COMPLEX STRUCTURES AND 2×2 MATRICES

Simon Salamon

University of Warwick, 14 May 2004

Part I
Complex structures on \mathbb{R}^{4} Part II
SKT structures on a 6-manifold

Part I

The standard complex structure

A (linear) complex structure on \mathbb{R}^{4} is simply a linear map $J: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ satisfying $J^{2}=-1$. For example,

$$
J_{0}=\left(\begin{array}{cc|cc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
\hline 0 & 0 & 1 \\
& -1 & 0
\end{array}\right)
$$

In terms of a basis $\left(d x^{1}, d x^{2}, d x^{3}, d x^{4}\right)$ of \mathbb{R}^{4},

$$
J d x^{1}=-d x^{2}, \quad J d x^{3}=-d x^{4}
$$

The choices of sign ensure that, setting

$$
z^{1}=x^{1}+i x^{2}, \quad z^{2}=x^{3}+i x^{4}
$$

the elements $d z^{1}, d z^{2} \in \mathbb{C}^{4}$ satisfy

$$
\begin{gathered}
J d z^{1}=J\left(d x^{1}+i d x^{2}\right)=i\left(d x^{1}+i d x^{2}\right)=i d z^{1} \\
J d z^{2}=i d z^{2}
\end{gathered}
$$

Spaces of complex structures

Any complex structure J is conjugate to J_{0}, so the set of complex structures is

$$
\begin{aligned}
\mathcal{C} & =\left\{A^{-1} J_{0} A: A \in G L(4, \mathbb{R})\right\} \\
& \cong \frac{G L(4, \mathbb{R})}{G L(2, \mathbb{C})}
\end{aligned}
$$

a manifold of real $\operatorname{dim} 8$, the same dim as $G L(2, \mathbb{C})$.
Taking account of orientation, $\mathcal{C}=\mathcal{C}^{+} \sqcup \mathcal{C}^{-}$.

Theorem $\quad \mathcal{C}^{+} \simeq S^{2}$.
Proof. Any $J \in \mathcal{C}^{+}$has a polar decomposition

$$
J=S O=-O^{-1} S^{-1}=\left(O^{T} S^{-1} O\right)\left(-O^{-1}\right) .
$$

Thus, $O=-O^{-1}=P^{-1} J_{0} P$ defines an element

$$
U(2) P \in \frac{S O(4)}{U(2)} \cong S^{2} .
$$

Deformations and 2×2 matrices

A complex structure J is determined by its i-eigenspace

$$
E=\Lambda^{1,0}=\left\{v \in \mathbb{C}^{4}: J v=i v\right\}
$$

since $E \oplus \bar{E}=\mathbb{C}^{4}$ and $J=\left\{\begin{array}{cc}i & \text { on } E \\ -i & \text { on } \bar{E} .\end{array}\right.$
For example, $E_{0}=\left\langle d z^{1}, d z^{2}\right\rangle$ and $\overline{E_{0}}=\left\langle d \bar{z}^{1}, d \bar{z}^{2}\right\rangle$.

Define J by decreeing E to be generated by

$$
\begin{aligned}
& \varepsilon^{1}=d z^{1} \quad+a d \bar{z}^{1}+b d \bar{z}^{2} \\
& \varepsilon^{2}=\quad d z^{2}+c d \bar{z}^{1}+d d \bar{z}^{2}
\end{aligned}
$$

Thus $J=J_{X}$ is determined by

$$
X=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

for suitable $a, b, c, d \in \mathbb{C}($ not $X=I!)$

Non-degeneracy

If $E=\left\langle\varepsilon^{1}, \varepsilon^{2}\right\rangle$ then

$$
E \cap \bar{E}=\{0\} \Leftrightarrow \varepsilon^{1} \wedge \varepsilon^{2} \wedge \overline{\boldsymbol{\varepsilon}}^{1} \wedge \overline{\boldsymbol{\varepsilon}}^{2} \neq 0
$$

This is easily computed in terms of the volume form $V=d x^{1} \wedge d x^{2} \wedge d x^{3} \wedge d x^{4}$ of \mathbb{R}^{4} :

Proposition $\varepsilon^{1} \wedge \varepsilon^{2} \wedge \bar{\varepsilon}^{1} \wedge \bar{\varepsilon}^{2}=4 c_{X \bar{X}}(1) V$.
Here,

$$
\begin{aligned}
c_{X} \bar{X}(1) & =1-\operatorname{tr}(X \bar{X})+\operatorname{det}(X \bar{X}) \\
& =1-\left(|a|^{2}+|d|^{2}+2 \operatorname{Re}(b \bar{c})\right)+|a d-b c|^{2}
\end{aligned}
$$

Example J_{X} is orthogonal iff X is skew-symmetric $\overline{(a=0}=d$ and $b=-c)$. In general,

$$
\mathcal{C}^{+}=\left\{J_{X}: c_{X} \bar{X}(1)>0\right\} \sqcup \mathcal{C}_{\infty}^{+},
$$

with $\mathcal{C}_{\infty}^{+} \simeq\left\{-J_{0}\right\}$.

Classes of anti-linear maps

Why the appearance of $X \bar{X}$?
J is described by the echelon matrix

$$
\left(\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d
\end{array}\right)=(I \mid X)
$$

relative to $\mathbb{C}^{4}=E \oplus \bar{E}$.
If $B \in G L(2, \mathbb{C})$ then $B^{-1} J B$ has matrix

$$
\begin{aligned}
(I B \mid X \bar{B}) & \sim B^{-1}(I B \mid X \bar{B}) \\
& \sim\left(I \mid B^{-1} X \bar{B}\right) .
\end{aligned}
$$

Corollary $G L(2, \mathbb{C})$ acts on \mathcal{C} by

$$
B^{-1}\left(J_{X}\right) B=J_{B^{-1} X \bar{B}} .
$$

Not surprising, as X is a linear map $E \rightarrow \bar{E}$.

