REDUCED HOLONOMY, CONES AND BRANES

Based on results of

[1] Acharya–FigueroaO'Farrill–Hull–Spence: Adv Theor Math Phys 2 (1998)

[2] Atiyah–Witten: M-theory dynamics on a manifold with G_2 holonomy, Adv Theor Math Phys 6 (2002)

[3] Acharya–Witten: Chiral fermions from manifolds of ${\rm G}_2$ holonomy, hep-th/0109152

and some of my own explicit examples.

Slides at www.ma.ic.ac.uk/~sms

11-dimensional equations

 SUGRA_{11} involves a metric g and reduction to $\mathrm{SO}(10,1)$ and a 4-form F=dA satisfying

$$R_{im} = \frac{1}{12} \left(F_{ijkl} F_m{}^{jk\ell} - \frac{1}{12} g_{im} F^2 \right)$$

dF = 0

$$d * F = F \wedge F$$

Supersymmetry requires non-zero Killing spinor(s):

$$\nabla_m \eta + \frac{1}{288} \left[\Gamma_m^{ijkl} - 8\delta_m^i \Gamma^{jkl} \right] F_{ijkl} \eta = 0$$

and holonomy reduction of a suitable connection. Let $\nu = \frac{1}{32} \dim(\text{Kspinors})$.

Special solutions

Identifying F with the volume form of a 4-manifold gives an Einstein product $M^4 \times M^7.$

- With $\nu = 1$: $AdS_7 \times S^4$ or $AdS_4 \times S^7$.
- M2 brane solution with $\frac{1}{16} \leq \nu \leq \frac{1}{2}$:

$$\left(1+\frac{a^6}{r^6}\right)^{-2/3}g_{2,1} + \left(1+\frac{a^6}{r^6}\right)^{1/3}(dr^2+r^2g_7)$$

with $F = \operatorname{vol}_{2,1} \wedge f(r)dr$ and $*F = 6a^6 \operatorname{vol}_7$. Interpolates between

$$g_{2,1} + (dr^2 + r^2 g_7)$$
 on $M_{2,1} \times X^8$

as $r \to \infty$ and the near horizon limit

$$\left(\frac{r^4}{a^4}g^{2,1} + \frac{a^2}{r^2}dr^2\right) + a^2g_7 \quad \text{on} \quad \operatorname{AdS}_4 \times Y^7$$

as $r \ll a$.

Metrics with exceptional holonomy

• To ensure that $\nu > 0$, the conical metric

$$dr^2 + r^2 g_7$$
 on $\mathbb{R}^+ \times Y^7$

must have Hol \subseteq Spin7. This holds iff (Y, g_7) has weak holonomy G_2 (invariant intrinsic torsion).

 $\underline{\mathsf{Examples}} \quad Y = S^7 \text{, } S^7_{\mathrm{sq}} \ (\overset{S^3}{\to} S^4) \text{, } \frac{\mathrm{SO}(5)}{\mathrm{SO}(3)} \text{, } \frac{\mathrm{SU}(3)}{\mathrm{U}(1)_{p,q}} \text{.}$

• In turn, the conical metric

$$dy^2 + y^2 g_6$$
 on $\mathbb{R}^+ \times Z^6$

has holonomy \subseteq G₂ iff (Z, g_6) is nearly-Kähler [6].

Examples The 3-symmetric spaces $Z = S^6$,

$$\mathbb{CP}^3, \quad \mathbb{F} = \frac{\mathrm{SU}(3)}{\mathrm{T}^2}, \quad S^3 \times S^3,$$

for which triality $\theta = \frac{1}{2}(-\mathbf{1} + \sqrt{3}J)$ plays a key role.

Weak G_2 metrics with singularities

Suppose that $(Z,g_{\rm NK})$ is nearly-Kähler. Then

$$g_8 = dx^2 + (dy^2 + y^2 g_{\rm NK})$$

= $(dr^2 + r^2 dt^2) + (r \sin t)^2 g_{\rm NK}$
= $dr^2 + r^2 (dt^2 + \sin^2 t g_{\rm NK})$

has $\operatorname{Hol}(g_8) \subset \operatorname{Spin7}$.

Corollary [4] The 'spherical metric' $dt^2 + (\sin^2 t)g_{\rm NK}$

has weak holonomy G_2 .

S^1 quotients of G_2 manifolds

If (Y, g_7) has holonomy G_2 then $Q = Y/S^1$ has a symplectic SU(3) structure with

$$g_7 = f^2 (dt + \eta)^2 + \frac{1}{f} g_{\text{IIA}}$$

in which f is a function on Q (the dilaton).

