadays
an essential tool in physical theories that attempt to unite gravitation with other fun-
damental forces. Returning to E1, one is reminded that to construct a straight line in
practice one uses a DIY laser, and photons travel along geodesics in space-time.

1.3. Logical arguments

A cornerstone of The Elements is the rigorous use of laws of deduction, starting from
small number of postulates. There is a sense in which the whole of mathematics has
developed as the study of such axiomatic systems. Here is a simple example, based
on the following axiom (that we shall adopt):

Given two distinct points, there is one and only one line passing through them.

From this, we can deduce the

Proposition. Any two distinct lines `,m have at most one point in common.

Proof. Suppose (just for a moment) that P,Q are distinct points that lie on both `
and m . Then both ` and m pass through P and Q , contradicting the axiom. So our
supposition cannot hold, and we have proved the Proposition. �

This method is called “proof by contradiction” or “reductio ad absurdam” (RAA).
Here is a famous algebraic example:

Proposition.
√

2 is irrational: there are no integers p, q such that
√

2 = p/q .
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Proof. Suppose (just for the moment) that
√

2 = p/q with p, q integers. We can also
suppose that p, q are not both even, by first cancelling any factors of 2 top and bottom.
Then

p2/q2 = 2, so p2 = 2q2,

and p2 is even. It follows that p itself must also be even (why?). So p = 2m for some
integer m, and

4m2 = 2q2, so 2m2 = q2,

and q2 and q are also even. But now both p and q are even, which contradicts our
supposition. Therefore we cannot write

√
2 as a rational number p/q . �

1.4. Maps and their inverses

In mathematics, any object a can always be thought of as belonging to some set A =
{a, . . .} , chosen to best reflect the characteristics of the element a we are interested in.

A mapping, map, or function f : A → B between two sets A ,B is an assignment of a
point f(a) of B to every point a of A :

a ∈ A ⇒ f(a) ∈ B.

(Geometers say “point” instead of “element” because they regard any set as a “space”
of some sort!) We also write

a 7→ f(a).

The set of elements of B that “come from” A is called the image of f :

Im f = {b ∈ B : b = f(a) for some a ∈ A } = {f(a) : a ∈ A},

more usefully denoted f(A ) .

The mapping f is called

• injective or one-to-one if f(a) = f(a′) ⇒ a = a′ ,f for all a, a′ in A ;

• sujective or onto if f(A ) = B ;

• bijective if both the above are true.

Let us discuss these concepts in more detail.

A map f : A → B is injective if no two elements of A map to the same element of B .

A map f : A → B surjective if every element of B is “f of something in A ”. If this
is not true, all we have to do is replace B by the image f(A ) , since f always defines
a surjective mapping A → f(A ) .

If A and B are finite sets (which in this course they won’t usually be) of size |A | and
|B| , it is easy to see that

• f is injective ⇒ |A | 6 |B| ;
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• f is surjective ⇒ |A | > |B| ;
• f is bijective ⇒ |A | = |B| .

Moreover, if |A | = |B| then f is injective iff it is surjective, and clearly there exists a
bijective map f : A → B . More generally, two (possibly infinite) sets are said to have
the same cardinality if and only if there exists a bijection from either one to the other.

A bijective mapping (also called bijection) sets up a correspondence in which each
element of A can be paired with exactly one element of B and vice versa. In this
case, given b ∈ B, there exists a unique element in a ∈ A such that f(a) = b. We
denote this element a by f−1(b), so

f(f−1(b)) = b.

In this way, we have defined a mapping B → A called the inverse of f, and any
element a ∈ A satisfies

f−1(f(a)) = a.

If f is injective then it defines a bijection from A to f(A ) , and f−1 is defined as a
mapping f(A )→ A . But even if f is not bijective, one uses the notation

f−1(b) = {a ∈ A : f(a) = b}

to indicate the subset of all elements of A mapping to b (it is called the inverse image
of b and it may be that f−1(b) = ∅). In this context, the symbol “f−1 ” has no meaning
on its own.

Examples. 1. Let A = {1, 2, 3} . There are 33 different mappings f from A to A
because we can freely choose the images f(1), f(2), f(3) . One possibility is

f : 1 7→ 1, 2 7→ 1, 3 7→ 1;

this is an example of a constant mapping – the image is a singleton set. A bijection from
A to itself is called a permutation, and there are only 6 of these because once we know
f(1) , there are only two choices for f(2) and (then) none for f(3) . One example is

f : 1 7→ 1, 2 7→ 2, 3 7→ 3;

this is called the identity mapping and can always be considered when A = B . More
generally, a set of size n has a total n! permutations, including the identity one.

2. If A = B = Z is the set of integers then the map d (for “doubling”) that sends n to
2n is injective. If E is the set of even integers then d defines a bijective mapping from Z
to E even though E is a proper subset of Z . Paradoxically, it is even possible to define
a bijection from Z (or indeed N) to the set Q of all rational numbers. Consequently
the infinite sets Z , N , Q all have the same cardinality.
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1.5. Real-valued functions

The previous theory is most familar when A = B = R , in which case a mapping is an
ordinary function. In this section, we present some examples of functions to illustrate
a geometrical way of thinking.

Examples. 1. If f(x) = x2 then the image of f is

f(R) = {x ∈ R : x > 0},

the set of non-negative numbers, also denoted [0,∞) . Since this is not the whole of R .
we see that f is not onto; for example there is no real number x such that f(x) = −1 .
Nor is f injective; for example f(2) = f(−2) = 4 and we can write f−1(4) = {−2, 2}
(even though f−1 does not exist).

2. The function f(x) = x3 is, by contrast, bijective – any negative number has a nega-
tive cube root. There is a notational ambiguity, since both the following are correct:

f−1(8) = 2 or f−1(8) = {2}

(One of the few occasions in which curly brackets don’t matter!)

3. If f(x) = ex then the image

f(R) = {x ∈ R : x > 0} = (0,∞)

is the set of positive numbers. We can therefore regard f as a bijective mapping from
R to (0,∞) . The inverse of this mapping is (by definition) the natural logarithm:

f−1(c) = loge c = ln c, c > 0.

-4 -2 2 4

-4

-2

2

4
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It is clear from the (upper or blue) graph of f that it is bijective, but it is a bit harder
to prove that f is bijective and therefore that the logarithm function really does exist.
(In fact, f is injective because x < y ⇒ ex < ey ; surjectivity requires a more advanced
result about continuous functions.)

In general, if the inverse of a function f exists, the graph of f−1 is the reflection of
that of f in the diagonal line x = y . This is because, if y = f(x) then the point

(y, f−1(y)) = (f(x), x)

is obtained by swapping the coordinates of (and so reflecting) the point (x, f(x)) on
the graph of f. Overleaf the graph of the inverse function x 7→ lnx is the lower one.

This is a powerful geometric aid: for example, it is now clear (from seeing the graph
of ex ) that there is no real number such that ex = x. For if there were, the point (x, ex)
would lie on both the graph of f and the line x = y.

2 Principles of plane Euclidean geometry

We shall adopt an informal set of axioms developed by G. Birkhoff in the 1930’s, con-
sistent with Euclid’s, to describe geometry in two dimensions. Athough these axioms
are satisfied for the usual system in which points can be represented by Cartesian co-
ordinates (x, y) , we should not at this point assume that lines, distances and angles
have their usual meaning.

In addition to the set R of real numbers and its various properties such as order, we
shall suppose that we are given a set of points called the plane and distinguished sub-
sets called lines. We shall also suppose that we can associate to any two points a num-
ber that represents their distance apart, and to any two lines two numbers (differing
by π ) that represent the angle at which they meet (see diagram on page 9).

These concepts are clarified by means of five postulates or axioms, labelled B1–B5,
“B” for Birkhoff. They are reproduced below with the lecturer’s wording. Since lines
are subsets of the plane and points belong to lines, we can use the language of sets
and write A ∈ ` to assert that a point A lies on a line ` . This may seem self-evident,
but it was not a feature of earlier axiomatic approaches.

These postulates are all valid in the Cartesian setting, but in
order to appreciate their significance, it is instructive to ask
whether each one holds for

• the Fano plane, described in Sheet 1, containing just 7
points and 7 lines;

• the surface of a sphere in which lines are great circles
(each one is the intersection of the sphere with a plane pass-
ing though its centre, like the ones shown).
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2.1. Lines and distance

The first postulate is

B1. Given any line `, there is a bijection f : `→ R that measures distances.

The existence of a such a map f allows us to label each point of a line unambiguously
with a real number. We can choose to put 0 where we want, but distances along the
line must coincide with distances in R. Therefore the distance between two points A
and B must equal |f(A) − f(B)| ; we shall denote this distance |AB| and pronounce
it the “length AB”. Once we have understood the consequences of having such a bi-
jective correspondence, we need never refer to f again.

B1 fails for the Fano plane because there cannot be a bijection between a finite set (like
`1 = {1, 2, 3}) and an infinite set (like R). It fails for the sphere (with the usual notion
of distance measured along the surface) because any two points on a great circle are
never more than a distance πr apart (r is the radius of the sphere), whereas points in
R can be as far apart as we please.

Postulate B1 yields the notion of “betweenness” for points on a line, something that
is missing in Euclid’s treatment. Given A,B ∈ `, we can speak of

• the line segment AB that consists of all points C ∈ ` for which

f(A) 6 f(C) 6 f(B) or f(B) 6 f(C) 6 f(A).

• the half-line or ray
→
AB that consists of all points on the line ` that contains AB

and all the points on the other side of B with respect to A .

It follows that
` =

↔
AB =

→
AB ∪

→
BA, AB =

→
AB ∩

→
BA.

Our second postulate strengthens Euclid’s first:

B2. There is exactly one line passing through two given points.

It follows (see page 2) that two distinct lines `,m have at most one point P in common. In
set theory notation, we can write ` ∩m = {P}.

B2 is true for the Fano plane. It fails for the sphere because antipodal points (meaning
opposite points on a diameter) are contained in infinitely many great circles. However
it is true if we restrict attention to (say) the upper hemisphere excluding the equator.

2.2. Angles

These are formed by two separate rays
→
OA,

→
OB with the same starting point O.

B3. If R is the set of rays with a given startpoint, there is a bijection g: R → [0, 2π) that
measures angles in radians.
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In the Cartesian set-up, we can place the origin at O and take
↔
OA to be the x-axis.

Rays are then represented by points of a circle of radius 1 centre O , and we can take
g−1 to be the mapping θ 7→ (cos θ, sin θ) (or, θ 7→ (cos θ,− sin θ) if we prefer to move
clockwise.) Radians are chosen to make this formula simple, but recall that

2π radians = 360o = one full turn

2π (or any integer multiple of 2π ) is excluded because it defines the same angle as 0 .
In general, B3 tells us that the angle between

→
OA and

→
OB , denoted by ∠AOB , equals

the number
θ =

∣∣∣g(
→
OA)− g(

→
OB)

∣∣∣.
With a different choice of the ray that g maps to 0 , this angle could become 2π − θ .

Note. Birkhoff’s third postulate actually has a second part, involving continuity, which
guarantees that rays intersect the opposite side of any triangle in a continuous way.

By a straight angle, we shall mean the case in which the two rays form different parts
of the same line.

B4. All straight angles correspond to π radians.

B3 fails for the Fano plane because there are only three rays emanating from each
point. Both B3 and B4 are however valid for the sphere – we can measure angles at
a point on the surface by considering the tangent vectors to great circles (think what
happens at the north pole, which is equivalent to any other point on the sphere).

Let us consider a consequence of B3 and B4. Since the two rays
→
OA,

→
OB can both be

extended unambiguously to lines (by B2) that “look like” R (by B1), we can choose
points C,D on the “other sides” of O so as to specify four angles, namely

∠AOB, ∠BOC, ∠COD, ∠DOA.

O

A

BC

D

Α

In the picture, angle α = ∠AOB is the smaller of the two angles formed by our two
rays, and we can also denote it by ∠BOA (in this notation there is no sign and the
exact positions of A,B are irrelevant).
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Postulate B4 reinforces our understanding of angle measurement. Since α = ∠AOB,
and ∠AOC, ∠BOD are straight, it tells us that

∠BOC = π − α = ∠DOA = ∠AOD,

and it follows that ∠COD = α. This is the well-known statement that opposite angles
are equal.

A special case occurs if α = π/2, for then all four angles are equal. A line is said to
be perpendicular to another line if both intersect at a point at which all four angles are
equal. We can deduce from B3 and B4 the

Proposition. If P lies on ` there is exactly one line through P perpendicular to `.

Warning. We have not yet established the analogous statement in which P is a point
not on `. This is true, but does not follow so quickly from the postulates.

2.3. Similar triangles

Three points A,B,C that are not collinear (meaning that they do not lie on some line)
determine a triangle whose sides are the line segments BC , CA , AB. By B2, the 3
sides cannot intersect in points other than A,B,C, which we call the vertices of the
triangle. We denote the lengths of the sides by

a = |BC|, b = |CA|, c = |AB|.

The corresponding angles are

α = ∠A = ∠BAC, β = ∠B = ∠CBA, γ = ∠C = ∠ACB,

and we shall assume that these angles are all less than π. (There is a subtle point here,
related to the note on page 9, which we shall gloss over.)

Definition. Two triangles are similar if the 3 angles of one equal the 3 angles of the
other, and the corresponding sides are proportional.

Accordingly, to say that two triangles 4ABC , 4A′B′C ′ are similar means that their
respective angles and lengths are related by all of the following equations:

α′ = α, β′ = β, γ′ = γ,

a′ = ka, b′ = kb, c′ = kc,

for some real number k > 0. We write 4ABC ∼ 4A′B′C ′ , or 4ABC k∼ 4A′B′C ′ if it
is important to mention k . If the factor k of proportionality equals 1 then the triangles
are said to be congruent.

Our last postulate asserts that we can draw this conclusion by assuming only half the
equations:
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B5 (the “SAS” rule). Two triangles are similar if an angle of one equals an angle of the other
and the sides forming these angles are proportional in length.

If the triangles are again 4ABC and 4A′B′C ′, this means that

α′ = α, b′ = kb, c′ = kc

⇒ β′ = β, γ′ = γ, a′ = ka.

The assumption involving k can be replaced by b′/b = c′/c, and then (by way of
conclusion) this number will also equal a′/a. The drawing is based on straight lines
we are familiar with:

A B

C

A' B'

C'

B5 is a postulate: in this course, never try to prove it!

Warning . B5 is false if the two sides are not those adjacent to the angle (Sheet 1).

3 Similarity theorems

3.1. The AA rule

Theorem (AA). Two triangles are similar if two angles of one equal two angles of the other.

Proof. We can label the triangles 4ABC,4A′B′C ′ so that ∠A = ∠A′ and ∠B = ∠B′ .
Suppose that c′ = |A′B′| = k|AB| = kc with k > 0. If we knew that |B′C ′| were equal
to k|BC| then the two triangles would be similar by B5. In any case, by B1, we know
that there exists a point C ′′ on

→
B′C ′ for which |B′C ′′| = k|BC| :

A B

C

A' B'

C'

C''
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Triangles 4ABC , 4A′B′C ′′ now share proportional lengths adjacent to a common
angle ∠B′ = ∠B. They are therefore similar by B5 and as a consequence,

∠B′A′C ′′ = ∠A.

By hypothesis, this angle also equals ∠A′. The rays
→
A′C ′,

→
AC ′′ must now coincide

since (by B3) they are determined by their angles with
→
A′B′. Therefore

C ′ = C ′′

(
→
AC ′ can’t meet

→
B′C ′ in more than one point), and 4ABC is similar to 4A′B′C ′. �

3.2. Isosceles triangles

Recall that two triangles 4ABC , 4A′B′C ′ are said to be similar if corresponding an-
gles are equal, and corresponding sides are proportional. The notion “corresponding”
involves the bijection

A 7→ A′, B 7→ B′, C 7→ C ′,

assuming the vertices are ordered consistently.

