G_{2} METRICS AND M-THEORY

Simon Salamon

Turin, 24 April 2004

I Weak holonomy and supergravity
II S^{1} actions and triality in six dimensions
III G_{2} and $\mathrm{SU}(3)$ structures from each other

PART I

The exceptional geometry of conical singularities, based on Alfred Gray's notion of weak holonomy:

- If $\left(Y, g_{7}\right)$ has weak holonomy G_{2} then

$$
d r^{2}+r^{2} g_{7} \quad \text { on } \quad X=\mathbb{R}^{+} \times Y
$$

has holonomy in Spin 7 .
Examples: $Y=S^{7}, S_{\mathrm{sq}}^{7}\left(\xrightarrow{S^{3}} S^{4}\right)$

$$
\operatorname{Ber}^{7}=\frac{\mathrm{SO}(5)}{\mathrm{SO}(3)}, \quad \mathrm{AW}^{7}=\frac{\mathrm{SU}(3)}{\mathrm{U}(1)_{p, q}}
$$

- If $\left(Z, g_{6}\right)$ is nearly-Kähler (weak hol $\mathrm{SU}(3)$) then

$$
d s^{2}+s^{2} g_{6} \quad \text { on } \quad \mathbb{R}^{+} \times Z
$$

has holonomy in G_{2}.
Examples: The 3 -symmetric spaces $Z=S^{6}$,

$$
\mathbb{C P}^{3}, \quad \mathbb{F}=\frac{\mathrm{SU}(3)}{\mathrm{T}^{2}}, \quad S^{3} \times S^{3}
$$

11-dimensional equations

Maximal $D=11$ supergravity involves a metric g of signature $(10,1)$, and a 4 -form $F=d A$ satisfying

$$
\begin{gathered}
R_{i m}=\frac{1}{12}\left(F_{i j k l} F_{m}^{i j k}-\frac{1}{12} g_{i m} F^{2}\right) \\
d F=0 \\
d * F=F \wedge F
\end{gathered}
$$

M-theory adds conjectural correction terms that we shall ignore.

Supersymmetry requires Killing spinor(s):

$$
\nabla_{m} \eta+\frac{1}{288}\left[\Gamma_{m}^{i j k l}-8 \delta_{m}^{i} \Gamma^{j k l}\right] F_{i j k l} \eta=0
$$

and holonomy reduction of a suitable connection.
Let $\nu=\frac{1}{32} \operatorname{dim}$ (K spinors).
There are theories of generalized holonomy groups $\mathcal{H} \subset S O(10,1)$ [Duff], [Hull].

First solutions

Identifying F with the volume form of a 4-manifold gives an Einstein product $M^{4} \times M^{7}$.

- With $\nu=1: \mathrm{AdS}_{7} \times S^{4}$ or $\mathrm{AdS}_{4} \times S^{7}$.
- M2 brane solution with $\nu \leqslant \frac{1}{2}$:

$$
\left(1+\frac{a^{6}}{r^{6}}\right)^{-2 / 3} g_{2,1}+\left(1+\frac{a^{6}}{r^{6}}\right)^{1 / 3}\left(d r^{2}+r^{2} g_{7}\right)
$$

with $F=\operatorname{vol}_{2,1} \wedge f(r) d r$ and $* F=6 a^{6} \mathrm{vol}_{7}$.
Interpolates between the asymptotic $(r=\infty)$ metric

$$
g_{2,1}+\left(d r^{2}+r^{2} g_{7}\right) \quad \text { on } \quad M_{2,1} \times X^{8}
$$

and the 'near-horizon' limit $(r \ll a)$

$$
\left(\frac{r^{4}}{a^{4}} g_{2,1}+\frac{a^{2}}{r^{2}} d r^{2}\right)+a^{2} g_{7} \quad \text { on } \quad \operatorname{AdS}_{4} \times Y^{7}
$$

If g_{7} has weak holonomy G_{2} then these two limits have $\nu=\frac{1}{16}$ and $\nu=\frac{1}{8}$ respectively.

A weak G_{2} orbifold

Suppose that $X^{8}=S^{1} \times Y^{7}$ has a product metric

$$
g_{8}=d x^{2}+\left(d y^{2}+y^{2} g_{6}\right)
$$

with holonomy $\{1\} \times \mathrm{G}_{2} \subset \operatorname{Spin} 7$. Setting $x=r \cos t$ and $y=r \sin t$ gives

$$
g_{8}=d r^{2}+r^{2}\left(d t^{2}+\sin ^{2} t g_{6}\right)
$$

Corollary [Acharya et al] If $\left(Z, g_{6}\right)$ is nearly-Kähler, the 'spherical' metric

$$
d t^{2}+\sin ^{2} t g_{6}
$$

has weak holonomy G_{2} (so Einstein); its singularities at $t=0, \pi$ approximate G_{2} holonomy cones.

