# SOME TRI-LAGRANGIAN STRUCTURES

# Simon Salamon

University of Oxford

31 May 2004

# Special geometries

... defined by Lie groups and differential forms are all interrelated!

| dim                         | structure group                          |
|-----------------------------|------------------------------------------|
| 8<br>↓<br>6                 | Sp(2)Sp(1)<br>$Sp(3,\mathbb{R})$ $SO(3)$ |
| $\downarrow$ $7$ $\uparrow$ | $G_2$                                    |
| $\overset{\downarrow}{6}$   | SU(3)                                    |
| 6                           | $SO(3) \times SO(2)$                     |

# 4-forms in 8 dimensions

$$\mathbb{R}^8 = \mathbb{H}^2 = \langle e^1, e^3, e^5, e^7 \rangle \oplus \langle e^2, e^4, e^6, e^8 \rangle$$

$$\sigma^{1} = e^{13} + e^{57} + e^{24} + e^{68}$$
  

$$\sigma^{2} = e^{15} + e^{73} + e^{26} + e^{84}$$
  

$$\sigma^{3} = e^{17} + e^{35} + e^{28} + e^{46}$$

$$\begin{split} \Omega \ &= \ \sigma^1 \wedge \sigma^1 + \sigma^2 \wedge \sigma^2 + \sigma^3 \wedge \sigma^3, \\ \Omega' \ &= \ \sigma^1 \wedge \sigma^1 + \sigma^2 \wedge \sigma^2 - \sigma^3 \wedge \sigma^3. \end{split}$$

| form(s)                      | stabilizer         | geometry      |
|------------------------------|--------------------|---------------|
| $\sigma^1,  \sigma^2$        | $Sp(2,\mathbb{C})$ | cx symplectic |
| $\sigma^1,\sigma^2,\sigma^3$ | Sp(2)              | hyper-Kähler  |
| $\Omega$                     | Sp(2)Sp(1)         | quat-Kähler   |
| $\Omega'$                    | Spin7              | exceptional   |

### Closed versus parallel

A 4-form of type  $\Omega'$  on an 8-manifold M determines a Riemannian metric g. Let  $\nabla$  be the associated Levi-Civita connection, so that  $\nabla \Omega' = 0 \Rightarrow d\Omega' = 0$ .

Proposition If  $d\Omega' = 0$  then  $\nabla \Omega' = 0$  and therefore  $hol(g) \subseteq Spin7$ .

A 4-form of type  $\Omega$  on M determines a metric and a rank 3 subbundle  $V = \langle \sigma^1, \sigma^2, \sigma^3 \rangle$  of  $\bigwedge^2 T^*M$ .

Proposition If  $d\Omega = 0$  AND d maps V into  $V \wedge T^*M$ then  $\nabla\Omega = 0$  and M is quaternion-Kähler.

There exist 8-manifolds with  $\Omega$  closed and non-parallel. A partial analogue is a Kodaira surface  $\Gamma \setminus \mathbb{C}^2$  that is (holomorphic) symplectic but not Kähler.

### Reduction from 8 to 6

Distinguishing  $e^7$ ,  $e^8$ ,  $\frac{1}{2}\Omega = -\omega \wedge e^{78} + \alpha \wedge e^7 + \beta \wedge e^8 - \frac{1}{2}\omega^2$ , where  $\omega = e^{12} + e^{34} + e^{56}$ 

$$\begin{aligned} \omega &= e^{-2} + e^{54} + e^{56} \\ \alpha &= 3e^{135} + e^{146} + e^{236} + e^{245} \\ \beta &= 3e^{246} + e^{235} + e^{136} + e^{145} \end{aligned}$$

| form(s)             | stabilizer in $GL^+(6,\mathbb{R})$         |
|---------------------|--------------------------------------------|
| α                   | $SL(3,\mathbb{R}) \times SL(3,\mathbb{R})$ |
| lpha,eta            | $SL(3,\mathbb{R})$                         |
| $\omega, lpha$      | $SL(3,\mathbb{R})'$                        |
| $\omega, lpha, eta$ | SO(3)                                      |

#### Linear circle actions

Consider the action of  $SO(2)\!=\!S^1$  on

$$\mathbb{R}^6 = \mathbb{C}^3 = \langle e^1, e^2 \rangle \oplus \langle e^3, e^4 \rangle \oplus \langle e^5, e^6 \rangle$$

commuting with SO(3). The simple 3-forms

$$\gamma(t) = (xe^1 + ye^2) \land (xe^3 + ye^4) \land (xe^5 + ye^6),$$

with  $x = \cos t$ ,  $y = \sin t$ , form an  $S^1$  orbit spanning a 4-dim subspace U of  $\Lambda^3 \mathbb{R}^6$ .