Theorem. If two sides of a triangle are equal then the angles opposite these sides are equal.

Proof. Suppose that b = a. The idea is to re-label the vertices according to the scheme

A′ = B, B′ = A, C ′ = C,

so that α′ = β and β′ = α. We can now legitimately apply B5 with k = 1 to 4ABC
on the one hand, and 4A′B′C ′ = 4BAC, on the other, considered as two different
triangles. They have a common angle ∠C = ∠C ′, whose adjacent sides are propor-
tional with k = 1 since a = b = a′ and b = a = b′ . The SAS rule allows us to conclude
that 4ABC and 4BCA are similar (indeed, congruent), and in particular ∠A = ∠A′

and ∠B = ∠B′. Thus, ∠A = ∠B or α = β. �

A triangle satisfying the hypothesis of Theorem 1 is called isosceles.

Theorem. If two angles of a triangle are equal then the opposite sides are equal in length.

Proof. This result is the converse of Theorem 1, and is proved by applying AA in place
of SAS.

3.3. The SSS rule

This section is devoted to establishing another known criterion for similarity. The
proof is longer and is based on isosceles triangles.

Theorem (SSS). Two triangles 4ABC , 4A′B′C ′ are similar if their respective sides are
proportional.
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In symbols, this means

a′ = ka, b′ = kb, c′ = kc for some k > 0

⇒ α = α′, β = β′, γ = γ′.

Proof. We begin by constructing a triangle 4A′B′C ′′ such that ∠A′B′C ′′ = ∠ABC
and |B′C ′′| = |B′C ′| = k|BC|. The diagram assumes that β = ∠ABC < π/2, but the
following proof works without this assumption.

A B

C

A' B'

C'

C''

By construction, 4ABC and 4A′B′C ′′ share a common angle, and the sides adjacent
to this angle are proportional. If follows, by the SAS rule, that they similar, and this
tells us that

∠A′C ′′B′ = ∠ACB and |A′C ′′| = k|AC|.
Since |A′C ′| = k|AC|, Theorem 1 tells us that 4A′C ′C ′′ is isosceles and its angles at
C ′, C ′′ are equal. The same argument applies to 4B′C ′C ′′, so its angles at C ′, C ′′ are
also equal. Now ∠A′C ′B′ is determined by ∠A′C ′C ′′ and ∠C ′′C ′B′ (in the diagram,
it is their sum). Similarly for ∠A′C ′′B′, so

∠A′C ′B′ = ∠A′C ′′B′.

It follows that from the SAS rule (with this common angle) that 4AB′C ′ ∼ 4A′B′C ′′.
But 4A′B′C ′′ ∼ 4ABC, so we can conclude that 4A′B′C ′ ∼ 4ABC, which is what
we want. �

The last step of the proof makes us of the fact that if T1,T2,T3 are three triangles then

• T1 ∼ T2, T2 ∼ T3 ⇒ T1 ∼ T3.

This follows easily from the definition of similarity, as do the following properties:

• T1 ∼ T1,

• T1 ∼ T2 ⇒ T2 ∼ T1,

valid for all triangles T1,T2. A relationship (between objects in a set) like ∼ that satis-
fies all three properties is called an equivalence relation. We shall meet more examples.
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3.4. Angles sum to 180o !

Recall that the three angles of a triangle are by assumption all less than π . We are
finally in a position to prove

Theorem. The angles of a triangle add up to π radians.

Proof. Given 4ABC, let L,M,N be the respective midpoints of the sides opposite
A,B,C. For example, |BL| = |LC|, and the existence of L is guaranteed B1. We have
already seen (on Sheet 2, using B5) that the coloured triangles (with their vertices in
the obvious order) are similar to 4ABC. In particular

∠A = ∠BNL, ∠B = ∠ANM,

as indicated.

Α Β

Γ

ΑΒ
Γ

A B

C

LM

N

The middle triangle has all its lengths half as big as those of 4ABC. So applying SSS
(with k = 1

2
) we deduce that 4LMN ∼ 4ABC. The vertices are listed in the correct

order, so it is ∠LNM that corresponds to ∠C.

We know (by B3) that the straight angle ∠ANB is the sum α+β+γ of the three angles
shown, which (by B4) must equal π radians. �

If a triangle has three equal sides it is called equilateral. By SSS, all its angles are equal.

Corollary. An equilateral triangle has all its angles equal to π/3 , and any two are similar.

4 Pythagoras’ theorem

In a triangle ABC with a right angle at C, the (length c of the) side opposite the right
angle is called the hypotenuse. The following fundamental theorem lies at the heart of
algebra, geometry and calculus.
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Theorem (Pythagoras). If ∠BCA = π/2 then a2 + b2 = c2.

Here is a “binomial proof” that relies on the concept of area (which we shall not how-
ever develop in this course). Four congruent right-angled triangles are arranged cycli-
cally around the inside of a square of length a+ b :

a

b

b

c
(a+ b)2 = a2 + 2ab+ b2

(a+ b)2 = c2 + 4 · 12ab

4.1. Two more proofs

Proof using B5. Suppose that 4ABC has lengths a, b, c, and a right angle at C. Extend
(or diminish) the segments CA,CB to CA′, CB′ by a factor b so as to form the green
triangle. Then scale by a factor a so as to construct the orange triangle 4CB′′B′ with
the ray

→
CB′ bisecting the straight angle ∠A′CB′′. By B5 (SAS), the green and orange

triangles have hypotenuses of length bc and ca respectively.

ab

b2 a2

bc ac

CA'

B'

B''

The big triangle now has angles ∠A′ , ∠B′′ in common with each of the smaller ones,
and is therefore similar to 4ABC by the AA rule. From the sides adjacent to B′ , the
factor of proportionality must be k = c, and it follows that

b2 + a2 = c · c,
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by the definition of similarity. �

Here is a variant of this argument in which we construct a similar diagram but work-
ing within the given triangle ABC. It involves dropping a perpendicular from C to
AB so that the two angles at P are π/2. It follows from the AA rule that the two
smaller triangles are both similar to 4ABC, and so

d

a
=
a

c
,

c− d
b

=
b

c
,

where d = |PB|. Then
cd = a2, c(c− d) = b2,

again giving c2 = a2 + b2.

A C

B

P d

The problem with this proof is that as yet we have no direct way of constructing the
perpendicular CP . We could fix P by requiring that |PB| = a2/c (as was done to get
the computer to draw the picture!). In this case ∠CPB will be π/2 , but then the proof
is very similar to the one we have already given above.

4.2. Perpendicular bisectors

Let AB be a line segment with midpoint M, so that |AM | = |MB|.

Definition. The line m passing through M and making angles of π/2 with
↔
AB is

called the perpendicular bisector of AB.

We know that M exists by B1, and m is unique since rays emanating from a point are
completely determined by the angle they make (B3).

Lemma (on perpendicular bisectors). The perpendicular bisector m of AB consists of
exactly those points equidistant from A and B, so in symbols:

m = {P : |AP | = |BP |}.
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Proof. To prove that two sets are equal, we need to show that an element of one
belongs to the other and vice versa.

If P ∈ m then 4AMP and 4BMP are congruent by SAS (with equal sides adjacent
to right angles). It follows that |AP | = |BP |. (One could also use Pythagoras’ theorem
here, although the first argument is more direct.)

Conversely, if |AP | = |BP | then 4AMP and 4BMP are similar by SSS so all their
angles are equal. In particular, ∠AMP = ∠BMP, so both are π/2. Therefore,

↔
MP is

the perpendicular bisector of AB. �

Theorem (on the existence of perpendiculars). Given any line ` and a point P, there
exists exactly one line m containing P and meeting ` at an angle of π/2.

Proof. If P ∈ ` this is true by B3. So assume that P 6∈ `. Choose any point A ∈ ` and
consider the segment PA. By B3, we can construct a ray AP ′ so that ` bisects ∠PAP ′.
We can also choose P ′ so that |AP | = |AP ′| :

A

P

P'

M{

Consider the midpoint M of PP ′; we do not yet know that AM is part of `. But, by
SSS, 4AMP and 4AMP ′ are similar and so ∠PAM = ∠P ′AM. It follows

↔
AM does

bisect ∠PAP ′ and so equals `. It is also the perpendicular bisector of PP ′ (by the
lemma or because ∠AMP = ∠AMP ′ ). Therefore ` and PP ′ meet at π/2 and

↔
PP ′ is

the line m we are seeking.

The perpendicular m =
↔
PM is unique because if there were two such lines

↔
PM ,

↔
PM ′

then we obtain a triangle PMM ′ with a non-zero angle at P and ∠M = ∠M ′ = π/2,
which is impossible. �

4.3. Altitudes of a triangle

Definition. The line from a vertex of a triangle perpendicular to the opposite side is
called an altitude.

Suppose that the altitudes from A,B,C meet
↔
BC ,

↔
CA ,

↔
AB in the points A′, B′, C ′,

and consider the respective lengths a′ = |AA′| , b′ = |BB′| , c′ = |CC ′|.

17



A'

B'

C'

A

B

C

a

b

a'

b'

We must have aa′ = bb′ = cc′, since any one of these products equals twice the area
of 4ABC. However, we shall not discuss area further, and to prove (for example) the
equality aa′ = bb′ one can merely apply the AA rule to 4AA′C and 4BB′C.

Later we shall show that the three altidues of a triangle ABC are always concurrent,
that is they meet in a common point H , called the orthocentre of the triangle. If 4ABC
is obtuse (meaning one of its angles is greater than π/2, as in the diagram) then H will
lie outside of the triangle.

Here is another use of altitudes. It is natural to define the distance between two points
A,B of the plane as the length |AB| of the segment AB. We shall also express this
number as d(A,B), to emphasize that it is a function of the two points. This function
satisfies three rules:

• d(A,B) = 0 if and only if A = B;

• d(A,B) = d(B,A);

• d(A,B) 6 d(A,C) + d(C,B) for any points A,B,C.

The first two are inherent in Postulate B1. The third is easy to check if A,B,C lie on
the same line, since |AB| = |AC| + |CB| if C ∈ AB whereas |AB| is less than either
|AC ′| or |C ′B| if C 6∈ AB. In general, the third rule is called triangle inequality, because
it is equivalent to the

Corollary (of Pythagoras’ Theorem). The sum of any two sides of a triangle (with
non-zero angles) is greater than the third side.

Proof. If we construct the altitude from C meeting
↔
AB in C ′, then the segments

AC and CB are the hypotenuses of right-angled triangles, and so |AC ′| < |AC| and
|C ′B| < |CB|. But A,C ′, B lie (not necessarily in that order) on the same line, so from
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above
|AB| 6 |AC ′|+ |C ′B|.

Therefore, |AB| < |AC|+ |CB|. �

5 Pythagorean algebra

In this section we analyse the equation

a2 + b2 = c2

algebraically. To factorize the left-hand side we need complex numbers.

5.1. Complex numbers

If z = a + ib with a, b ∈ R and i =
√
−1 then its complex conjugate is defined to be

z = a− ib. This enables us to write

zz = (a+ ib)(a− ib) = a2 + b2.

Right-angled triangles come into play when we represent complex numbers in the
plane as if they are vectors. The hypotenuse c represents the modulus or length of z,
denoted |z|. With these definitions, Pythagoras’ theorem becomes the identity

|z|2 = zz.

If we scale down by 1/|z|, we obtain a complex number of modulus one that can be
used to define the trigonometic functions:

1

|z|
z =

1

c
(a+ ib) = cos θ + i sin θ,

and remind us that cos2θ + sin2θ = 1. The right-hand side can also be written in
exponential form eiθ, leading to the very useful formula of de Moivre:

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n

Since
zw = (a+ ib)(c+ id) = (ac− bd) + i(ad+ bc),

if we change the sign of i we discover that

z w = zw, z, w ∈ C.

This now implies that

|zw|2 = zw · zw = (z z)(ww) = |z|2|w|2,
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confirming that the modulus of a product is the product of the moduli:

|zw| = |z||w|.

5.2. Algebraic numbers

Like
√

2 , the number i is algebraic since it is a root of a polynomial equation (in this
case, z2 + 1 = 0) with integer coefficients.

Definition. A complex number z is said to be algebraic if it satisfies a polynomial with
integer coefficients:

anz
n + · · ·+ a1z + a0 = 0,

with ai ∈ Z. (It would be equivalent to say “rational coefficients” since we could
multiply out all the denominators to get a polynomial like the one on the left above.)

It is known that both π and e are transcendental, meaning “not algebraic”. But of
course eiπ is algebraic since it equals −1! Other examples of transcendental numbers
include 2

√
2, eπ, and the solution x to the equation xx = 2 (proved to be irrational

on Sheet 1). But there are many numbers for which it is not known whether they are
algebraic or not.

Proposition. The real numbers cos θ and sin θ are algebraic whenever the angle θ is a
rational multiple of π.

Proof. The assumption is that θ = mπ/n with m,n ∈ Z (and n 6= 0). Let

z = cos θ + i sin θ = eimπ/n.

Then
z2n = e2mπi = 1,

so certainly z is algebraic: it satisfies z2n − 1 = 0.

Now it turns out that if one adds adds (or substracts, or multiplies or divides) rational
multiples of algebraic numbers, the result remains algebraic. It follows that a = cos θ
and b = sin θ are both algebraic. But one can also prove this directly by expanding

z2n = (a+ ib)2n

by the binomial theorem, and then equating real and imaginary parts and using the
equation a2 + b2 = 1. This will give polynomial equations for a and b (try it for n = 2
when one knows that a and b are each one of 0, 1,−1). �

Example. cos
π

5
= σ/2, where σ = (1 +

√
5)/2 = 1.618 . . . is the golden ratio that

satisfies the equation 1 +
1

σ
= σ.
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Α

Β

1

To see this, consider a regular pentagon with all sides 1 and all interior angles equal
(to 3π/5). It follows easily that α = π/10 and β = π/5 = 2α in the picture. Measure-
ment of the blue diagonal segment yields

2 cos(2α) = 2 sinα + 1.

But cos(2α) = 1− 2 sin2 α, so s = sinα satisfies 2(1− 2s2) = 2s+ 1, or

4s2 + 2s− 1 = 0.

We know that s > 0 , so

s =
−2 +

√
20

8
=
−1 +

√
5

4
,

and 2 cos(2α)2s+ 1 = (1 +
√

5)/2, as claimed. �

Warning. Not all algebraic numbers can be built up from integers using combinations
of nth-root symbols n

√
.

5.3. Pythagorean triples

Definition. A Pythagorean triple is a set (a, b, c) of three integers such that (in order)
a2 + b2 = c2.

We may as well suppose that all of a, b, c are non-zero, and positive. Examples are

(3, 4, 5), (5, 12, 13), (7, 24, 25), (20, 21, 29).

Given a Pythagorean triple (a, b, c), we can manufacture another by multiplying all
three numbers by a common factor. For example, (3, 4, 5) gives (6, 8, 10). From now
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on, we shall only be interested in triples that are coprime, meaning that a, b, c have no
common factor (other than ±1).

In particular, a and b cannot both be even. On the other hand, if a and b are both odd
then

a2 + b2 = (2m+ 1)2 + (2n+ 1)2 = 4(m2 + n2 +m+ n) + 2

is divisible by 2 and not 4 and cannot equal c2 (which being even must be divisible
by 4). So we can suppose that b is even and a, c are odd.

Theorem (for constructing triples). Any coprime Pythagorean triple with b even has
the form

a = p2 − q2, b = 2pq, c = p2 + q2

where p, q are coprime positive integers, not both odd, with p > q. Any such choice
of p, q will give a coprime Pythagorean triple.

