G_2 Metrics and M-theory

Simon Salamon

Turin, 24 April 2004

I Weak holonomy and supergravity II S^1 actions and triality in six dimensions III G_2 and SU(3) structures from each other

PART I

The exceptional geometry of conical singularities, based on Alfred Gray's notion of weak holonomy:

• If (Y, g_7) has weak holonomy G_2 then

$$dr^2 + r^2 g_7$$
 on $X = \mathbb{R}^+ \times Y$

has holonomy in $\operatorname{Spin} 7$.

Examples:
$$Y = S^7$$
, $S_{sq}^7 (\stackrel{S^3}{\rightarrow} S^4)$
Ber⁷ = $\frac{SO(5)}{SO(3)}$, AW⁷ = $\frac{SU(3)}{U(1)_{p,q}}$

• If (Z,g_6) is nearly-Kähler (weak hol ${
m SU}(3)$) then $ds^2+s^2g_6 \quad {\rm on} \quad {\mathbb R}^+\times Z$

has holonomy in G_2 .

Examples: The 3-symmetric spaces ${\it Z}=S^6$,

$$\mathbb{CP}^3$$
, $\mathbb{F} = \frac{\mathrm{SU}(3)}{\mathrm{T}^2}$, $S^3 \times S^3$.

11-dimensional equations

Maximal D = 11 supergravity involves a metric g of signature (10, 1), and a 4-form F = dA satisfying

$$R_{im} = \frac{1}{12} \left(F_{ijkl} F_m^{ijk} - \frac{1}{12} g_{im} F^2 \right)$$
$$dF = 0$$
$$d * F = F \wedge F$$

M-theory adds conjectural correction terms that we shall ignore.

Supersymmetry requires Killing spinor(s):

$$\nabla_m \eta + \frac{1}{288} \left[\Gamma_m^{ijkl} - 8\delta_m^i \Gamma^{jkl} \right] F_{ijkl} \eta = 0$$

and holonomy reduction of a suitable connection. Let $\nu = \frac{1}{32} \dim(\mathsf{K} \operatorname{spinors})$.

There are theories of generalized holonomy groups $\mathcal{H} \subset SO(10,1)$ [Duff], [Hull].

First solutions

Identifying F with the volume form of a 4-manifold gives an Einstein product $M^4 \times M^7.$

- With $\nu = 1$: $AdS_7 \times S^4$ or $AdS_4 \times S^7$.
- M2 brane solution with $\nu \leqslant \frac{1}{2}$:

$$\left(1+\frac{a^6}{r^6}\right)^{-2/3}g_{2,1} + \left(1+\frac{a^6}{r^6}\right)^{1/3}(dr^2+r^2g_7)$$

with $F = \operatorname{vol}_{2,1} \wedge f(r)dr$ and $*F = 6a^6 \operatorname{vol}_7$.

Interpolates between the asymptotic ($r=\infty$) metric

$$g_{2,1} + (dr^2 + r^2 g_7)$$
 on $M_{2,1} \times X^8$

and the 'near-horizon' limit ($r \ll a$)

$$\left(\frac{r^4}{a^4}g_{2,1} + \frac{a^2}{r^2}dr^2\right) + a^2g_7$$
 on $AdS_4 \times Y^7$.

If g_7 has weak holonomy G_2 then these two limits have $\nu = \frac{1}{16}$ and $\nu = \frac{1}{8}$ respectively.

A weak G_2 orbifold

Suppose that $X^8 = S^1 \times Y^7$ has a product metric

$$g_8 = dx^2 + (dy^2 + y^2 g_6)$$

with holonomy $\{1\} \times G_2 \subset \text{Spin 7. Setting } x = r \cos t$ and $y = r \sin t$ gives

$$g_8 = dr^2 + r^2(dt^2 + \sin^2 t \, g_6).$$

<u>Corollary</u> [Acharya et al] If (Z, g_6) is nearly-Kähler, the 'spherical' metric

$$dt^2 + \sin^2 t \, g_6$$

has weak holonomy G_2 (so Einstein); its singularities at $t = 0, \pi$ approximate G_2 holonomy cones.

