$\frac{ORTHOGONAL COMPLEX}{STRUCTURES ON}$ $\frac{DOMAINS OF \mathbb{R}^4}{2}$

March 2007

Simon Salamon

joint work with Jeff Viaclovsky

based on twistor theory of Penrose (1967) Atiyah-Hitchin-Singer (1978) Pontecorvo (1992)

PART ONE

Definition. An OCS on an open set $\Omega \subset \mathbb{R}^4$ is a (C^1) map

 $J: \Omega \to \{ M \in SO(4) : M^2 = -I \} \cong \mathbb{CP}^1$

satisfying the usual integrability condition

Problem. Given Ω , classify OCS's on Ω

Conformal invariance:

$$\mathbb{CP}^{3} \supset \mathbb{R}^{4} \times \mathbb{CP}^{1}$$
$$\pi \downarrow \qquad \uparrow J$$
$$\mathbb{HP}^{1} = S^{4} \supset \mathbb{R}^{4} \supset \Omega$$

Known proposition. An OCS on Ω is the same as a "holomorphic" section $s: \Omega \to \mathbb{CP}^3$ Corollary. Any hyperplane \mathbb{CP}^2 determines an OCS J on $S^4 \setminus \{p\}$ or \mathbb{R}^4 . Such a J is "conformally constant" Projective coordinates

$$p = [1, a, W_1, W_2] \in \mathbb{CP}^3$$

$$\downarrow$$

$$\pi(p) = [1 + ja, W_1 + jW_2] \in \mathbb{HP}^1$$

$$\pi(p) = [1, z_1 + jz_2] \in \mathbb{HP}^1 \setminus [0, 1]$$

$$\iff W_1 + jW_2 = q(1 + ja)$$

$$\iff \begin{cases} W_1 = z_1 - a\overline{z}_2 \\ W_2 = z_2 + a\overline{z}_1 \end{cases}$$

Fix z_1, z_2 ; then *a* is a coordinate on the fibre and determines an a.c.s. J_a for which

$$\Lambda^{1,0} = \langle dz_1 - a d\overline{z}_2, \ dz_2 + a d\overline{z}_1 \rangle$$

An OCS J on $\Omega \subseteq \mathbb{R}^4$ is defined by a function $a: \Omega \to \mathbb{C} \cup \infty$ (deforming J_0) satisfying

$$\frac{\partial a}{\partial \overline{z}_1} - a \frac{\partial a}{\partial z_2} = 0, \quad \frac{\partial a}{\partial \overline{z}_2} + a \frac{\partial a}{\partial z_1} = 0.$$

Any C^1 solution is necessarily harmonic

Application to quadrics

Let \mathcal{Q} be the "anti-diagonal" quadric

$$0 = 1.W_2 - aW_1$$

= $a^2\overline{z}_2 - a(z_1 - \overline{z}_1) + z_2$
= $a^2\overline{z}_2 - 2ia\Im m z_1 + z_2$

Thus

$$\begin{aligned} \pi^{-1}(z_1, z_2) \subset \mathscr{Q} &\Leftrightarrow z_2 = 0, \ z_1 \in \mathbb{R} \\ &\Leftrightarrow (z_1, z_2) \in S^1 \subset S^4 \end{aligned}$$

Otherwise roots occur in pairs $\{a, -1/\overline{a}\}$ and cannot be coincident in this particular case

Definition. Given a quadric $\mathscr{Q} \subset \mathbb{CP}^3$ and a point $q \in \mathbb{R}^4$,

 $\begin{array}{l} q \in D_0 \iff \pi^{-1}(q) \subset \mathscr{Q} \\ q \in D_1 \iff \#\pi^{-1}(q) = 1 \end{array}$

The discriminant locus is $D = D_0 \cup D_1$

Two Liouville theorems

Let J be an OCS on an open set $\Omega = \mathbb{R}^4 \setminus K$

1. If $Hm^1(K) = 0$ then J arises from some hyperplane and is conformally constant

$$\lim \uparrow \times 2$$

2. If K is a round circle or straight line then $\pm J$ arises from a unique real quadric in \mathbb{CP}^3 . Any two are conformally equivalent

