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Part I

The standard complex structure

A (linear) complex structure on R4 is simply a linear
map J :R4 → R4 satisfying J2 = −1 . For example,

J0 =




0 1
−1 0

0

0
0 1
−1 0




In terms of a basis (dx1, dx2, dx3, dx4) of R4 ,

Jdx1 = −dx2, Jdx3 = −dx4

The choices of sign ensure that, setting

z1 = x1 + ix2, z2 = x3 + ix4,

the elements dz1, dz2 ∈ C4 satisfy

Jdz1 = J(dx1 + idx2) = i(dx1 + idx2) = idz1

Jdz2 = idz2.
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Spaces of complex structures

Any complex structure J is conjugate to J0 , so the
set of complex structures is

C = {A−1J0A : A ∈ GL(4,R)}

∼= GL(4,R)

GL(2,C)
,

a manifold of real dim 8, the same dim as GL(2,C) .

Taking account of orientation, C = C+ t C− .

Theorem C+ ' S2 .

Proof. Any J ∈ C+ has a polar decomposition

J = SO = −O−1S−1 = (OTS−1O)(−O−1).

Thus, O = −O−1 = P−1J0P defines an element

U(2)P ∈ SO(4)

U(2)
∼= S2.
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Deformations and 2× 2 matrices

A complex structure J is determined by its i -eigenspace

E = Λ1,0 = {v ∈ C4 : Jv = iv},

since E ⊕ E = C4 and J =

{
i on E
−i on E.

For example, E0 = 〈dz1, dz2〉 and E0 = 〈dz1, dz2〉 .

Define J by decreeing E to be generated by

ε1 = dz1 + adz1 + bdz2

ε2 = dz2 + cdz1 + ddz2.

Thus J = JX is determined by

X =

(
a b
c d

)

for suitable a, b, c, d ∈ C (not X = I !)
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Non-degeneracy

If E = 〈ε1, ε2〉 then

E ∩ E = {0} ⇔ ε1 ∧ ε2 ∧ ε1 ∧ ε2 6= 0.

This is easily computed in terms of the volume form
V = dx1 ∧ dx2 ∧ dx3 ∧ dx4 of R4 :

Proposition ε 1 ∧ ε2 ∧ ε1 ∧ ε2 = 4cXX(1)V .

Here,

cXX(1) = 1− tr(XX) + det(XX)

= 1− (|a|2 + |d|2 + 2Re(bc)) + |ad− bc|2

Example JX is orthogonal iff X is skew-symmetric
(a = 0 = d and b = −c). In general,

C+ = {JX : cXX(1) > 0} t C+
∞,

with C+
∞ ' {−J0} .
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Classes of anti-linear maps

Why the appearance of XX ?

J is described by the echelon matrix
(

1 0 a b
0 1 c d

)
=
(
I X

)

relative to C4 = E ⊕ E .

If B ∈ GL(2,C) then B−1JB has matrix
(
IB XB

)
∼ B−1

(
IB XB

)

∼
(
I B−1XB

)
.

Corollary GL(2,C) acts on C by

B−1(JX)B = JB−1XB.

Not surprising, as X is a linear map E → E .
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Consimilarity

Definition Complex n×n matrices X, Y are said to
be consimilar if

Y = B−1XB

for some invertible matrix B .

Theorem For n× n matrices of rank n , the map

[X ]cs 7→ [XX ]s

from consimilarity to similarity classes is injective.

Exercises (i) If XX = I then X = Y −1Y . (Hint:

set Y = λX + λI and compute Y X .)

(ii) Any negative eigenvalue of XX necessarily has
even multiplicity.
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Part II

Strong Kähler with Torsion

Let M be a Hermitian manifold of real dimension 2n .
Each tangent space TmM admits a complex structure
J , orthogonal relative to the Riemannian metric g .
The associated 2-form ω is defined by

ω(X, Y ) = g(JX, Y ).

Definition M is Kähler iff dω = 0

This is equivalent to asserting that Hol(g) ⊆ U(n) .

The exterior derivative decomposes as d = ∂ + ∂ and

dJd = −2ip+1∂∂ : Ωp,p→ Ωp+1,p+1.

Definition M is SKT iff ∂∂ω = 0 .

Example M is an even-dim compact Lie group.
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The Iwasawa manifold

Let H denote the complex Heisenberg group
{(

1 z1 z3

0 1 z2

0 0 1

)
: zα ∈ C

}

and Γ the subgroup with zα ∈ Z[i] . Then

M = Γ\G = {Γh : h ∈ H}
is a compact 6-dimensional nilmanifold.

Since

(z1, z2, z3) ∼ (z1+γ1, z2+γ2, z3+γ1z2+γ3),

the 1-forms

dz1, dz2, dz3 − z1dz2

are invariantly defined and define the standard complex
structure J0 on M . There is also a well-defined map
sending the above class to

(z1, z2) ∈ R
4

Z4
= T 4.
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Complex structures on M

The fibration

M

π
yT 2

T 4

is analogous to

CP3

yS2

S4,

though M admits no Kähler metric.

Theorem (i) Given an invariant integrable complex
structure J on M there exists a complex structure J
on T 4 such that π is holomorphic.

(ii) If J = JX with detX 6= 0 then J is determined by
J up to right translation by H (inner automorphism).

(iii) The previous action JX 7→ JB−1XB is induced
from outer automorphisms of H .
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The SKT condition

Theorem (i) The vanishing of ∂∂ω depends only on
J , not the choice of invariant Hermitian metric on M .

(ii) It occurs iff the eigenvalues {z, z} of XX satisfy

(1 + |z|2)|1+z|2 = 8|z|2

or r = −3 cos θ ±
√

2 + cos2 θ with r = |z − 1|.
Inversion z ↔ 1/z corresponds to J ↔ −J .

-4 -3 -2 -1 1 2

-3

-2

-1

1

2

3
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Final remarks

Proof. Lift JX to J by setting E = 〈ε 1, ε2, ε3〉 with
ε1, ε2 as above and

ε3 = σ − (ad− bc)σ, σ = dz3−z1dz2.

The SKT condition turns out to be equivalent to

(Jdε3) ∧ dε3 = 0

and it suffices to compute J(dz1 ∧ dz2) .

Corollary Any invariant SKT structure on M arises
from JX on T 4 , where

X = B−1

(
0 z
1 0

)
B,

with B ∈ GL(2,C) and z 6= 1 on the curve.

The stabilizer in GL(2,C) is C∗ unless z = −2±
√

3 ,
giving a moduli space of real dimension 7.
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