SOME TRI-LAGRANGIAN STRUCTURES

Simon Salamon

University of Oxford

31 May 2004

Special geometries

...defined by Lie groups and differential forms are all interrelated!

dim	structure group
8	$S p(2) S p(1)$
\downarrow	
6	$S p(3, \mathbb{R}), S O(3)$
\downarrow	
7	G_{2}
\uparrow	
6	$S U(3)$
6	$S O(3) \times S O(2)$

4-forms in 8 dimensions

$$
\begin{gathered}
\mathbb{R}^{8}=\mathbb{H}^{2}=\left\langle e^{1}, e^{3}, e^{5}, e^{7}\right\rangle \oplus\left\langle e^{2}, e^{4}, e^{6}, e^{8}\right\rangle \\
\sigma^{1}=e^{13}+e^{57}+e^{24}+e^{68} \\
\sigma^{2}=e^{15}+e^{73}+e^{26}+e^{84} \\
\sigma^{3}=e^{17}+e^{35}+e^{28}+e^{46} \\
\Omega=\sigma^{1} \wedge \sigma^{1}+\sigma^{2} \wedge \sigma^{2}+\sigma^{3} \wedge \sigma^{3} \\
\Omega^{\prime}=\sigma^{1} \wedge \sigma^{1}+\sigma^{2} \wedge \sigma^{2}-\sigma^{3} \wedge \sigma^{3}
\end{gathered}
$$

form (s)	stabilizer	geometry
σ^{1}, σ^{2}	$S p(2, \mathbb{C})$	cx symplectic
$\sigma^{1}, \sigma^{2}, \sigma^{3}$	$S p(2)$	hyper-Kähler
Ω	$\operatorname{Sp}(2) \operatorname{Sp}(1)$	quat-Kähler
Ω^{\prime}	$\operatorname{Spin} 7$	exceptional

Closed versus parallel

A 4-form of type Ω^{\prime} on an 8 -manifold M determines a Riemannian metric g. Let ∇ be the associated LeviCivita connection, so that $\nabla \Omega^{\prime}=0 \Rightarrow d \Omega^{\prime}=0$.

Proposition If $d \Omega^{\prime}=0$ then $\nabla \Omega^{\prime}=0$ and therefore $\overline{\operatorname{hol}(g) \subseteq S p i n 7 .}$

A 4-form of type Ω on M determines a metric and a rank 3 subbundle $V=\left\langle\sigma^{1}, \sigma^{2}, \sigma^{3}\right\rangle$ of $\bigwedge^{2} T^{*} M$.

Proposition If $d \Omega=0$ AND d maps V into $V \wedge T^{*} M$ then $\nabla \Omega=0$ and M is quaternion-Kähler.

There exist 8-manifolds with Ω closed and non-parallel. A partial analogue is a Kodaira surface $\Gamma \backslash \mathbb{C}^{2}$ that is (holomorphic) symplectic but not Kähler.

Reduction from 8 to 6

Distinguishing e^{7}, e^{8},

$$
\frac{1}{2} \Omega=-\omega \wedge e^{78}+\alpha \wedge e^{7}+\beta \wedge e^{8}-\frac{1}{2} \omega^{2}
$$

where

$$
\begin{aligned}
\omega & =e^{12}+e^{34}+e^{56} \\
\alpha & =3 e^{135}+e^{146}+e^{236}+e^{245} \\
\beta & =3 e^{246}+e^{235}+e^{136}+e^{145}
\end{aligned}
$$

form(s)	stabilizer in $G L^{+}(6, \mathbb{R})$
α	$S L(3, \mathbb{R}) \times S L(3, \mathbb{R})$
α, β	$S L(3, \mathbb{R})$
ω, α	$S L(3, \mathbb{R})^{\prime}$
ω, α, β	$S O(3)$

Linear circle actions

Consider the action of $S O(2)=S^{1}$ on

$$
\mathbb{R}^{6}=\mathbb{C}^{3}=\left\langle e^{1}, e^{2}\right\rangle \oplus\left\langle e^{3}, e^{4}\right\rangle \oplus\left\langle e^{5}, e^{6}\right\rangle
$$

commuting with $S O(3)$. The simple 3 -forms

$$
\gamma(t)=\left(x e^{1}+y e^{2}\right) \wedge\left(x e^{3}+y e^{4}\right) \wedge\left(x e^{5}+y e^{6}\right)
$$

with $x=\cos t, y=\sin t$, form an S^{1} orbit spanning a 4-dim subspace U of $\bigwedge^{3} \mathbb{R}^{6}$.