Theorem [2] Each 3-symmetric space Z admits a S^1 action for which $Z/S^1 \cong S^5$. Therefore, if $Y = \mathbb{R}^+ \times Z$, $Q \cong \mathbb{R}^6$ contains the S^1 fixed points (f = 0) as Lagrangian submanifolds.

Example A standard S^1 action on $\mathbb{F} = \frac{U(3)}{U(1) \times U(1) \times U(1)}$ has fixed point set $S^2 \sqcup S^2 \sqcup S^2$, and X/S^1 has three \mathbb{R}^3 's intersecting at a point (generating D6 branes). A curved version is inherent in the geometry of

$$S^3 \times S^3 = \frac{\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)}{\mathrm{SU}(2)}$$

A tri-Lagrangian example

Let $N^5 \xrightarrow{T^2} T^3$ be a principal torus bundle with base 1-forms e^1, e^3, e^5 and connection 1-forms e^4, e^6 with

$$de^4 = e^{15}, \quad de^6 = e^{13}.$$

Then $N^5 \times S^1$ has a symplectic form

$$\omega = e^{12} + e^{34} + e^{56}.$$

<u>Theorem</u> [10] $N^5 \times S^1$ has a triple of mutually transverse Lagrangian submanifolds through each point.

Follows from the existence of closed simple 3-forms

$$\begin{array}{rcl} \gamma \ = \ e^1 \wedge \theta(e^3) \wedge \theta^2(e^5) \\ \theta(\gamma) \ = \ \theta(e^1) \wedge \theta^2(e^3) \wedge e^5 \\ \theta^2(\gamma) \ = \ \theta^2(e^1) \wedge e^3 \wedge \theta(e^5) \end{array}$$

Remark $Sp(n, \mathbb{R})$ acts almost transitively on triples of transverse Lagrangian subspaces of \mathbb{R}^{2n} , with stabilizer O(n).

Half flat SU(3) structures

In 6 dimensions, an SU(3) structure is characterized by a 2-form ω and a (3,0)-form $\psi^+ + i\psi^-$. A G_2 structure is defined in 6+1 dimensions by setting

$$\varphi = \omega \wedge dt + \psi^+$$
$$*\varphi = \psi^- \wedge dt + \frac{1}{2}\omega \wedge \omega$$

The holonomy reduces iff

$$d\varphi = 0, \quad d * \varphi = 0$$

implying the half-flat conditions

$$d(\frac{1}{2}\omega \wedge \omega) = 0, \quad d\psi^+ = 0.$$

Example $N^5 \times S^1$ has a half-flat structure with

$$\begin{split} \psi^+(0) \ = \ e^{135} - e^{146} - e^{236} - e^{245} \\ \frac{1}{2} \omega(0) \wedge \omega(0) \ = \ e^{3456} + e^{5612} + e^{1234} \end{split}$$

Problem: Find $\omega(t), \psi^+(t)$ satisfying the reduction.

Rich Calabi-Yau geometry

Solution: Let $4t = 2u + \sin 2u$ and $x = \cos u$, $y = \sin u$.

$$\begin{array}{rl} xe^1, & (1\!+\!y)^{1/2}e^3, & (1\!-\!y)^{1/2}e^5, \\ x^2du, & (1\!-\!y)^{-1/2}e^4, & (1\!+\!y)^{-1/2}e^6 \end{array}$$

is an ON basis for a metric $\,g_{\rm CY}^{}\,$ on $\,M^6\!=\!(-\frac{\pi}{2},\frac{\pi}{2})\!\times\!N^5\,$ with $\,{\rm Hol}(g_{\rm CY}^{})\!=SU(3)\,.$ The Kähler form is

$$\omega = x^3 e^1 du + e^{45} - e^{63}.$$

 $\frac{\text{Proposition}}{\text{manifolds through each point.}} \text{ of special Lagrangian submanifolds through each point.}$

Follows from the existence of closed 3-forms

$$\begin{array}{c} x(1\!+\!y)e^{34}du + x(1\!-\!y)e^{56}du + x^2e^{135} \\ xe^{46}du + (1\!-\!y)e^{156} + (1+y)e^{134} \\ x^3e^{35}du \end{array}$$

c146

spanning the S^1 orbit $\{\exp(sJ)\cdot e^{146}\}$ containing $\psi^\pm.$

Kähler quotients of G_2 metrics

Assumption Y^7 has a metric with Hol = G₂ and the $\overline{SU(3)}$ manifold $(Y/S^1, g_{IIA})$ is Kähler:

$$\begin{array}{ccc} & & Y \\ & \downarrow \\ & \downarrow \\ \mu^1(t)/S^1 & \hookrightarrow & Y/S^1, \ g_{\mathrm{IIA}} \\ & \downarrow S^1 & \swarrow \mathbb{C}^* \\ & M^4 \end{array}$$

Theorem [5] Suppose that a 4-manifold M has

- a cx structure J_1 and holomorphic 2-form $\omega_2 + i\omega_3$,
- a 1-parameter family of Kähler forms $\tilde{\omega} = \tilde{\omega}(t)$ s.t.

$$\tilde{\omega}''(t) = 2i\partial\overline{\partial}f$$

where $t\tilde{\omega} \wedge \tilde{\omega} = f\omega_2 \wedge \omega_2$. Then a rank 3 bundle over M admits a Ricci-flat metric g with $\operatorname{Hol}(g) \subseteq G_2$.

