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Orthogonal complex structures

Definition: An OCS on an open set Ω of R
2n or

S2n is a complex structure J compatible with the
Euclidean or round metric:

g(JX, JY ) = g(X,Y )

Equivalently, an OCS is a (C1) map J : Ω → Zn

satisfying the usual integrability condition,
where

Zn = {M ∈ SO(2n) : M 2 =−I} ∼=
SO(2n)

U (n)
.

Problem: Given Ω ⊆ R2n, classify OCS’s on Ω up
to conformal equivalence.

What exceptional sets Λ = R2n \ Ω occur?

δ = dimHf(Λ) plays a key role.
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The twistor space of S2n

. . . provides an inductive definition of the spaces
of linear complex structures:

SO(2n + 1)

U (n)
= SO(2n+2)

U(n+1) = Zn+1



yZn

S2n =
SO(2n + 1)

SO(2n)
Ω

Each fibre π−1(x) ∼= Zn is a complex submanifold
of the total space Zn+1.

Proposition: An OCS on Ω ⊂ S2n is the same as
a holomorphic section J̃ : Ω → Zn+1.

So look at algebraic n-folds X in Zn+1.
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Facts in four dimensions

Z3 = P
3



yZ2 = P1

∞ ∈ S4
P

k = P(Ck+1)

Any hyperplane P
2 of Z3 contains exactly one

fibre π−1(x) and defines an OCS on S4 \ {x}.

There is a P1 worth of such OCS’s containing
π−1(∞), and these are the constant OCS’s on R4.
They are in fact the only OCS’s globally on R

4.

Moreover, any OCS on Ωwhere Hf1(R4 \Ω)=0 is
associated to a hyperplane P2 [VS].

A “real” quadric in Z3 gives an OCS on S4 \ S1.
A generic quadric gives an OCS on the comple-
ment of a solid torus [VS].
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Examples in six dimensions

Z4
∗
= Q6 = {x1x5+x2x6+x3x7+x4x8 = 0} ⊂ P7



yZ3 = P
3

∞ ∈ S6

This time, any constant OCS on R6 arises from
a “horizontal” P

3 that intersects π−1(∞) in a P
2.

These OCS’s are parametrized by (P3)∗ ∼= Z3.

There exists a global section J̃ : S6 → Q6 such that
Aut(S6, J)∼= G2 and J̃⊥ = Q5 is holomorphic!

But there is no OCS J on S6 because J̃(S6) cannot
be a Kähler submanifold of Q6 [L].

There does not exist a complex structure J on S6

for which Aut(S6, J) has an open orbit [HKP].
A hypothetical complex structure on S6 gives a
1-para family of exotic complex structures on P

3.
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“Warped product” structures

Consider an almost complex structure J on

R
6 = C ⊕ R

4

J = J0 + K(z),

where K(z) is a constant OCS on R4 depending
on z ∈ C. If K: C → P

1 is holomorphic then J is
integrable.

If K is rational then the graph Γ = J̃(R6) has
“finite energy” in the sense that Hf6(Γ) < ∞. In
this case Γ is an algebraic 3-fold in Q6 [B].

Moreover, Γ ∩ π−1(∞) = P
2 but (unless K= const)

this fibre contains a singular line L ∼= P1 and

Γ ⊂ Q4
s = {x1x2+x3x4 =0} ⊂ P

5.

Theorem [BSV]: Any finite-energy OCS on R6

arises from a rational function K as above.
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Explicit coordinates

Let [x1. . . . , x8] = [x,y], so that

Q6 = {[x,y] ∈ P
7 : x⊤y = 0}.

Suppose that x,y ∈ C4 are both non-zero.

Lemma: [x,y] ∈ Q6 if and only if x=My, where

M =









0 −z3 −z2 −z1

z3 0 −z1 z2

z2 z1 0 −z3

z1 −z2 z3 0









.

Moreover, 1
‖z‖

M ∈ SU (4) ∩ so(4, C).

