COMPLEX STRUCTURES ON \mathbb{R}^{6}

Simon Salamon

joint work with Lev Borisov \& Jeff Viaclovsky

Based on theory of

$$
\left\{\begin{array}{l}
\text { Penrose (1967) } \\
\text { Atiyah-Hitchin-Singer (1978) } \\
\text { Pontecorvo (1992) } \\
\text { Slupinski (1996) }
\end{array}\right.
$$

GLAM, in honour of Gallot, Rome, Sept 2008

Orthogonal complex structures

Definition: An OCS on an open set Ω of $\mathbb{R}^{2 n}$ or $S^{2 n}$ is a complex structure J compatible with the Euclidean or round metric:

$$
g(J X, J Y)=g(X, Y)
$$

Equivalently, an OCS is a $\left(C^{1}\right)$ map $J: \Omega \rightarrow Z_{n}$ satisfying the usual integrability condition, where

$$
Z_{n}=\left\{M \in S O(2 n): M^{2}=-I\right\} \cong \frac{S O(2 n)}{U(n)} .
$$

Problem: Given $\Omega \subseteq \mathbb{R}^{2 n}$, classify OCS's on Ω up to conformal equivalence.
What exceptional sets $\Lambda=\mathbb{R}^{2 n} \backslash \Omega$ occur?
$\delta=\operatorname{dim}_{\mathrm{Hf}}(\Lambda)$ plays a key role.

The twistor space of $S^{2 n}$

... provides an inductive definition of the spaces of linear complex structures:

$$
\begin{gather*}
\frac{S O(2 n+1)}{U(n)}=\frac{S O(2 n+2)}{U(n+1)}=Z_{n+1} \\
\downarrow Z_{n} \\
S^{2 n}=\frac{S O(2 n+1)}{S O(2 n)}
\end{gather*}
$$

Each fibre $\pi^{-1}(x) \cong Z_{n}$ is a complex submanifold of the total space Z_{n+1}.

Proposition: An OCS on $\Omega \subset S^{2 n}$ is the same as a holomorphic section $\tilde{J}: \Omega \rightarrow Z_{n+1}$.

So look at algebraic n-folds X in Z_{n+1}.

Facts in four dimensions

$$
\begin{aligned}
& Z_{3}=\mathbb{P}^{3} \\
& \downarrow Z_{2}=\mathbb{P}^{1} \\
\infty \in & S^{4} \quad \mathbb{P}^{k}=\mathbb{P}\left(\mathbb{C}^{k+1}\right)
\end{aligned}
$$

Any hyperplane \mathbb{P}^{2} of Z_{3} contains exactly one fibre $\pi^{-1}(x)$ and defines an OCS on $S^{4} \backslash\{x\}$.

There is a \mathbb{P}^{1} worth of such OCS's containing $\pi^{-1}(\infty)$, and these are the constant OCS's on \mathbb{R}^{4}. They are in fact the only OCS's globally on \mathbb{R}^{4}.

Moreover, any OCS on Ω where $\operatorname{Hf}^{1}\left(\mathbb{R}^{4} \backslash \Omega\right)=0$ is associated to a hyperplane \mathbb{P}^{2} [VS].

A "real" quadric in Z_{3} gives an OCS on $S^{4} \backslash S^{1}$. A generic quadric gives an OCS on the complement of a solid torus [VS].

Examples in six dimensions

$$
\begin{aligned}
& Z_{4} \stackrel{*}{=} Q^{6}=\left\{x_{1} x_{5}+x_{2} x_{6}+x_{3} x_{7}+x_{4} x_{8}=0\right\} \subset \mathbb{P}^{7} \\
& \downarrow Z_{3}=\mathbb{P}^{3}
\end{aligned}
$$

$$
\infty \in S^{6}
$$

This time, any constant OCS on \mathbb{R}^{6} arises from a "horizontal" \mathbb{P}^{3} that intersects $\pi^{-1}(\infty)$ in a \mathbb{P}^{2}. These OCS's are parametrized by $\left(\mathbb{P}^{3}\right)^{*} \cong Z_{3}$.
There exists a global section $\tilde{J}: S^{6} \rightarrow Q^{6}$ such that $\operatorname{Aut}\left(S^{6}, J\right) \cong G_{2}$ and $\tilde{J}^{\perp}=Q^{5}$ is holomorphic!
But there is no OCS J on S^{6} because $\tilde{J}\left(S^{6}\right)$ cannot be a Kähler submanifold of Q^{6} [L].

There does not exist a complex structure J on S^{6} for which $\operatorname{Aut}\left(S^{6}, J\right)$ has an open orbit [HKP]. A hypothetical complex structure on S^{6} gives a 1 -para family of exotic complex structures on \mathbb{P}^{3}.

