
The six-sphere and projective geometry

(1) 4 by 4 matrices

Set z = (z1, z2, z3) and M(z) :=


0 −z1 · ·
z1 0 · ·
z2 z3 0 ·
z3 −z2 z1 0

 ∈ o(4, C).

Proposition {A ∈ o(4, C) ∩ SU(4) : Pf A = 1} = {M(z) : ‖z‖ = 1}.

Note that the columns of M(z) are unitary and det M(z) = ‖z‖4.

The mapping z 7→ M(z) is an inclusion of R6 in o(4, C) ∼= Λ2C4, which is a real
representation R6 ⊕ iR6 relative to SU(4)

2:1→ SO(6).

M(z) is Clifford multiplication of z ∈ R6 on spinors, and AM(z)A>= M(z′).

(2) The 6-quadric

Let ξ, η ∈ C4 be column vectors. Write ξ · η = ξ>η for the symmetric inner product.
Consider P7 = {[ξ, η] : ξ, η ∈ C4, (ξ, η) 6= (0, 0)}, so

Q6 = {[ξ, η] ∈ P7 : ξ · η = 0}.

is a non-singular quadric hypersurface.

Proposition ([ξ], z) 7→ [ξ, M(z)ξ] embeds P3 × R6 ↪→ Q6 .

Proof: By skewness, [ξ, M(z)ξ] ∈ Q6. If (ξ, M(z)ξ) = (ξ′, M(z′)ξ′) then ξ = ξ′ and

M(z − z′) ξ = 0 ⇒ ‖z − z′‖4 = 0 ⇒ z = z′.

We obtain a fibration π: Q6 → R6 ∪∞ = S6, with fibres

Vz = π−1(z) = {[ξ, M(z)ξ]}, V∞ = π−1(∞) = {[0, η]}

all isomorphic to P3. In homogeneous terms,

Q6 ∼=
SO(8)

SO(2)× SO(6)
∼=

SO(8)

U(4)
∼=

SO(7)

U(3)
−→ SO(7)

SO(6)
∼= S6.

Moreover, Conf(S6) = SO(7, 1) ⊂ SO(8, C) = Aut(Q6).
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(3) Linear subspaces

There are two families of P3 ’s in Q6 each parametrized by another Q6 (via triality).

The fibres Vz with z ∈ S6 form part of one family that also contains

[a, b, c, d, 0, 0, 0, 0] [a, b, λc, λd, 0, 0, µd,−µc] [a, b, 0, 0, 0, 0, d,−c],

generating the twistor fibration P3 → S4 = {z1 = 0}.

Another family consists of

Hξ = {[ξ, M(z)ξ] : z ∈ S6},

These P3 ’s project 1 : 1 to R6. For example, H0 = {[1, 0, 0, 0, 0, z1, z2, z3]} ∪ P2.

In general, V0 ∩Hξ = {[ξ]} and V∞ ∩Hξ = ξ⊥ ∼= P2.

Definition Let’s say that a 3-fold X in Q6 is horizontal over R6 if X \V∞ is smooth
and projects 1 : 1 to R6.

H6(Q
6, Z) is generated by [V0] and [H0], and X will have bidegree (1, p).

(4) Orthogonal complex structures

Theorem If a 3-fold X ⊂ Q6 is horizontal it induces an orthogonal complex structure
(OCS) on R6.

The proof is based on the fact that the Kähler metric on Q6 projects to the round
metric on S6 . There can be no 3-fold that is 1 : 1 over S6 since b2(S

6) = 0.

Examples If H0 defines a standard complex structure R6 = C3. More generally, Hξ

defines a constant complex structure J on R6. If ξ = (a, 1, 0, 0) then Hξ consists of

[ξ, M(z)ξ] = [a, 1, 0, 0, −z1, az1, az2 + z3, az3 − z2].

and J has Λ1,0 = 〈dz1, adz2 + dz3, adz3 − dz2〉 , an isotropic subspace.