Consimilarity

Definition Complex $n \times n$ matrices X, Y are said to be consimilar if

$$
Y=B^{-1} X \bar{B}
$$

for some invertible matrix B.

Theorem For $n \times n$ matrices of rank n, the map

$$
[X]_{\mathrm{cs}} \mapsto[X \bar{X}]_{\mathrm{s}}
$$

from consimilarity to similarity classes is injective.

Exercises (i) If $X \bar{X}=I$ then $X=Y^{-1} \bar{Y}$. (Hint: set $Y=\lambda \bar{X}+\bar{\lambda} I$ and compute $Y X$.)
(ii) Any negative eigenvalue of $X \bar{X}$ necessarily has even multiplicity.

Part II

Strong Kähler with Torsion

Let M be a Hermitian manifold of real dimension $2 n$. Each tangent space $T_{m} M$ admits a complex structure J, orthogonal relative to the Riemannian metric g. The associated 2-form ω is defined by

$$
\omega(X, Y)=g(J X, Y)
$$

Definition $\quad M$ is Kähler iff $d \omega=0$

This is equivalent to asserting that $\operatorname{Hol}(g) \subseteq U(n)$.

The exterior derivative decomposes as $d=\partial+\bar{\partial}$ and

$$
d J d=-2 i^{p+1} \partial \bar{\partial}: \Omega^{p, p} \rightarrow \Omega^{p+1, p+1}
$$

$\underline{\text { Definition }} M$ is SKT iff $\partial \bar{\partial} \omega=0$.
Example M is an even-dim compact Lie group.

The Iwasawa manifold

Let H denote the complex Heisenberg group

$$
\left\{\left(\begin{array}{ccc}
1 & z^{1} & z^{3} \\
0 & 1 & z^{2} \\
0 & 0 & 1
\end{array}\right): z^{\alpha} \in \mathbb{C}\right\}
$$

and Γ the subgroup with $z^{\alpha} \in \mathbb{Z}[i]$. Then

$$
\mathbb{M}=\Gamma \backslash G=\{\Gamma h: h \in H\}
$$

is a compact 6-dimensional nilmanifold.
Since

$$
\left(z^{1}, z^{2}, z^{3}\right) \sim\left(z^{1}+\gamma^{1}, z^{2}+\gamma^{2}, z^{3}+\gamma^{1} z^{2}+\gamma^{3}\right)
$$

the 1 -forms

$$
d z^{1}, \quad d z^{2}, \quad d z^{3}-z^{1} d z^{2}
$$

are invariantly defined and define the standard complex structure \mathbb{J}_{0} on \mathbb{M}. There is also a well-defined map sending the above class to

$$
\left(z^{1}, z^{2}\right) \in \frac{\mathbb{R}^{4}}{\mathbb{Z}^{4}}=T^{4}
$$

Complex structures on \mathbb{M}

The fibration

M
$\pi \downarrow T^{2} \quad$ is analogous to
T^{4}
S^{4},
though \mathbb{M} admits no Kähler metric.

Theorem (i) Given an invariant integrable complex structure \mathbb{J} on \mathbb{M} there exists a complex structure J on T^{4} such that π is holomorphic.
(ii) If $J=J_{X}$ with $\operatorname{det} X \neq 0$ then \mathbb{J} is determined by J up to right translation by H (inner automorphism).
(iii) The previous action $J_{X} \mapsto J_{B^{-1} X \bar{B}}$ is induced from outer automorphisms of H.

The SKT condition

Theorem (i) The vanishing of $\partial \bar{\partial} \omega$ depends only on J, not the choice of invariant Hermitian metric on \mathbb{M}.
(ii) It occurs iff the eigenvalues $\{z, \bar{z}\}$ of $X \bar{X}$ satisfy

$$
\left(1+|z|^{2}\right)|1+z|^{2}=8|z|^{2}
$$

or $r=-3 \cos \theta \pm \sqrt{2+\cos ^{2} \theta}$ with $r=|z-1|$.
Inversion $z \leftrightarrow 1 / \bar{z}$ corresponds to $J \leftrightarrow-J$.

Final remarks

Proof. Lift J_{X} to \mathbb{J} by setting $\mathbb{E}=\left\langle\varepsilon^{1}, \varepsilon^{2}, \varepsilon^{3}\right\rangle$ with $\varepsilon^{1}, \varepsilon^{2}$ as above and

$$
\varepsilon^{3}=\sigma-(a d-b c) \bar{\sigma}, \quad \sigma=d z^{3}-z^{1} d z^{2}
$$

The SKT condition turns out to be equivalent to

$$
\left(\mathbb{J} d \varepsilon^{3}\right) \wedge \overline{d \varepsilon^{3}}=0
$$

and it suffices to compute $J\left(d z^{1} \wedge d z^{2}\right)$.

Corollary Any invariant SKT structure on \mathbb{M} arises $\overline{\text { from } J_{X}}$ on T^{4}, where

$$
X=B^{-1}\left(\begin{array}{ll}
0 & z \\
1 & 0
\end{array}\right) \bar{B}
$$

with $B \in G L(2, \mathbb{C})$ and $z \neq 1$ on the curve.

The stabilizer in $G L(2, \mathbb{C})$ is \mathbb{C}^{*} unless $z=-2 \pm \sqrt{3}$, giving a moduli space of real dimension 7 .

References

Fino-Parton-S: Comment. Math. Helv., 2004
Horn-Johnson: Matrix Analysis, CUP, 1985
Ketsetzis-S: Adv. in Geom. 4, 2004
MacLaughlin-Pedersen-Poon-S: math.DG/0402069