Lemmas

(i) If $\psi^{+}+i \psi^{-}=\left(e^{1}+i e^{2}\right) \wedge\left(e^{3}+i e^{4}\right) \wedge\left(e^{5}+i e^{6}\right)$ then

$$
U=\langle\alpha, \beta\rangle \oplus\left\langle\psi^{+}, \psi^{-}\right\rangle
$$

(ii) If $\gamma=\gamma(0)=e^{135}$ then

$$
\left\langle\alpha, \beta, \psi^{+}\right\rangle=\langle\alpha, \beta, \gamma\rangle=\left\langle\gamma(0), \gamma\left(\frac{2 \pi}{3}\right), \gamma\left(-\frac{2 \pi}{3}\right)\right\rangle
$$

since $\varepsilon=\exp \left(\frac{2 \pi i}{3}\right)$ acts trivially on ψ^{+}.

Examples

\ldots of symplectic 6 -manifolds with α, β, γ all closed.
Let $N^{6}\left(\xrightarrow{T^{3}} T^{3}\right)$ be a principal torus bundle with base 1 -forms e^{1}, e^{3}, e^{5} and connection 1-forms e^{2}, e^{4}, e^{6} with

$$
d e^{2}=c e^{35}, \quad d e^{4}=c^{\prime} e^{51}, \quad d e^{6}=c^{\prime \prime} e^{13}
$$

Suppose $c+c^{\prime}+c^{\prime \prime}=0$, so that $\omega=e^{12}+e^{34}+e^{56}$ is closed and N^{6} is symplectic.

Theorem N^{6} admits a triple of mutually transverse Lagrangian submanifolds through each point.

Follows from the existence of closed simple 3-forms

$$
\begin{aligned}
& e^{1} \wedge\left(a e^{3}+b e^{4}\right) \wedge\left(a e^{5}-b e^{6}\right) \\
& \left(a e^{1}-b e^{2}\right) \wedge e^{3} \wedge\left(a e^{5}+b e^{6}\right) \\
& \left(a e^{1}+b e^{2}\right) \wedge\left(a e^{3}-b e^{4}\right) \wedge e^{5} .
\end{aligned}
$$

Take $a=-\frac{1}{2}, b=\frac{\sqrt{3}}{2}$, so that $\theta=a+b J=\operatorname{rot}_{2 \pi / 3}$. Relative to the basis

$$
e^{1}, \quad e^{2}, \quad \theta\left(e^{3}\right), \quad \theta\left(e^{4}\right), \quad \theta^{2}\left(e^{5}\right), \quad \theta^{2}\left(e^{6}\right),
$$

the closed 3 -forms above are $\gamma(0), \gamma\left(\frac{2 \pi}{3}\right), \gamma\left(\frac{-2 \pi}{3}\right)$.

Corollary The 8 -manifold $N^{6} \times T^{2}$ has a closed 4$\overline{\text { form } \Omega}$ with stabilizer $S p(2) S p(1)$, but no quaternionKähler structure.

Remarks (i) There are essentially two examples:
(A) if $c, c^{\prime}, c^{\prime \prime}$ are non-zero then $b_{1}\left(N^{6}\right)=3$;
(B) if $c=0$ then $b_{1}\left(N^{6}\right)=4$ and $N^{6}=N^{5} \times S^{1}$.
$\ln (\mathrm{A})$, one can also take $c=c^{\prime}=c^{\prime \prime}$ and define

$$
\varphi=e^{12}+\varepsilon e^{34}+\varepsilon^{2} e^{56}=B+i \omega .
$$

(ii) It seems to be easier to $d \alpha=0=d \beta$ by postulating the existence of a simple closed 3 -form. Is this integrability property predicted by a property of $S O(3)$ torsion?
(iii) The symplectic group $S p(n, \mathbb{R})$ acts almost transitively on triples of transverse Lagrangian subspaces of $\mathbb{R}^{2 n}$, with stabilizer $O(n)$.

A non-principal fibration

Let H denote the real matrix group

$$
\left\{X=\left(\begin{array}{ccc}
1 & x^{1} & x^{6}+i x^{4} \\
0 & 1 & x^{3}+i x^{5} \\
0 & 0 & 1
\end{array}\right): x^{i} \in \mathbb{R}\right\}
$$

and Γ the corresponding integral lattice. Then

$$
N^{5}=\Gamma \backslash H=\{\Gamma h: h \in H\} .
$$

Consider the mapping

$$
\begin{array}{ccc}
N^{5} \times S^{1} & \ni & X \\
\downarrow \pi & \downarrow \\
T^{3} & \ni\left[x^{2}, x^{3}, x^{5}\right]
\end{array}
$$

The Lagrangian fibres of π are necessarily T^{3} 's, and there is a global section $x^{1}=x^{4}=x^{6}=0$. This is one leaf of the foliation determined by e^{146}; others will be multi-valued sections.

3 -symmetric spaces

The homogeneous spaces

$$
S^{6}, \quad S^{3} \times S^{3}, \quad \mathbb{C P}^{3}, \quad \mathbb{F}=S U(3) / T^{2}
$$

all have an almost complex structure J for which

$$
\theta=-\frac{1}{2} 1+\frac{\sqrt{3}}{2} J
$$

is the derivative of a 3-fold isometry around each point. It arises from a Lie algebra automorphism

$$
\hat{\theta}: \mathfrak{g} \rightarrow \mathfrak{g} \quad \text { with } \quad \hat{\theta}^{3}=1
$$

Moreover, G / H has a nearly-Kähler metric g_{NK} characterized by $\left(\nabla_{X} J\right) X=0$ (and $\nabla J \neq 0$).

