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PART ONE

Definition. An OCS on an open set Ω ⊂ R4

is a (C1) map

J:Ω → {M ∈ SO(4) : M2=−I} ∼= CP
1

satisfying the usual integrability condition

Problem. Given Ω, classify OCS’s on Ω

Conformal invariance:

CP
3 ⊃ R4×CP

1

π




y ↑ J

HP
1 = S4 ⊃ R4 ⊇ Ω

Known proposition. An OCS on Ω is the

same as a “holomorphic” section s:Ω → CP
3

Corollary. Any hyperplane CP
2 determines

an OCS J on S4 \ {p} or R4. Such a J is

“conformally constant”



Projective coordinates

p=[1, a, W1, W2] ∈ CP
3

↓
π(p)=[1+ja, W1+jW2] ∈ HP

1

π(p) = [1, z1+jz2] ∈ HP
1 \ [0,1]

⇐⇒ W1+jW2 = q(1+ja)

⇐⇒
{

W1 = z1 − az2
W2 = z2 + az1

Fix z1, z2; then a is a coordinate on the fibre

and determines an a.c.s. Ja for which

Λ
1,0

=
〈

dz1−adz2, dz2+adz1
〉

An OCS J on Ω ⊆ R4 is defined by a function

a:Ω → C ∪∞ (deforming J0) satisfying

∂a
∂z1

− a ∂a
∂z2

= 0, ∂a
∂z2

+ a ∂a
∂z1

= 0.

Any C1 solution is necessarily harmonic



Application to quadrics

Let Q be the “anti-diagonal” quadric

0 = 1.W2 − aW1

= a2z2 − a(z1−z1) + z2
= a2z2 − 2iaImz1 + z2

Thus

π−1(z1, z2)⊂Q ⇔ z2=0, z1 ∈ R

⇔ (z1, z2) ∈ S1 ⊂ S4

Otherwise roots occur in pairs {a,−1/a} and

cannot be coincident in this particular case

Definition. Given a quadric Q ⊂ CP
3 and a

point q ∈ R4,

q ∈ D0 ⇔ π−1(q) ⊂ Q

q ∈ D1 ⇔ #π−1(q) = 1

The discriminant locus is D = D0 ∪ D1



Two Liouville theorems

Let J be an OCS on an open set Ω = R4 \K

1. If Hm1(K) = 0 then J arises from some

hyperplane and is conformally constant

lim ↑ ×2

2. If K is a round circle or straight line then

±J arises from a unique real quadric in CP
3.

Any two are conformally equivalent

Idea of the proof of 1:

J(Ω) is analytic in CP
3 \ π−1(K)

dimR4 “dim<3”

Key point is to deduce that J(Ω) is analytic,

thus (Chow/Mumford) algebraic of degree 1



Removal of singularities

If Ei ⊂ Rm, let ri = 1
2diam(Ei) and

vd
i = vol(Bd(ri)) =

(πr2i )
d/2

Γ(d
2+1)

Hausdorff measure:

Hmd(K) = lim
δ→0

inf







∞
∑

i=1

vd
i : K ⊆

∞
⋃

i=1

Ei, ri<δ







Shiffman’s Theorem (1968). U open in Cn,

E closed in U . If A2k ⊂ U \ E is analytic and

Hm2k−1(E) = 0, then A ∩ U is analytic.

This is based on the proof of

Bishop’s Theorem (1964). U open in Cn and

B analytic in U . If A2k ⊂ U \B is analytic and

Hm2k(A ∩ B) = 0 then A ∩ U is analytic.

Itself a generalization of Remmert-Stein (1953)



PART TWO

A non-degenerate quadric Q is determined

by the reduction

C4 = C2 ⊗ C2

SO(4, C) ∼ SL(2, C)×SL(2, C)

The symmetric bilinear form g is identified

with ω1 ⊗ω2 and Q ∼= CP
1×CP

1 is generated

by the rank-one elements u ⊗ v

The quadric Q is “real” if it arises from a

further reduction

H2 = R2 ⊗ H

SO∗(4) ∼ SL(2, R)×SU(2)

The involution j on C4 equals σ1 ⊗ σ2 where

σi:C2 →C2 with σ1
2 =1 and σ2

2 =−1. The

real lines on Q are those of the form [u]×CP
1

where σ1(u) = u, confirming D0
∼= RP

1×CP
1



‘Real’ or j-invariant matrices

p = (1, W1, a, W2) ∈ C4

⇒ pj = (−a,−W2,1, W1)

A matrix G ∈ C4,4 belongs to gl(2, H) iff

G =

(

A B
−B A

)

= {A |B}

Then G ∈ SL(2, H)∼SOo(1,5) if detG = 1

Any symmetric Q ∈ C4,4 equals Q1 + iQ2,

Qα ∈ gl(2, H). If rankQ1 =4, we can choose

G ∈ GL(2, H) such that

G>Q1G =







0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0






={0 |K} = Q0

G>Q2G = {A |B} = {L+iM |bK+iN}
with b ∈ R and L, M, N real symmetric.