Proof. We first prove the last sentence. Given p, q coprime,

a2 + b2 = (p2 − q2)2 + 4p2q2 = (p2 + q2)2 = c2,

so (a, b, c) is a valid triple. Moreover, if r is a prime number that divides a, c then r
divides 2p2 and 2q2 which is impossible because p, q have no common factor and we
know that r 6= 2 (because a and c are odd).

Next, re-write the equation a2 + b2 = c2 as( b
2

)2

=
c2 − a2

4
=
(c+ a

2

)(c− a
2

)
.

We are assuming that b is even and a, c are odd, so all the fractions are in fact integers.
If r > 2 is a prime number that divides b/2 then r2 must divide (a+ c)/2 or (a− c)/2.
(Otherwise r will have to divide both factors on the right, and so their sum a and
difference c; but then r divides a, b, c and the triple is not coprime.) Factorizing b/2
into prime factors, it now follows that there exist positive integers p, q such that

c+ a

2
= p2,

c− a
2

= q2.

Obviously p > q , and the argument above shows that p, q have no prime factor in
common. �

Here is a table of triples with b = 2pq, in which each row corresponds to a fixed value
of q. If q is odd, we can take p even and vice versa. The choice (p, q) = (6, 3) (in red)
gives us 32 times (3, 4, 5) so can be ignored. We have stopped with c = 97.

q p (a, b, c) with b even
1 2, 4, 6, 8 (3, 4, 5), (15, 8, 17), (35, 12, 37), (63, 16, 65)
2 3, 5, 7, 9 (5, 12, 13), (21, 20, 29), (45, 28, 53), (77, 36, 85)
3 4, 6, 8 (7, 24, 25), (27, 36, 45), (55, 48, 73)
4 5, 7, 9 (9, 40, 41), (33, 56, 65), (65, 72, 97)

If we restrict to q = 1, we already get infinitely many coprime triples (p2−1, 2p, p2+1).
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6 Parallel lines

6.1. The “Parallel Postulate”

Definition. Two lines in the plane that do not meet are said to be parallel. A line is also
said to be parallel to itself.

Thus, ` and m are parallel if and only if ` ∩m = ∅ or ` = m.

Theorem. Given a line ` and a point P not on ` there is a unique line parallel to ` passing
though P .

{

k

m

n

P

Q
R

D

Proof. Given a line ` and a point P not on ` we know from §4.2 that there is a line k
perpendicular to ` passsing through P . Moreover, there is a line m passing through
P perpendicular to k (B3). Then ` and m are both perpendicular to k so we know
they cannot intersect. (If Q ∈ ` ∩m then ` and m are both perpendiculars from Q to
k and must coincide by the theorem on perpendiculars in §4.2.)

We now have to prove that m is the only line parallel to ` through P. We need to
prove that if n is another line through P then ` and n must have a point in common.
So suppose n makes an angle of less than π/2 at P with k (one side or the other).
Choose a point Q ∈ n different from P and drop a perpendicular from Q to k, with
foot R ∈ k. If D ∈ ` is the foot of the perpendicular from P, there exists S ∈ ` such
that

|PD|
|DS|

=
|PR|
|RQ|

, or equivalently
|PR|
|PD|

=
|RQ|
|DS|

.

We not know at this stage that S lies on the line
↔
PQ = n. But 4PDS and 4PRQ

have a right angle and adjacent sides proportional, so are similar by B5. It follows
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that ∠DPS = ∠RPQ and
↔
PS = n by B3. Therefore S does lie on n, and n cannot be

parallel to `. �

Remarks. The theorem is also true without the hypothesis on P because the only line
parallel to ` containing P ∈ ` is (by definition) ` itself.

The uniqueness statement in the theorem above was formulated as an axiom by the
Scottish mathematician Playfair in 1795, and is often called the “Parallel Postulate”.

6.2. Equivalence relations

Let us write ` ‖ m as an abbreviation for “` is parallel to m”. Then

• ` ‖ ` (by definition),

• ` ‖ m ⇒ m ‖ ` (almost by definition),

• ` ‖ m , m ‖ n ⇒ ` ‖ n.
To justify the last assertion, suppose that ` is parallel to m but not to n, and that m
is parallel to n. Then there exists P ∈ ` ∩ n and both ` and n are lines parallel to m
passing through P. This contradicts the “only one” statement in the parallel postulate.

These three rules characterize what is called an equivalence relation. Therefore “being
parallel” (in symbols, ‖) is an equivalence relation on the set of lines in the plane.

Another example (which we have already seen) is similarity for triangles. Let us write

4ABC ∼ 4A′B′C ′

to express the fact that the two triangles are similar with the vertices in the stated
order. By Theorem 2 (the AA rule) and Theorem 5, we know that this is true if and
only if ∠A = ∠A′ , ∠B = ∠B′, ∠C = ∠C ′. It follows that

• 4ABC ∼ 4ABC,
• 4ABC ∼ 4A′B′C ′ ⇒ 4A′B′C ′ ∼ 4ABC,
• 4ABC ∼ 4A′B′C ′, 4A′B′C ′ ∼ 4A′′B′′C ′′ ⇒ 4ABC ∼ 4A′′B′′C ′′.

Taken in order, these rules reflect the fact that ∼ is reflexive, symmetric, transitive.
Therefore similarity is an equivalence relation on the set of all triangles.

6.3. Transversals

Given one straight line `, we may now consider all those lines parallel to ` : there will
be one for each point of the line k in §6.1.

Lemma (on transversals). If a line meets two lines at the same angle then those lines are
parallel.

Proof. We already know this to be true if the angle is π/2 radians. In general, the
hypothesis “at the same angle” is to be interpreted by the diagram.
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Α

Α

If the lines are not parallel they will meet one side or the other of the line giving rise
to a triangles whose angles add up to more than π radians. �

This proves shows that the Parallel Postulate is closely connected with the property
that angles in a triangle sum to 180o.

Proposition (on transversals). Suppose that ` and m are parallel lines, and that k meets `
at an angle α > 0. Then k meets m at the same angle.

Proof. Given the hypotheses of the theorem, k must meet m at P say, otherwise k
and ` would both be parallel to m. But k is not parallel to `. Now construct a line m′

so that k meets m′ at P with angle α. We want to show that m′ = m. By the lemma,
` ‖ m′. But we already know that m ‖ `, so m ‖ m′ and (since m and m′ meet at P )
m = m′. �

Therefore, if k meets one in a family of parallel lines at a single point, k must meet
every one of them, and at the same angle. Such a line k is called a transversal

Theorem (on transveral ratios). Suppose that `,m, n are parallel, and that k, k′ are transver-
sals meeting the three at points L,M,N and L′,M ′, N ′ respectively. Then

|LM |
|L′M ′|

=
|MN |
|M ′N ′|

,

and the parallel lines are cut “in proportional segments”.

Proof. If k and k′ intersect in a point P, we can use similar triangles. All the triangles
have two equal angles by the proposition, so they are similar by the AA rule:

4PLL′ ∼ 4PMM ′ ∼ 4PNN ′.

This tells us that
|PL|
|PM |

=
|PL′|
|PM ′|

,
|PL|
|PN |

=
|PL′|
|PN ′|

,
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(equal ratios between corresponding sides of different triangles), or equivalently

|PL|
|PL′|

=
|PM |
|PM ′|

=
|PN |
|PN ′|

.

(equal ratios between the different sides of the same triangle). But one can “subtract”
ratios top and bottom, so that the last three ratios are also equal to

|PM | − |PL|
|PM ′| − |PL′|

=
|PN | − |PM |
|PN ′| − |PM ′|

,

which is the equality stated in the theorem. (To understand the last step, observe that
if a/b = c/d = λ then (c− a)/(d− b) = (λd− λc)/(d− c) = λ.)

If k and k′ are parallel, we first need to introduce the third line k′′ =
↔
LN ′, which will

intersect m in a point M ′′. See Sheet 5. �

n

m

{

k k'

P

L

M

N

L'

M'

N'

7 Cartesian coordinates

7.1. Parallel networks

If we fix a line ` and another line k, meeting ` in O and perpendicular to it, we
can construct a family of perpendiculars to `, each one parametrized by the distance
x ∈ R (positive or negative) from O to the foot of the perpendicular. We know that
each such “vertical” line kx is parallel to k = k0.
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Similarly, for each y ∈ R we have the line `y perpendicular to k constructed from a
point of k a distance y from O. Each “horizontal” line `y is parallel to ` = `0 . In this
way, we obtain a network of two families of parallel lines.

Theorem. For fixed real numbers x, y, the lines kx, `y intersect in a unique point P, denoted
also P (x, y), and evry point in the plane arises in this way.

Proof. The fact that kx, ly intersect follows from the lemma in §6.3 (kx is a transveral
of the parallel lines `, `y ). They can only meet in one point (this follows from B2).
Conversely, given P, we can drop perpendiculars from P to both ` and to k, and
these perpendiculars will be kx, `y for some x, y ∈ R. �

x-x0

y-y0

P

O

P0 QQ1

P1

The parameters x and y are called the Cartesian coordinates of P, and one also writes
P = (x, y). The lines ` = `0 and k = k0 (defined by the equations x = 0 and y = 0
respectively) are called the axes of the system. The point O is called the origin of the
system. We can re-phrase the theorem by means of the

Corollary. There is a bijection between the plane and the set R2 = R × R consisting of
ordered pairs (x, y).

Remark. Given any two sets A ,B, one defines their Cartesian product as

A ×B = {(a, b) : a ∈ A , b ∈ B}.

Each element of this set is an ordered pair (a, b) (hence round rather than curly brack-
ets) and (a, b) is distinct from (b, a) unless a = b (which can only happen if a belongs
to A ∩B ). For example if A = {0, 1} (size 2) and B = {p, q, r} (size 3) then

A ×B = {(0, p), (1, p), (0, q), (1, q), (1, r), (0, r)}.

Here the 6 elements form a set, so their order does not matter!
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The corollary is usually taken for granted as a starting point for courses on analytic
and vector geometry. The work so far in our course may be regarded as a “prequel”
(like inserting clone wars before Star Wars). We have established the existence of a
system of Cartesian coordinates starting from four basic postulates B1–B4 plus the
powerful SAS postulate B5 to detect triangles that are similar (not just congruent).

This led us to prove other criteria for similarity (AA and SSS), the fact that the angles
of a triangle sum to 180o, and Pythagoras’ theorem. It also led to the assertion (in
§6.1) of a unique line parallel to a given one and passing through a given point. We
shall now show that the lines of our theory are (like we have always drawn them) the
ordinary straight lines of Cartesian geometry.

7.2. The equation of a straight line

A single equation relating the coordinates x, y will typically define a curve in the
plane. We shall see a few examples later in this course, though a proper study of
curves is a more advanced topic.

The simplest equation is a linear one:

ax+ by + c = 0.

where a, b ∈ R are constants. We shall now show that this describes a line of our
theory based on postulates B1–B5. Consider such a line L that makes an angle θ with
one (and therefore, by §6.3, all) of the horizontal lines `y.

If θ is a right angle then L equals kc for some c ∈ R, and L has equation x = c with
c constant. If θ = 0 then L = `c for some c ∈ R and has equation y = c. Otherwise
the situation resembles that shown on the previous page. Fix two points P0 = (x0, y0)
and P1 = (x1, y1) on L, and consider a third point P = (x, y) allowed to move along
the line. Because the opposite sides of rectangles have equal lengths,

|P0Q| = |x− x0| and |QP | = |y − y0|.

The AA rule, applied to right-angled triangles 4P0Q1P1 and 4P0QP , tells us that

y − y0

y1 − y0

=
x− x0

x1 − y0

,

or equivalently
y − y0

x− x0

=
y1 − y0

x1 − x0

.

The right-hand side is a constant m, so y − y0 = m(x− x0), or

y = mx+ c,

where c = y0 −mx0. This equation has the form above with a = m and b = −1.
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In conclusion, L is indeed an ordinary straight line of the type we are familiar with.
The quantity m is called the slope or gradient of L . It follows that given P and m ∈ R,
there is a unique straight line passing through P with slope m. It is well known that two
lines with slopes m1 and m2 are perpendicular iff m1m2 = −1.

The hypotenuse of the right-angled 4P0QP has length

d(P0, P ) = |P0P | =
√
|x− x0|2 + |y − y0|2.

This is the formula for the distance between two points of the Cartesian plane.

7.3. Circles and conics

The set C of points at a fixed distance r from a given point is a circle. Of course, r
is the radius and the point is the centre. If we take the centre to be the origin of the
coordinates then

C = {(x, y) : x2 + y2 = r2},
by Pythagoras’ theorem. If the centre is (x0, y0), the equation becomes

(x− x0)2 + (y − y0)2 = r2,

or
x2 + y2 + 2dx+ 2ey + f = 0,

where d=−x0 , e=−y0 and f = x2
0 + y2

0 − r2 are constants. Conversely, this equation
will define a circle provided d2 + e2 − f > 0.

The general equation for a circle can be generalized by allowing x2 and y2 to have
unequal coefficients, and introducing a multiple of xy. Since all terms (including xy )
have total degree at most 2, what results can reasonably be called a quadratic equation
in the two variables x, y :

Definition. The set (or “locus”) of points (x, y) in the plane satisfying an equation of
the form

ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0

(where a, b, c, d, e, f are constants with a, b, c not all zero) is called a conic.

The numbers defining this conic can be conveniently encoded into tabular form by
defining two matrices:

A =

(
a b
b c

)
, B =

 a b d
b c e
d e f

 .

These matrices are square and symmetric about a diagonal. Any square matrix has
a number associated to it, called its determinant (whose vanishing means an inverse
matrix does not exist). The determinants of A and B are the quantities

detA = ac− b2, detB = acf + 2bde− ae2 − cd2 − fb2.
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To publicize the usefulness of Cartesian coordinates, we quote without proof the

Theorem. Suppose that C contains at least two points and detB 6= 0. Then
• C is an ellipse if detA > 0;

• C is a parabola if detA = 0;

• C is a hyperbola if detA < 0.

If detB = 0 then C consists of two lines that may intersect, be parallel or even coincident.

Examples. The word “conic” reflects the fact that the three main types can be realized
as plane sections of a circular double cone in space (and therefore by light reaching a
wall from a hand-held table light with a cylindrical lamp-shade).

• Any circle has a = c and b = 0, so detA > 0 and detB = f − d2 − e2 < 0. A
circle is a special type of ellipse. The “standard” ellipse x2/A2 +y2/B2 = 1 lies entirely
inside a rectangle centred at the origin, width 2A and height 2B.

• The graph of the function y = x2 is a parabola (here we can take a = 1, e = −1
2

with the other coefficients zero, so detA = 0 and detB 6= 0.)

• The graph of y = 1/x is a hyperbola with equation xy = 1. Other hyperbolae
with the same shape are x2 − y2 = 2 and x2 − y2 = −2.

• The conics defined by x2 + 2bxy + y2 = 1 for b = 0, 11
12
, 1, 3

2
, 10 are plotted in the

same plane. But which is which?
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8 Circles and triangles

8.1. Tangents and secants

We shall begin by considering the intersection of a line and a circle. This can be solved
analytically by substituting one of the equations

y = mx+ c, x = c

into the general equation

x2 + y2 + 2dx+ 2ey + f = 0

of a circle (with centre (−d,−e)). In the first case, we obtain

x2 + (mx+ c)2 + 2dx+ 2e(mx+ c) + f = 0,

which is a quadratic equation in x . It will have real roots, one real root (more precisely,
two coincident real roots) or no real roots (more precisely, a complex root z and its
conjugate z ). Once we have a real value for x, we can determine y from the equation
of the line. The second case is similar (indeed, simpler) and gives us 0,1, or 2 values
for y from which we can find x.