Idea of the proof of 1: $J(\Omega)$ is analytic in $\mathbb{CP}^3 \setminus \pi^{-1}(K)$ $\dim_{\mathbb{R}}4$ "dim < 3" Key point is to deduce that $\overline{J(\Omega)}$ is analytic, thus (Chow/Mumford) algebraic of degree 1

Removal of singularities

If $E_i \subset \mathbb{R}^m$, let $r_i = \frac{1}{2} \operatorname{diam}(E_i)$ and $v_i^d = \operatorname{vol}(B^d(r_i)) = \frac{(\pi r_i^2)^{d/2}}{\Gamma(\frac{d}{2}+1)}$

Hausdorff measure:

$$\mathsf{Hm}^{d}(K) = \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} v_{i}^{d} : K \subseteq \bigcup_{i=1}^{\infty} E_{i}, r_{i} < \delta \right\}$$

Shiffman's Theorem (1968). U open in \mathbb{C}^n , E closed in U. If $A^{2k} \subset U \setminus E$ is analytic and $\operatorname{Hm}^{2k-1}(E) = 0$, then $\overline{A} \cap U$ is analytic.

This is based on the proof of

Bishop's Theorem (1964). U open in \mathbb{C}^n and B analytic in U. If $A^{2k} \subset U \setminus B$ is analytic and $\operatorname{Hm}^{2k}(\overline{A} \cap B) = 0$ then $\overline{A} \cap U$ is analytic.

Itself a generalization of Remmert-Stein (1953)

PART TWO

A non-degenerate quadric $\ensuremath{\mathscr{Q}}$ is determined by the reduction

$$\begin{array}{rcl} \mathbb{C}^4 &=& \mathbb{C}^2 \otimes \mathbb{C}^2 \\ SO(4,\mathbb{C}) &\sim& SL(2,\mathbb{C}) \times SL(2,\mathbb{C}) \end{array}$$

The symmetric bilinear form g is identified with $\omega_1 \otimes \omega_2$ and $\mathscr{Q} \cong \mathbb{CP}^1 \times \mathbb{CP}^1$ is generated by the rank-one elements $u \otimes v$

The quadric \mathcal{Q} is "real" if it arises from a further reduction

 $\mathbb{H}^2 = \mathbb{R}^2 \otimes \mathbb{H} \\ SO^*(4) \sim SL(2,\mathbb{R}) \times SU(2)$

The involution j on \mathbb{C}^4 equals $\sigma_1 \otimes \sigma_2$ where $\sigma_i: \mathbb{C}^2 \to \mathbb{C}^2$ with $\sigma_1^2 = 1$ and $\sigma_2^2 = -1$. The real lines on \mathscr{Q} are those of the form $[u] \times \mathbb{CP}^1$ where $\sigma_1(u) = u$, confirming $D_0 \cong \mathbb{RP}^1 \times \mathbb{CP}^1$

'Real' or *j*-invariant matrices

$$\mathbf{p} = (1, W_1, a, W_2) \in \mathbb{C}^4$$
$$\Rightarrow \mathbf{p}j = (-\overline{a}, -\overline{W}_2, 1, W_1)$$

A matrix $G \in \mathbb{C}^{4,4}$ belongs to $\mathfrak{gl}(2,\mathbb{H})$ iff $G = \begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix} = \{A | B\}$

Then $G \in SL(2, \mathbb{H}) \sim SO_0(1, 5)$ if det G = 1

Any symmetric $Q \in \mathbb{C}^{4,4}$ equals $Q_1 + iQ_2$, $Q_\alpha \in \mathfrak{gl}(2,\mathbb{H})$. If rank $Q_1 = 4$, we can choose $G \in GL(2,\mathbb{H})$ such that

$$G^{\mathsf{T}}Q_{1}G = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} = \{0|K\} = Q_{0}$$
$$G^{\mathsf{T}}Q_{2}G = \{A|B\} = \{L+iM|bK+iN\}$$

with $b \in \mathbb{R}$ and L, M, N real symmetric.

