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Orthogonal complex structures

Definition: An OCS on an open set ) of R*" or
5% is a complex structure J compatible with the
Euclidean or round metric:

g(JX,JY)=g(X,Y)

Equivalently, an OCSis a (C') map J:Q — Z,
satisfying the usual integrability condition,
where

2
Zy={M € SO2n): M*=—1} = S0(2n)

Uln)

Problem: Given ) C R*", classify OCS’s on {2 up
to conformal equivalence.

What exceptional sets A = R*"* \ ) occur?

0 = dimy,(A) plays a key role.



The twistor space of 5*"

...provides an inductive definition of the spaces
of linear complex structures:

SO2n+1)  so@us2)

U(n) — U+l — Zn+1
12y
SO(2n + 1)
2n _ 0
o SO((2n)

Each fibre 7~ !(x) = Z, is a complex submanifold
of the total space Z,,.;.

Proposition: An OCS on 2 C S*" is the same as
a holomorphic section J: 2 — Z,, ;.

So look at algebraic n-folds X in Z,, ;.



Facts in four dimensions

Z3 = P?
|2y =P!
0 € S P = P(CH)

Any hyperplane P? of Z3 contains exactly one
fibre 7=!(z) and defines an OCS on S*\ {x}.

There is a P' worth of such OCS'’s containing
7~ 1(~), and these are the constant OCS’s on R*.
They are in fact the only OCS’s globally on R*.

Moreover, any OCS on € where Hf' (R*\ Q) =0 is
associated to a hyperplane P? [VS].

A “real” quadric in Z3 gives an OCS on S*\ S'.
A generic quadric gives an OCS on the comple-
ment of a solid torus [VS].



Examples in six dimensions

Zy = Q% = {zx+aymytawgr-tamg =0} C PT
lZg = P

0o € SO

This time, any constant OCS on RY arises from
a “horizontal” P’ that intersects 7 !(~) in a P
These OCS'’s are parametrized by (P°)* = Zs.

There exists a global section .J: S® — Q° such that
Aut(S%, J)= Gy and J+ = @Q° is holomorphic!

But there is no OCS J on S°® because .J(S®) cannot
be a Kihler submanifold of Q° [L].

There does not exist a complex structure .J on S°
for which Aut(S° J) has an open orbit [HKP].
A hypothetical complex structure on S° gives a
1-para family of exotic complex structures on P°.



“Warped product” structures

Consider an almost complex structure J on
R = Ceo R
J = Jyg + K (Z),
where K(z) is a constant OCS on R* depending

on z € C. If K: C — P! is holomorphic then J is
integrable.

If K is rational then the graph I' = J(R%) has
“finite energy” in the sense that Hf%T) < oco. In
this case I' is an algebraic 3-fold in Q" [B].

Moreover, I' N 77 1(~) = P? but (unless K= const)
this fibre contains a singular line L = P! and

I C Q! = {rxy+x30,=0} C P°.

Theorem [BSV]: Any finite-energy OCS on R’
arises from a rational function K as above.




Explicit coordinates

Let [z,....,24 = [x,¥], so that

Q" ={[x.y] € P": x"y = 0}.
Suppose that x,y € C* are both non-zero.

Lemma: [x,y] € Q' if and only if x= My, where
0 —R3 —R9 —Z1

23 0 —51 52

29 51 0 —23

21 —22 23 0

Moreover, ﬁM e SU(4) Nso(4,C).

M —

The twistor projection is given by
My,y] = ze C'=R,
with fibre parametrized by [y| € P°. It is easy to

identify the action on @Q° of the conformal group
SO(7,1). The latter contains the transformations

x,y] — [Ax, Ay], A€ SU(4),
acting as SO(6) on R® via M — AMA'.



Spinors and triality

Let A, be the spin representations of Spin(8). We
can identify

Z, = {pure spinor classes [£] € P(A,)},
since any such £ defines a max iso subspace
AMV={veC:v-£=0}
Now reduce to U (4) by fixing J € Z,, w.r.t. which
AT =AY A AYY) dim=1+6+1.
Then a generic pure spinor has the form
e’ =1+w+iwAw, weA,

confirming that Z, is a non-singular 6-quadric
Q+ CP(AL).

Altogether we have three 6-quadrics
Q+ CP(AL)
Q- CP(A-)
Qo C P<C8>.



Bidegree

Altogether we have three 6-quadrics

Q+ CP(Ay)
Q- CP(A)
Qo C P(CB).

@, Q_ parametrize max iso subspaces of C®

(o, ()— parametrize max iso subspaces of A,
giving rise to two families of P°’s in the twistor

space Q°=Q, of S

“vertical” ones, either fibres 7 !(z) or
twistor spaces of conformal S*'s;

“horizontal” ones, each 1:1 outside some z € S°.
One from each family generates

He(Q4,2) = 7@ 7.

Corollary: A finite-energy OCS J on R’ gives an
algebraic 3-fold T in Q. of bidegree (1, p).




Classification of 3-folds of order one

Theorem [BV]: An irreducible 3-fold X in Q° of
bidegree (1, p) is one of:

(i) a horizontal P* (p=0),
(ii) a smooth 3-quadric Q° (p=1),
(iii) the cone over a Veronese P?> C Q* (p=3),

(iv) a Weil divisor in a rank 4 quadric Q; (p > 1).

Example of (iii):
Q2 C Q3
52| |

S? c S'c RPoR!=ImO

But we require 7 : X — S%tobe 1 : 1 except over
oo, and the exceptional fibre 7~ !(~) must in fact
contain a P?. This rules out (ii) and (iii).
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Working in the singular 4-quadric

In case (iv), take
P° = {[z,,...,740,0} C P,
Qs = {2125+ 1975 =0} C P,
L = {[0,0,25,2,,0,0]} C Q.

Example: Taking z524+2,25; = 0 defines
Segre(P'xP*)UP® C @ C P

For a non-constant OCS,

X=Tc@: LcXnri()=P?
and we get a different subcase of (iv). Let

P\ = {[ax,, axy, T3, x,, by, —bz,,0,0]} = P,
with A\=b/a € PL.

Lemma: Each X N P, = P? defines the fibre of a
projection X \ L — ¢ C P'x PL.

It follows that X \ Fyis a graph J over R, and J
is a warped product.
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Conclusions

Theorem v2 [BSV]: A finite-energy OCS on S°
minus a finite set of points is a warped product
arising from a rational function K: C — P

Counterexample: If K = p is doubly-periodic
then Hf’(T") = oo, but J induces a non-constant
OCS on the torus 7°.

Other examples include S°\ S? = 5% x H°.

The generalization to R?" with n > 4 is unclear,
but an algebraic OCS .J on R*" defines an n-fold
in 7,1 such that

FNa (=) C Z,
and (if we are lucky) an OCS on R*" 2.

Example: If J is “asymptotically constant” then
FNr (=) =P" 1,

and J must in fact be conformally constant.
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