The six-sphere and projective geometry

(1) 4 by 4 matrices

Set
$$z = (z_1, z_2, z_3)$$
 and $M(z) := \begin{pmatrix} 0 & -z_1 & \cdot & \cdot \\ z_1 & 0 & \cdot & \cdot \\ z_2 & \overline{z}_3 & 0 & \cdot \\ z_3 & -\overline{z}_2 & \overline{z}_1 & 0 \end{pmatrix} \in \mathfrak{o}(4, \mathbb{C}).$

 $\underline{\text{Proposition}} \ \{A \in \mathfrak{o}(4,\mathbb{C}) \cap SU(4): \operatorname{Pf} A = 1\} = \{M(z): \|z\| = 1\}.$

Note that the columns of M(z) are unitary and $\det M(z) = ||z||^4$.

The mapping $z \mapsto M(z)$ is an inclusion of \mathbb{R}^6 in $\mathfrak{o}(4,\mathbb{C}) \cong \Lambda^2 \mathbb{C}^4$, which is a real representation $\mathbb{R}^6 \oplus i\mathbb{R}^6$ relative to $SU(4) \xrightarrow{2:1} SO(6)$.

M(z) is Clifford multiplication of $z \in \mathbb{R}^6$ on spinors, and $AM(z)A^{\mathsf{T}} = M(z')$.

(2) The 6-quadric

Let $\xi, \eta \in \mathbb{C}^4$ be column vectors. Write $\xi \cdot \eta = \xi^{\mathsf{T}} \eta$ for the symmetric inner product. Consider $\mathbb{P}^7 = \{ [\xi, \eta] : \xi, \eta \in \mathbb{C}^4, (\xi, \eta) \neq (0, 0) \}$, so

$$Q^{6} = \{ [\xi, \eta] \in \mathbb{P}^{7} : \xi \cdot \eta = 0 \}.$$

is a non-singular quadric hypersurface.

 $\underline{\text{Proposition}} \ \ ([\xi], \ z) \mapsto [\xi, \ M(z)\xi] \ \text{embeds} \ \mathbb{P}^3 \times \mathbb{R}^6 \hookrightarrow Q^6 \, .$

Proof: By skewness, $[\xi, M(z)\xi] \in Q^6$. If $(\xi, M(z)\xi) = (\xi', M(z')\xi')$ then $\xi = \xi'$ and

$$M(z - z')\xi = 0 \implies ||z - z'||^4 = 0 \implies z = z'.$$

We obtain a fibration $\pi: Q^6 \to \mathbb{R}^6 \cup \infty = S^6$, with fibres

$$\mathbb{V}_z = \pi^{-1}(z) = \{ [\xi, M(z)\xi] \}, \qquad \mathbb{V}_\infty = \pi^{-1}(\infty) = \{ [0, \eta] \}$$

all isomorphic to \mathbb{P}^3 . In homogeneous terms,

$$Q^6 \cong \frac{SO(8)}{SO(2) \times SO(6)} \cong \frac{SO(8)}{U(4)} \cong \frac{SO(7)}{U(3)} \longrightarrow \frac{SO(7)}{SO(6)} \cong S^6.$$

Moreover, $\operatorname{Conf}(S^6) = SO(7,1) \subset SO(8,\mathbb{C}) = \operatorname{Aut}(Q^6)$.

(3) Linear subspaces

There are two families of \mathbb{P}^3 's in Q^6 each parametrized by another Q^6 (via triality).

The fibres \mathbb{V}_z with $z \in S^6$ form part of one family that also contains

$$[a, b, c, d, 0, 0, 0, 0] \rightsquigarrow [a, b, \lambda c, \lambda d, 0, 0, \mu d, -\mu c] \rightsquigarrow [a, b, 0, 0, 0, 0, d, -c],$$

generating the twistor fibration $\mathbb{P}^3 \to S^4 = \{z_1 = 0\}.$

Another family consists of

 $\mathbb{H}_{\xi} = \{ [\xi, \ M(z)\xi] : z \in S^6 \},\$

These \mathbb{P}^3 's project 1:1 to \mathbb{R}^6 . For example, $\mathbb{H}_0 = \{[1, 0, 0, 0, 0, z_1, z_2, z_3]\} \cup \mathbb{P}^2$.