We may now suppose

 $Q = (1 - ib)Q_0 + iQ_2$

where the ''trace-free part'' $Q_2 = \{L+iM|N\}$ is determined by

$$X = \begin{pmatrix} L_{11} + L_{22} & M_{11} + M_{22} & N_{11} + N_{22} \\ L_{11} - L_{22} & M_{11} - M_{22} & N_{11} - N_{22} \\ 2L_{12} & 2M_{12} & 2N_{12} \end{pmatrix}$$

The stabilizer of Q_0 in $SL(2,\mathbb{H})$ is

 $SL(2,\mathbb{R}) \times SU(2) \sim SO(2,1) \times SO(3)$ Note that X defines an element of $\Lambda^3_+(\mathbb{R}^{5,1})$

We use SVD to diagonalize X and obtain

$e^{i\theta} H^{\!\top} Q H =$	$\left(e^{\lambda+i\nu}\right)$	0	0	0)
	0	$e^{\mu - i\nu}$	0	0
	0	0	$e^{-\lambda+i\nu}$	0
	0	0	0	$e^{-\mu-i\nu}$
with $\lambda, \mu, \nu \in \mathbb{R}$.				

Quadrics in $\mathbb{CP}^3 \to S^4$

Theorem 3. Let $\mathscr{Q} \subset \mathbb{CP}^3$ be a non-degenerate quadric. There are three cases:

(0) \mathscr{Q} is "real" and $D = D_0 = S^1$

(1) $D = D_1 = S^1 \times S^1$ is a smooth unknotted torus in \mathbb{R}^4

(2) D is a torus pinched over two points q_1,q_2 and $D_0=\{q_1,q_2\}$

(0) occurs if $(\lambda, \mu, \nu) = (0, 0, 0)$ (2) occurs if $(\lambda, \mu, \nu) = (\lambda, \lambda, 0)$

(0) determines an OCS J on $\mathbb{R}^4\setminus S^1$ and $\pi^{-1}(S^1)=S^1\times S^2$

(1) determines an OCS J on $\mathbb{R}^4 \setminus K$ where $K = S^1 \times B^2$ is a solid torus and once again $\pi^{-1}(K) = S^1 \times S^2$

Example (1): $(\lambda, \mu, \nu) = (0, 0, \frac{\pi}{4})$

The quadratic form
$$\mathbf{p}^{\top}Q\mathbf{p}$$
 equals
 $e^{i\nu}(1+a^2) + e^{-i\nu}(W_1^2 + W_2^2)$
 $= Aa^2 + 2Ba + C$

in terms of $\mathbf{z} = (z_1, z_2) = (\mathbf{x}, \mathbf{y})$

The discriminant $\Delta = B^2 - AC$ equals $i - i|\mathbf{z}|^4 + z_1^2 + \overline{z}_1^2 + z_2^2 + \overline{z}_2^2$

The zero set D of Δ is given by $\Im \mathfrak{m} : 1 = |\mathbf{z}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2$ $\Re \mathfrak{e} : -1 = |\mathbf{x}|^2 - |\mathbf{y}|^2$ So $|\mathbf{x}| = |\mathbf{y}| = \frac{1}{2}$ and $D = D_1 \cong S^1 \times S^1$ is a smooth Clifford torus

PART THREE

Under the action of the conformal group,

$$\mathcal{Q} \sim \begin{pmatrix} e^{\lambda + i\nu} & 0 & 0 & 0 \\ 0 & e^{\mu - i\nu} & 0 & 0 \\ 0 & 0 & e^{-\lambda + i\nu} & 0 \\ 0 & 0 & 0 & e^{-\mu - i\nu} \end{pmatrix}$$

In view of equivalences such as $\nu \leftrightarrow \frac{\pi}{2} - \nu$, a fundamental domain is

 $\{(\lambda,\mu,\nu): 0 \leqslant \lambda \leqslant \mu, \ 0 \leqslant \nu < \frac{\pi}{2}\}.$

Let $\ell = \{(\lambda, \lambda, 0)\}$ and $\mathcal{F} = \{(0, \mu, \nu)\}$ $0 \in \ell \cap \mathcal{F}$ represents the real quadric

Proof of Theorem 3

This is divided into the following steps:

1. It is straightforward to determine that $D_0 = \emptyset$ outside ℓ , and $\#D_0 = 2$ if $\lambda = \mu > 0$

2. Consider the discriminant

 $\Delta = B^2 - AC : \mathbb{R}^4 \to \mathbb{R}^2$

 $\mathsf{rank}(\mathsf{grad}\,\Delta) < 2 \text{ only on } \ell \setminus \{0\} \text{ (next slide)}$