Singular value decomposition

We may now suppose

Q = (1−ib)Q0 + iQ2

where the “trace-free part” Q2 = {L+iM |N}
is determined by

X =







L11+L22 M11+M22 N11+N22

L11−L22 M11−M22 N11−N22

2L12 2M12 2N12







The stabilizer of Q0 in SL(2, H) is

SL(2, R)×SU(2) ∼ SO(2,1)×SO(3)

Note that X defines an element of Λ3
+(R5,1)

We use SVD to diagonalize X and obtain

eiθH>QH =













eλ+iν 0 0 0

0 eµ−iν 0 0

0 0 e−λ+iν 0

0 0 0 e−µ−iν













with λ, µ, ν ∈ R.



Quadrics in CP
3 → S4

Theorem 3. Let Q ⊂ CP
3 be a non-degenerate

quadric. There are three cases:

(0) Q is “real” and D = D0 = S1

(1) D = D1 = S1×S1 is a smooth unknotted

torus in R4

(2) D is a torus pinched over two points q1, q2
and D0 = {q1, q2}

(0) occurs if (λ, µ, ν) = (0,0,0)

(2) occurs if (λ, µ, ν) = (λ, λ,0)

(0) determines an OCS J on R4 \ S1 and

π−1(S1) = S1 × S2

(1) determines an OCS J on R4 \ K where

K = S1 × B2 is a solid torus and once again

π−1(K) = S1 × S2



Example (1): (λ, µ, ν)=(0,0, π
4)

The quadratic form p>Qp equals

eiν(1 + a2) + e−iν(W1
2 + W2

2)

= Aa2 + 2Ba + C

in terms of z = (z1, z2) = (x,y)

The discriminant ∆ = B2−AC equals

i − i|z|4 + z1
2+z1

2+z2
2+z2

2

The zero set D of ∆ is given by

Im : 1 = |z|2 = |x|2+|y|2

Re : −1 = |x|2−|y|2

So |x| = |y| = 1
2 and

D = D1
∼= S1 × S1

is a smooth Clifford torus



PART THREE

Under the action of the conformal group,

Q ∼













eλ+iν 0 0 0

0 eµ−iν 0 0

0 0 e−λ+iν 0

0 0 0 e−µ−iν













In view of equivalences such as ν ↔ π
2−ν,

a fundamental domain is

{(λ, µ, ν) : 0 6 λ 6 µ, 0 6 ν < π
2}.

Let ` = {(λ, λ,0)} and F = {(0, µ, ν)}
0 ∈ ` ∩ F represents the real quadric



Proof of Theorem 3

This is divided into the following steps:

1. It is straightforward to determine that

D0=∅ outside `, and #D0=2 if λ=µ > 0

2. Consider the discriminant

∆=B2−AC : R
4 → R

2

rank(grad∆)<2 only on ` \ {0} (next slide)

3. Im∆ is a smooth 3-sphere in R4 if ν 6= 0

4. We then use χ(D) = 2χ(S2) − χ(Q) = 0

to prove that D has no S2 components, and

is in fact connected, at all interior points

5. D is then a smooth torus except on `\{0}



Example (2): (λ, µ, ν)=(λ, λ,0)

Set A=

(

0 −1
0 i

)

, B=

(

1 0
i 0

)

, G= 1√
2
{A |B}

Then

G>QG =













0 0 0 e−λ

0 0 −eλ 0

0 −eλ 0 0

e−λ 0 0 0













and Q has equation 2e−λW2−2eλaW1 = 0

D = {∆ = 0} is given by

2|z1|2 + 4|z2|2 = e2λz1
2 + e−2λz1

2

Im : x1y1 = 0

Re : 2(x2
2+y2

2) = (c−1)x1
2

If c=coshλ > 1 then D is a cone with vertex

at 0 (and ∞ ∈ S3) and D0 = {0,∞}



Higher degree

What are the possible maximal domains of

definition Ω = R4 \ K for OCS’s?

Let H be an irreducible hypersurface of CP
3

of degree d>2 with discriminant locus D

If p ∈ π−1(D) ∈ CP
3 then rank(dπp)=2 and

it follows that dimD 6 2

Theorem 4. If H contains the graph of a

single-valued OCS J on S4 \ K then K ⊇ D

and H \ π−1(K) is disconnected. Moreover,

Hm3(K) 6= 0 unless H is a real quadric

If d > 2, D0 consists of finitely many points.

If H is j-invariant then #D0 6 d2



Quartics in CP
3 → S4

The hypersurface Kc with equation

1 + a4 + W1
4 + W2

4 + 6ca2 = 0

is “real” and non-singular for c 6= ±1
3

Proposition: Kc contains no CP
1 fibres unless

c = −1,0,1, in which cases it has 8.

Generically, D(Kc) is given by
{

6ABC = 4B3 − 2BA2

AB2 = AB2

where A = 1+z1
4+z2

4, B =−z1
3z2+z2

3z1 and

C = z1
2z2

2+z2
2z1

2+c

If c 6∈ {−1,0,1}, consider E = Kc/Z2 and

E \ π−1(D)
2:1−→ S4 \ D

Then χ(D) = −8 and D must be singular