Lemmas

(i) If 
$$\psi^+ + i\psi^- = (e^1 + ie^2) \wedge (e^3 + ie^4) \wedge (e^5 + ie^6)$$
 then  

$$U = \langle \alpha, \beta \rangle \oplus \langle \psi^+, \psi^- \rangle.$$

(ii) If  $\gamma = \gamma(0) = e^{135}$  then  $\langle \alpha, \beta, \psi^+ \rangle = \langle \alpha, \beta, \gamma \rangle = \langle \gamma(0), \gamma(\frac{2\pi}{3}), \gamma(-\frac{2\pi}{3}) \rangle$ since  $\varepsilon = \exp(\frac{2\pi i}{3})$  acts trivially on  $\psi^+$ .

### Examples

... of symplectic 6-manifolds with  $\alpha, \beta, \gamma$  all closed.

Let  $N^6 (\xrightarrow{T^3} T^3)$  be a principal torus bundle with base 1-forms  $e^1, e^3, e^5$  and connection 1-forms  $e^2, e^4, e^6$  with

$$de^2 = ce^{35}, \quad de^4 = c'e^{51}, \quad de^6 = c''e^{13}.$$

Suppose c+c'+c''=0, so that  $\omega=e^{12}+e^{34}+e^{56}$  is closed and  $N^6$  is symplectic.

<u>Theorem</u>  $N^6$  admits a triple of mutually transverse Lagrangian submanifolds through each point.

Follows from the existence of closed simple 3-forms

$$\begin{split} e^1 \wedge (ae^3 + be^4) \wedge (ae^5 - be^6) \\ (ae^1 - be^2) \wedge e^3 \wedge (ae^5 + be^6) \\ (ae^1 + be^2) \wedge (ae^3 - be^4) \wedge e^5. \end{split}$$

Take  $a = -\frac{1}{2}$ ,  $b = \frac{\sqrt{3}}{2}$ , so that  $\theta = a + bJ = \operatorname{rot}_{2\pi/3}$ . Relative to the basis

 $e^{1}, e^{2}, \theta(e^{3}), \theta(e^{4}), \theta^{2}(e^{5}), \theta^{2}(e^{6}),$ 

the closed 3-forms above are  $\gamma(0), \gamma(\frac{2\pi}{3}), \gamma(\frac{-2\pi}{3})$ .

<u>Corollary</u> The 8-manifold  $N^6 \times T^2$  has a closed 4-form  $\Omega$  with stabilizer Sp(2)Sp(1), but no quaternion-Kähler structure.

Remarks (i) There are essentially two examples:

(A) if c, c', c'' are non-zero then  $b_1(N^6) = 3$ ;

(B) if c = 0 then  $b_1(N^6) = 4$  and  $N^6 = N^5 \times S^1$ .

In (A), one can also take c = c' = c'' and define

$$\varphi = e^{12} + \varepsilon e^{34} + \varepsilon^2 e^{56} = B + i\omega.$$

(ii) It seems to be easier to  $d\alpha = 0 = d\beta$  by postulating the existence of a simple closed 3-form. Is this integrability property predicted by a property of SO(3) torsion?

(iii) The symplectic group  $Sp(n, \mathbb{R})$  acts almost transitively on triples of transverse Lagrangian subspaces of  $\mathbb{R}^{2n}$ , with stabilizer O(n).

### A non-principal fibration

Let H denote the real matrix group

$$\left\{ X = \begin{pmatrix} 1 & x^1 & x^6 + ix^4 \\ 0 & 1 & x^3 + ix^5 \\ 0 & 0 & 1 \end{pmatrix} : x^i \in \mathbb{R} \right\}$$

and  $\Gamma$  the corresponding integral lattice. Then

$$N^5 = \Gamma \backslash H = \{ \Gamma h : h \in H \}.$$

Consider the mapping

$$N^{5} \times S^{1} \quad \ni \quad X$$

$$\downarrow \pi \qquad \downarrow$$

$$T^{3} \quad \ni \ [x^{2}, x^{3}, x^{5}]$$

The Lagrangian fibres of  $\pi$  are necessarily  $T^3$ 's, and there is a global section  $x^1 = x^4 = x^6 = 0$ . This is one leaf of the foliation determined by  $e^{146}$ ; others will be multi-valued sections.

#### 3-symmetric spaces

The homogeneous spaces

 $S^6, \quad S^3 \times S^3, \quad \mathbb{CP}^3, \quad \mathbb{F} = SU(3)/T^2$ 

all have an almost complex structure J for which

$$\theta = -\frac{1}{2}1 + \frac{\sqrt{3}}{2}J$$

is the derivative of a 3-fold isometry around each point. It arises from a Lie algebra automorphism

$$\hat{\theta}: \mathfrak{g} \to \mathfrak{g} \quad \text{with} \quad \hat{\theta}^3 = 1.$$

Moreover, G/H has a nearly-Kähler metric  $g_{\rm NK}$  characterized by  $(\nabla_X J)X = 0$  (and  $\nabla J \neq 0$ ).

Examples fall into the following types:

(i) isotropy irreducible spaces,

(ii) twistor spaces,

(iii)  $(G \times G \times G)/G \cong G \times G$ .