3. $\mathfrak{Im}\Delta$ is a smooth 3-sphere in \mathbb{R}^4 if $\nu \neq 0$

4. We then use $\chi(D) = 2\chi(S^2) - \chi(\mathcal{Q}) = 0$ to prove that *D* has no S^2 components, and is in fact connected, at all interior points

5. *D* is then a smooth torus except on $\ell \setminus \{0\}$

Example (2): $(\lambda, \mu, \nu) = (\lambda, \lambda, 0)$

Set
$$A = \begin{pmatrix} 0 & -1 \\ 0 & i \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ i & 0 \end{pmatrix}$, $G = \frac{1}{\sqrt{2}} \{A | B\}$
Then

$$G^{\mathsf{T}}QG = \begin{pmatrix} 0 & 0 & 0 & e^{-\lambda} \\ 0 & 0 & -e^{\lambda} & 0 \\ 0 & -e^{\lambda} & 0 & 0 \\ e^{-\lambda} & 0 & 0 & 0 \end{pmatrix}$$

and \mathscr{Q} has equation $\; 2e^{-\lambda}W_2 - 2e^{\lambda}aW_1 = 0\;$

$$\begin{split} D &= \{\Delta = 0\} \text{ is given by} \\ 2|z_1|^2 + 4|z_2|^2 &= e^{2\lambda} z_1^{\ 2} + e^{-2\lambda} \overline{z_1}^2 \\ \Im\mathfrak{m} : & x_1 y_1 = 0 \\ \mathfrak{Re} : 2(x_2^2 + y_2^2) &= (c-1)x_1^2 \\ \text{If } c &= \cosh\lambda > 1 \text{ then } D \text{ is a cone with vertex} \\ \mathfrak{at } 0 \text{ (and } \infty \in S^3 \text{) and } D_0 &= \{0, \infty\} \end{split}$$

Higher degree

What are the possible maximal domains of definition $\Omega = \mathbb{R}^4 \setminus K$ for OCS's?

Let \mathscr{H} be an irreducible hypersurface of \mathbb{CP}^3 of degree $d \ge 2$ with discriminant locus DIf $p \in \pi^{-1}(D) \in \mathbb{CP}^3$ then $\operatorname{rank}(d\pi_p) = 2$ and it follows that dim $D \le 2$

Theorem 4. If \mathscr{H} contains the graph of a single-valued OCS J on $S^4 \setminus K$ then $K \supseteq D$ and $\mathscr{H} \setminus \pi^{-1}(K)$ is disconnected. Moreover, $\operatorname{Hm}^3(K) \neq 0$ unless \mathscr{H} is a real quadric

If d > 2, D_0 consists of finitely many points. If \mathscr{H} is *j*-invariant then $\#D_0 \leq d^2$

Quartics in $\mathbb{CP}^3 \to S^4$

The hypersurface \mathscr{K}_c with equation

 $1 + a^4 + W_1^4 + W_2^4 + 6ca^2 = 0$ is "real" and non-singular for $c \neq \pm \frac{1}{3}$

Proposition: \mathscr{K}_c contains no \mathbb{CP}^1 fibres unless c = -1, 0, 1, in which cases it has 8.

Generically,
$$D(\mathscr{K}_c)$$
 is given by

$$\begin{cases}
6ABC = 4B^3 - 2\overline{B}A^2 \\
A\overline{B}^2 = \overline{A}B^2
\end{cases}$$
where $A = 1 + z_1^4 + z_2^4$, $B = -z_1^3\overline{z}_2 + z_2^3\overline{z}_1$ and

 $C = z_1^2 \overline{z}_2^2 + z_2^2 \overline{z}_1^2 + c$ If $c \notin \{-1, 0, 1\}$, consider $\mathscr{E} = \mathscr{K}_c / \mathbb{Z}_2$ and

$$\mathscr{E} \setminus \pi^{-1}(D) \xrightarrow{2:1} S^4 \setminus D$$

Then $\chi(D) = -8$ and D must be singular