ORTHOGONAL COMPLEX STRUCTURES ON DOMAINS OF \mathbb{R}^{4}

March 2007

Simon Salamon
joint work with Jeff Viaclovsky
based on twistor theory of Penrose (1967)
Atiyah-Hitchin-Singer (1978)
Pontecorvo (1992)

PART ONE

Definition. An OCS on an open set $\Omega \subset \mathbb{R}^{4}$ is a $\left(C^{1}\right) \operatorname{map}$

$$
J: \Omega \rightarrow\left\{M \in S O(4): M^{2}=-I\right\} \cong \mathbb{C P}^{1}
$$

satisfying the usual integrability condition
Problem. Given Ω, classify OCS's on Ω
Conformal invariance:
$\mathbb{C P}^{3} \quad \supset \quad \mathbb{R}^{4} \times \mathbb{C P}^{1}$
$\pi \downarrow \quad \uparrow J$

$$
\mathbb{H P}^{1}=S^{4} \supset \mathbb{R}^{4} \supseteq \Omega
$$

Known proposition. An OCS on Ω is the same as a "holomorphic" section $s: \Omega \rightarrow \mathbb{C P}^{3}$ Corollary. Any hyperplane $\mathbb{C P}^{2}$ determines an OCS J on $S^{4} \backslash\{p\}$ or \mathbb{R}^{4}. Such a J is "conformally constant"

Projective coordinates

$$
\left.\begin{array}{r}
p=\left[1, a, W_{1}, W_{2}\right] \in \mathbb{C P}^{3} \\
\downarrow \\
\pi(p)=\left[1+j a, W_{1}+j W_{2}\right] \in \mathbb{H P}^{1}
\end{array}\right] \begin{aligned}
\pi(p) & =\left[1, z_{1}+j z_{2}\right] \in \mathbb{H P}^{1} \backslash[0,1] \\
& \Longleftrightarrow W_{1}+j W_{2}=q(1+j a) \\
& \Longleftrightarrow\left\{\begin{array}{l}
W_{1}=z_{1}-a \bar{z}_{2} \\
W_{2}=z_{2}+a \bar{z}_{1}
\end{array}\right.
\end{aligned}
$$

Fix z_{1}, z_{2}; then a is a coordinate on the fibre and determines an a.c.s. J_{a} for which

$$
\Lambda^{1,0}=\left\langle d z_{1}-a d \bar{z}_{2}, \quad d z_{2}+a d \bar{z}_{1}\right\rangle
$$

An OCS J on $\Omega \subseteq \mathbb{R}^{4}$ is defined by a function $a: \Omega \rightarrow \mathbb{C} \cup \infty$ (deforming J_{0}) satisfying

$$
\frac{\partial a}{\partial \bar{z}_{1}}-a \frac{\partial a}{\partial z_{2}}=0, \quad \frac{\partial a}{\partial \bar{z}_{2}}+a \frac{\partial a}{\partial z_{1}}=0 .
$$

Any C^{1} solution is necessarily harmonic

Application to quadrics

Let \mathscr{Q} be the "anti-diagonal" quadric

$$
\begin{aligned}
0 & =1 . W_{2}-a W_{1} \\
& =a^{2} \bar{z}_{2}-a\left(z_{1}-\bar{z}_{1}\right)+z_{2} \\
& =a^{2} \bar{z}_{2}-2 i a \mathfrak{I m} z_{1}+z_{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\pi^{-1}\left(z_{1}, z_{2}\right) \subset \mathscr{Q} & \Leftrightarrow z_{2}=0, z_{1} \in \mathbb{R} \\
& \Leftrightarrow\left(z_{1}, z_{2}\right) \in S^{1} \subset S^{4}
\end{aligned}
$$

Otherwise roots occur in pairs $\{a,-1 / \bar{a}\}$ and cannot be coincident in this particular case

Definition. Given a quadric $\mathscr{Q} \subset \mathbb{C P}^{3}$ and a point $q \in \mathbb{R}^{4}$,

$$
\begin{aligned}
& q \in D_{0} \Leftrightarrow \pi^{-1}(q) \subset \mathscr{Q} \\
& q \in D_{1} \Leftrightarrow \# \pi^{-1}(q)=1
\end{aligned}
$$

The discriminant locus is $D=D_{0} \cup D_{1}$

Two Liouville theorems

Let J be an OCS on an open set $\Omega=\mathbb{R}^{4} \backslash K$

1. If $\operatorname{Hm}^{1}(K)=0$ then J arises from some hyperplane and is conformally constant
$\lim \uparrow \times 2$
2. If K is a round circle or straight line then $\pm J$ arises from a unique real quadric in $\mathbb{C P}^{3}$. Any two are conformally equivalent