If the nearly-Kähler structure is defined by a 2-form ω and (3,0)-form $\psi^++i\psi^-$ then the G₂ 3-form is

$$\varphi = s^2\,\omega \wedge dt + s^3(c\psi^+\!+\!s\psi^-)$$

where $c = \cos t$ and $s = \sin t$.

PART II

If (Y, g_7) has holonomy G_2 then $Q = Y/S^1$ has a symplectic SU(3) structure with

$$g_7 = f(q)^2 (dx + \theta)^2 + \frac{1}{f(q)} k_6$$

with dilation factor f. The metric k_6 forms part of the dual 10-dimensional 'type IIA' string theory.

In certain cases, (Q, k_6) is Kähler [Apostolov-S].

Theorem [Atiyah-Witten] Each 3-symmetric space Zadmits a S^1 action for which $Z/S^1 \cong S^5$. Moreover, $(\mathbb{R}^+ \times Z)/S^1 \cong \mathbb{R}^6$ contains the fixed points (f = 0) as Lagrangian submanifolds.

Example: $\mathbb{F} = \frac{U(3)}{U(1) \times U(1) \times U(1)} \Longrightarrow \mathbb{CP}^2$. A standard S^1 action has fixed point set $S^2 \sqcup S^2 \sqcup S^2$, one fibre for each of the three projections to \mathbb{CP}^2 . Then $(\mathbb{R}^+ \times \mathbb{F})/S^1$ has three \mathbb{R}^3 's intersecting transversally at a point.

Nearly-Kähler 6-manifolds as quotients?

Example: $S^3 \times S^3 = \frac{\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)}{\mathrm{SU}(2)}$ admits an action of $\mathfrak{S}_3 = \langle \sigma, \tau \rangle$. The diagonal S^3 is invariant by σ , and its images by τ give a 120° configuration of S^3 's intersecting at z. These give rise to intersecting \mathbb{R}^4 's in $\mathbb{R}^+ \times (S^3 \times S^3)$.

Suggests existence of a $\,{\rm Spin}\,7\,$ total space

$$\begin{array}{rcl} X &=& \mathbb{R}^+ \ \times & Y \\ && \pi \ \downarrow \ S^1 \\ && \mathbb{R}^+ \ \times \ (S^3 \times S^3) \ \ni z \end{array}$$

where Y is a weak G_2 -orbifold, π maps fixed points to the three S^3 's, and $\pi^{-1}(z)$ is the vertex of a cone modelled on $\mathbb{R}^+ \times \mathbb{F}$.

Another topic: metrics with holonomy G_2 on X^8/S^1 via hyper-Kähler reduction [Acharya-Witten].

Lagrangian triality and quaternionic geometry

Let $N^5 (\xrightarrow{T^2} T^3)$ be a nilmanifold of type (0, 0, 0, 12, 13), so $de^4 = e^{12}$ and $de^5 = e^{13}$. Then $N^6 = N^5 \times S^1$ has a symplectic form

$$\omega = e^{16} + e^{25} + e^{34}$$

with trivial e^6 factor.

<u>Theorem</u> [Giovannini] The compact manifold N^6 has a configuration of invariant Lagrangian submanifolds at 120° through each point.

Proof. Follows from the existence of closed 3-forms

$$e^{1} \wedge (e^{2} - \sqrt{3}e^{5}) \wedge (e^{3} + \sqrt{3}e^{4}) \\ (e^{1} + \sqrt{3}e^{6}) \wedge e^{2} \wedge (e^{3} - \sqrt{3}e^{4}) \\ (e^{1} - \sqrt{3}e^{6}) \wedge (e^{2} + \sqrt{3}e^{5}) \wedge e^{3}.$$

Note that $Sp(3, \mathbb{R})$ acts transitively on 'positive-definite' Lagrangian triples (L_1, L_2, L_3) in \mathbb{R}^6 .

