COMPLEX STRUCTURES ON \mathbb{R}^6

Simon Salamon

joint work with Lev Borisov & Jeff Viaclovsky

Based on theory of

{ Penrose (1967)
 Atiyah-Hitchin-Singer (1978)
 Pontecorvo (1992)
 Slupinski (1996)

GLAM, in honour of Gallot, Rome, Sept 2008

Orthogonal complex structures

Definition: An OCS on an open set Ω of \mathbb{R}^{2n} or S^{2n} is a complex structure J compatible with the Euclidean or round metric:

g(JX, JY) = g(X, Y)

Equivalently, an OCS is a (C^1) map $J: \Omega \rightarrow Z_n$ satisfying the usual integrability condition, where

$$Z_n = \{ M \in SO(2n) : M^2 = -I \} \cong \frac{SO(2n)}{U(n)}.$$

Problem: Given $\Omega \subseteq \mathbb{R}^{2n}$, classify OCS's on Ω up to conformal equivalence.

What exceptional sets $\Lambda = \mathbb{R}^{2n} \setminus \Omega$ occur?

 $\delta = \dim_{\mathrm{Hf}}(\Lambda)$ plays a key role.

The twistor space of S^{2n}

... provides an inductive definition of the spaces of linear complex structures:

Each fibre $\pi^{-1}(x) \cong Z_n$ is a complex submanifold of the total space Z_{n+1} .

Proposition: An OCS on $\Omega \subset S^{2n}$ is the same as a holomorphic section $\tilde{J}: \Omega \to Z_{n+1}$.

So look at algebraic *n*-folds X in Z_{n+1} .

Facts in four dimensions

$$Z_3 = \mathbb{P}^3$$

$$\downarrow Z_2 = \mathbb{P}^1$$

$$\infty \in S^4 \qquad \mathbb{P}^k = \mathbb{P}(\mathbb{C}^{k+1})$$

Any hyperplane \mathbb{P}^2 of Z_3 contains exactly one fibre $\pi^{-1}(x)$ and defines an OCS on $S^4 \setminus \{x\}$.

There is a \mathbb{P}^1 worth of such OCS's containing $\pi^{-1}(\infty)$, and these are the constant OCS's on \mathbb{R}^4 . They are in fact the only OCS's globally on \mathbb{R}^4 .

Moreover, any OCS on Ω where $Hf^1(\mathbb{R}^4 \setminus \Omega) = 0$ is associated to a hyperplane \mathbb{P}^2 [VS].

A "real" quadric in Z_3 gives an OCS on $S^4 \setminus S^1$. A generic quadric gives an OCS on the complement of a solid torus [VS].

Examples in six dimensions

$$Z_4 \stackrel{*}{=} Q^6 = \{x_1 x_5 + x_2 x_6 + x_3 x_7 + x_4 x_8 = 0\} \subset \mathbb{P}^7$$
$$\downarrow Z_3 = \mathbb{P}^3$$
$$\infty \in S^6$$

This time, any constant OCS on \mathbb{R}^6 arises from a "horizontal" \mathbb{P}^3 that intersects $\pi^{-1}(\infty)$ in a \mathbb{P}^2 . These OCS's are parametrized by $(\mathbb{P}^3)^* \cong Z_3$.

There exists a global section $\tilde{J}: S^6 \to Q^6$ such that $\operatorname{Aut}(S^6, J) \cong G_2$ and $\tilde{J}^{\perp} = Q^5$ is holomorphic!

But there is no OCS J on S^6 because $\tilde{J}(S^6)$ cannot be a Kähler submanifold of Q^6 [L].

There does not exist a complex structure J on S^6 for which $Aut(S^6, J)$ has an open orbit [HKP]. A hypothetical complex structure on S^6 gives a 1-para family of exotic complex structures on \mathbb{P}^3 .

"Warped product" structures

Consider an almost complex structure J on

$$\mathbb{R}^6 = \mathbb{C} \oplus \mathbb{R}^4
J = J_0 + K(z),$$

where K(z) is a constant OCS on \mathbb{R}^4 depending on $z \in \mathbb{C}$. If $K: \mathbb{C} \to \mathbb{P}^1$ is holomorphic then J is integrable.