In general, $\mathbb{V}_0 \cap \mathbb{H}_{\xi} = \{ [\xi] \}$ and $\mathbb{V}_{\infty} \cap \mathbb{H}_{\xi} = \xi^{\perp} \cong \mathbb{P}^2$.

Definition Let's say that a 3-fold X in Q^6 is *horizontal over* \mathbb{R}^6 if $X \setminus \mathbb{V}_{\infty}$ is smooth and projects 1:1 to \mathbb{R}^6 .

 $H_6(Q^6,\mathbb{Z})$ is generated by $[\mathbb{V}_0]$ and $[\mathbb{H}_0]$, and X will have bidegree (1,p).

(4) Orthogonal complex structures

Theorem If a 3-fold $X \subset Q^6$ is horizontal it induces an *orthogonal* complex structure (OCS) on \mathbb{R}^6 .

The proof is based on the fact that the Kähler metric on Q^6 projects to the round metric on S^6 . There can be no 3-fold that is 1:1 over S^6 since $b_2(S^6) = 0$.

Examples If \mathbb{H}_0 defines a standard complex structure $\mathbb{R}^6 = \mathbb{C}^3$. More generally, \mathbb{H}_{ξ} defines a *constant* complex structure J on \mathbb{R}^6 . If $\xi = (a, 1, 0, 0)$ then \mathbb{H}_{ξ} consists of

 $[\xi, M(z)\xi] = [a, 1, 0, 0, -z_1, az_1, az_2 + \overline{z}_3, az_3 - \overline{z}_2].$

and J has $\Lambda^{1,0} = \langle dz_1, a dz_2 + d\overline{z}_3, a dz_3 - d\overline{z}_2 \rangle$, an isotropic subspace.

Now let a = a(u) be a polynomial of degree p in $u = z_1$. Then

$$\Gamma = \{ [a(u), 1, 0, 0, -u, a(u)u, v, w] : u, v, w \in \mathbb{C} \}$$

is still horizontal over \mathbb{R}^6 . The associated complex structure has the form

$$(J_0, J_{a(u)})$$
 on $\mathbb{R}^6 = \mathbb{C} \oplus \mathbb{R}^4$,

This is an example of a twisted or *warped* OCS. How can we characterize $\overline{\Gamma}$?

(5) Divisors

 $X = \overline{\Gamma}$ lies in the singular 4-quadric

$$Q_s^4 = \{ [x_1, x_2, 0, 0, x_5 \dots, x_8] \in \mathbb{P}^7 : x_1 x_5 + x_2 x_6 = 0 \}$$

It satisfies the homogeneous equation

$$a(-x_5/x_2)x_2^p = x_1x_2^{p-1} \Rightarrow f := A(x_2, x_5) - x_1x_2^{p-1} = 0,$$

but does not contain $\{x_2 = 0 = x_5\} \cap Q_s = \mathbb{H}_0$. Thus

$$[f] = (p-1)[\mathbb{H}_0] + [X].$$

Any Weil divisor in Q_s of bidegree (1, p) has this form for some polynomial f.

Exercises (i) If f does not involve x_7, x_8 , then $X = \bigcup_{p \in C, q \in L} \ell_{p,q}$ is a *double cone* where C is a curve in Q^2 and L is a line.

(ii) But if $f = x_5x_7 + x_2x_8$ then $[f] = D \cup [\mathbb{H}_0]$ where $D = \sigma(\mathbb{P}^1 \times \mathbb{P}^2) \subset \mathbb{P}^5$ is smooth.

Lemma If X^3 is horizontal over \mathbb{R}^6 then $X \cap \mathbb{V}_{\infty}$ contains a linear \mathbb{P}^2 and (if p > 0) points that are singular in X.

