REDUCED HOLONOMY, CONES AND BRANES

Based on results of
[1] Acharya-Figueroa O'Farrill-Hull-Spence: Adv Theor Math Phys 2 (1998)
[2] Atiyah-Witten: M-theory dynamics on a manifold with G_{2} holonomy, Adv Theor Math Phys 6 (2002)
[3] Acharya-Witten: Chiral fermions from manifolds of G_{2} holonomy, hep-th/0109152
and some of my own explicit examples.

Slides at www.ma.ic.ac.uk/~sms

11-dimensional equations

SUGRA $_{11}$ involves a metric g and reduction to $\mathrm{SO}(10,1)$ and a 4 -form $F=d A$ satisfying

$$
\begin{gathered}
R_{i m}=\frac{1}{12}\left(F_{i j k l} F_{m}{ }^{j k \ell}-\frac{1}{12} g_{i m} F^{2}\right) \\
d F=0 \\
d * F=F \wedge F
\end{gathered}
$$

Supersymmetry requires non-zero Killing spinor(s):

$$
\nabla_{m} \eta+\frac{1}{288}\left[\Gamma_{m}^{i j k l}-8 \delta_{m}^{i}{ }^{\Gamma k l}\right] F_{i j k l} \eta=0
$$

and holonomy reduction of a suitable connection. Let $\nu=\frac{1}{32} \operatorname{dim}$ (K spinors).

Special solutions

Identifying F with the volume form of a 4-manifold gives an Einstein product $M^{4} \times M^{7}$.

- With $\nu=1: \mathrm{AdS}_{7} \times S^{4}$ or $\mathrm{AdS}_{4} \times S^{7}$.
- M2 brane solution with $\frac{1}{16} \leqslant \nu \leqslant \frac{1}{2}$:

$$
\left(1+\frac{a^{6}}{r^{6}}\right)^{-2 / 3} g_{2,1}+\left(1+\frac{a^{6}}{r^{6}}\right)^{1 / 3}\left(d r^{2}+r^{2} g_{7}\right)
$$

with $F=\operatorname{vol}_{2,1} \wedge f(r) d r$ and $* F=6 a^{6}$ vol $_{7}$. Interpolates between

$$
g_{2,1}+\left(d r^{2}+r^{2} g_{7}\right) \quad \text { on } \quad M_{2,1} \times X^{8}
$$

as $r \rightarrow \infty$ and the near horizon limit

$$
\left(\frac{r^{4}}{a^{4}} g^{2,1}+\frac{a^{2}}{r^{2}} d r^{2}\right)+a^{2} g_{7} \quad \text { on } \quad \mathrm{AdS}_{4} \times Y^{7}
$$

as $r \ll a$.

Metrics with exceptional holonomy

- To ensure that $\nu>0$, the conical metric

$$
d r^{2}+r^{2} g_{7} \quad \text { on } \quad \mathbb{R}^{+} \times Y^{7}
$$

must have Hol $\subseteq \operatorname{Spin} 7$. This holds iff $\left(Y, g_{7}\right)$ has weak holonomy G_{2} (invariant intrinsic torsion).
$\underline{\text { Examples }} Y=S^{7}, S_{\mathrm{sq}}^{7}\left(\xrightarrow{S^{3}} S^{4}\right), \frac{\mathrm{SO}(5)}{\mathrm{SO}(3)}, \frac{\mathrm{SU}(3)}{\mathrm{U}(1)_{p, q}}$.

- In turn, the conical metric

$$
d y^{2}+y^{2} g_{6} \quad \text { on } \quad \mathbb{R}^{+} \times Z^{6}
$$

has holonomy $\subseteq \mathrm{G}_{2}$ iff $\left(Z, g_{6}\right)$ is nearly-Kähler [6].
Examples The 3 -symmetric spaces $Z=S^{6}$,

$$
\mathbb{C P}^{3}, \quad \mathbb{F}=\frac{\operatorname{SU}(3)}{\mathrm{T}^{2}}, \quad S^{3} \times S^{3}
$$

for which triality $\theta=\frac{1}{2}(-\mathbf{1}+\sqrt{3} J)$ plays a key role.

Weak G_{2} metrics with singularities

Suppose that $\left(Z, g_{\mathrm{NK}}\right)$ is nearly-Kähler. Then

$$
\begin{aligned}
g_{8} & =d x^{2}+\left(d y^{2}+y^{2} g_{\mathrm{NK}}\right) \\
& =\left(d r^{2}+r^{2} d t^{2}\right)+(r \sin t)^{2} g_{\mathrm{NK}} \\
& =d r^{2}+r^{2}\left(d t^{2}+\sin ^{2} t g_{\mathrm{NK}}\right)
\end{aligned}
$$

has $\operatorname{Hol}\left(g_{8}\right) \subset \operatorname{Spin} 7$.

Corollary [4] The 'spherical metric'

$$
d t^{2}+\left(\sin ^{2} t\right) g_{\mathrm{NK}}
$$

has weak holonomy G_{2}.