If the nearly-Kähler structure is defined by a 2-form ω and $(3,0)$-form $\psi^{+}+i \psi^{-}$then the $\mathrm{G}_{2} 3$-form is

$$
\varphi=s^{2} \omega \wedge d t+s^{3}\left(c \psi^{+}+s \psi^{-}\right)
$$

where $c=\cos t$ and $s=\sin t$.

PART II

If $\left(Y, g_{7}\right)$ has holonomy G_{2} then $Q=Y / S^{1}$ has a symplectic $\mathrm{SU}(3)$ structure with

$$
g_{7}=f(q)^{2}(d x+\theta)^{2}+\frac{1}{f(q)} k_{6}
$$

with dilation factor f. The metric k_{6} forms part of the dual 10-dimensional 'type IIA' string theory. In certain cases, $\left(Q, k_{6}\right)$ is Kähler [Apostolov-S].

Theorem [Atiyah-Witten] Each 3-symmetric space Z admits a S^{1} action for which $Z / S^{1} \cong S^{5}$. Moreover, $\left(\mathbb{R}^{+} \times Z\right) / S^{1} \cong \mathbb{R}^{6}$ contains the fixed points $(f=0)$ as Lagrangian submanifolds.

Example: $\mathbb{F}=\frac{U(3)}{U(1) \times U(1) \times U(1)} \Longrightarrow \mathbb{C P}^{2}$.
A standard S^{1} action has fixed point set $S^{2} \sqcup S^{2} \sqcup S^{2}$, one fibre for each of the three projections to $\mathbb{C P}^{2}$. Then $\left(\mathbb{R}^{+} \times \mathbb{F}\right) / S^{1}$ has three \mathbb{R}^{3} 's intersecting transversally at a point.

Nearly-Kähler 6-manifolds as quotients?

Example: $\quad S^{3} \times S^{3}=\frac{\operatorname{SU}(2) \times \operatorname{SU}(2) \times \operatorname{SU}(2)}{\operatorname{SU}(2)}$ admits an action of $\mathfrak{S}_{3}=\langle\sigma, \tau\rangle$. The diagonal S^{3} is invariant by σ, and its images by τ give a 120° configuration of S^{3} 's intersecting at z. These give rise to intersecting \mathbb{R}^{4} 's in $\mathbb{R}^{+} \times\left(S^{3} \times S^{3}\right)$.

Suggests existence of a Spin 7 total space

$$
\begin{aligned}
& X=\mathbb{R}^{+} \times \quad Y \\
& \\
& \\
& \\
& \\
& \\
& \mathbb{R}^{+} \downarrow\left(S^{3} \times S^{3}\right) \ni z
\end{aligned}
$$

where Y is a weak G_{2}-orbifold, π maps fixed points to the three S^{3} 's, and $\pi^{-1}(z)$ is the vertex of a cone modelled on $\mathbb{R}^{+} \times \mathbb{F}$.

Another topic: metrics with holonomy G_{2} on X^{8} / S^{1} via hyper-Kähler reduction [Acharya-Witten].

Lagrangian triality and quaternionic geometry

Let $N^{5}\left(\xrightarrow{T^{2}} T^{3}\right)$ be a nilmanifold of type $(0,0,0,12,13)$, so $d e^{4}=e^{12}$ and $d e^{5}=e^{13}$. Then $N^{6}=N^{5} \times S^{1}$ has a symplectic form

$$
\omega=e^{16}+e^{25}+e^{34}
$$

with trivial e^{6} factor.

Theorem [Giovannini] The compact manifold N^{6} has a configuration of invariant Lagrangian submanifolds at 120° through each point.

Proof. Follows from the existence of closed 3 -forms

$$
\begin{aligned}
& e^{1} \wedge\left(e^{2}-\sqrt{3} e^{5}\right) \wedge\left(e^{3}+\sqrt{3} e^{4}\right) \\
& \left(e^{1}+\sqrt{3} e^{6}\right) \wedge e^{2} \wedge\left(e^{3}-\sqrt{3} e^{4}\right) \\
& \left(e^{1}-\sqrt{3} e^{6}\right) \wedge\left(e^{2}+\sqrt{3} e^{5}\right) \wedge e^{3} .
\end{aligned}
$$

Note that $S p(3, \mathbb{R})$ acts transitively on 'positive-definite' Lagrangian triples $\left(L_{1}, L_{2}, L_{3}\right)$ in \mathbb{R}^{6}.