Now let a = a(u) be a polynomial of degree p in u = z1. Then

Γ = {[a(u), 1, 0, 0, −u, a(u)u, v, w] : u, v, w ∈ C}

is still horizontal over R6. The associated complex structure has the form

(J0, Ja(u)) on R6 = C⊕ R4,

This is an example of a twisted or warped OCS. How can we characterize Γ ?
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(5) Divisors

X = Γ lies in the singular 4-quadric

Q4
s = {[x1, x2, 0, 0, x5 . . . , x8] ∈ P7 : x1x5 + x2x6 = 0}

It satisfies the homogeneous equation

a(−x5/x2)x
p
2 = x1x

p−1
2 ⇒ f := A(x2, x5)− x1x

p−1
2 = 0,

but does not contain {x2 = 0 = x5} ∩Qs = H0 . Thus

[f ] = (p− 1)[H0] + [X].

Any Weil divisor in Qs of bidegree (1, p) has this form for some polynomial f.

Exercises (i) If f does not involve x7, x8, then X =
⋃

p∈C, q∈L

`p,q is a double cone where

C is a curve in Q2 and L is a line.

(ii) But if f = x5x7 +x2x8 then [f ] = D∪ [H0] where D = σ(P1×P2) ⊂ P5 is smooth.

Lemma If X3 is horizontal over R6 then X∩V∞ contains a linear P2 and (if p > 0 )
points that are singular in X.

(6) Classification

Theorem [BSV] If X3 ⊂ Q6 is horizontal over R6 then it is equivalent (under
SO(8, C) ) to the divisor Γ above.

Corollary Any orthogonal complex structure J on R6 such that
∫

S6\∞
‖∇J‖6 < ∞

is a warped OCS on C⊕ R4.

The finite energy condition guarantees that Γ is analytic (by Bishop’s theorem).

Theorem [BV] Any 3-fold of bidegree (1, p) in Q6 is one of

(i) a linear subspace Hξ with p = 0

(ii) a smooth quadric Q3 with p = 1

(iii) the cone over a Veronese surface in Q4 with p = 3

(iv) a Weil divisor in Q4
s with p ≥ 1.

Cases (i), (ii), (iv) are all contained in a P5 , but (ii), (iii) contain no P2 .

The smooth 3-folds are (i), (ii) and the Segre instance of (iv) with p = 2.
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(7) Sketch proofs

Let X be a 3-fold in Q6 of bidegree (1, p) .

It has degree p + 1 in P7 so X ⊂ Pp+3 (only useful if p ≤ 3 ).

[BSV] can assume that X is 1 : 1 over R6. Consider X ∩ V∞. It must contain a P2

and at least one point x which is singular in X.

Then X ⊂ Ann(x) = Q5
s, and we can project

X ⊂ Q5
s \ {x} −→ Q4 = Gr2(C4).

If the image has dimension 3, it has to be in a P4, so X ⊂ P5 . If the latter is false,
the image is the secant variety of a twisted cubic [Ran], the Veronese surface:

v ⊗ v ∈ S2(S2C2) ∼= Λ2(S3C2).

What is the open set of R6 over which this is 1 : 1 ?

[BV] need to prove if X is smooth with p > 3 then it is still true that X ⊂ P5 .

If p 6= 1, then Q6 ∩ P5 = Q4
s cannot have rank 5 or 6.

(8) More examples

For an example of J on R6 without analytic extension, take a = ℘(u) above:

J = (J0, J℘(u)) on R6 = C⊕ R4.

This gives a non-standard OCS on T 6 = R6/Z6.

As remarked, no 3-fold can be 1 : 1 over S6, which admits no OCS. Its standard
almost-complex structure defines a section s of Q6 whose fibrewise complement is
a holomorphic P2 -bundle over S6 with total space

G2

U(2)
∼=

SO(7)

SO(2)× SO(5)
∼= Q5.

The Q3 in (ii) can be chosen to lie in this Q5 and is 1 : 1 over

S6 \ S2 = R6 \ R2 = S3 ×H3.

It is the ‘blow-up’ of S6 in which S2 is replaced by Q2 ∼= S2 × P1.

By analogy, a suitable quadric Q2 in P3 → S4 defines an OCS on R4 \ R that is
conformally Kähler. But an OCS on R4 \K with dim K < 1 is constant [SV].
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