S^{1} quotients of G_{2} manifolds

If $\left(Y, g_{7}\right)$ has holonomy G_{2} then $Q=Y / S^{1}$ has a symplectic $\mathrm{SU}(3)$ structure with

$$
g_{7}=f^{2}(d t+\eta)^{2}+\frac{1}{f} g_{\text {IIA }}
$$

in which f is a function on Q (the dilaton).
Theorem [2] Each 3 -symmetric space Z admits a S^{1} action for which $Z / S^{1} \cong S^{5}$. Therefore, if $Y=$ $\mathbb{R}^{+} \times Z, Q \cong \mathbb{R}^{6}$ contains the S^{1} fixed points $(f=0)$ as Lagrangian submanifolds.

Example A standard S^{1} action on $\mathbb{F}=\frac{U(3)}{U(1) \times U(1) \times U(1)}$ has fixed point set $S^{2} \sqcup S^{2} \sqcup S^{2}$, and X / S^{1} has three \mathbb{R}^{3} 's intersecting at a point (generating D6 branes). A curved version is inherent in the geometry of

$$
S^{3} \times S^{3}=\frac{\operatorname{SU}(2) \times \operatorname{SU}(2) \times \operatorname{SU}(2)}{\operatorname{SU}(2)}
$$

A tri-Lagrangian example

Let $N^{5}\left(\xrightarrow{T^{2}} T^{3}\right)$ be a principal torus bundle with base 1 -forms e^{1}, e^{3}, e^{5} and connection 1-forms e^{4}, e^{6} with

$$
d e^{4}=e^{15}, \quad d e^{6}=e^{13}
$$

Then $N^{5} \times S^{1}$ has a symplectic form

$$
\omega=e^{12}+e^{34}+e^{56}
$$

Theorem [10] $N^{5} \times S^{1}$ has a triple of mutually transverse Lagrangian submanifolds through each point.

Follows from the existence of closed simple 3-forms

$$
\begin{aligned}
\gamma & =e^{1} \wedge \theta\left(e^{3}\right) \wedge \theta^{2}\left(e^{5}\right) \\
\theta(\gamma) & =\theta\left(e^{1}\right) \wedge \theta^{2}\left(e^{3}\right) \wedge e^{5} \\
\theta^{2}(\gamma) & =\theta^{2}\left(e^{1}\right) \wedge e^{3} \wedge \theta\left(e^{5}\right)
\end{aligned}
$$

Remark $S p(n, \mathbb{R})$ acts almost transitively on triples of $\overline{\text { transverse Lagrangian subspaces of } \mathbb{R}^{2 n} \text {, with stabilizer }}$ $O(n)$.

Half flat $\operatorname{SU}(3)$ structures

In 6 dimensions, an $\mathrm{SU}(3)$ structure is characterized by a 2 -form ω and a $(3,0)$-form $\psi^{+}+i \psi^{-}$. A G_{2} structure is defined in $6+1$ dimensions by setting

$$
\begin{aligned}
\varphi & =\omega \wedge d t+\psi^{+} \\
* \varphi & =\psi^{-} \wedge d t+\frac{1}{2} \omega \wedge \omega
\end{aligned}
$$

The holonomy reduces iff

$$
d \varphi=0, \quad d * \varphi=0
$$

implying the half-flat conditions

$$
d\left(\frac{1}{2} \omega \wedge \omega\right)=0, \quad d \psi^{+}=0
$$

Example $N^{5} \times S^{1}$ has a half-flat structure with

$$
\begin{aligned}
\psi^{+}(0) & =e^{135}-e^{146}-e^{236}-e^{245} \\
\frac{1}{2} \omega(0) \wedge \omega(0) & =e^{3456}+e^{5612}+e^{1234}
\end{aligned}
$$

Problem: Find $\omega(t), \psi^{+}(t)$ satisfying the reduction.

Rich Calabi-Yau geometry

Solution: Let $4 t=2 u+\sin 2 u$ and $x=\cos u, y=\sin u$.

$$
\begin{array}{rll}
x e^{1}, & (1+y)^{1 / 2} e^{3}, & (1-y)^{1 / 2} e^{5}, \\
x^{2} d u, & (1-y)^{-1 / 2} e^{4}, & (1+y)^{-1 / 2} e^{6}
\end{array}
$$

is an ON basis for a metric g_{CY} on $M^{6}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times N^{5}$ with $\operatorname{Hol}\left(g_{\mathrm{CY}}\right)=S U(3)$. The Kähler form is

$$
\omega=x^{3} e^{1} d u+e^{45}-e^{63}
$$

Proposition M^{6} has a pencil of special Lagrangian submanifolds through each point.

Follows from the existence of closed 3-forms

$$
\begin{gathered}
e^{146} \\
x(1+y) e^{34} d u+x(1-y) e^{56} d u+x^{2} e^{135} \\
x e^{46} d u+(1-y) e^{156}+(1+y) e^{134} \\
x^{3} e^{35} d u
\end{gathered}
$$

spanning the S^{1} orbit $\left\{\exp (s J) \cdot e^{146}\right\}$ containing $\psi^{ \pm}$.