(6) Classification

Theorem [BSV] If $X^3 \subset Q^6$ is horizontal over \mathbb{R}^6 then it is equivalent (under $\overline{SO(8,\mathbb{C})}$) to the divisor $\overline{\Gamma}$ above.

<u>Corollary</u> Any orthogonal complex structure J on \mathbb{R}^6 such that $\int_{S^6\setminus\infty} \|\nabla J\|^6 < \infty$ is a warped OCS on $\mathbb{C} \oplus \mathbb{R}^4$.

The finite energy condition guarantees that $\overline{\Gamma}$ is analytic (by Bishop's theorem).

Theorem [BV] Any 3-fold of bidegree (1, p) in Q^6 is one of

- (i) a linear subspace \mathbb{H}_{ξ} with p = 0
- (ii) a smooth quadric Q^3 with p = 1
- (iii) the cone over a Veronese surface in Q^4 with p = 3
- (iv) a Weil divisor in Q_s^4 with $p \ge 1$.

Cases (i), (ii), (iv) are all contained in a \mathbb{P}^5 , but (ii), (iii) contain no \mathbb{P}^2 .

The smooth 3-folds are (i), (ii) and the Segre instance of (iv) with p = 2.

(7) Sketch proofs

Let X be a 3-fold in Q^6 of bidegree (1, p).

It has degree p + 1 in \mathbb{P}^7 so $X \subset \mathbb{P}^{p+3}$ (only useful if $p \leq 3$).

[BSV] can assume that X is 1:1 over \mathbb{R}^6 . Consider $X \cap \mathbb{V}_{\infty}$. It must contain a \mathbb{P}^2 and at least one point x which is singular in X.

Then $X \subset Ann(x) = Q_s^5$, and we can project

$$X \subset Q_s^5 \setminus \{x\} \longrightarrow Q^4 = \mathbb{G}\mathrm{r}_2(\mathbb{C}^4).$$

If the image has dimension 3, it has to be in a \mathbb{P}^4 , so $X \subset \mathbb{P}^5$. If the latter is false, the image is the secant variety of a twisted cubic [Ran], the Veronese surface:

$$v \otimes v \in S^2(S^2 \mathbb{C}^2) \cong \Lambda^2(S^3 \mathbb{C}^2).$$

What is the open set of \mathbb{R}^6 over which this is 1:1?

[BV] need to prove if X is smooth with p > 3 then it is still true that $X \subset \mathbb{P}^5$. If $p \neq 1$, then $Q^6 \cap \mathbb{P}^5 = Q_s^4$ cannot have rank 5 or 6.

(8) More examples

For an example of J on \mathbb{R}^6 without analytic extension, take $a = \wp(u)$ above:

 $J = (J_0, J_{\wp(u)})$ on $\mathbb{R}^6 = \mathbb{C} \oplus \mathbb{R}^4$.

This gives a non-standard OCS on $T^6 = \mathbb{R}^6 / \mathbb{Z}^6$.

As remarked, no 3-fold can be 1:1 over S^6 , which admits no OCS. Its standard almost-complex structure defines a section s of Q^6 whose fibrewise complement is a *holomorphic* \mathbb{P}^2 -bundle over S^6 with total space

$$\frac{G_2}{U(2)} \cong \frac{SO(7)}{SO(2) \times SO(5)} \cong Q^5.$$

The Q^3 in (ii) can be chosen to lie in this Q^5 and is 1:1 over

$$S^6 \setminus S^2 = \mathbb{R}^6 \setminus \mathbb{R}^2 = S^3 \times H^3$$

It is the 'blow-up' of S^6 in which S^2 is replaced by $Q^2 \cong S^2 \times \mathbb{P}^1$.

By analogy, a suitable quadric Q^2 in $\mathbb{P}^3 \to S^4$ defines an OCS on $\mathbb{R}^4 \setminus \mathbb{R}$ that is conformally Kähler. But an OCS on $\mathbb{R}^4 \setminus K$ with dim K < 1 is constant [SV].