Corollary $N^{6} \times T^{2}$ has a closed 4-form Ω with stabilizer $\overline{\mathrm{Sp}(2) \mathrm{Sp}(1) \text {. }}$

PART III

In 6 dimensions, an $\mathrm{SU}(3)$ structure is characterized by a 2 -form ω and a complex $(3,0)$-form $\psi^{+}+i \psi^{-}$. A G_{2} structure is defined in $6+1$ dimensions by

$$
\begin{aligned}
\varphi & =\omega d t+\psi^{+} \\
* \varphi & =\psi^{-} d t+\frac{1}{2} \omega^{2} .
\end{aligned}
$$

The holonomy reduces of

$$
\begin{equation*}
d \varphi=0 \quad \text { and } \quad d * \varphi=0 \tag{}
\end{equation*}
$$

implying the half-flat conditions

$$
d \psi^{+}=0 \quad \text { and } \quad d\left(\frac{1}{2} \omega^{2}\right)=0
$$

Example: $N^{6}=N^{5} \times S^{1}$ has a half-flat structure:

$$
\begin{aligned}
\psi^{+}(0) & =e^{123}+e^{145}+e^{356}-e^{246} \\
\frac{1}{2} \omega(0)^{2} & =e^{2345}+e^{1346}+e^{1256}
\end{aligned}
$$

Problem: Find $\omega(t), \psi^{+}(t)$ satisfying \circledast. Hamiltonian theory guarantees solution [Hitchin].

Solution: Can split off e^{6} to get a Calabi-Yau orbifold:
Theorem $N^{5} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ has a metric k_{6} with holonomy equal to $\mathrm{SU}(3)$.

Proof. Let $c=\cos t, s=\sin t$. Then k_{6} has an orthonormal basis

$$
\begin{array}{ll}
c e^{1}, & (1+s)^{1 / 2} e^{2}, \\
(1+s)^{-1 / 2} e^{4}, & (1-s)^{1 / 2} e^{3} \\
(1-s)^{-1 / 2} e^{5}, & c^{2} d t
\end{array}
$$

The closed foms are

$$
\begin{gathered}
\Omega=c^{3} e^{1} d t-e^{24}+e^{35} \\
\Psi^{+}=-c(1+s) e^{25} d t-c(1-s) e^{34} d t+c^{2} e^{123}+e^{145} \\
\Psi^{-}=-c e^{45} d t-c^{3} e^{23} d t-(1-s) e^{134}-(1+s) e^{125}
\end{gathered}
$$

Since e^{145} and $-c^{3} e^{23} d t$ are also closed,

$$
\exp (\theta J) \cdot e^{145}
$$

generates a pencil $\left\{\mathcal{L}_{\theta, z}\right\}$ of special Lagrangian submanifolds through each point z, each with phase θ.

Back to M theory

One can seek solutions

$$
\begin{aligned}
g_{10,1} & =e^{A}(y) g_{3,1}+e^{B}(y) g_{7} \\
F & =f(y) \operatorname{vol}_{3,1}+F_{7} \\
\eta & =\theta \otimes \varepsilon_{1}+i \gamma \theta \otimes \varepsilon_{2}
\end{aligned}
$$

on $\mathrm{AdS}_{4} \times Y$ in which the spinors $\varepsilon_{1}, \varepsilon_{2}$ determine an $\mathrm{SU}(3)$ structure on $T_{y} Y=\mathbb{R} \oplus \mathbb{C}^{3}$.

Equations link F to the intrinsic torsion [Chiossi-S].

Theorem [Lukas-Saffin] (i) $f=0$ so $F \wedge F=0$.
(ii) Y is foliated by 6 -manifolds on which the induced $\mathrm{SU}(3)$ structure is half-flat.
(iii) if F is $\mathrm{SU}(3)$-invariant ('singlet flux') then

$$
g_{7}=d t^{2}+e^{-2 \alpha(t)} g_{6}
$$

is a warped product with a nearly-Kähler metric g_{6}.
Exact nature of G_{2} structures and singularities unclear.

Selected references

Acharya-Denef-Hofman-Lambert, hep-th/0308046
Acharya-Witten, hep-th/0109152
Apostolov-Salamon, math.DG/0303197
Atiyah-Witten, hep-th/0107177
Chiossi-Salamon, math.DG/0202282
Duff, hep-th/0201062
Freund, hep-th/0401092
Giovannini, PhD thesis, Turin, 2004
Hitchin, math.DG/0107101
Hull, hep-th/0305039
Lukas-Saffin, hep-th/0403235