It follows that a line must intersectq a circle in 0 , 1 or 2 points. There is an obvious
interpretation of these possibilities, which are best analysed geometrically. Given a
circle C with radius r and centre O and a line `, drop a perpendicular from O to `
with foot D. There are three cases:

• |OD| > r. By Pythagoras, |OQ| =
√
|OD|2 + |DQ|2 > r for all other points Q ∈ `,

so the line does not meet the circle.

• |OD| = r, so |OQ| > r for all other points Q ∈ `, and ` meets the circle in the one
point D.

• |OD| < r. In this case, there exists x ∈ R such that |OD|2 +x2 = r2 and we obtain
two points Q1, Q2 ∈ ` with |OQ1| = r = |OQ2|, corresponding to x and −x. So the
line intersects the circle in two points, as in the diagram:

Q1

Q2

O

D
{

31



Definition. In the second case, we say that ` is a tangent of C . In the third case, we
say that ` is a secant of C , and the segment Q1Q2 is called a chord. If D = O then the
chord is a diameter and |Q1Q2| = 2r. From the lemma in §4.2 we deduce the

Proposition. If Q1Q2 is a chord of a circle with centre O then its perpendicular bisector
passes through O .

Proposition (on tangents). A line ` is tangent to a circle at P if and only if ` passes through
P and is perpendicular to

↔
OP.

Proof. If ` is perpendicular to OP at P then (as explained above), the line cannot
meet the circle at points other than P, so it is (by definition) a tangent. If ` is tangent
to C at P but does not make a right angle with OP then the foot of the perpendicular
from O will be a point Q ∈ ` for which |OQ| < |OP | = r. But then ` will meet C is a
second point, contrary to hypothesis. �

We have seen that the perpendicular bisector of any chord passes through the centre.
It also passes through the point of intersection of the associated tangents:

Q1

Q2
O

P

Theorem (on two tangents). Let `,m be two lines that are tangent to the same circle C
(centre O ) at distinct points Q1, Q2. Suppose that ` and m meet in P. Then |PQ1| = |PQ2|,
and

↔
PO bisects ∠Q1PQ2 and the chord Q1Q2 (at right angles)

Proof. The right-angled triangles 4OPQ1 and 4OPQ2 share a hypotenuse and have
two equal radii. It follows from Pythagoras that |PQ1| = |PQ2|, and the two triangles
are similar (by SSS or SAS). It also follows that ∠OPQ1 = ∠OPQ2.
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We now know that O and P are equidistant from Q1 and Q2 . It follows (lemma in
§4.2) that OP is the perpendicular bisector of Q1Q2. �

8.2. Altitudes revisited

Choose three distinct points A,B,C on a circle C . We can now construct not only the
(black) triangle 4ABC, but also the (red) triangle PQR formed by the three tangents
to C at A,B,C. Results from §8.1 tell us that the centre O of the circle C can be
recovered from either triangle:

• it is the intersection of the perpendicular bisectors of the sides of 4ABC;

• it is the intersection of the angle bisectors of 4PQR.

A

B
C

R

P

Q

Next, we shall show that it was not necessary to begin with the circle above, in the
sense that we may construct C from A,B,C :

Theorem (circle through 3 points). There exists a unique circle passing through three given
points A,B,C that are not collinear.

Proof. Consider 4ABC. Let `,m, n denote the perpendicular bisectors of BC,CA,AB.
Consider first ` and m. They can’t be parallel (why?) and therefore meet meet in a
point O. By the lemma in §4.2,

|OA| = |OB| = |OC|.
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Thus, O is at the same distance r from all three vertices, and it follows (again from
§4.2) that O ∈ n. More to the point, the circle with centre O and radius r passes
through A,B,C . �

Definition. The circle C constructed by this theorem is called the circumcircle of
4ABC. Its centre (the common intersection point O of the perpendicular bisectors) is
called the circumcentre of 4ABC.

Recall the following diagram from §3.4, in which L,M,N are midpoints, and all four
small triangles are congruent, and similar to the big one. It follows from §6.3 that all
the lines that look parallel are parallel!

Α Β

Γ

ΑΒ
Γ

A B

C

LM

N

In particular, the perpendicular bisector n of AB (that passes through N but is not
shown) intersects ML at right angles and is an altitude of 4LMN. Similarly, the per-
pendicular bisectors `,m of BC,CA are also altitudes of 4LMN. It follows from the
previous definition that the altitudes of 4LMN intersect in the same point, namely
the circumcentre O of 4ABC !

We can also go backwards. Given any triangle LMN, construct a line parallel to each
side passing through the opposite vertex. For example, the new line through L is
perpendicular to the altitude linking L to MN. These new lines will define 4ABC
housing 4 “mini-triangles” including 4LMN. Because transversals make the same
angles with parallel lines, it is easy to see that the 4 mini-triangles are all similar.
Because parallograms have opposite sides of equal length (sheet 5), tha 4 triangles
are also congruent. It follows that L,M,N are the midpoints of BC,CA,AB, and
we recover the picture above in which the altitudes of 4LMN are the perpendicular
bisectors of the sides of the bigger 4ABC .
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This confirms that the altitudes of any triangle LMN are concurrent. Their common point
of intersection is called the orthocentre of 4LMN and is often denoted H (though it
is the circumcentre of 4ABC ).

9 More circles and triangles

9.1. Thales’ theorem

Let C be a circle with centre O. Fix two points A,B on C , and let P be a third point
free to move on C . Join A and B to O and P.

Definition.∠APB is called the angle inscribed or subtended at P by the chord AB
(which is not drawn). The arc (shown in green) joining A to B not containing P
defines the corresponding central angle at O. There are various cases:

P

B

A

O

P

B

A

O

P

B

A

O

Theorem (on inscribed angles). An inscribed angle is half the corresponding central angle,
and is therefore independent of P, provided P stays on one side of AB.

Theorem (Thales, c. 600 BC). A diameter subtends an angle of π/2 at any point of C :
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To deduce the second theorem from the first, interpret the straight angle formed by
the diameter as that associated to the top inscribed angle. But it is easier to prove it
directly as follows.

Both visible triangles are isosceles with angles α, α (left triangle) and β, β (right tri-
angle) at points on the circle. The central angles are therefore π − 2α and π − 2β. But
(by B4) these add up to π, so α + β = π

2
. �

This proof also tells us that the right central angle equals 2α, that is twice the left
inscribed angle. This is another special case of the theorem in which one chord passes
through the centre.

Proof of the first theorem. In the each of the three diagrams, we can add the diameter
extending PO, and apply what we have just said (and the diagram at the foot of the
previous page) separately to each side of this diameter. �

Corollary. If two chords AB, CD intersect in P, then |AP ||PB| = |CP ||PD|.

A

B

C

D

P

Proof. Having added the chord AD, the angles at B and C are both inscribed relative
to AD, and therefore equal. Since 4APC and 4DPC already share opposite angles
at P, they are similar by the AA rule. It follows that

|AP |
|DP |

=
|CP |
|BP |

,

and we can cross multiply to get the result. �

9.2. More concurrence results

There are various triples of lines associated to a triangle, and we list four such sets.
Three sets pass through the vertices, two pass through the midpoints of the sides, and
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two are perpendicular to the sides:

• the angle bisectors bisect each interior angle;

• the medians connect each vertex to the midpoint of the opposite side;

• the altitudes connects each vertex to the opposite side perpendicularly;

• the perpendicular bisectors of the sides.

Master Theorem. The three lines defined in each triple above are concurrent.

We have already shown that the perpendicular bisectors of the sides are concurrent
using the lemma in §4.2. The concurrence of the angle bisectors can be proved in a
similar way, using Sheet 5, q. 6(ii) (and its converse, which is easy to prove).

Definition. The common intersection I of the angle bisectors is called the incentre. The
common intersection G of the medians is called the centroid or barycentre.

The three sides of a triangle are all tangent to a circle with centre at I (why?).

If the vertices of the triangle are represented by complex numbers or vectors z1, z2, z3,
it is well known (see Sheet 7, q. 2) that the centroid is their artithmetic mean

1
3
(z1 + z2 + z3).

Here is a proof of the existence of the orthocentre H (the common intersection of the
altitudes) using complex numbers. Represent the vertices of 4A1A2A3 by complex
numbers z1, z2, z3 in the Argand plane. We shall suppose that the origin O (i.e. z = 0)
is the circumcentre of 4A1A2A3, and (by choosing an appropriate unit of measure-
ment) that the radius of the circumcircle equals 1. It follows that z1, z2, z3 all have
modulus one: |zk| = 1 for k = 1, 2, 3.

We can also use a complex number like z1 = x1 + iy1 to represent the vector(
x1

y1

)
= ~OA1.

The dot product

x1x2 + y1y2 =

(
x1

y1

)
·
(
x2

y2

)
then equals the real part of

z1z2 = (x1 + iy1)(x2 − iy2).

Proposition. With the above assumptions, the orthocentre H of 4A1A2A3 is represented by
the complex number z1 + z2 + z3.

Warning. The triangle inequality implies that |z1 + z2 + z3| < 3 (why < and not 6?),
but |z1 + z2 + z3| > 1 when the triangle is obtuse and H is outside of it.
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Proof. Let w = z1 + z2 + z3 ∈ C, and let W denote the corresponding point in the
Argand plane. Then w − z1 represents the vector ~A1W, and z2 − z3 represents ~A3A2.
Observe that

(w − z1)(z2 − z3) = (z2 + z3)(z2 − z3) = 1 + (z3z2 − z2z3)− 1

has zero real part. Thus A1W is perpendicular to A3A2, and thus A1W is an altitude.
It follows that W lies on all three altitudes, so W = H. �

10 Isometries in the plane

10.1. Rotations, reflections and translations

Let E stand for the set of points in the plane. Once we have chosen an origin and a
parallel network of lines, we obtain a bijection between E and R2, but we prefer not
to make this choice (of Cartesian coordinates) for the moment.

Thanks to Postulates B1 and B2, we can measure the distance |PQ| between any two
points P,Q ∈ E . At times it will be convenient to write d(P,Q) = |PQ| for this
distance. The resulting function

d: E × E → [0,∞)

satisfies the triangle inequality d(P,Q) 6 d(P,R) + d(R,Q), with strict inequality
(meaning < in place of 6) if P,Q,R are the vertices of a triangle.

Definition. A mapping f : E → E is called an isometry if it preserves distances in the
sense that d(f(P ), f(Q)) = d(P,Q).

The d notation makes this concept clearer, though we shall often set f(P ) = P ′ and
f(Q) = Q′ so as to write |P ′Q′| = |PQ|.

Example 1. The identity (that maps every point P to itself) is obviously an isometry.
We denote it by id.

Observation. It follows that any isometry f is necessarily injective because

f(P ) = f(Q) ⇒ d(f(P ), f(Q)) = 0 ⇒ d(P,Q) = 0 ⇒ P = Q.

We shall see later any isometry f has an inverse, and is therefore a bijection.

Example 2. A rotation f = RotO,θ about a point O through an angle θ is an isometry.
How is such a rotation defined rigorously? To determine f(P ) = P ′ we join O to P

and constuct a ray from O making an angle θ with
→
OP in the anti-clockwise direction

(anti by convention). We then measure off P ′ so that |OP ′| = |OP |. Note that O is a
fixed point of f since f(O) = O.

38



O

P

Q

P'

Q'

Given the diagram, the condition |P ′Q′| = |PQ| follows from Postulate B5 (SAS),
having first verified that the two angles indicated are equal.

Example 3. A reflection Ref` in a line `. The image f(P ) = P ′ is found by dropping a
perpendicular from P to ` with foot D, and extending it to the “other side“ of ` and
measuring off P ′ so that |DP ′| = |DP |.

P

P'

Q

Q'

{

D E

Note that every point on ` is fixed, and f(P ) = P ⇔ P ∈ `. This time, to prove that
Ref` is an isometry, we apply SAS to 4DEQ and its image to deduce that

|DQ| = |DQ′| and ∠QDE = ∠Q′DE.

Then again to 4PDQ and its image to deduce that |P ′Q′| = |PQ|.

Example 4. A translation f = TranOA determined by a segment OA. The image of P
is obtained by constructing the unique line through P parallel to

↔
OA. and measuring
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off f(P ) = P ′ so that AP ′ is parallel to OP. In this way we obtain a parallelogram,
and |OA| will equal |PP ′| (recall Sheet 5, q. 4).

O

A=O'

P

P'

Given another point Q and its image Q′ = f(Q), we obtain a parallelogram PQQ′P ′,
and it follows that |PQ| = |P ′Q′|. Thus the translation is an isometry.

The order in which we have listed these familiar isometries corresponds to the way in
which Euclidean geometry was developed in the first half of the course. For example,
whilst a translation is perhaps the easiest isometry to imagine, its definition requires
the concept of parallel lines that arose relatively late in our treatment.

10.2. Orientation and composition

If f is an isometry and P,Q,R are the vertices of a triangle, then

f(P ) = P ′, f(Q) = Q′, f(R) = R′

are the vertices of a congruent triangle, by the SSS rule. Moreover, rotations and
translations (and the identity, which strictly speaking is a special case of both) all
preserve the orientation of the triangles: if P,Q,R occur in clockwise order around the
triangle, so do P ′, Q′, R′.

One way to see this for a rotation is to slowly increase the angle of the rotation from 0
to θ. When the angle is 0, the isometry is the identity and the triangle does not change.
Subsequently, the orientation of the triangle cannot suddenly jump from clockwise to
anticlockwise. (This argument can be made rigorous, but requires the notion of a
continuous function.)

By contrast, reflections are more “brutal”, and change the orientation of all triangles
from clockwsie to anti-clockwise and vice versa. We shall say that rotations and trans-
lations preserve orientation or are “even”, whilst reflections reverse orientation or are
“odd”. In this way, we speak of the parity of an isometry.
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Example 5. Let OA be a line segment, and let ` =
↔
OA. A glide reflection f = GrefOA is

equal to a reflection in ` followed by the translation TranOA, and (by Sheet 7, q. 4) the
order does not matter:

GrefOA = TranOA ◦ Ref` = Ref` ◦ TranOA.

A glide reflection is an odd isometry:

O A {

P P

P P

As we did in Example 5, we may compose any two isometries f and g to obtain new
mappings

f ◦ g: E → E , (f ◦ g)(P ) = f(g(P )),

g ◦ f : E → E , (g ◦ f)(P ) = g(f(P )).

These are both isometries, the first because

d(f(g(P )), f(g(Q))) = d(g(P ), g(Q)) = d(P,Q).

Moreover, the parity of f ◦ g is obtained in the obvious way:
even odd

even even odd
odd odd even

The five examples provide us with the table

isometry: identity rotation reflection translation glide reflection
parity: even even odd even odd

fixed points: E O ` ∅ ∅

10.3. Classification by fixed points

Main theorem. Any isometry of the plane is one of the ones in the table, namely: the identity,
a rotation, a translation, a reflection, or a glide reflection.

Let us first record two consequences of this theorem.
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Corollary 1. The composition of any two rotations, or of any two reflections, must be a
rotation, a translation or the identity.

Corollary 2. Any isometry f : E → E is a bijective mapping and therefore has an inverse
f−1: E → E .

This inverse can be described explicitly case by case, and is always another isometry.
For example, (RotO,θ)

−1 = RotO,−θ (or RotO,2π−θ if one prefers to use angles between
0 and 2π ), whereas (Ref`)

−1 = Ref` is self-inverse.

We shall prove the main theorem by breaking it down into a number of simpler steps.

Propositon 1. If A,B are distinct fixed points of an isometry f then f is the identity or a
reflection in the line ` =

↔
AB.