The twistor projection is given by

[My,y]
π
7→ z ∈ C

3 ∼= R
6,

with fibre parametrized by [y] ∈ P3. It is easy to
identify the action on Q6 of the conformal group
SO(7, 1). The latter contains the transformations

[x,y] 7→ [Ax, Ay], A ∈ SU (4),

acting as SO(6) on R
6 viaM 7→ AMA⊤.
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Spinors and triality

Let∆± be the spin representations of Spin(8). We
can identify

Z4 = {pure spinor classes [ξ] ∈ P(∆+)},

since any such ξ defines a max iso subspace

Λ1,0 = {v ∈ C
8 : v · ξ = 0}.

Now reduce toU (4) by fixing J ∈ Z4, w.r.t. which

∆+ = Λ0,0 ⊕ Λ2,0 ⊕ Λ4,0, dim = 1 + 6 + 1.

Then a generic pure spinor has the form

eω = 1 + ω + 1
2ω∧ω, ω ∈ Λ2,0,

confirming that Z4 is a non-singular 6-quadric
Q+ ⊂ P(∆+).

Altogether we have three 6-quadrics

Q+ ⊂ P(∆+)

Q− ⊂ P(∆−)

Q0 ⊂ P(C8).
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Bidegree

Altogether we have three 6-quadrics

Q+ ⊂ P(∆+)

Q− ⊂ P(∆−)

Q0 ⊂ P(C8).

Q+, Q− parametrize max iso subspaces of C
8

Q0, Q− parametrize max iso subspaces of ∆+,
giving rise to two families of P

3’s in the twistor
space Q6=Q+ of S

6:

“vertical” ones, either fibres π−1(x) or
twistor spaces of conformal S4’s;

“horizontal” ones, each 1 :1 outside some x ∈ S6.

One from each family generates

H6(Q+, Z) = Z ⊕ Z.

Corollary: A finite-energy OCS J on R6 gives an
algebraic 3-fold Γ in Q+ of bidegree (1, p).
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Classification of 3-folds of order one

Theorem [BV]: An irreducible 3-fold X in Q6 of
bidegree (1, p) is one of:

(i) a horizontal P3 (p=0),

(ii) a smooth 3-quadric Q3 (p=1),

(iii) the cone over a Veronese P
2 ⊂ Q4 (p=3),

(iv) a Weil divisor in a rank 4 quadric Q4
s (p > 1).

Example of (iii):

Q2 ⊂ Q3

S2↓


y

S2 ⊂ S6⊂ R3 ⊕ R4 = ImO

But we require π : X → S6 to be 1 : 1 except over
∞, and the exceptional fibre π−1(∞) must in fact
contain a P2. This rules out (ii) and (iii).
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Working in the singular 4-quadric

In case (iv), take

P5 = {[x1, . . . , x6, 0, 0]} ⊂ P7,

Q4
s = {x1x5 + x2x6 = 0} ⊂ P5,

L = {[0, 0, x3, x4, 0, 0]} ⊂ Q4
s.

Example: Taking x3x6+x4x5 = 0 defines

Segre(P1×P
2) ∪ P

3 ⊂ Q4
s ⊂ P

5.

For a non-constant OCS,

X = Γ ⊂ Q4
s, L ⊂ X ∩ π−1(∞) ∼= P

2,

and we get a different subcase of (iv). Let

Pλ = {[ax1, ax2, x3, x4, bx2,−bx1, 0, 0]} ∼= P
3,

with λ=b/a ∈ P
1.

Lemma: Each X ∩ Pλ
∼= P

2 defines the fibre of a
projection X \ L −→ C ⊂ P1× P1.

It follows that X \ P0 is a graph J̃ over R6, and J
is a warped product.
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Conclusions

Theorem v2 [BSV]: A finite-energy OCS on S6

minus a finite set of points is a warped product
arising from a rational function K: C → P1.

Counterexample: If K = ℘ is doubly-periodic
then Hf6(Γ) = ∞, but J induces a non-constant
OCS on the torus T 6.

Other examples include S6 \ S2 ∼= S3 × H3.

The generalization to R2n with n > 4 is unclear,
but an algebraic OCS J on R

2n defines an n-fold
in Zn+1 such that

Γ ∩ π−1(∞) ⊂ Zn,

and (if we are lucky) an OCS on R
2n−2.

Example: If J is “asymptotically constant” then

Γ ∩ π−1(∞) = P
n−1,

and J must in fact be conformally constant.
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