The six-sphere and projective geometry

(1) 4 by 4 matrices

Set $z=\left(z_{1}, z_{2}, z_{3}\right)$ and $M(z):=\left(\begin{array}{cccc}0 & -z_{1} & \cdot & \cdot \\ z_{1} & 0 & \cdot & \cdot \\ z_{2} & \bar{z}_{3} & 0 & \cdot \\ z_{3} & -\bar{z}_{2} & \bar{z}_{1} & 0\end{array}\right) \in \mathfrak{o}(4, \mathbb{C})$.
Proposition $\{A \in \mathfrak{o}(4, \mathbb{C}) \cap S U(4): \operatorname{Pf} A=1\}=\{M(z):\|z\|=1\}$.
Note that the columns of $M(z)$ are unitary and $\operatorname{det} M(z)=\|z\|^{4}$.
The mapping $z \mapsto M(z)$ is an inclusion of \mathbb{R}^{6} in $\mathfrak{o}(4, \mathbb{C}) \cong \Lambda^{2} \mathbb{C}^{4}$, which is a real representation $\mathbb{R}^{6} \oplus i \mathbb{R}^{6}$ relative to $S U(4) \xrightarrow{2: 1} S O(6)$.
$M(z)$ is Clifford multiplication of $z \in \mathbb{R}^{6}$ on spinors, and $A M(z) A^{\top}=M\left(z^{\prime}\right)$.

(2) The 6-quadric

Let $\xi, \eta \in \mathbb{C}^{4}$ be column vectors. Write $\xi \cdot \eta=\xi^{\top} \eta$ for the symmetric inner product. Consider $\mathbb{P}^{7}=\left\{[\xi, \eta]: \xi, \eta \in \mathbb{C}^{4},(\xi, \eta) \neq(0,0)\right\}$, so

$$
Q^{6}=\left\{[\xi, \eta] \in \mathbb{P}^{7}: \xi \cdot \eta=0\right\}
$$

is a non-singular quadric hypersurface.
Proposition $([\xi], z) \mapsto[\xi, M(z) \xi]$ embeds $\mathbb{P}^{3} \times \mathbb{R}^{6} \hookrightarrow Q^{6}$.
Proof: By skewness, $[\xi, M(z) \xi] \in Q^{6}$. If $(\xi, M(z) \xi)=\left(\xi^{\prime}, M\left(z^{\prime}\right) \xi^{\prime}\right)$ then $\xi=\xi^{\prime}$ and

$$
M\left(z-z^{\prime}\right) \xi=0 \Rightarrow\left\|z-z^{\prime}\right\|^{4}=0 \Rightarrow z=z^{\prime}
$$

We obtain a fibration $\pi: Q^{6} \rightarrow \mathbb{R}^{6} \cup \infty=S^{6}$, with fibres

$$
\mathbb{V}_{z}=\pi^{-1}(z)=\{[\xi, M(z) \xi]\}, \quad \mathbb{V}_{\infty}=\pi^{-1}(\infty)=\{[0, \eta]\}
$$

all isomorphic to \mathbb{P}^{3}. In homogeneous terms,

$$
Q^{6} \cong \frac{S O(8)}{S O(2) \times S O(6)} \cong \frac{S O(8)}{U(4)} \cong \frac{S O(7)}{U(3)} \longrightarrow \frac{S O(7)}{S O(6)} \cong S^{6}
$$

Moreover, $\operatorname{Conf}\left(S^{6}\right)=S O(7,1) \subset S O(8, \mathbb{C})=\operatorname{Aut}\left(Q^{6}\right)$.

(3) Linear subspaces

There are two families of \mathbb{P}^{3} 's in Q^{6} each parametrized by another Q^{6} (via triality).
The fibres \mathbb{V}_{z} with $z \in S^{6}$ form part of one family that also contains

$$
[a, b, c, d, 0,0,0,0] \rightsquigarrow[a, b, \lambda c, \lambda d, 0,0, \mu d,-\mu c] \rightsquigarrow[a, b, 0,0,0,0, d,-c],
$$

generating the twistor fibration $\mathbb{P}^{3} \rightarrow S^{4}=\left\{z_{1}=0\right\}$.
Another family consists of