Proof. We shall first prove that f fixes every point of `. Let P ∈ `. Construct circles,
one with centre A, and one with centre B, passing through P. The two circles must
touch at P, meaning that they intersect in a single point. If not, there are two points of
intersection P,Q and the perpendicular bisector of the chord PQ must pass though
both centres, contradicting the fact that P ∈ `. (Recall that there is a unique circle
through 3 non-collinear points, proving the well-known fact that two circles cannot
meet in more than 2 points!) We now know that

d(f(P ), A) = d(f(P ), f(A)) = d(P,A),

and similarly with B in place of A. Therefore f(P ) lies on both circles, and f(P ) = P.

Suppose that there exists a point not on ` such that f(P ) = P. Drop a perpendicular
from P to ` with foot D ∈ `. Then f fixes every point on m =

↔
PD. But now every

point Q ∈ E can be connected by a line that meets ` and m in different points (any
line through Q will do except for three). By the argument above, Q is also fixed.
Therefore f is the identity.

Finally, suppose that f is not the identity, and take P to be a point not on `. Construct
circles though P with centres A and B and apply the same trick as before. This time,
our assumption forces f(P ) = Q, where PQ is a chord whose perpendicular bisector
is `. It follows that f(P ) is reflection of P in `, and f = Ref`. �

Corollary 3. An isometry is uniquely determined by its action on three non-collinear
points.

Proof. Suppose that two isometries f, g both move P,Q,R to P ′, Q′, R′. Then h =
f−1 ◦ g fixes these points. Assuming R does not lie on the same line as P and Q, it
follows that h = id and so f = g. �

Proposition 2. Let O ∈ E . Any isometry f such that f(O) = O and for which O is the
only fixed point is a rotation: f = RotO,θ for some angle θ (not a multiple of 2π ).
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Sketch proof. A point P distinct from O maps to f(P ) = P ′. Both P and P ′ lie on a
circle C with centre O. A third point Q = RotO,α(P ) on C maps to f(Q) = Q′, which
is either RotO,α(P ′) or RotO,−α(P ′); suppose the latter:

P

P'

Q

Q'
M' =M

O

Let M be the point of C such that
→
OM bisects ∠QOQ′, and M ′ = f(M) its image.

By considering 4PQM, congruent to 4P ′Q′M ′, one proves that M ′ = M is a fixed
point, contrary to hypothesis. �

Proposition 3. Any isometry without fixed points is a glide reflection or a translation.

Proof. Given such an f, fix A ∈ E and let M be the midpoint of AA′ where A′ = f(A).
Let g = RotM,π so that A is a fixed point of h = g ◦ f. By the previous propositions,
h is the identity, a reflection or a rotation. Case 0. It cannot be the identity for then
f = g−1 = g has a fixed point.

Case 1. h = g ◦ f is a reflection in a line `. The latter cannot contain M for otherwise
f = g ◦ h would fix M. Drop a perpendicular m from M to `, and consider the effect
of f = g ◦ h on M. In fact, f is now acting on the yellow triangle as a glide reflection
G. By Corollary 3, f must equal G :

A

A' =fHAL

M fHML

{

m
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Case 2. h is a rotation. It follows that f = g ◦ h is an even isometry preserving the
orientation of every triangle. We now go back to the drawing board: replace g by
g′ = Refm where m is the perpendicular bisector of AA′. Then h′ = g′ ◦ f again
fixes A, is an odd isometry and must be a reflection. It follows that f = g′ ◦ h′ is the
composition of two reflections. We shall see that such a composition is rotation about the
point of intersection of the mirrors, unless they are parallel in which case (by q. 5 of
Sheet 7) it is a translation. �

11 Groups of Isometries

11.1. The concept of a group

Let G denote the set of isometries f : E → E of the Euclidean plane E . We have
defined a way of multiplying two isometries f, g, regarded as abstract symbols, to
form their composition f ◦ g. This operation satisfies the so-called associative law

(f ◦ g) ◦ h = f ◦ (g ◦ h),

which asserts that brackets are not essential. The equation is true because both sides
applied to P yield the same point f(g(h(P ))).

There is also an identity element for the multiplication, namely the “lazy isometry” id
that satisfies

id ◦ f = f = f ◦ id, ∀f ∈ G.

Moreover, given any isometry f ∈ G we know that there exists an inverse f−1 ∈ G
characterized by the equations

f ◦ f−1 = id = f−1 ◦ f.

They key point here is that f−1 exists not just as a mapping E → E of sets, but it is
also an isometry. If there were any doubt of this last fact, we merely observe that

d(f−1(P ), f−1(Q)) = d(f(f−1(P )), f(f−1(Q))) = d(P,Q),

the first equality because f itself preserves distance.

A set G with the above structure is called a group, and this is a key concept that occurs
in many different branches of mathematics and other subjects, including the physics
of elementary particles and developmental psychology.

The set G of isometries (we can now say the “group of isometries”) obviously has
infinitely many elements. A simple example of a finite group consists of the set

F = {1, i, −1, −i} ⊂ C
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(“F” because it has 4 elements), with the usual multiplication of complex numbers.
All the group rules are satsified. For example, the inverse of i is i−1 = 1/i = −i, and
−1 is self-inverse.

Another infinite example is the set of 2 × 2 matrices A =

(
a b
c d

)
, with non-zero

determinant ∆ = ad − bc. We can multiply them since det(AB) = (detA)(detB)
remains non-zero. Matrix multiplication obeys the associative law (though this is not

obvious), and there is an identity matrix I =

(
1 0
0 1

)
. The inverse of A is given by

1

∆

(
a b
c d

)
=

(
d/∆ −b/∆
−c/∆ d/∆

)
.

Denoting this matrix by A−1, it is easy to verify that both AA−1 and A−1A equal I.
We shall show that this example is relevant to the study of isometries, at least those
that fix a given point.

Let us return to isometries, and choose a point O in the plane. Let f be an isometry,
and set A = f(O), and let h = TranOA. Then h−1 = TranAO and g = h−1 ◦ f fixes O.
It follows that any element of G can be expressed as h ◦ g, where g belongs to the set

GO = {f ∈ G : f(O) = O}

of isometries that fix O.

The set GO is a group just like G is: just observe that if g and g′ fix O so does g ◦ g′,
and g−1(O) = g−1(g(O)) = O. Indeed, GO is an example of a subgroup of G, being
a subset “closed” under the group operations. Another subgroup is the set H of all
translations, and G is in some sense formed by combining H and GO.

In practice, we already know what the elements of GO are: the identity, all rotations
centred at O and all reflections whose mirror contains O. We can also assert that the
identity and the set of rotations forms a subgroup. However, at this juncture we wish
to describe elements of GO more analytically.

11.2. Linear isometries

Choose perpendicular axes centred at O, so that we can represent any point P of E
by its Cartesian coordinates (x, y), or equivalently by the vector

v = ~OP =

(
x
y

)
.

Note that
d(O,P )2 = |OP |2 = x2 + y2 = ‖v‖2 = v · v.

In the same way, we denote by f(v) the column vector version of f(P ).
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Theorem. Any element of GO is a linear mapping, that is f(v + w) = f(v) + f(w) and
f(λv) = λf(v) for λ ∈ R.

Proof. The isometry condition is d(f(P ), f(Q)) = d(P,Q). In vector language this
translates into the equation

‖f(v)− f(w)‖ = ‖v −w‖,

which when squared and expanded becomes

‖f(v)‖2 − 2f(v) · f(w) + ‖f(w)‖2 = ‖v‖2 − 2v ·w + ‖w‖2.

But we also know that

‖f(v)‖2 = d(O, f(P ))2 = |OP |2 = ‖v‖2,

and similarly for w in place of v. Therefore,

f(v) · f(w) = v ·w

Now consider the unit vectors

v1 = i =

(
1
0

)
, v2 = j =

(
0
1

)
parallel to the axes. These two form an orthonormal basis, meaning that

vi · vj =

{
1, i = j
0, i 6= j,

and an arbitrary vector equals

v = xv1 + yv2, with x = v · v1, y = v · v2.

It follows from the boxed formula that f(v1) and f(v2) also form an orthonormal
basis, and so

f(v) = Xf(v1) + Y f(v2),

where X = f(v) · f(v1) = v · v1 = x, and Y = y. Thus,

f(xv1 + yv2) = xf(v1) + yf(v2),

and the fact that f is linear follows immediately (well, almost!). �

If we set

f(v1) =

(
a
c

)
, f(v2) =

(
b
d

)
,

then the last equation of the proof shows that f maps(
x
y

)
7→ x

(
a
c

)
+ y

(
b
d

)
=

(
a b
c d

)(
x
y

)
= A

(
x
y

)
.
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This means that to apply the isometry f, we need to multiply the column vector v by
the matrix A defined by the last equality.

But we also know that the columns of A are orthonormal: they satisfy

a2 + c2 = 1 = b2 + d2 and ab+ cd = 0.

This can be expressed by the equation(
a c
b d

)(
a b
c d

)
=

(
1 0
0 1

)
, or ATA = I.

Definition. A square matrix A that satisfies ATA = I is called orthogonal.

It follows from the theory of determinants that if A is an orthogonal matrix then
detA = ±1. This in turn tells us that the inverse matrix A−1 exists and equals AT , so
it is also true that AAT = I.

11.3. Rotations and reflections revisited

We are now in a position to classify 2× 2 orthogonal matrices. Given such a matrix

A =

(
a b
c d

)
,

we know that the first column is a unit vector, and so there is a unique angle θ with
0 6 θ < 2π for which a = cos θ and b = sin θ. The second column is also a unit vector,
but it is perpendicular to the first, so there are two choices, one minus the other:

b = − sin θ, c = cos θ,
or b = sin θ, c = − cos θ.

They correspond to rotating the first column by π/2 and −π/2 respectively.

v1

fHv1L
v2

fHv2L
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Both situations are illustrated above, but f(v1) is labelled only for the first, which
obviously corresponds to an overall rotation though an angle θ of about 120o. The
second corresponds to a reflection in the (green) line making an angle of θ/2 with v1.
We saw a similar diagram in the proof of Proposition 2 in §10.3.

The corresponding rotation and reflection matrices are

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
and Sθ =

(
cos θ sin θ
sin θ − cos θ

)
.

They are easily distinguished by their determinants: detRθ = 1 whilst detSθ = −1.
The sign of the determinant therefore coincides with the partity of the linear isometry.

Let f, g ∈ GO be two linear isometries with associated matrices A,B. The composition
f ◦ g is represented by (

x
y

)
7→ A

(
B

(
x
y

))
= AB

(
x
y

)
,

so composition of isometries translates into multiplication of matrices!

Since Rθ represents a rotation by an angle θ, we can now assert that RθRφ represents
a rotation by θ + φ. Indeed,

RθRφ =

(
cos θ − sin θ
sin θ cos θ

)(
cosφ − sinφ
sinφ cosφ

)
=

(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)
= Rθ+φ.

A very similar calculation gives

Lemma. SθSφ = Rθ−φ.

This confirms that the composition of any two distinct reflections whose mirrors are
not parallel is a rotation. (Just choose O to be the point of intersection of the mirrors.)

Warning. Remember that θ in Sθ is twice the mirror angle (q 4 on Sheet 8 also justifies
this interpretation).

11.4. 3 × 3 orthogonal matrices

Let us begin with the following observation. If v,w are column vectors (now with
3 entries), the matrix product vTw (of a row with a column) equals the dot product
v ·w. (This is not quite true since vTw is strictly speaking a 1 × 1 matrix, so first we
have to throw its brackets away!) In particular, ‖v‖2 = v · v = vTv.

Now let A be a 3 × 3 orthogonal matrix, so (by definition) ATA = I. If we denote
the columns of A by the vectors v1,v2,v3, the rows of AT are the corresponding row
vectors vT1 ,v

T
2 ,v

T
3 , and it follows from above that

vi · vj =

{
1, i = j
0, i 6= j,
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This means that the columns of A form an orthonomal triple: they are unit vectors
that are mutually perpendicular. (Warning. “Orthogonal” means “perpendicular”,
so calling A orthogonal is a misnomer. The word “normal” in this context means
“normalized”, i.e. of unit length. But to add to the confusion, “normal” also means
“perpendicular” in other contexts!)

Lemma. If A is an n× n orthogonal matrix, its determinant equals 1 or −1.

Proof. We have already verified this when n = 2. In general,

det(ATA) = det I = 1,

and the left-hand side equals det(AT ) det(A) = (detA)2, by two standard properties
of the determinant. �

Since detA 6= 0, the orthogonal matrix A has an inverse A−1 which must therefore
equal its transpose AT . This in turn implies that AAT = I which allows one to repeat
the discussion above using rows instead of columns, so the rows of an orthogonal
matrix must also be orthonormal.

When n = 3, the two signs of the determinant correspond to the two different ways of
“orienting” the triple above with thumb, first and second fingers (use of the left hand
or the right hand). Moreover, once we know v1 and v2, there are only two choices for
v3, namely plus or minus the cross product:

detA = 1 ⇒ v1 × v2 = v3 ‘right-handed’ :

detA = −1 ⇒ v1 × v2 = −v3 ‘left-handed’.

12 Some 3-dimensional geometry

12.1. Rotations in space

Let A be a 3× 3 matrix. Then
f :v 7→ Av

defines a mapping of points in space that fixes the origin O. It is also linear because,
for example, A(v+w) = Av+Aw. It is a fact that any linear mapping R3 → R3 arises
in this way (we proved the analogous result for R2 ).

If A is also orthogonal (meaning ATA = I ), then f preserves the dot product in the
sense that

f(v) · f(w) = v ·w

To see this, recall that the dot product can be computed by multiplying a row by a
column, so if v,w are column vectors,

f(v) · f(w) = (Av)T (Aw) = vATAw = vTw = v ·w.
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Taking v = w, we get ‖f(v)‖2 = ‖v‖2. Moreover,

‖f(v)− f(w)‖2 = ‖f(v −w)‖2 = ‖v −w‖2,

so f is in fact an isometry. (In a previous lecture, we stook these steps backwards,
starting from an isometry that fixes O, but arguing forwards is easier!)

Here is an example:

A =

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 =

 Rθ 0

0 1

 .

Since

A

0
0
z

 =

0
0
z

 ,
this column vector is an eigenvector of A with eigenvalue 1 (we should take z 6= 0 since
the definition of eigenvector are normally requires it to be non-zero). It means that
f fixes every point on the z -axis. On the other hand, A acts on the xy -plane as a
rotation with angle θ.

Lemma. Let A be a 3× 3 orthogonal matrix with detA = 1. Then det(A− I) = 0.

Proof. This depends on various properties of the determinant. We have

det(A− I) = det(A− ATA) = det((I − AT )A)
= det(I − AT )(detA)
= det((I − A)T )
= det(I − A)
= − det(A− I),

the last equality because det(λA) = λ3A. �

This result tells us that the matrix A − I does not have an inverse, or that the rank of
A− I is less than 3. It follows from the theory of linear equations that the equation

(A− I)

xy
z

 =

0
0
0

 or (A− I)v = 0

has a non-trival solution (meaning not all of x, y, z are zero). Thus, there exists a non-
zero vector v such that Av = v. It is again an eigenvector with eigenvalue 1. Since
v 6= 0, we may also suppose (by dividing by its norm) that it is a unit vector.

It follows that f fixes every point on the line ` through O parallel to v. Notice also
that

v ·w = 0 ⇒ v · f(w) = f(v) · f(w) = v ·w = 0.
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This means that if w is perpendicular to v so is f(w) . Hence, f maps the plane
perpendicular to v to itself, and therefore acts as an isometry in this plane. Using the
fact that detA = 1, one can show that this isometry is even, and so a rotation (or the
identity). Since f is linear, its action on any vector is now determined, and we can
conclude by stating the

Theorem. The linear mapping f associated to a 3× 3 orthogonal matrix with determinant 1
is a rotation in space about a line ` .