If *K* is rational then the graph $\Gamma = \tilde{J}(\mathbb{R}^6)$ has "finite energy" in the sense that $\mathrm{Hf}^6(\Gamma) < \infty$. In this case $\overline{\Gamma}$ is an algebraic 3-fold in Q^6 [B].

Moreover, $\overline{\Gamma} \cap \pi^{-1}(\infty) = \mathbb{P}^2$ but (unless K = const) this fibre contains a singular line $L \cong \mathbb{P}^1$ and

$$\overline{\Gamma} \subset Q_s^4 = \{x_1x_2 + x_3x_4 = 0\} \subset \mathbb{P}^5.$$

Theorem [BSV]: Any finite-energy OCS on \mathbb{R}^6 arises from a rational function *K* as above.

Explicit coordinates

Let
$$[x_1, \ldots, x_8] = [\mathbf{x}, \mathbf{y}]$$
, so that
 $Q^6 = \{ [\mathbf{x}, \mathbf{y}] \in \mathbb{P}^7 : \mathbf{x}^\top \mathbf{y} = 0 \}.$

Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{C}^4$ are both non-zero.

Lemma:
$$[\mathbf{x}, \mathbf{y}] \in Q^6$$
 if and only if $\mathbf{x} = M\mathbf{y}$, where

$$M = \begin{pmatrix} 0 & -z_3 & -z_2 & -z_1 \\ z_3 & 0 & -\overline{z}_1 & \overline{z}_2 \\ z_2 & \overline{z}_1 & 0 & -\overline{z}_3 \\ z_1 & -\overline{z}_2 & \overline{z}_3 & 0 \end{pmatrix}.$$
Moreover, $\frac{1}{\|\mathbf{z}\|}M \in SU(4) \cap \mathfrak{so}(4, \mathbb{C}).$

The twistor projection is given by

 $[M\mathbf{y}, \mathbf{y}] \xrightarrow{\pi} \mathbf{z} \in \mathbb{C}^3 \cong \mathbb{R}^6$, with fibre parametrized by $[\mathbf{y}] \in \mathbb{P}^3$. It is easy to identify the action on Q^6 of the conformal group SO(7, 1). The latter contains the transformations

 $[\mathbf{x}, \mathbf{y}] \mapsto [A\mathbf{x}, \overline{A}\mathbf{y}], \quad A \in SU(4),$ acting as SO(6) on \mathbb{R}^6 via $M \mapsto AMA^{\top}$.

Spinors and triality

Let Δ_{\pm} be the spin representations of Spin(8). We can identify

 $Z_4 = \{ \text{pure spinor classes } [\xi] \in \mathbb{P}(\Delta_+) \},$ since any such ξ defines a max iso subspace

 $\Lambda^{1,0} = \{ v \in \mathbb{C}^8 : v \cdot \xi = 0 \}.$

Now reduce to U(4) by fixing $J \in Z_4$, w.r.t. which

$$\Delta^+ = \Lambda^{0,0} \oplus \Lambda^{2,0} \oplus \Lambda^{4,0}, \quad \dim = 1 + 6 + 1.$$

Then a generic pure spinor has the form

 $e^{\omega} = 1 + \omega + \frac{1}{2}\omega \wedge \omega, \quad \omega \in \Lambda^{2,0},$

confirming that Z_4 is a non-singular 6-quadric $Q_+ \subset \mathbb{P}(\Delta_+)$.

Altogether we have three 6-quadrics

$$Q_{+} \subset \mathbb{P}(\Delta_{+})$$
$$Q_{-} \subset \mathbb{P}(\Delta_{-})$$
$$Q_{0} \subset \mathbb{P}(\mathbb{C}^{8}).$$

Bidegree

Altogether we have three 6-quadrics

$$Q_{+} \subset \mathbb{P}(\Delta_{+})$$
$$Q_{-} \subset \mathbb{P}(\Delta_{-})$$
$$Q_{0} \subset \mathbb{P}(\mathbb{C}^{8}).$$

 Q_+, Q_- parametrize max iso subspaces of \mathbb{C}^8

 Q_0, Q_- parametrize max iso subspaces of Δ_+ , giving rise to two families of $\mathbb{P}^{3'}$ s in the twistor space $Q^6 = Q_+$ of S^6 :

"vertical" ones, either fibres $\pi^{-1}(x)$ or twistor spaces of conformal S^{4} 's;

"horizontal" ones, each 1:1 outside some $x \in S^6$.