"Warped product" structures

Consider an almost complex structure J on

$$
\begin{aligned}
\mathbb{R}^{6} & =\mathbb{C} \oplus \mathbb{R}^{4} \\
J & =J_{0}+K(z),
\end{aligned}
$$

where $K(z)$ is a constant OCS on \mathbb{R}^{4} depending on $z \in \mathbb{C}$. If $K: \mathbb{C} \rightarrow \mathbb{P}^{1}$ is holomorphic then J is integrable.
If K is rational then the graph $\Gamma=\tilde{J}\left(\mathbb{R}^{6}\right)$ has "finite energy" in the sense that $\operatorname{Hf}^{6}(\Gamma)<\infty$. In this case $\bar{\Gamma}$ is an algebraic 3 -fold in $Q^{6}[\mathrm{~B}]$.
Moreover, $\bar{\Gamma} \cap \pi^{-1}(\infty)=\mathbb{P}^{2}$ but (unless $K=$ const) this fibre contains a singular line $L \cong \mathbb{P}^{1}$ and

$$
\bar{\Gamma} \subset Q_{s}^{4}=\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\} \subset \mathbb{P}^{5} .
$$

Theorem [BSV]: Any finite-energy OCS on \mathbb{R}^{6} arises from a rational function K as above.

Explicit coordinates

Let $\left[x_{1} \ldots, x_{8}\right]=[\mathbf{x}, \mathbf{y}]$, so that

$$
Q^{6}=\left\{[\mathbf{x}, \mathbf{y}] \in \mathbb{P}^{7}: \mathbf{x}^{\top} \mathbf{y}=0\right\} .
$$

Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{4}$ are both non-zero.

Lemma: $[\mathbf{x}, \mathbf{y}] \in Q^{6}$ if and only if $\mathbf{x}=M \mathbf{y}$, where

$$
M=\left(\begin{array}{cccc}
0 & -z_{3} & -z_{2} & -z_{1} \\
z_{3} & 0 & -\bar{z}_{1} & \bar{z}_{2} \\
z_{2} & \bar{z}_{1} & 0 & -\bar{z}_{3} \\
z_{1} & -\bar{z}_{2} & \bar{z}_{3} & 0
\end{array}\right) .
$$

Moreover, $\frac{1}{\|z\|} M \in S U(4) \cap \mathfrak{s o}(4, \mathbb{C})$.

The twistor projection is given by

$$
[M \mathbf{y}, \mathbf{y}] \stackrel{\pi}{\mapsto} \mathbf{z} \in \mathbb{C}^{3} \cong \mathbb{R}^{6},
$$

with fibre parametrized by $[\mathbf{y}] \in \mathbb{P}^{3}$. It is easy to identify the action on Q^{6} of the conformal group $S O(7,1)$. The latter contains the transformations

$$
[\mathbf{x}, \mathbf{y}] \mapsto[A \mathbf{x}, \bar{A} \mathbf{y}], \quad A \in S U(4),
$$

acting as $S O(6)$ on \mathbb{R}^{6} via $M \mapsto A M A^{\top}$.

Let $\Delta_{ \pm}$be the spin representations of $\operatorname{Spin}(8)$. We can identify

$$
Z_{4}=\left\{\text { pure spinor classes }[\xi] \in \mathbb{P}\left(\Delta_{+}\right)\right\},
$$

since any such ξ defines a max iso subspace

$$
\Lambda^{1,0}=\left\{v \in \mathbb{C}^{8}: v \cdot \xi=0\right\} .
$$

Now reduce to $U(4)$ by fixing $J \in Z_{4}$, w.r.t. which

$$
\Delta^{+}=\Lambda^{0,0} \oplus \Lambda^{2,0} \oplus \Lambda^{4,0}, \quad \operatorname{dim}=1+6+1 .
$$

Then a generic pure spinor has the form

$$
e^{\omega}=1+\omega+\frac{1}{2} \omega \wedge \omega, \quad \omega \in \Lambda^{2,0},
$$

confirming that Z_{4} is a non-singular 6-quadric $Q_{+} \subset \mathbb{P}\left(\Delta_{+}\right)$.

Altogether we have three 6-quadrics

$$
\begin{aligned}
& Q_{+} \subset \mathbb{P}\left(\Delta_{+}\right) \\
& Q_{-} \subset \mathbb{P}\left(\Delta_{-}\right) \\
& Q_{0} \subset \mathbb{P}\left(\mathbb{C}^{8}\right) .
\end{aligned}
$$

Bidegree

Altogether we have three 6-quadrics

$$
\begin{aligned}
& Q_{+} \subset \mathbb{P}\left(\Delta_{+}\right) \\
& Q_{-} \subset \mathbb{P}\left(\Delta_{-}\right) \\
& Q_{0} \subset \mathbb{P}\left(\mathbb{C}^{8}\right) .
\end{aligned}
$$