Corollary $N^6 \times T^2$ has a closed 4-form Ω with stabilizer $\overline{\mathrm{Sp}(2)\mathrm{Sp}(1)}$.

PART III

In 6 dimensions, an SU(3) structure is characterized by a 2-form ω and a complex (3,0)-form $\psi^+ + i\psi^-$. A G_2 structure is defined in 6+1 dimensions by

$$\varphi = \omega \, dt + \psi^+ *\varphi = \psi^- dt + \frac{1}{2}\omega^2$$

The holonomy reduces iff

$$d\varphi = 0$$
 and $d * \varphi = 0$ (*)

implying the half-flat conditions

$$d\psi^+=0 \quad \text{and} \quad d(\tfrac{1}{2}\omega^2)=0.$$

Example: $N^6 = N^5 \times S^1$ has a half-flat structure:

$$\psi^{+}(0) = e^{123} + e^{145} + e^{356} - e^{246}$$
$$\frac{1}{2}\omega(0)^{2} = e^{2345} + e^{1346} + e^{1256}.$$

Problem: Find $\omega(t), \psi^+(t)$ satisfying \circledast . Hamiltonian theory guarantees solution [Hitchin].

Solution: Can split off e^6 to get a Calabi-Yau orbifold:

<u>Theorem</u> $N^5 \times (-\frac{\pi}{2}, \frac{\pi}{2})$ has a metric k_6 with holonomy equal to SU(3).

Proof. Let $c = \cos t$, $s = \sin t$. Then k_6 has an orthonormal basis

The closed foms are

$$\begin{split} \Omega &= c^3 e^1 dt - e^{24} + e^{35} \\ \Psi^+ &= -c(1\!+\!s) e^{25} dt - c(1\!-\!s) e^{34} dt + c^2 e^{123} + e^{145} \\ \Psi^- &= -c e^{45} dt - c^3 e^{23} dt - (1\!-\!s) e^{134} - (1\!+\!s) e^{125}. \end{split}$$

Since e^{145} and $-c^3 e^{23} dt$ are also closed, $\exp(\theta J) \cdot e^{145}$

generates a pencil $\{\mathcal{L}_{\theta,z}\}$ of special Lagrangian submanifolds through each point z, each with phase θ .

Back to M theory

One can seek solutions

$$g_{10,1} = e^{A}(y)g_{3,1} + e^{B}(y)g_{7}$$
$$F = f(y)\operatorname{vol}_{3,1} + F_{7}$$
$$\eta = \theta \otimes \varepsilon_{1} + i\gamma\theta \otimes \varepsilon_{2}$$

on $AdS_4 \times Y$ in which the spinors $\varepsilon_1, \varepsilon_2$ determine an SU(3) structure on $T_yY = \mathbb{R} \oplus \mathbb{C}^3$.

Equations link F to the intrinsic torsion [Chiossi-S].

<u>Theorem</u> [Lukas-Saffin] (i) f = 0 so $F \wedge F = 0$. (ii) Y is foliated by 6-manifolds on which the induced SU(3) structure is half-flat.

(iii) if F is SU(3)-invariant ('singlet flux') then

$$g_7 = dt^2 + e^{-2\alpha(t)}g_6$$

is a warped product with a nearly-Kähler metric g_6 .

Exact nature of G_2 structures and singularities unclear.

Selected references

Acharya-Denef-Hofman-Lambert, hep-th/0308046 Acharya-Witten, hep-th/0109152 Apostolov-Salamon, math.DG/0303197 Atiyah-Witten, hep-th/0107177 Chiossi-Salamon, math.DG/0202282 Duff, hep-th/0201062 Freund, hep-th/0401092 Giovannini, PhD thesis, Turin, 2004 Hitchin, math.DG/0107101 Hull, hep-th/0305039 Lukas-Saffin, hep-th/0403235