# Conical singularities



#### Metrics with reduced holonomy

An SU(3) structure on a 6-manifold is defined by a 2-form  $\omega$  and a 3-form  $\psi^+$ . The latter determines  $\psi^-$  and an almost complex structure J so that  $\psi^+ + i\psi^-$  is a (3,0)-form. Since  $\psi^+ = 4\gamma - \alpha$ , each of the two nilmanifolds  $N^6$  has a natural half-flat SU(3) structure:

$$\psi^{+}(0) = e^{135} - e^{146} - e^{236} - e^{245}$$
$$\frac{1}{2}\omega(0) \wedge \omega(0) = e^{3456} + e^{5612} + e^{1234}$$

are both closed.

 $\begin{array}{lll} \underline{\mathsf{Problem}} & \mathsf{Extend to} \ \omega \!=\! \omega(t) \ \mathrm{and} \ \psi \!=\! \psi^+(t) \ \mathrm{so \ that} \\ & \varphi \ = \ \omega \wedge dt + \psi^+ \\ & \ast \varphi \ = \ \psi^- \wedge dt + \frac{1}{2} \omega \wedge \omega. \end{array}$ 

are closed, giving a metric h on  $(a,b) \times N^6$  for which  $hol(h) \subseteq G_2$ .

## Solution (A): the irreducible case

 $\frac{\text{Proposition}}{\text{hol}(h) = G_2} (-1, \frac{3\sqrt{3}}{2} - 1) \times N^6 \text{ has a metric } h \text{ with }$ 

Define s by setting  $x = \frac{1}{\sqrt{3}} \cosh s$ ,  $y = \frac{1}{\sqrt{2}} \sinh s$  and  $4(t+1)x^5 - 5x^2 + 1 = 0.$ 

Then h has an orthonormal basis

 $dt, \quad \frac{y^2}{x^2}e^1, \quad \frac{y}{x^2}e^3, \quad \frac{y}{x^2}e^5, \quad xe^2, \quad \frac{y}{x}e^4, \quad \frac{y}{x}e^6.$ 

The original structure corresponds to the hypersurface t=0 and x=1=y.

Submanifold properties?

## Solution (B): the reducible case

 $\frac{\text{Proposition}}{\text{hol}(k) = SU(3)} (-\pi/2, \pi/2) \times N^5 \text{ has a metric } k \text{ with } k \text{ with } k \text{ or } k \text{ or$ 

Let  $x = \cos u$ ,  $y = \sin u$ . Then k has an orthonormal basis

 $\begin{array}{rll} xe^1, & (1\!+\!y)^{1/2}e^3, & (1\!-\!y)^{1/2}e^5, \\ x^2du, & (1\!-\!y)^{-1/2}e^4, & (1\!+\!y)^{-1/2}e^6. \end{array}$ 

The Kähler form is  $\omega = x^3 e^1 du + e^{45} - e^{63}$ , and there are closed 3-forms

$$\begin{split} e^{146} \\ x(1\!+\!y)e^{34}du + x(1\!-\!y)e^{56}du + x^2e^{135} \\ xe^{46}du + (1\!-\!y)e^{156} + (1+y)e^{134} \\ x^3e^{35}du. \end{split}$$

There is a pencil of Lagrangian submanifolds through each point.

#### A twisted model

The Hermitian symmetric space

$$Q = \mathbb{G}\mathrm{r}_2(\mathbb{R}^5) = \frac{SO(5)}{SO(3) \times SO(2)} \subset \mathbb{C}\mathbb{P}^4$$

has structure group

$$\left\{ \begin{pmatrix} aP & -bP \\ bP & aP \end{pmatrix} : P \in SO(3), \ a^2 + b^2 = 1 \right\}$$

and  $T_q Q \cong \mathbb{R}^3 \otimes \mathbb{R}^2$ . In addition to its Kähler form  $\omega$ , there is a 2-dim subspace  $\langle \alpha, \beta \rangle \subset \bigwedge_0^3 T^* Q$  that defines a tautological vector bundle

$$W e^7, e^8$$
  
 $\mathbb{R}^2 \downarrow$   
 $Q$ 

and a well-defined 4-form

$$\frac{1}{2}\Omega = -\omega \wedge e^{78} + \alpha \wedge e^7 + \beta \wedge e^8 - \frac{1}{2}\omega^2.$$

Poposition In fact,  $\nabla \Omega = 0$  and  $(W, \Omega)$  is locally isometric to  $\mathbb{G}r_4(\mathbb{R}^6) \cong \mathbb{G}r_2(\mathbb{C}^4)$ .

## References

Acharya-Denef-Hofman-Lambert, hep-th/0308046

Atiyah-Witten, hep-th/0107177

Duchemin, math.DG/0311436

Giovannini, PhD thesis, Turin (2004)

Salamon, math.DG/0107146

Swann, C R Acad Sci Paris 308 (1989)

Wolf-Gray, JDG 2 (1968)

... and discussions with B. Acharya, D. Conti, D. Matessi

Slides at www.ma.ic.ac.uk/~sms