12.2. Equation of a plane

This subsection and the next is mainly revision of Linear Methods material, but will
be essential in our study of triangles on the sphere. Consider first a plane Π that
passes through the origin O. It consists of all points P whose position vectors

~OP = v =

xy
z

 are perpendicular to some fixed vector n =

ab
c

 .

The equation is therefore
ax+ by + cx = 0.

In general, Π will not pass through O but we can suppose that P0 = (x0, y0, z0) ∈ Π.
If the plane is still perpendicular to n then the equation is

(v − v0) · n = 0 or ax+ by + cz = d,

where d = v0 · n = ax0 + by0 + cz0 is a constant.

The vector n is said to be normal to the plane. We can, if we wish, suppose it is a unit
vector, so that 1 = ‖n‖2 = a2 + b2 + c2.

Two planes {
a1x+ b1y + c1z = d1,

a2x+ b2y + c2z = d2

are parallel if and only if their normals n1,n2 are parallel. This means that

n1 × n2 =

a1

b1

c1

×
a2

b2

c2

 =



∣∣∣∣ b1 b2

c1 c2

∣∣∣∣
−
∣∣∣∣ a1 a2

c1 c2

∣∣∣∣∣∣∣∣ a1 a2

b1 b2

∣∣∣∣


is the zero vector.
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If the planes are not parallel, they must intersect in a line. In this case, n1 × n2 is
parallel to the line formed by the intersection of the two planes (because a vector in
such a line must be perpendicular to both n1 and n2, and so parallel to n1 × n2 ). A
worked problem will make these statements clear:

Example. Describe the intersection of the planes{
x+ y + z = 1,

x+ 2y + 3z = 0,

We can solve these equations by treating (for example) z as a constant, and finding x
and y in terms of z :

y + 2z = −1 ⇒ y = −1− 2z; x− z = 2 ⇒ x = 2 + z.

Setting z = t , we see that the intersection consists of the line (x, y, z) = (2+t,−1−2t, t)
with t ∈ R, or, in column vector format,xy

z

 =

 2
−1
0

+ t

 1
−2
1

 .

The third column gives the direction of the line and, as predicted, is proportional
(indeed, equal) to n1 × n2.

12.3. Angles between lines and planes

Two distinct lines in space are related to one another in one of three ways: (i) they are
parallel, (ii) they intersect, or (iii) they do not lie in a common plane. These possibil-
ities are mutually exclusive, because if two lines lie in a plane, then either (i) or (ii)
must apply. In case (iii), the lines are said to be skew.

If two lines intersect, then they lie in a plane, and the angle between them is defined.
Actually, there are two angles, since we cannot distinguish between θ and π−θ (apart
from choosing the smaller one, which is unfair on the other!).

The situation is sightly different for rays (half-lines) because this time two valid angles
are θ and 2π− θ. In practice, if we choose vectors in the direction of the rays, this can
be computed using the dot product. We have (from Linear Methods) the

Proposition. The angle θ between two unit vectors u1,u2 satisfies

u1 · u2 = cos θ = cos(2π − θ).

It two planes Π1,Π2 intersect, necessarily in a line `, then the angle between them is
defined by imagining their cross-sections with a third plane perpendicular to `. These
cross-sections will form a pair of intersecting lines m1,m2 , which will define a pair of
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angles φ, π − φ from the discussion above. Since m1,m2 make angles of ±π/2 with
the normal vectors n1,n2, we have have another result from Linear Methods:

Proposition. The angle φ between two planes Π1,Π2 with unit normals n1,n2 satisfies

±n1 · n2 = cosφ or cos(π − φ), with 0 < φ < π.

We cannot distinguish one sign or other on the left-hand side since −ni is as good a
normal as ni. But that ambiguity is consistent with the fact that the two angles φ and
π − φ are equally valid and yet their two cosines differ by a sign:

13 Spherical geometry

Let 4ABC be a triangle in the Euclidean plane. From now on, we indicate the interior
angles ∠A = ∠CAB , ∠B = ∠ABC , ∠C = ∠BCA at the vertices merely by A,B,C .
The sides of length a = |BC| and b = |CA| then make an angle C . The cosine rule
states that

c2 = a2 + b2 − 2ab cosC

if C = π/2 it reduces to Pythagoras’ theorem. It is easily proved by constructing (say)
the altitude AA′ of length a′ = h. (Take BC to be the “base” of the triangle so that h
is the height, and draw the picture.) Now apply Pythagoras to 4AA′B and 4AA′C
to get

c2 = h2 + (a− b cosC)2, b2 = h2 + (b sinC)2.

The rule follows by eliminating h2.

The sine rule states that
sinA

a
=

sinB

b
=

sinC

c

It can also be proved using the altitude AA′ , since

b sinC = h = c sinB,
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and the rest follows by symmetry.

It is important to realize that the sine rule can also be deduced algebraically from the
cosine rule. The latter tells us that(sinC

c

)2

=
1− cos2C

c2
=

4a2b2 − (a2 + b2 − c2)2

4a2b2c2
.

The numerator on the right-hand side, when expanded, is symmetric in a, b, c, and
it follows that we can replace c, C by a,A or b, B on the left. The sine rule follows
because sinC/c > 0.

The aim of this section is to prove analogous formulas for spherical triangles.

13.1. Spherical triangles: the vertices and sides

Fix Cartesian coordinates in space, with origin O = (0, 0, 0) . Consider the sphere

S = {P : d(O,P ) = 1} = {(x, y, z) : x2 + y2 + z2 = 1}

centred at O. The word “sphere” in geometry refers exclusively to the surface, not the
inside! The position vector

v = ~OP =

xy
z


of any point P ∈ S is a unit vector, i.e. a vector of norm one: ‖v‖ = 1.

Now suppose that v1,v2,v3 are three unit vectors representing points on S . The
corresponding points P1, P2, P3 will be the vertices of a spherical triangle provided
the ‘unit-column’ matrix

V =

 ↑ ↑ ↑
v1 v2 v3

↓ ↓ ↓

 ,
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is invertible, or equivalently

detV = (v1 × v2) · v3 = (v2 × v3) · v1 = (v3 × v1) · v2

= −(v2 × v1) · v3 = −(v3 × v2) · v1 = −(v1 × v3) · v2

is non-zero. In this case, O,P1, P2, P3 are not coplanar, and the set {v1,v2,v3} is a basis
of R3. The “sides” of the triangle are then the segments of great circles (of radius 1)
through the vertices.

Two of our vectors, say v1 and v2, generate a (blue) plane Π3 that passes through O;
the intersection Π3 ∩S is a circle, and the arc from P1 to P2 is the side of the triangle
opposite P3. The lengths of the three sides are equal to the angles (in radians)

θ1 = ∠P2OP3, θ2 = ∠P3OP1, θ3 = ∠P1OP2,

whose cosines are

c1 = cos θ1 = v2 · v3, c2 = cos θ2 = v3 · v1, c3 = cos θ3 = v1 · v2.

These quantities feature in the symmetric matrix

V TV =

 1 c3 c2

c3 1 c1

c2 c1 1

 .

We shall assume that the three angles/lengths are no greater than π.

13.2. Spherical law of cosines1

Set ∆ = detV 6= 0 , and define

w1 =
1

∆
v2 × v3, w2 =

1

∆
v3 × v1, w3 =

1

∆
v1 × v2.

Then w1 · v1 = 1 , w1 · v2 = 0 and so on, indeed: wi · vj =

{
1 i = j,
0 i 6= j.

It follows that the inverse of V is the matrix

W T =

← wT
1 →

← wT
2 →

← wT
3 →

 .

If V is an orthogonal matrix, the original basis is orthonormal and W = V. In general,
{w1,w2,w3} is the reciprocal basis to {v1,v2,v3}.

1The following approach due to W. P. Thurston, 1946–2012
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The vector w1 = 1
∆
v1 × v2 is normal to the plane containing O,P2, P3. Moreover, a

triple like v2,v3,w1 has a right-handed orientation, which makes the normal w3 point
‘outwards’ from the triangular solid. We previously defined the angle of the spherical
triangle at say P1 to be the angle between the tangents to the two arcs meeting at P1.
But these tangents are both perpendicular to the radial line OP1, and we are therefore
speaking of the angle (defined in §12.3) between the two planes meeting along

↔
OP1.

P1

P2

P3

O

w1

w2

w3

The interior angles φ1, φ2, φ3 of the spherical triangle each measure 180o minus the
angles between the normals pictured overleaf, and so

cosφ1 = − w2 ·w3

‖w2‖‖w3‖
, cosφ2 = − w3 ·w1

‖w3‖‖w1‖
, cosφ3 = − w1 ·w2

‖w1‖‖w2‖
.

We now apply these calculations to a spherical triangle. Since V −1 = W T and (for any
matrix, (V −1)T = (V T )−1 ), we have (V TV )−1 = V −1(V T )−1 = W T (V −1)T = W TW,
and so

W TW =
1

∆2

 1− c2
1 c1c2 − c3 c1c3 − c2

c1c2 − c3 1− c2
2 c2c3 − c1

c1c3 − c2 c2c3 − c1 1− c2
3

 .

Each row of this symmetric matrix is the cross product of the columns of V TV, and
the entries of the matrix are the cofactors of V TV ; this is how they were written down.

It follows that

w1 ·w1 =
1

∆2
(1− c2

1), w1 ·w2 =
1

∆2
(c1c2 − c3).

The first equation confirms that ‖w1‖ = s3/|∆|, where s3 = sin θ3, something we
already know as ‖v1 × v2‖ = s3. The second yields

− cosφ3 =
w1 ·w2

‖w1‖‖w2‖
=
c1c2 − c3

s1s2

.
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Rearranging, and writing this out in full,

cos θ3 = cos θ1 cos θ2 + sin θ1 sin θ2 cosφ3.

Using A,B,C for the vertices and their interior angles, and a, b, c for the lengths of he
opposite sides, we have proved the

Theorem. The cosine of the length of the third side of a spherical triangle is given by

cos c = cos a cos b+ sin a sin b cosC

13.3. Applications

If the triangle is very small compared to the unit radius of the sphere (as is the case
on the surface of the earth), we may reasonably use approximations

cosx = 1− 1
2
x2, sinx = x

for x = a, b, c, given by Taylor’s theorem. Then

1− 1
2
c2 = (1− 1

2
a2)(1− 1

2
b2) + ab cosC,

and to order 2 we obtain the Euclidean cosine rule

c2 = a2 + b2 − 2ab cosC.

We do not approximate cosC as there is no assumption that C be small. Pythagoras’
theorem is the special case in which C = π/2 so cosC = 0 . The spherical version of
“Pythagoras” is therefore

cos c = cos a cos b.

The spherical sine rule
sin a

sinA
=

sin b

sinB
=

sin c

sinC

can be deduced from the cosine rule as we did in the for the Euclidean version

a

sinA
=

b

sinB
=

c

sinC
.

The fact that the spherical sine rule can also be expressed as

sinA

sin a
=

sinB

sin b
=

sinC

sin c

suggests that one might be able to interchange the side lengths a, b, c (the θi ) and
vertex angles A,B,C (the φi ) in the cosine formula. This is almost true, because we
can switch the roles of the matrices V and W in the proof. But remembering the
minus signs in front of wi ·wj, gives one overall sign change:
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Theorem. The third angle of a spherical triangle is given by

cosC = − cosA cosB + sinA sinB cos c

In all these formulas, we assume that the quantities a, b, c and A,B,C are all less than
π. In particular, the mapping C 7→ cosC is a bijection [0, π)→ (−1, 1].

Once one angle C and the lengths a, b of adjacent sides are known, the (first) cosine
rule can be used to determine the third side. The same rule (with sides switched) can
then be used to find the remaining angles B and C. This tells us that the SAS rule
applies to spherical triangles provided we restrict to k = 1 to get congruent triangles:

Corollary. If two spherical triangles have one angle equal and the lengths of the corresponding
adjacent sides equal, then all corresponding sides and angles are equal:

a = a′, b = b′, C = C ′ ⇒ A = A′, B = B′, c = c′.

The second cosine rule gives us a property that is not true for Euclidean triangles:

Corollary. The lengths of a spherical triangle are determined by its angles.

Let us “grade” spherical geometry according to our initial postulates B1–B5:

B1 fails because lines (meaning, great circles) are not infinite in extent, and the distance
between any two points on S is at most π.

B2 fails because opposite (the correct word is antipodal) points lie on infinitely many
lines.

B3 is valid because at any point (think of it as the north pole) there is a great circle
leaving at any angle.

B4 is valid because we use tangent vector to measure angles.

B5 only works for the scaling factor k = 1.

[Not examinable: The failure of B2 is not in itself serious. B2 will apply if we merely
declare that antipodal points are in fact equal. This gives a new type of plane:

Definition. The real projective plane P is the set of all straight lines passing through
the origin O in R3; these are the points of P. The set of all such lines in a given plane
through O defines a subset of P , called a line.

Each straight line though O intersects S in two antipodal points, so a single point
of P corresponds to a pair of antipodal points of S . A line of P corresponds to a
great circle in S . Since B5 still fails, the parallel postulate is not valid in P. But the
situation is rather satisfactory: any two lines meet in exactly one point!]

13.4. The area of a spherical triangle
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In this course, we have said little about area. But we take it for granted that the area of
a sphere of radius 1 is known to be 4π. In view of the last corollary, it is reasonable to
suppose that the area of a spherical triangle T is completely determined by its three
angles A,B,C. This means that we can write

area(T ) = f(A,B,C),

where f is a positive function whose value depends synmetrically on three variables.

If we divide the solid sphere into segments like those of an orange, we obtain a region
on the surface consisting of just two great circles that meet at antipodal points at an
equal angle of (say) C. The area of this region will be proportional to C and therefore
equal to (C/2π)4π = 2C. We can divide the region into two triangles by choosing
a third great circle that cuts the other two, giving us angles A, π − A and B, π − B.
Hence the equation

f(A,B,C) + f(π − A, π −B, C) = 2C

must hold for all A,B,C < π. The obvious guess

f(A,B,C) = A+B + C − π

is in fact the correct formula for f, though the proof of this fact is postponed until the
second year2.

Theorem (on spherical excess). The area of a spherical triangle equals the sum of its angles
minus π.

Corollary. The angles of any spherical triangle add up to a number greater than π.

Example. An equilateral triangle (meaning a = b = c) must have all angles greater
than π/3. We can check this from the cosine rule, which tells us that A = B = C
satisfies

cos a = cos2 a+ (sin2 a) cosA.

Set t = tan(a/2) so that sin a = 2t/(1 + t2) and cos a = (1− t2)/(1 + t2). Then

(1− t2)(1 + t2) = (1− t2)2 + 4t2 cosA,

and cosA = 1
2
(1− t2) < 1

2
so A > π/3.

14 The hyperbolic plane

The cosine rule for triangles on a sphere of radius r is

cos
c

r
= cos

a

r
cos

b

r
+ sin

a

r
sin

b

r
cosC.

2Later Dr Dmitri Panov told me of a simple proof based on similar ideas
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To modify the proof in §13.2, we just have to replace the arc lengths a, b, c by the an-
gles a/r, b/r, c/r that these arcs subtend at the centre of the sphere, whilst the vertex
angles A,B,C are unchanged. The quantity 1/r2 is called the curvature of the sphere.
The Euclidean plane corresponds to a sphere with r =∞ and has zero curvature.