Idea of the proof of 1 :
$J(\Omega)$ is analytic in $\mathbb{C P}^{3} \backslash \pi^{-1}(K)$
$\operatorname{dim}_{\mathbb{R}} 4 \quad$ " $\operatorname{dim}<3$ "
Key point is to deduce that $\overline{J(\Omega)}$ is analytic, thus (Chow/Mumford) algebraic of degree 1

Removal of singularities

If $E_{i} \subset \mathbb{R}^{m}$, let $r_{i}=\frac{1}{2} \operatorname{diam}\left(E_{i}\right)$ and

$$
v_{i}^{d}=\operatorname{vol}\left(B^{d}\left(r_{i}\right)\right)=\frac{\left(\pi r_{i}^{2}\right)^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)}
$$

Hausdorff measure:
$\mathrm{Hm}^{d}(K)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{i=1}^{\infty} v_{i}^{d}: K \subseteq \bigcup_{i=1}^{\infty} E_{i}, r_{i}<\delta\right\}$
Shiffman's Theorem (1968). U open in \mathbb{C}^{n}, E closed in U. If $A^{2 k} \subset U \backslash E$ is analytic and $\mathrm{Hm}^{2 k-1}(E)=0$, then $\bar{A} \cap U$ is analytic.

This is based on the proof of
Bishop's Theorem (1964). U open in \mathbb{C}^{n} and B analytic in U. If $A^{2 k} \subset U \backslash B$ is analytic and $\mathrm{Hm}^{2 k}(\bar{A} \cap B)=0$ then $\bar{A} \cap U$ is analytic.

Itself a generalization of Remmert-Stein (1953)

PART TWO

A non-degenerate quadric \mathscr{Q} is determined by the reduction

$$
\begin{array}{ccc}
\mathbb{C}^{4} & =\mathbb{C}^{2} \otimes \mathbb{C}^{2} \\
S O(4, \mathbb{C}) & \sim S L(2, \mathbb{C}) \times S L(2, \mathbb{C})
\end{array}
$$

The symmetric bilinear form g is identified with $\omega_{1} \otimes \omega_{2}$ and $\mathscr{Q} \cong \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ is generated by the rank-one elements $u \otimes v$

The quadric \mathscr{Q} is "real" if it arises from a further reduction

$$
\begin{array}{ccc}
\mathbb{H}^{2} & = & \mathbb{R}^{2} \otimes \mathbb{H} \\
S O^{*}(4) & \sim S L(2, \mathbb{R}) \times S U(2)
\end{array}
$$

The involution j on \mathbb{C}^{4} equals $\sigma_{1} \otimes \sigma_{2}$ where $\sigma_{i}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ with $\sigma_{1}{ }^{2}=1$ and $\sigma_{2}{ }^{2}=-1$. The real lines on \mathscr{Q} are those of the form $[u] \times \mathbb{C P}^{1}$ where $\sigma_{1}(u)=u$, confirming $D_{0} \cong \mathbb{R P}^{1} \times \mathbb{C P}^{1}$

‘Real’ or j-invariant matrices

$$
\begin{aligned}
\mathbf{p}= & \left(1, W_{1}, a, W_{2}\right) \in \mathbb{C}^{4} \\
& \Rightarrow \mathbf{p} j=\left(-\bar{a},-\bar{W}_{2}, 1, W_{1}\right)
\end{aligned}
$$

A matrix $G \in \mathbb{C}^{4,4}$ belongs to $\left.\mathfrak{g l (} 2, \mathbb{H}\right)$ iff

$$
G=\left(\begin{array}{cc}
A & B \\
-\bar{B} & \frac{B}{A}
\end{array}\right)=\{A \mid B\}
$$

Then $G \in S L(2, \mathbb{H}) \sim S O_{\circ}(1,5)$ if $\operatorname{det} G=1$
Any symmetric $Q \in \mathbb{C}^{4,4}$ equals $Q_{1}+i Q_{2}$, $Q_{\alpha} \in \mathfrak{g l}(2, \mathbb{H})$. If rank $Q_{1}=4$, we can choose $G \in G L(2, \mathbb{H})$ such that

$$
\begin{aligned}
& G^{\top} Q_{1} G=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)=\{0 \mid K\}=Q_{0} \\
& G^{\top} Q_{2} G=\{A \mid B\}=\{L+i M \mid b K+i N\}
\end{aligned}
$$

with $b \in \mathbb{R}$ and L, M, N real symmetric.