$$
\mathbb{H}_{\xi}=\left\{[\xi, M(z) \xi]: z \in S^{6}\right\}
$$

These \mathbb{P}^{3} 's project $1: 1$ to \mathbb{R}^{6}. For example, $\mathbb{H}_{0}=\left\{\left[1,0,0,0,0, z_{1}, z_{2}, z_{3}\right]\right\} \cup \mathbb{P}^{2}$.
In general, $\mathbb{V}_{0} \cap \mathbb{H}_{\xi}=\{[\xi]\}$ and $\mathbb{V}_{\infty} \cap \mathbb{H}_{\xi}=\xi^{\perp} \cong \mathbb{P}^{2}$.
Definition Let's say that a 3-fold X in Q^{6} is horizontal over \mathbb{R}^{6} if $X \backslash \mathbb{V}_{\infty}$ is smooth and projects $1: 1$ to \mathbb{R}^{6}.
$H_{6}\left(Q^{6}, \mathbb{Z}\right)$ is generated by $\left[\mathbb{V}_{0}\right]$ and $\left[\mathbb{H}_{0}\right]$, and X will have bidegree $(1, p)$.

(4) Orthogonal complex structures

Theorem If a 3-fold $X \subset Q^{6}$ is horizontal it induces an orthogonal complex structure $\overline{(\mathrm{OCS}) \text { on }} \mathbb{R}^{6}$.

The proof is based on the fact that the Kähler metric on Q^{6} projects to the round metric on S^{6}. There can be no 3-fold that is $1: 1$ over S^{6} since $b_{2}\left(S^{6}\right)=0$.

Examples If \mathbb{H}_{0} defines a standard complex structure $\mathbb{R}^{6}=\mathbb{C}^{3}$. More generally, \mathbb{H}_{ξ} defines a constant complex structure J on \mathbb{R}^{6}. If $\xi=(a, 1,0,0)$ then \mathbb{H}_{ξ} consists of

$$
[\xi, M(z) \xi]=\left[a, 1,0,0,-z_{1}, a z_{1}, a z_{2}+\bar{z}_{3}, a z_{3}-\bar{z}_{2}\right] .
$$

and J has $\Lambda^{1,0}=\left\langle d z_{1}, a d z_{2}+d \bar{z}_{3}, a d z_{3}-d \bar{z}_{2}\right\rangle$, an isotropic subspace.
Now let $a=a(u)$ be a polynomial of degree p in $u=z_{1}$. Then

$$
\Gamma=\{[a(u), 1,0,0,-u, a(u) u, v, w]: u, v, w \in \mathbb{C}\}
$$

is still horizontal over \mathbb{R}^{6}. The associated complex structure has the form

$$
\left(J_{0}, J_{a(u)}\right) \quad \text { on } \quad \mathbb{R}^{6}=\mathbb{C} \oplus \mathbb{R}^{4}
$$

This is an example of a twisted or warped OCS. How can we characterize $\bar{\Gamma}$?

(5) Divisors

$X=\bar{\Gamma}$ lies in the singular 4-quadric

$$
Q_{s}^{4}=\left\{\left[x_{1}, x_{2}, 0,0, x_{5} \ldots, x_{8}\right] \in \mathbb{P}^{7}: x_{1} x_{5}+x_{2} x_{6}=0\right\}
$$

It satisfies the homogeneous equation

$$
a\left(-x_{5} / x_{2}\right) x_{2}^{p}=x_{1} x_{2}^{p-1} \Rightarrow f:=A\left(x_{2}, x_{5}\right)-x_{1} x_{2}^{p-1}=0
$$

but does not contain $\left\{x_{2}=0=x_{5}\right\} \cap Q_{s}=\mathbb{H}_{0}$. Thus

$$
[f]=(p-1)\left[\mathbb{H}_{0}\right]+[X] .
$$

Any Weil divisor in Q_{s} of bidegree $(1, p)$ has this form for some polynomial f.
 C is a curve in Q^{2} and L is a line.
(ii) But if $f=x_{5} x_{7}+x_{2} x_{8}$ then $[f]=D \cup\left[\mathbb{H}_{0}\right]$ where $D=\sigma\left(\mathbb{P}^{1} \times \mathbb{P}^{2}\right) \subset \mathbb{P}^{5}$ is smooth.

Lemma If X^{3} is horizontal over \mathbb{R}^{6} then $X \cap \mathbb{V}_{\infty}$ contains a linear \mathbb{P}^{2} and (if $p>0$) points that are singular in X.