Q_{+}, Q_{-}parametrize max iso subspaces of \mathbb{C}^{8}
Q_{0}, Q_{-}parametrize max iso subspaces of Δ_{+}, giving rise to two families of $\mathbb{P}^{3 \prime} \mathrm{~s}$ in the twistor space $Q^{6}=Q_{+}$of S^{6} :
"vertical" ones, either fibres $\pi^{-1}(x)$ or twistor spaces of conformal $S^{4 \prime}$ s;
"horizontal" ones, each 1:1 outside some $x \in S^{6}$.
One from each family generates

$$
H_{6}\left(Q_{+}, \mathbb{Z}\right)=\mathbb{Z} \oplus \mathbb{Z} .
$$

Corollary: A finite-energy OCS J on \mathbb{R}^{6} gives an algebraic 3-fold $\bar{\Gamma}$ in Q_{+}of bidegree $(1, p)$.

Classification of 3-folds of order one

Theorem [BV]: An irreducible 3-fold X in Q^{6} of bidegree $(1, p)$ is one of:
(i) a horizontal $\mathbb{P}^{3}(p=0)$,
(ii) a smooth 3-quadric $Q^{3}(p=1)$,
(iii) the cone over a Veronese $\mathbb{P}^{2} \subset Q^{4}(p=3)$,
(iv) a Weil divisor in a rank 4 quadric $Q_{s}^{4}(p \geqslant 1)$.

Example of (iii):

$$
\begin{aligned}
& Q^{2} \subset Q^{3} \\
& S^{2} \downarrow \\
& S^{2} \subset \\
& S^{6} \subset S^{3} \oplus \mathbb{R}^{4}=\operatorname{Im} \mathbb{O}
\end{aligned}
$$

But we require $\pi: X \rightarrow S^{6}$ to be $1: 1$ except over ∞, and the exceptional fibre $\pi^{-1}(\infty)$ must in fact contain a \mathbb{P}^{2}. This rules out (ii) and (iii).

Working in the singular 4-quadric

In case (iv), take

$$
\begin{aligned}
\mathbb{P}^{5} & =\left\{\left[x_{1}, \ldots, x_{6}, 0,0\right]\right\} \subset \mathbb{P}^{7}, \\
Q_{s}^{4} & =\left\{x_{1} x_{5}+x_{2} x_{6}=0\right\} \subset \mathbb{P}^{5}, \\
L & =\left\{\left[0,0, x_{3}, x_{4}, 0,0\right]\right\} \subset Q_{s}^{4} .
\end{aligned}
$$

Example: Taking $x_{3} x_{6}+x_{4} x_{5}=0$ defines

$$
\operatorname{Segre}\left(\mathbb{P}^{1} \times \mathbb{P}^{2}\right) \cup \mathbb{P}^{3} \subset Q_{s}^{4} \subset \mathbb{P}^{5}
$$

For a non-constant OCS,

$$
X=\bar{\Gamma} \subset Q_{s}^{4}, \quad L \subset X \cap \pi^{-1}(\infty) \cong \mathbb{P}^{2},
$$

and we get a different subcase of (iv). Let

$$
P_{\lambda}=\left\{\left[a x_{1}, a x_{2}, x_{3}, x_{4}, b x_{2},-b x_{1}, 0,0\right]\right\} \cong \mathbb{P}^{3},
$$

with $\lambda=b / a \in \mathbb{P}^{1}$.
Lemma: Each $X \cap P_{\lambda} \cong \mathbb{P}^{2}$ defines the fibre of a projection $X \backslash L \longrightarrow \mathscr{C} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$.

It follows that $X \backslash P_{0}$ is a graph \tilde{J} over \mathbb{R}^{6}, and J is a warped product.

Conclusions

Theorem v2 [BSV]: A finite-energy OCS on S^{6} minus a finite set of points is a warped product arising from a rational function $K: \mathbb{C} \rightarrow \mathbb{P}^{1}$.

Counterexample: If $K=\wp$ is doubly-periodic then $\operatorname{Hf}^{6}(\Gamma)=\infty$, but J induces a non-constant OCS on the torus T^{6}.

Other examples include $S^{6} \backslash S^{2} \cong S^{3} \times H^{3}$.

The generalization to $\mathbb{R}^{2 n}$ with $n \geqslant 4$ is unclear, but an algebraic OCS J on $\mathbb{R}^{2 n}$ defines an n-fold in Z_{n+1} such that

$$
\bar{\Gamma} \cap \pi^{-1}(\infty) \subset Z_{n},
$$

and (if we are lucky) an OCS on $\mathbb{R}^{2 n-2}$.
Example: If J is "asymptotically constant" then

$$
\bar{\Gamma} \cap \pi^{-1}(\infty)=\mathbb{P}^{n-1},
$$

and J must in fact be conformally constant.