Singular value decomposition

We may now suppose

$$
Q=(1-i b) Q_{0}+i Q_{2}
$$

where the "trace-free part" $Q_{2}=\{L+i M \mid N\}$ is determined by

$$
X=\left(\begin{array}{ccc}
L_{11}+L_{22} & M_{11}+M_{22} & N_{11}+N_{22} \\
L_{11}-L_{22} & M_{11}-M_{22} & N_{11}-N_{22} \\
2 L_{12} & 2 M_{12} & 2 N_{12}
\end{array}\right)
$$

The stabilizer of Q_{0} in $S L(2, \mathbb{H})$ is

$$
S L(2, \mathbb{R}) \times S U(2) \sim S O(2,1) \times S O(3)
$$

Note that X defines an element of $\Lambda_{+}^{3}\left(\mathbb{R}^{5,1}\right)$
We use SVD to diagonalize X and obtain

$$
e^{i \theta} H^{\top} Q H=\left(\begin{array}{cccc}
e^{\lambda+i \nu} & 0 & 0 & 0 \\
0 & e^{\mu-i \nu} & 0 & 0 \\
0 & 0 & e^{-\lambda+i \nu} & 0 \\
0 & 0 & 0 & e^{-\mu-i \nu}
\end{array}\right)
$$

with $\lambda, \mu, \nu \in \mathbb{R}$.

Quadrics in $\mathbb{C P}^{3} \rightarrow S^{4}$

Theorem 3. Let $\mathscr{Q} \subset \mathbb{C P}^{3}$ be a non-degenerate quadric. There are three cases:
(0) \mathscr{Q} is "real" and $D=D_{0}=S^{1}$
(1) $D=D_{1}=S^{1} \times S^{1}$ is a smooth unknotted torus in \mathbb{R}^{4}
(2) D is a torus pinched over two points q_{1}, q_{2} and $D_{0}=\left\{q_{1}, q_{2}\right\}$
(0) occurs if $(\lambda, \mu, \nu)=(0,0,0)$
(2) occurs if $(\lambda, \mu, \nu)=(\lambda, \lambda, 0)$
(0) determines an OCS J on $\mathbb{R}^{4} \backslash S^{1}$ and $\pi^{-1}\left(S^{1}\right)=S^{1} \times S^{2}$
(1) determines an OCS J on $\mathbb{R}^{4} \backslash K$ where $K=S^{1} \times B^{2}$ is a solid torus and once again $\pi^{-1}(K)=S^{1} \times S^{2}$

Example (1): $(\lambda, \mu, \nu)=\left(0,0, \frac{\pi}{4}\right)$

The quadratic form $\mathbf{p}^{\top} Q \mathbf{p}$ equals

$$
\begin{gathered}
e^{i \nu}\left(1+a^{2}\right)+e^{-i \nu}\left(W_{1}^{2}+W_{2}^{2}\right) \\
=A a^{2}+2 B a+C
\end{gathered}
$$

in terms of $\mathrm{z}=\left(z_{1}, z_{2}\right)=(\mathbf{x}, \mathbf{y})$
The discriminant $\Delta=B^{2}-A C$ equals

$$
i-i|\mathbf{z}|^{4}+z_{1}^{2}+\bar{z}_{1}^{2}+z_{2}^{2}+\bar{z}_{2}^{2}
$$

The zero set D of Δ is given by

$$
\begin{array}{rr}
\mathfrak{I m} & : \\
\mathfrak{R e}: & 1=|\mathbf{z}|^{2}=|\mathrm{x}|^{2}+|\mathbf{y}|^{2} \\
-1=|\mathbf{x}|^{2}-|\mathbf{y}|^{2}
\end{array}
$$

So $|\mathbf{x}|=|\mathrm{y}|=\frac{1}{2}$ and

$$
D=D_{1} \cong S^{1} \times S^{1}
$$

is a smooth Clifford torus

PART THREE

Under the action of the conformal group,

$$
\mathscr{Q} \sim\left(\begin{array}{cccc}
e^{\lambda+i \nu} & 0 & 0 & 0 \\
0 & e^{\mu-i \nu} & 0 & 0 \\
0 & 0 & e^{-\lambda+i \nu} & 0 \\
0 & 0 & 0 & e^{-\mu-i \nu}
\end{array}\right)
$$

In view of equivalences such as $\nu \leftrightarrow \frac{\pi}{2}-\nu$, a fundamental domain is

$$
\left\{(\lambda, \mu, \nu): 0 \leqslant \lambda \leqslant \mu, \quad 0 \leqslant \nu<\frac{\pi}{2}\right\} .
$$

Let $\ell=\{(\lambda, \lambda, 0)\}$ and $\mathcal{F}=\{(0, \mu, \nu)\}$
$0 \in \ell \cap \mathcal{F}$ represents the real quadric