One from each family generates

 $H_6(Q_+,\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}.$

Corollary: A finite-energy OCS J on \mathbb{R}^6 gives an algebraic 3-fold $\overline{\Gamma}$ in Q_+ of bidegree (1, p).

Classification of 3-folds of order one

Theorem [BV]: An irreducible 3-fold X in Q^6 of bidegree (1, p) is one of:

(i) a horizontal \mathbb{P}^3 (p=0),

(ii) a smooth 3-quadric Q^3 (p=1),

(iii) the cone over a Veronese $\mathbb{P}^2 \subset Q^4$ (p=3),

(iv) a Weil divisor in a rank 4 quadric Q_s^4 ($p \ge 1$).

Example of (iii):

$$Q^{2} \subset Q^{3}$$

$$S^{2} \downarrow \qquad \downarrow$$

$$S^{2} \subset S^{6} \subset \mathbb{R}^{3} \oplus \mathbb{R}^{4} = \operatorname{Im} \mathbb{O}$$

But we require $\pi : X \to S^6$ to be 1 : 1 except over ∞ , and the exceptional fibre $\pi^{-1}(\infty)$ must in fact contain a \mathbb{P}^2 . This rules out (ii) and (iii).

Working in the singular 4-quadric

In case (iv), take

$$\begin{split} \mathbb{P}^5 &= \{ [x_1, \dots, x_6, 0, 0] \} \ \subset \ \mathbb{P}^7, \\ Q_s^4 &= \{ x_1 x_5 + x_2 x_6 = 0 \} \ \subset \ \mathbb{P}^5, \\ L &= \{ [0, 0, x_3, x_4, 0, 0] \} \ \subset \ Q_s^4. \end{split}$$

Example: Taking $x_3x_6 + x_4x_5 = 0$ defines Segre $(\mathbb{P}^1 \times \mathbb{P}^2) \cup \mathbb{P}^3 \subset Q_s^4 \subset \mathbb{P}^5$.

For a non-constant OCS,

 $X = \overline{\Gamma} \subset Q_s^4, \quad L \subset X \cap \pi^{-1}(\infty) \cong \mathbb{P}^2,$

and we get a different subcase of (iv). Let

 $P_{\lambda} = \{ [ax_1, ax_2, x_3, x_4, bx_2, -bx_1, 0, 0] \} \cong \mathbb{P}^3,$ with $\lambda = b/a \in \mathbb{P}^1$.

Lemma: Each $X \cap P_{\lambda} \cong \mathbb{P}^2$ defines the fibre of a projection $X \setminus L \longrightarrow \mathscr{C} \subset \mathbb{P}^1 \times \mathbb{P}^1$.

It follows that $X \setminus P_0$ is a graph \tilde{J} over \mathbb{R}^6 , and J is a warped product.

Conclusions

Theorem v2 [BSV]: A finite-energy OCS on S^6 minus a finite set of points is a warped product arising from a rational function $K: \mathbb{C} \to \mathbb{P}^1$.

Counterexample: If $K = \wp$ is doubly-periodic then $\operatorname{Hf}^6(\Gamma) = \infty$, but *J* induces a non-constant OCS on the torus T^6 .

Other examples include $S^6 \setminus S^2 \cong S^3 \times H^3$.

The generalization to \mathbb{R}^{2n} with $n \ge 4$ is unclear, but an algebraic OCS J on \mathbb{R}^{2n} defines an n-fold in Z_{n+1} such that

 $\overline{\Gamma} \cap \pi^{-1}(\infty) \subset Z_n,$

and (if we are lucky) an OCS on \mathbb{R}^{2n-2} .

Example: If *J* is "asymptotically constant" then $\overline{\Gamma} \cap \pi^{-1}(\infty) = \mathbb{P}^{n-1}$,

and J must in fact be conformally constant.