(6) Classification

$\underline{\text { Theorem }}$ [BSV] If $X^{3} \subset Q^{6}$ is horizontal over \mathbb{R}^{6} then it is equivalent (under $\overline{S O(8, \mathbb{C})})$ to the divisor $\bar{\Gamma}$ above.

Corollary Any orthogonal complex structure J on \mathbb{R}^{6} such that $\int_{S^{6} \backslash \infty}\|\nabla J\|^{6}<\infty$ is a warped OCS on $\mathbb{C} \oplus \mathbb{R}^{4}$.

The finite energy condition guarantees that $\bar{\Gamma}$ is analytic (by Bishop's theorem).
Theorem [BV] Any 3-fold of bidegree $(1, p)$ in Q^{6} is one of
(i) a linear subspace \mathbb{H}_{ξ} with $p=0$
(ii) a smooth quadric Q^{3} with $p=1$
(iii) the cone over a Veronese surface in Q^{4} with $p=3$
(iv) a Weil divisor in Q_{s}^{4} with $p \geq 1$.

Cases (i), (ii), (iv) are all contained in a \mathbb{P}^{5}, but (ii), (iii) contain no \mathbb{P}^{2}.
The smooth 3-folds are (i), (ii) and the Segre instance of (iv) with $p=2$.

(7) Sketch proofs

Let X be a 3-fold in Q^{6} of bidegree $(1, p)$.
It has degree $p+1$ in \mathbb{P}^{7} so $X \subset \mathbb{P}^{p+3}$ (only useful if $p \leq 3$).
[BSV] can assume that X is $1: 1$ over \mathbb{R}^{6}. Consider $X \cap \mathbb{V}_{\infty}$. It must contain a \mathbb{P}^{2} and at least one point x which is singular in X.

Then $X \subset \operatorname{Ann}(x)=Q_{s}^{5}$, and we can project

$$
X \subset Q_{s}^{5} \backslash\{x\} \longrightarrow Q^{4}=\mathbb{G r}_{2}\left(\mathbb{C}^{4}\right)
$$

If the image has dimension 3 , it has to be in a \mathbb{P}^{4}, so $X \subset \mathbb{P}^{5}$. If the latter is false, the image is the secant variety of a twisted cubic [Ran], the Veronese surface:

$$
v \otimes v \in S^{2}\left(S^{2} \mathbb{C}^{2}\right) \cong \Lambda^{2}\left(S^{3} \mathbb{C}^{2}\right)
$$

What is the open set of \mathbb{R}^{6} over which this is $1: 1$?
[BV] need to prove if X is smooth with $p>3$ then it is still true that $X \subset \mathbb{P}^{5}$.
If $p \neq 1$, then $Q^{6} \cap \mathbb{P}^{5}=Q_{s}^{4}$ cannot have rank 5 or 6 .

(8) More examples

For an example of J on \mathbb{R}^{6} without analytic extension, take $a=\wp(u)$ above:

$$
J=\left(J_{0}, J_{\wp(u)}\right) \quad \text { on } \quad \mathbb{R}^{6}=\mathbb{C} \oplus \mathbb{R}^{4}
$$

This gives a non-standard OCS on $T^{6}=\mathbb{R}^{6} / \mathbb{Z}^{6}$.
As remarked, no 3-fold can be 1:1 over S^{6}, which admits no OCS. Its standard almost-complex structure defines a section s of Q^{6} whose fibrewise complement is a holomorphic \mathbb{P}^{2}-bundle over S^{6} with total space

$$
\frac{G_{2}}{U(2)} \cong \frac{S O(7)}{S O(2) \times S O(5)} \cong Q^{5}
$$

The Q^{3} in (ii) can be chosen to lie in this Q^{5} and is $1: 1$ over

$$
S^{6} \backslash S^{2}=\mathbb{R}^{6} \backslash \mathbb{R}^{2}=S^{3} \times H^{3}
$$

It is the 'blow-up' of S^{6} in which S^{2} is replaced by $Q^{2} \cong S^{2} \times \mathbb{P}^{1}$.
By analogy, a suitable quadric Q^{2} in $\mathbb{P}^{3} \rightarrow S^{4}$ defines an OCS on $\mathbb{R}^{4} \backslash \mathbb{R}$ that is conformally Kähler. But an OCS on $\mathbb{R}^{4} \backslash K$ with $\operatorname{dim} K<1$ is constant [SV].