If f is constant on M then $\tilde{\omega}^{\prime\prime}(t)=0$ and

$$\tilde{\omega} = (p + qt)\omega_0 + (r + st)\omega_1,$$

with $(\omega_1, \omega_2, \omega_3)$ a hyperkähler structure and ω_0 an additional closed 2-form.

Example Take

$$\begin{split} \omega_0 &= z dx \wedge dz - dw \wedge dy \\ \omega_1 &= z dx \wedge dy + dz \wedge dw + x dy \wedge dz \\ \omega_2 &= z dx \wedge dz + dw \wedge dy \\ \omega_3 &= dx \wedge dw - x dx \wedge dy + z dy \wedge dz, \end{split}$$

corresponding to a Gibbons-Hawking (HK) metric

$$z(dx^2 + dy^2 + dz^2) + \frac{1}{z}(dw - xdy)^2$$

conformal to a left-invariant one on \mathbb{CH}^2 [8].

Solutions with f non-constant are found starting from

 $\omega_1 = \frac{i}{2} (du \wedge d\overline{u} + dv \wedge d\overline{v}), \quad \omega_2 + i\omega_3 = du \wedge dv$ on $T^4 = \mathbb{C}^2 / \mathbb{Z}^4$ and setting $\tilde{\omega} = \omega_1 + i\partial\overline{\partial}\phi$. Then $\tilde{\omega} \wedge \tilde{\omega} = \mathcal{M}(\phi)\omega_1 \wedge \omega_1,$

and $t\mathcal{M}(\phi) = f = \frac{1}{2}\phi''$.

Example If u = x + iy, there are solutions

$$\phi(t, x, y) = \frac{1}{3}t^3 + \ell(t)m(x, y),$$

where $\ell''\!-\!t\ell=0$ and $\Delta m\!+\!m=0$ such as

$$f(t, x) = t + \frac{1}{2}t\operatorname{Ai}(t)\sin x.$$

G_2 quotients of hyperkähler metrics

Geometric engineering a partial deformation of \mathbb{C}^2/Γ relative to a Hermitian symmetric space $\frac{G}{G' \times S^1}$:

• If $K = K' \times S^1$ Kronheimer's construction [12] gives

$$\mathbb{H}^{n+1}/\!/K = \pi^{-1}(\mathbf{x}) = \begin{cases} \mathbb{C}^2/\Gamma, & \mathbf{x} = 0\\ \mathbb{C}^2/\Gamma', & \mathbf{x} \neq 0 \end{cases}$$

• $U = \mathbb{H}^{n+1} / / K'$ is a cone over the twistor space of an Einstein self-dual (QK) orbifold M^4 [13].

Example $G = SU(6), G' = SU(5), K = T^5, K' = T^4$:

 U/S^1 is a cone over $\mathbb{WCP}^3_{5,5,1,1}$ and corresponds to five D6 branes intersecting a D6 brane at $0 \in \mathbb{R}^6$.

Conjecture [3] This has a metric with $Hol = G_2$.

Alternative scenario:

Same definition of U, but with $S^1 \subset Sp(1)$. Then S^1 is not triholomorphic, and U/S^1 is a cone over the twistor space of M.

Example n = 2, K' = U(1) and $M = \mathbb{WCP}^2_{p,q,r}$ [9].

Additional references

[4] Acharya–Denef–Hofman–Lambert: Freund–Rubin revisited, hep-th/0308046

[5] Apostolov–Salamon: Comm Math Phys 246 (2004)

[6] Bär: Comm Math Phys 154 (1993)

[7] Chiossi–Salamon: Diff Geom Valencia 2001, World Scientific, 2002

[8] De Smedt–Salamon: Contemp Math 308 (2002)

[9] Galicki–Lawson: Math Ann 282 (1988)

[10] Giovannini: PhD thesis, Turin, 2004

- [11] Hitchin: Contemp Math 288 (2001)
- [12] Kronheimer: JDG 29 (1989)
- [13] Swann: Math Ann 289 (1991)