If we substitute r = i =
√
−1, the trigonometric functions become hyperbolic since

cos(−ia) = cosh a, sin(−ia) = −i sinh a

(see §14.2 below). In this way, we obtain the so-called hyperbolic cosine rule

cosh c = cosh a cosh b− sinh a sinh b cosC

This formula is valid on a surface of revolution called a pseudosphere, obtained by
rotating a tractrix curve:

The sides of the triangle must be geodesics, the paths of least length between two
points, but it is not so easy to say what these are in general (though the tractrix curves
shown are geodesics).

14.1. The Poincaré disc

We shall now present a more abstract model in which the hyperbolic cosine rule is
valid. It will also be a model for our geometrical postulates, one which satisfies B1
(unlike the real projective plane), B2, B3, B4, but not B5. There are different ways of
presenting this, and we shall adopt the so-called Poincaré disc model:

Definition. The hyperbolic plane is the set of points inside the unit circle C , excluding
the boundary:

H = {(x, y) : x2 + y2 < 1}.
A line in H (also called h-line) is either (i) a diameter, or (ii) the arc of another circle
that intersects C at right angles:
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Proposition. Any line in H has an equation of the form
(i) ax+ by = 0 where a, b are not both zero, or
(ii) x2 + y2 + 2dx+ 2ey + 1 = 0 where d2 + e2 > 1.

Proof. The equation in (i) is obviously that of a diameter.

The equation in (ii) was the one we used for a circle, centre (−d,−e) , and radius r
where r2 = d2 + e2 − 1. We have to explain why this constraint between radius and
centre is exactly the condition that it meets the unit circle C at right angles.

1

r
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This is illustrated by the diagram: the circles meet at right angles, thus so do their
radii. The line segment joining their centres is then the hypotenuse of a right-angled
triangle with other sides of length 1 and r. �

Proposition. Given any two points P1, P2 ∈H , there exists a unique line ` in H such that
P1, P2 ∈ `.

Proof. To make this precise, let P1 = (x1, y1) and P2 = (x2, y2), and suppose they both
lie on a circular arc

x2 + y2 + 2dx+ 2ey + 1 = 0.

Then we have to solve the linear system{
2x1d+ 2y1e = k1

2x2d+ 2y2e = k2,

where k1, k2 are constants. This is of course possible unless
∣∣∣∣ 2x1 2y1

2x2 2y2

∣∣∣∣ = 0.

Exercise (complete the squares). The unique solution satisfies d2 +e2 > 1, as required.

If the determinant is zero, there exist a, b, not both zero, such that

a(x1, y1) + b(x2, y2) = 0,

and P1, P2 lie on a unique diameter. �

In the case of hyperbolic geometry the failure of the parallel postulate B5 is dramatic:

Observation. Given a line ` and a point P not on `, there exist infintely many lines through
P that do not intersect `.

However this failure only becomes significant after we have defined lengths and angles
in the hyperbolic plane and verified postulates B1–B4, so that we have revealed a true
non-Euclidean geometry.

14.2. Revision of hyperbolic functions

The functions sinh a = 1
2
(ea − e−a) and cosh a = 1

2
(ea + e−a) have properties that

are analogous to those of sine and cosine, which can be defined in a similar way by
inserting i =

√
−1 into the exponents. As in ordinary trigonometry, it is convenient

to use substitutions involving

t = tanh(a/2) =
sinh(a/2)

cosh(a/2)
=
ea/2 − e−a/2

ea/2 + e−a/2
=
ea − 1

ea + 1
.

This quantity takes values between −1 and 1. The red curve below is the graph of
a 7→ t with a playing the role of the x-coordinate.
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We can determine the inverse function explicitly:

t(ea + 1) = ea − 1 and ea =
1 + t

1− t
.

Hence
a = 2 tanh−1(t) = 2arctanh(t) = log

1 + t

1− t
.

The function t 7→ a defines a bijection (−1, 1)→ R.

-6 -4 -2 2 4 6

-1

1

Exercise. The following identities are valid:

tanh(a+ b) =
tanh a+ tanh b

1 + tanh a tanh b
,

tanh−1(s) + tanh−1(t) = tanh−1
( s+ t

1 + st

)
.

Moreover, if t = tanh(a/2) then

cosh a =
1 + t2

1− t2
, sinh a =

2t

1− t2
.

14.3. Hyperbolic angles and distance

For the next definition, we adopt complex numbers, and represent a point P = (x, y)
in H by a complex number z = x+ iy, so that |z| < 1.

Definitions. The hyperbolic angle between two lines meeting in P ∈ H is equal to the
ordinary Euclidean angle between their tangents at P (like on the sphere).

The hyperbolic distance between two points z1, z2 (zk ∈ C and |zk| < 1) is given by

d(z1, z2) = 2 tanh−1

∣∣∣∣ z1 − z2

1− z1z2

∣∣∣∣ .
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Exercise (on Sheet 10). The absolute value on the right is less than 1, so the definition
makes sense.

If we move along the x-axis from the origin O = (0, 0) towards the boundary point
(1, 0) stopping at P = (x, 0) then

d(O,P ) = 2 tanh−1(x), x > 0.

The boundary C is infinitely far from any point of the hyperbolic plane, and (using
minus the distance for points to the left of O ) there is a bijection between the diameter
{y = 0} ∩H and R. What’s more, this bijection preserves distances: if P = (−s, 0)
and Q = (t, 0) with s, t > 0 then

d(P,O) + d(O,Q) = d(P,Q),

since
2 tanh−1(s) + 2 tanh−1(t) = 2 tanh−1

( t+ s

1 + st

)
.

The last statement is essentially B1: it tells us that distances add up in the usual way
when measured along a line.

Pythagoras’ Theorem. The sides of a hyperbolic triangle with a right angle at C satisfy

cosh c = cosh a cosh b.

Proof. We shall only work out the special case in which C = O, A = (x, 0) and
B = (0, y). These vertices are the complex numbers 0, x, iy, so

tanh(a/2) = y, tanh(b/2) = x, tanh(c/2) =

∣∣∣∣ x− iy1− ixy

∣∣∣∣ =

√
x2 + y2

1 + x2y2
.

From the half-angle identities quoted above, we have

cosh a =
1 + x2

1− x2
, cosh b =

1 + y2

1− y2
.

After a calculation

cosh c =
1 + x2y2 + x2 + y2

1 + x2y2 − x2 − y2
=

(1 + x2)(1 + y2)

(1− x2)(1− y2)
,

as required. �

14.4. Exercises

1. The triangle below has vertices z0 = 0, z1 = x, and z2 = eiθy, where 0 < x, y < 1,
so that θ = ∠C. It follows that x = tanh(b/2) and y = tanh(a/2) (rotation about
the origin does not affect how one measures distances along a diameter). Use the
definition of hyperbolic distance d(z1, z2) to verify the hyperbolic cosine rule.
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a

b

c

2. Suppose that ABC is an isosceles triangle with a = b = 1 and a right angle at C.
We can compute the length c of the hypotenuse in three different geometries, using
the different versions of Pythagoras.

• On the sphere S of radius 1 (or in P ), c = arccos[(cos 1)2] = 1.27 . . .

• In the Euclidean plane E , we obviously have c =
√

2 = 1.41 . . .

• In the hyperbolic plane H , cosh c = arccosh[ e
2+2+e−2

4
] = 1.51 . . . .

The third side of the triangle is “longest” in the hyperbolic case. Moreover, only in E
can we double the answer to find out what happens when a = b = 2 (by SAS).

3. Using the technique of question 6, Sheet 10, deduce the hyperbolic sine rule

sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c

14.5. Hyperbolic isometries and tessellations [not examinable]

Fix α, β ∈ C, and consider the matrix A =

(
α β

β α

)
. Observe that

A

(
z
1

)
=

(
αz + β

βz + α

)
.

If we interpret the column vectors as ratios, then A defines a mapping

f : z =
z

1
7→ αz + β

βz + α
.

This is an example of a Möbius transformation, and actually defines a bijection

C \ {−α/β} −→ C \ {α/β}.
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Its inverse is given by A−1, though we may ignore the factor detA = |α|2 − |β|2, so

f−1: w 7→ αw − β
−βw + α

.

It is known that a transformation like f maps Euclidean lines/circles to lines/circles
(mixing the two classes up) and preserves angles between them. On the other hand,
the lengths of a hyperbolic triangle are determined by their angles.

Theorem. Suppose that |α| > |β|. Then f defines bijections C → C and H → H , and
preserves hyperbolic distance:

d(f(z1), f(z2)) = d(z1, z2), z1, z2 ∈H .

Exercise (in place of a proof). Set α = 1 and β = −w. Then f(z) =
z − w
1− wz

, and

f(w) = 0. As predicted by the theorem,

d(f(z), f(w)) = d(f(z), 0) = 2 tanh−1 |f(z)| = d(z, w),

which helps to understand the definition we gave of hyperbolic distance.

The isometries above preserve orientation, whereas the map z 7→ z is a hyperbolic
isometry reversing orientation. Altogether, there are four different types of hyperbolic
isometries (excluding the identity), as there were in the Euclidean plane. For example,
the composition

g: z 7→ 2z − i
iz + 2

is a “reflection” that fixes every point satisfying 2z − i = z(iz + 2), which is the h-line

x2 + (y + 2)2 = 3.

This is shown red in the Somerset House illustration at the top of the Geometry I page
on Keats: g maps the rectangular image to the curved one, so the two images are
congruent in H .

Finally, consider a tessellation of the plane in which k regular congruent polygons
with n sides meet at each vertex. In the Euclidean plane, this is possible only if

k
(n− 2)π

n
= 2π ⇒ 1

n
+

1

k
=

1

2
.

The only solutions are (k, n) = (4, 4), (6, 3), (3, 6), giving the familiar tessellations
made up of squares, triangles or hexagons.

Because of the failure of SAS, there is much more flexibility in the hyperbolic plane,
where the bigger the polygon, the smaller the sum of its angles. We can always find
a tessellation if 1/n + 1/k < 1/2. The picture on the front cover of these lecture notes
has n = 5 and k = 4, and is based on right-angled pentagons repeatedly reflected in
their sides! Other hyperbolic tilings can be found by following the link on Keats.
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Problem sheet 1

1. Let A = {1, 2, 3, 4}. We know that there are 4! = 24 bijections f : A → A (permu-
tations). We say that an element a of A is a fixed point of f if f(a) = a . How many
of the 24 bijections do not have a fixed point? (Hint: If f does not have a fixed point
then f(1) = 2, 3 or 4 . If f(1) = 2 then f(2) = 1 or f(2) = 3 or 4 . . . )

2. Let N = {1, 2, 3, . . .} be the set of natural numbers. Explain why a mapping f :N→
R is really the same thing as an infinite sequence a1, a2, a3, . . . of real numbers. Pro-
vide an example of a mapping f in which the image f(N) is a finite set of size
4, and another example in which f(N) is an infinite set contained in the interval
(0, 1) = {x ∈ R : 0 < x < 1}.

3. The Fano plane F consists of just 7 points that we can label with numbers, so F =
{1, 2, 3, 4, 5, 6, 7} . The following subsets:

1 2
3

4

5

6

7

`1 = {1, 2, 3}, `2 = {3, 4, 7},
`3 = {2, 4, 6}, `4 = {2, 5, 7},
`5 = {1, 6, 7}, `6 = {3, 5, 6},
`7 = {1, 5, 4} = {1, 4, 5}

are called “lines” (the sketch may help). Verify that any two points lie on a unique
line and that any two lines meet in one point. How many lines contain a given point?
How many sets of 3 lines are there that do not all pass through one point?

4. Let x be the real number such that xx = 2 . (You may assume that x exists and
is greater than 1). Prove that x is irrational. (Hint: as for

√
2, suppose that x = p/q

where p, q are positive integers without a common factor and p > q.)

5. In the Euclidean (usual) plane, Let AB and CD be two line segments intersecting
at a point O that lies on both segments. Show that the lines bisecting the angles
∠AOC,∠BOC are perpendicular, writing down the argument so that in the end it
can be followed without including a sketch.

6. Draw two triangles 4ABC , 4A′B′C ′ such that ∠BAC = ∠B′A′C ′ (equal angles)
and |AC| = |A′C ′| , |CB| = |C ′B′| (equal pairs of sides), but that |AB| 6= |A′B′| .
(So the last pair of sides are not equal, and the triangles are not similar).
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Problem sheet 2

In questions 2 and 3 you may assume that the three angles of any triangle add up to π
radians. Question 6 takes for granted Pythagoras’ theorem. We shall prove both these
results soon in lectures.

1. Given a triangle ABC , let L,M,N be the midpoints of BC,CA,AB respectively,
so (for example) |BL| = |LC| . Deduce from Postulate B5 (two triangles are similar if
an angle of one equals an angle of the other and the adjacent sides are proportional)
that the triangles ABC , ANM , NBL , MLC are similar.

2. Continuing question 1, prove that 4LMN is also similar to 4ABC .

3. Suppose that A,B,C,D are four distinct points such that the midpoints of the seg-
ments AC,BD coincide. Using B5, show that ∠ACD and ∠BAC are equal. Deduce
that the lines

↔
AB and

↔
CD are parallel. [Hint: If not, these two lines meet in a point E

forming a triangle ACE .]

4. Continuing question 3, the same argument shows that
↔
BC is parallel to

↔
DA . Thus

ABCD is a parallelogram, a 4-sided figure consisting of two pairs of parallel line seg-
ments. If A,B,C,D are four distinct points such that |AB| = |CD| and |AD| = |BC|,
is ABCD necessarily a parallelogram?

5. As explained in lectures, a great circle is the circle formed by intersecting the surface
of a sphere S with any plane that passes through the centre of S . It is known that
any three points in space lie on a unique plane, unless the three points already lie on
a straight line. Deduce from this fact that any two points A,B ∈ S lie on a unique
great circle unless A and B are directly opposite each other. [The deduction is easy,
but write out your argument carefully and logically.]

6. Let a, b, c be fixed real numbers with b 6= 0 and consider the line

` = {(x, y) : ax+ by + c = 0}

in the Cartesian plane. If P = (x, y) and Q = (x′, y′) belong to ` express the distance

|PQ| =
√

(x′ − x)2 + (y′ − y)2

in terms of |x′ − x|. Deduce that there exists λ > 0 such that the mapping f : ` → R
defined by (x, y) 7→ λx satisfies the requirement of B1, namely |PQ| = |f(P )− f(Q)|.
Are other definitions of f possible?
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Problem sheet 3

1. A triangle 4ABC has equal angles ∠A = ∠B . Use the AA rule to deduce that
|AC| = |BC|, so that the triangle is isosceles.

2. Is B5 (the SAS rule) valid on the surface of a sphere, in which the sides of a “trian-
gle” are segments of great circles (as discussed previously)? [Hint: consider a small
isosceles triangle with one vertex at the north pole N and a right-angle at that vertex.
Now extend the two rays from N until they meet the equator.]

3. A kite is a quadrilateral ABCD (with vertices “in order” and interior angles each
less than π ) such that |AB| = |AD| and |CB| = |CD|. Draw one. Use the SSS rule
to deduce that 4ABC ∼ 4ADC . Now prove that the diagonals AC and BD are
perpendicular (you may assume that they meet at a point O ).

4. In the diagram, you may assume that all lines are straight, ∠OAB,∠OGH,∠COG
are right angles, and |AB| = |CO|. Use the AA rule to show that 4OAB ∼ 4OGH ,
4FOC ∼ 4FGH , and that both pairs of triangles are similar with the same factor
k > 0 . If |AO| = 2 and |OF | = 1, prove that |FG| = 1 .

A

B

O

C

F G

H

5. Suppose that the sides of 4ABC satisfy |AB|2 = |BC|2 + |CA|2. Prove that ∠C =
π/2. [Hint: construct a second triangle A′B′C ′ with ∠C ′ = π/2 and the sides adjacent
to ∠C ′ of the same lengths as the first. You may assume Pythagoras’ theorem.]