Kähler quotients of G_{2} metrics

Assumption Y^{7} has a metric with $\mathrm{Hol}=\mathrm{G}_{2}$ and the $\overline{\mathrm{SU}}(3)$ manifold $\left(Y / S^{1}, g_{\text {IIA }}\right)$ is Kähler:

Theorem [5] Suppose that a 4-manifold M has

- a cx structure J_{1} and holomorphic 2 -form $\omega_{2}+i \omega_{3}$,
- a 1-parameter family of Kähler forms $\tilde{\omega}=\tilde{\omega}(t)$ s.t.

$$
\tilde{\omega}^{\prime \prime}(t)=2 i \partial \bar{\partial} f
$$

where $t \tilde{\omega} \wedge \tilde{\omega}=f \omega_{2} \wedge \omega_{2}$. Then a rank 3 bundle over M admits a Ricci-flat metric g with $\mathrm{Hol}(g) \subseteq G_{2}$.

If f is constant on M then $\tilde{\omega}^{\prime \prime}(t)=0$ and

$$
\tilde{\omega}=(p+q t) \omega_{0}+(r+s t) \omega_{1},
$$

with $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ a hyperkähler structure and ω_{0} an additional closed 2-form.

Example Take

$$
\begin{aligned}
& \omega_{0}=z d x \wedge d z-d w \wedge d y \\
& \omega_{1}=z d x \wedge d y+d z \wedge d w+x d y \wedge d z \\
& \omega_{2}=z d x \wedge d z+d w \wedge d y \\
& \omega_{3}=d x \wedge d w-x d x \wedge d y+z d y \wedge d z
\end{aligned}
$$

corresponding to a Gibbons-Hawking (HK) metric

$$
z\left(d x^{2}+d y^{2}+d z^{2}\right)+\frac{1}{z}(d w-x d y)^{2}
$$

conformal to a left-invariant one on $\mathbb{C H}{ }^{2}$ [8].

Solutions with f non-constant are found starting from

$$
\omega_{1}=\frac{i}{2}(d u \wedge d \bar{u}+d v \wedge d \bar{v}), \quad \omega_{2}+i \omega_{3}=d u \wedge d v
$$

on $T^{4}=\mathbb{C}^{2} / \mathbb{Z}^{4}$ and setting $\tilde{\omega}=\omega_{1}+i \partial \bar{\partial} \phi$. Then

$$
\tilde{\omega} \wedge \tilde{\omega}=\mathcal{M}(\phi) \omega_{1} \wedge \omega_{1},
$$

and $t \mathcal{M}(\phi)=f=\frac{1}{2} \phi^{\prime \prime}$.
Example If $u=x+i y$, there are solutions

$$
\phi(t, x, y)=\frac{1}{3} t^{3}+\ell(t) m(x, y),
$$

where $\ell^{\prime \prime}-t \ell=0$ and $\Delta m+m=0$ such as

$$
f(t, x)=t+\frac{1}{2} t \operatorname{Ai}(t) \sin x
$$

G_{2} quotients of hyperkähler metrics

Geometric engineering a partial deformation of \mathbb{C}^{2} / Γ relative to a Hermitian symmetric space $\frac{G}{G^{\prime} \times S^{1}}$:

- If $K=K^{\prime} \times S^{1}$ Kronheimer's construction [12] gives

$$
\mathbb{H}^{n+1} / / K=\pi^{-1}(\mathbf{x})= \begin{cases}\mathbb{C}^{2} / \Gamma, & \mathbf{x}=0 \\ \mathbb{C}^{2} / \Gamma^{\prime}, & \mathbf{x} \neq 0\end{cases}
$$

- $U=\mathbb{H}^{n+1} / / K^{\prime}$ is a cone over the twistor space of an Einstein self-dual (QK) orbifold M^{4} [13].

U / S^{1} is a cone over $\mathbb{W} \mathbb{C P}_{5,5,1,1}^{3}$ and corresponds to five D6 branes intersecting a D6 brane at $0 \in \mathbb{R}^{6}$.

Conjecture [3] This has a metric with $\mathrm{Hol}=\mathrm{G}_{2}$.

Alternative scenario:
Same definition of U, but with $S^{1} \subset S p(1)$. Then S^{1} is not triholomorphic, and U / S^{1} is a cone over the twistor space of M.
Example $n=2, K^{\prime}=U(1)$ and $M=\mathbb{W} \mathbb{C P}_{p, q, r}^{2}$ [9].

Additional references

[4] Acharya-Denef-Hofman-Lambert: Freund-Rubin revisited, hep-th/0308046
[5] Apostolov-Salamon: Comm Math Phys 246 (2004)
[6] Bär: Comm Math Phys 154 (1993)
[7] Chiossi-Salamon: Diff Geom Valencia 2001, World Scientific, 2002
[8] De Smedt-Salamon: Contemp Math 308 (2002)
[9] Galicki-Lawson: Math Ann 282 (1988)
[10] Giovannini: PhD thesis, Turin, 2004
[11] Hitchin: Contemp Math 288 (2001)
[12] Kronheimer: JDG 29 (1989)
[13] Swann: Math Ann 289 (1991)