Proof of Theorem 3

This is divided into the following steps:

1. It is straightforward to determine that $D_{0}=\emptyset$ outside ℓ, and $\# D_{0}=2$ if $\lambda=\mu>0$
2. Consider the discriminant

$$
\Delta=B^{2}-A C: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}
$$

$\operatorname{rank}(\operatorname{grad} \Delta)<2$ only on $\ell \backslash\{0\}$ (next slide)
3. $\mathfrak{I m} \Delta$ is a smooth 3 -sphere in \mathbb{R}^{4} if $\nu \neq 0$
4. We then use $\chi(D)=2 \chi\left(S^{2}\right)-\chi(\mathscr{Q})=0$ to prove that D has no S^{2} components, and is in fact connected, at all interior points
5. D is then a smooth torus except on $\ell \backslash\{0\}$

Example (2): $(\lambda, \mu, \nu)=(\lambda, \lambda, 0)$

Set $A=\left(\begin{array}{cc}0 & -1 \\ 0 & i\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ i & 0\end{array}\right), G=\frac{1}{\sqrt{2}}\{A \mid B\}$
Then

$$
G^{\top} Q G=\left(\begin{array}{cccc}
0 & 0 & 0 & e^{-\lambda} \\
0 & 0 & -e^{\lambda} & 0 \\
0 & -e^{\lambda} & 0 & 0 \\
e^{-\lambda} & 0 & 0 & 0
\end{array}\right)
$$

and \mathscr{Q} has equation $2 e^{-\lambda} W_{2}-2 e^{\lambda} a W_{1}=0$

$$
\begin{aligned}
& D=\{\Delta=0\} \text { is given by } \\
& 2\left|z_{1}\right|^{2}+4\left|z_{2}\right|^{2}=e^{2 \lambda} z_{1}^{2}+e^{-2 \lambda} \bar{z}_{1}^{2} \\
& \mathfrak{I m}: \quad x_{1} y_{1}=0 \\
& \mathfrak{R e}: 2\left(x_{2}^{2}+y_{2}^{2}\right)=(c-1) x_{1}^{2}
\end{aligned}
$$

If $c=\cosh \lambda>1$ then D is a cone with vertex at 0 (and $\infty \in S^{3}$) and $D_{0}=\{0, \infty\}$

Higher degree

What are the possible maximal domains of definition $\Omega=\mathbb{R}^{4} \backslash K$ for OCS's?

Let \mathscr{H} be an irreducible hypersurface of $\mathbb{C P}^{3}$ of degree $d \geqslant 2$ with discriminant locus D

If $p \in \pi^{-1}(D) \in \mathbb{C P}^{3}$ then $\operatorname{rank}\left(d \pi_{p}\right)=2$ and it follows that $\operatorname{dim} D \leqslant 2$

Theorem 4. If \mathscr{H} contains the graph of a single-valued OCS J on $S^{4} \backslash K$ then $K \supseteq D$ and $\mathscr{H} \backslash \pi^{-1}(K)$ is disconnected. Moreover, $\mathrm{Hm}^{3}(K) \neq 0$ unless \mathscr{H} is a real quadric

If $d>2, D_{0}$ consists of finitely many points. If \mathscr{H} is j-invariant then $\# D_{0} \leqslant d^{2}$

Quartics in $\mathbb{C P}^{3} \rightarrow S^{4}$

The hypersurface \mathscr{K}_{c} with equation

$$
1+a^{4}+W_{1}^{4}+W_{2}^{4}+6 c a^{2}=0
$$

is "real" and non-singular for $c \neq \pm \frac{1}{3}$
Proposition: \mathscr{K}_{c} contains no $\mathbb{C P}^{1}$ fibres unless $c=-1,0,1$, in which cases it has 8.

Generically, $D\left(\mathscr{K}_{c}\right)$ is given by

$$
\left\{\begin{array}{l}
6 A B C=4 B^{3}-2 \bar{B} A^{2} \\
A \bar{B}^{2}=\bar{A} B^{2}
\end{array}\right.
$$

where $A=1+z_{1}^{4}+z_{2}^{4}, B=-z_{1}^{3} \bar{z}_{2}+z_{2}^{3} \bar{z}_{1}$ and $C=z_{1}^{2} \bar{z}_{2}^{2}+z_{2}^{2} \bar{z}_{1}^{2}+c$

If $c \notin\{-1,0,1\}$, consider $\mathscr{E}=\mathscr{K}_{c} / \mathbb{Z}_{2}$ and

$$
\mathscr{E} \backslash \pi^{-1}(D) \xrightarrow{2: 1} S^{4} \backslash D
$$

Then $\chi(D)=-8$ and D must be singular