6. Using Cartesian coordinates (x, y), the distance between (0, 0) and (x, y) equals√
x2 + y2 by Pythagoras’ theorem. Assuming x, y are both non-zero, is this quantity

less or greater than

(i) max(|x|, |y|),
(ii) |x|+ |y| ?

Justify your two answers using only algebraic formulas.
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Problem sheet 4

1. Let ` be a line and P a point not on `. Choose two points A,B on `, and P ′ so that
` bisects ∠PAP ′ and |AP | = |AP ′|. Show that 4PAB ∼ 4P ′AB. Deduce [from the
lemma in §4.2] that both A and B lie on the perpendicular bisector of PP ′, and so
PP ′ meets ` at π/2. [This is a bit simpler than the proof of the theorem in §4.2.]

2. Suppose that d(A,B) represents the distance between two points A,B in the plane.
Use the triangle inequality [from §4.3] to deduce that

|d(A,B)− d(A,C)| 6 d(B,C),

for any three points A,B,C.

3. Let s = sin(π/12). Show that 1− 2s2 =
√

3/2. Deduce that s = (
√

6−
√

2)/4. [Hint:
work backwards!]

4. Triangle ABC has a right-angle at C, and lengths a = |BC|, b = |CA|, c = |AB|.
Points P,Q are constructed either side of B so that |PB| = |BQ| = a :

A

P

Q

B

C

a

a

a

Use isosceles triangles to show that ∠PCQ = π/2. Now prove that 4APC and
4AQC are similar [they already have a common angle at A]. Deduce that (c+a)/b =
b/(c− a), which implies that c2 = a2 + b2.

5. A rectangle is a 4-sided figure with four equal angles of π/2. A rhombus is a 4-sided
figure with four equal sides. (In both cases the sides meet only in the 4 vertices.)
Let P,Q,R, S be the midpoints (taken in clockwise order) of the sides of a rectangle.
Prove that PQRS is a rhombus, without resorting to Pythagoras’ theorem.

6. Suppose that a = p2 − q2 , b = 2pq , c = p2 + q2. Express cos θ and sin θ in terms of
t = tan(θ/2) and verify that

(a, b) = c(cos θ, sin θ), where t = q/p.

Deduce that there are infinitely many points (x, y) on the circle x2 + y2 = 1 whose
coordinates x, y are rational numbers.
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Problem sheet 5

1. The table in §5.3 displays 13 coprime Pythagorean triples (a, b, c). How many others
are there with c < 100?

2. Fermat proved (around 1640) that there are no solutions of the equation x4 − y4 = z2

with x, y, z positive integers.
(i) Show that this statement implies Fermat’s last theorem for the case n = 4.

(ii) A triangle ABC has a right angle at C. Its sides a, b, c are all integers, and its area
is the square of an integer d . By considering (a± b)2, verify that (a2− b2)2 = c4−16d4,
and deduce that this is impossible.

3. Suppose that segments AB and BC are perpendicular at B. Construct a line m
perpendicular to AB at A, and a line n perpendicular to BC at C . Show that m and
n meet at a point D. [Hint: if not, then

↔
BC and n are both parallel to m .] Deduce that

ABCD is a rectangle. So, with our postulates, rectangles exist!

4. A parallelogram is the figure formed by two pairs of parallel lines intersecting each
other. Let ABCD be a parallelogram with diagonals AC and BD. Regarding AC as
a transversal, show that ∠BAC = ∠ACD and ∠BCA = ∠CAD. Use the AA rule to
deduce that |AB| = |DC| and |BC| = |AD|. Prove also that AC and BD bisect one
another.

5. Let `,m, n be three distinct parallel lines. Prove the theorem on ratios in §6.3 in the
case in which the two transversals k, k′ are parallel. [Hint: First construct the segment
LN ′ and show that 4NLN ′ ∼ 4L′N ′L.]

6. (i) Let ` be a line and P a point not on `. Let D be the foot of the perpendicular from
P to `. Show that, if Q is a point that varies on `, then |PQ| is least when Q = D.
The number |PD| is called the distance from P to ` .

(ii) Let r and s be two rays (half-lines) meeting at a point O. Let b be a ray from O
that bisects the angle that r and s make at O (it exists by B3). Show that, for any point
P on b, the distance from P to r equals the distance from P to s.

7. A “pentagram” is formed by extending the sides of a regular
pentagon as shown. Find the angles of each triangle outside the
pentagon. If the pentagon has side 1, what is the length of each
long segment that can be seen joining a pair of outer vertices?
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Problem sheet 6

1. Describe the set of points defined by the Cartesian equations xy = 0, and x2− y2 =
0. Now sketch the hyperbola x2 − y2 = 1, observing that it passes though (±1, 0).

2. A parabola is often defined as the set of points P in the plane such that the distance
from P to a fixed line d (the directrix) equals the distance from P to a fixed point F
(the focus). If F = (0, 0) is the origin of a system of Cartesian coordinates and d is the
line x = 1 (not the usual choice!), find the equation satisfied by P = (x, y).

3. Suppose that two circles C1,C2 with centres O1, O2 meet in two points P,Q. Prove
that 4O1PO2 is congruent to 4O1QO2, and that O1O2 is the perpendicular bisector
of PQ.

4. An ellipse is sometimes defined as the set of points P such that the sum |PF1| +
|PF2| of the distances from P to two given points (the foci) equals a constant, c . If
F1 = (−1, 0), F2 = (1, 0) and c = 4, show that P = (x, y) satisfies an equation of the
form √

A+
√
B = 4, where A−B = 4x,

and A and B are functions of x and y. Deduce that x =
√
A −

√
B and that 4A =

(x+ 4)2. Simplify the last equation in terms of x and y.

5. Let 4ABC be a right-angled triangle with ∠A = π/2, and let P be the midpoint of
BC. Show that |AP | = |PB|. (Hint: add the midpoint Q of AC and consider 4APQ.)
Deduce that P is the circumcentre of 4ABC. Where is the orthocentre of 4ABC ?

6. (i) Prove that if a quadrilateral ABCD is inscribed in a circle C (meaning that
A,B,C,D lie in order on C ) then

∠A+ ∠C = π = ∠B + ∠D.

(Hint: join the vertices to the centre of the circle and consider the resulting triangles.)

(ii) Prove that if a circle C ′ is inscribed in a quadrilateral ABCD (meaning that the
sides AB,BC,CD,DA are all tangents to C ′ ) then

|AB|+ |CD| = |BC|+ |AD|.

7. Explain why it is possible to fit six circles around a seventh, all of the same radius,
so that each circle touches at least three others. (Try it with 70p, but then think of the
centres of the circles.)
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Problem sheet 7

1. A complex number z = x + iy is represented by the point (x, y) in the plane, and
we shall use z as a symbol for this point. Use similar triangles to verify that 1

2
(z1 + z2)

is the midpoint of the segment joining z1 to z2. Show, any way you want, that an
arbitrary point on the same segment equals

z + k(w − z) = (1− k)z + kw,

for some k ∈ [0, 1]. (This is a question as much about vectors as complex numbers.)

2. Represent the vertices A,B,C of a triangle by complex numbers z1, z2, z3, and hence
the midpoints L,M,N of the sides of 4ABC by 1

2
(z2 + z3), 1

2
(z3 + z1), 1

2
(z1 + z2). Let

w = 1
3
(z1 + z2 + z3). Find k such that w = (1− k)z1 + k 1

2
(z2 + z3). Deduce that w lies

on all three medians AL, BM, CN. It is therefore the centroid G of 4ABC.

3. With the same notation as in q. 2, suppose (as in lectures) that |zi| = 1 for i = 1, 2, 3,
so z = 0 is the circumcentre O of 4ABC and z1 +z2 +z3 represents its orthocentre H.
Let A′, B′, C ′ be the feet of the altitudes of 4ABC (so A′ ∈

↔
BC etc.) and A′′, B′′, C ′′

the midpoints of the segments AH,BH,CH. Let P be the midpoint of OH. Show that
(i) |PA′′| = 1

2
and (ii) |PL| = 1

2
. Deduce (by applying q. 5 on Sheet 6 to 4LA′A′′ ) that

(iii) |PA′| = 1
2
. It follows that P is the centre of a circle that passes through the nine

points
L, M, N ; A′, B′, C ′; A′′, B′′, C ′′.

Show that P,H,O,G all lie on a line (called the Euler line of 4ABC ).

4. (i) Let f be a translation parallel to a line `, and g reflection in `. By tracing the
effect of f ◦ g and g ◦ f on an arbitrary point P, show that these two compositions are
equal.

(ii) Let h be a glide reflection. Given any point P, let P ′ = h(P ). Prove that the
midpoint of PP ′ lies on the line defining the reflection. Deduce that no points are
fixed by h.

5. Let `,m be two parallel lines, and f, g the respective reflections in these lines. Given
a point P, let n be the line perpendicular to ` and m passing though P, and let L,M
be the points of intersection of n with ` and m. Show that f ◦ g shifts P along n in a
fixed direction by a distance 2|LM |, irrespective of the position of P relative to `,m .
Thus, f ◦ g is a translation. Is it true that f ◦ g = g ◦ f ?

6. Let f, g be 180o rotations centred at two distinct points P,Q respectively. Let R
be a third point such that ∠PQR = π/2. Show that f ◦ g acts on each of P,Q,R as
the same translation, and deduce that f ◦ g is a translation. [You may assume that an
isometry that fxes 3 non-collinear points must be the identity.]
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Problem sheet 8

1. Study and write out the proof of Proposition 2 (asserting that any isometry with
exactly one fixed point is a rotation) in your own words, following the sketch in §10.3.

2. Let G be the group of isometries f : E → E of the Euclidean plane. Which of the
following, with the identity added, are subgroups of G? [You need to decide whether
the composition of any two, and the inverse of any one, remains in the set.]

(i) the set of all translations,

(ii) the set of all rotations (about any point) and translations,

(iii) the set of all reflections,

(iv) the set of all rotations about a fixed point O through nπ/5 radians, where n is a
positive integer.

3. Fix Cartesian coordinates in the plane with origin O. Let f = RotO, π/2 be rotation
by 90o about O. Let ` be the x-axis and let g = Ref` be the reflection (x, y) 7→ (x,−y).

(i) Verify that f−1 = f ◦ f ◦ f. Verify that f ◦ g = g ◦ f−1 [consider the effect of both
sides on two points other than O.]

(ii) Describe the isometries f ◦ f ◦ g and g ◦ f. Show that the set

D = {id, f, f ◦ f, f−1, g, f ◦ g, f ◦ f ◦ g, g ◦ f}

is a subgroup of G. [You need to show that the composition of any two of the 8 in
either order belongs to D , as does the inverse of any one.]

4. Let

S =

(
cos θ sin θ

sin θ −cos θ

)
, T =

(
1 0

0 −1

)
, v =

(
cos θ

2

sin θ
2

)
, w =

(
−sin θ

2

cos θ
2

)
.

What isometries (fixing the origin) do S and T represent? Compute the matrix prod-
ucts S2 (that is, SS ), ST, Sv, Sw, simplifying the answers. Interpret all these
results geometrically [the Linear Methods notes may be helpful].

5. Simplify
(

cos θ − sin θ
sin θ cos θ

)(
cosφ sinφ
sinφ − cosφ

)
and interpret the result.

6. By considering each of the five types (listed at the end of §10.2) in turn, show that
any isometry of the plane is the composition of at most three reflections.
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Problem sheet 9

1. Let v1,v2,v3 be the vectors determined by the columns of M =

 c 1 2

3 4 5

6 7 8

 ,

where c ∈ R. Compute the vectors

v2 × v3, v3 × v1, v1 × v2.

If these are the columns (in order) of a matrix L, verify that LTM is a multiple of the
identity matrix. If c = 0, does L−1 exist ?!

2. Describe the isometries (that fix an origin in space) given by the following matrices:

A =


1
2
−
√

3
2

0
√

3
2

1
2

0

0 0 1

 , B =

 0 0 1

1 0 0

0 1 0

 , C =

−1 0 0

0 −1 0

0 0 −1


Write down the inverse matrices A−1, B−1, C−1 and compute A3, B3, C3.

3. Consider the two planes

Π1: x+ 2y + 5z = 8, Π2: −x− y + 2z = 3.

(i) Write down normal vectors n1,n2 to each one and compute n1 × n2 . Find just one
point that lies on both planes (this is easier than fully solving the equations). Hence
write down the line ` = Π1 ∩ Π2 in parametric form as in §12.2.

(ii) Write down the equation of any one plane Π3 that does not intersect ` (and is
therefore parallel to `).

4. Let Π be the plane that passes through the points (1, 0, 0) , (0, 0, 1) and (0, 0, 1). Find
the angle that Π makes with the xy -plane z = 0.

5. Verify that the four points

(0,
√

2, 1), (0,−
√

2, 1), (
√

2, 0,−1), (−
√

2, 0,−1)

all lie on a sphere centred at the origin, and that the distances between any two of
them are all equal. What figure do they form?

6. The set of 3 × 3 orthogonal matrices with determinant equal to 1 (as opposed to
−1) is sometimes denoted by SO(3) (to stand for Special Orthogonal). Use properties
of the transpose and determinant of a matrix to verify that

(i) if A,B ∈ SO(3) then AB ∈ SO(3) ;

(ii) if A ∈ SO(3) then A−1 ∈ SO(3) .

Since we already know that matrix multiplication is associative and the identity ma-
trix I belongs to SO(3), this means that SO(3) forms a group. Explain why (i) tells us
that the composition of two rotations in space whose axes intersect is another rotation.
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Problem sheet 10 [not assessed]

1. Let z1, z2 be complex numbers, both of modulus less than 1. Prove that

|z1 − z2| < |1− z1z2|

by expanding the squares of both sides. (We need this inequality in order to be able
to define the hyperbolic distance between z1, z2 as 2 tanh−1 of |z1 − z2|/|1− z1z2|.)

2. Let t = tanh(a/2). Verify that cosh a =
1 + t2

1− t2
and sinh a =

2t

1− t2
.

3. Suppose that ABC is an isosceles triangle with a = b = 1/2 and a right angle at C.
Compute numerically the length c of the hypotenuse:

(i) on a sphere of radius 1,

(ii) in the Euclidean plane,

(iii) in the hyperbolic plane.

Compare the answers with each other and also with those for a = b = 1 (found in
§14.4).

4. Let T be a triangle in the hyperbolic plane with sides of hyperbolic lengths a, b, c.
Use the hyperbolic cosine rule to prove that cosh c < cosh(a+ b). Deduce the triangle
inequality that asserts that the length c of one side is less than the sum a + b of the
other two.

5. Let P1 and P2 be two points on the surface of the earth, assumed to be a sphere
of radius 1 unit, and let N be the north pole. Let a, b, c denote the arc lengths of the
sides of the spherical triangle P1P2N opposite P1, P2, N respectively. Explain why
b = π/2 − l1 and a = π/2 − l2, where l1, l2 are the latitudes of P1, P2 (measured in
radians), and C = ∠P1NP2 = |m1 −m2|, where m1,m2 are their longitudes. Now set
H(x) = 1− cosx . Show that the Haversine formula

H(c) = H(l1 − l2) + cos l1 cos l2H(m1 −m2)

(once used for navigation) reduces to the spherical cosine rule

cos c = cos a cos b+ sin a sin b cosC.

6. Use the spherical cosine rule immediately above to show that sin2 a sin2 b sin2C can
be expressed as a symmetric function of cos a, cos b, cos c. Deduce the spherical sine
rule

sin a

sinA
=

sin b

sinB
=

sin c

sinC
.
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