Examples fall into the following types:
(i) isotropy irreducible spaces,
(ii) twistor spaces,
(iii) $(G \times G \times G) / G \cong G \times G$.

Conical singularities

Metrics with reduced holonomy

An $S U(3)$ structure on a 6 -manifold is defined by a 2 -form ω and a 3 -form ψ^{+}. The latter determines ψ^{-}and an almost complex structure J so that $\psi^{+}+$ $i \psi^{-}$is a $(3,0)$-form. Since $\psi^{+}=4 \gamma-\alpha$, each of the two nilmanifolds N^{6} has a natural half-flat $\mathrm{SU}(3)$ structure:

$$
\begin{aligned}
\psi^{+}(0) & =e^{135}-e^{146}-e^{236}-e^{245} \\
\frac{1}{2} \omega(0) \wedge \omega(0) & =e^{3456}+e^{5612}+e^{1234}
\end{aligned}
$$

are both closed.
Problem Extend to $\omega=\omega(t)$ and $\psi=\psi^{+}(t)$ so that

$$
\begin{aligned}
\varphi & =\omega \wedge d t+\psi^{+} \\
* \varphi & =\psi^{-} \wedge d t+\frac{1}{2} \omega \wedge \omega .
\end{aligned}
$$

are closed, giving a metric h on $(a, b) \times N^{6}$ for which hol $(h) \subseteq G_{2}$.

Solution (A): the irreducible case

$\frac{\text { Proposition }}{\text { hol }(h)=G_{2}}$.
Define s by setting $x=\frac{1}{\sqrt{3}} \cosh s, y=\frac{1}{\sqrt{2}} \sinh s$ and

$$
4(t+1) x^{5}-5 x^{2}+1=0 .
$$

Then h has an orthonormal basis
$d t, \quad \frac{y^{2}}{x^{2}} e^{1}, \quad \frac{y}{x^{2}} e^{3}, \quad \frac{y}{x^{2}} e^{5}, \quad x e^{2}, \quad \frac{y}{x} e^{4}, \quad \frac{y}{x} e^{6}$.
The original structure corresponds to the hypersurface $t=0$ and $x=1=y$.

Submanifold properties?

Solution (B): the reducible case

Proposition $(-\pi / 2, \pi / 2) \times N^{5}$ has a metric k with $\overline{\mathrm{hol}}(k)=S U(3)$.

Let $x=\cos u, y=\sin u$. Then k has an orthonormal basis

$$
\begin{array}{rll}
x e^{1}, & (1+y)^{1 / 2} e^{3}, & (1-y)^{1 / 2} e^{5}, \\
x^{2} d u, & (1-y)^{-1 / 2} e^{4}, & (1+y)^{-1 / 2} e^{6} .
\end{array}
$$

The Kähler form is $\omega=x^{3} e^{1} d u+e^{45}-e^{63}$, and there are closed 3-forms

$$
\begin{gathered}
e^{146} \\
x(1+y) e^{34} d u+x(1-y) e^{56} d u+x^{2} e^{135} \\
x e^{46} d u+(1-y) e^{156}+(1+y) e^{134} \\
x^{3} e^{35} d u
\end{gathered}
$$

There is a pencil of Lagrangian submanifolds through each point.

A twisted model

The Hermitian symmetric space

$$
Q=\operatorname{Gr}_{2}\left(\mathbb{R}^{5}\right)=\frac{S O(5)}{S O(3) \times S O(2)} \subset \mathbb{C P}^{4}
$$

has structure group

$$
\left\{\left(\begin{array}{cc}
a P & -b P \\
b P & a P
\end{array}\right): P \in S O(3), a^{2}+b^{2}=1\right\}
$$

and $T_{q} Q \cong \mathbb{R}^{3} \otimes \mathbb{R}^{2}$. In addition to its Kähler form ω, there is a 2-dim subspace $\langle\alpha, \beta\rangle \subset \bigwedge_{0}^{3} T^{*} Q$ that defines a tautological vector bundle

$$
\begin{aligned}
W & e^{7}, e^{8} \\
\mathbb{R}^{2} \downarrow & \\
Q &
\end{aligned}
$$

and a well-defined 4-form

$$
\frac{1}{2} \Omega=-\omega \wedge e^{78}+\alpha \wedge e^{7}+\beta \wedge e^{8}-\frac{1}{2} \omega^{2}
$$

Poposition In fact, $\nabla \Omega=0$ and (W, Ω) is locally isometric to $\mathbb{G r}_{4}\left(\mathbb{R}^{6}\right) \cong \mathbb{G r}_{2}\left(\mathbb{C}^{4}\right)$.

References

Acharya-Denef-Hofman-Lambert, hep-th/0308046
Atiyah-Witten, hep-th/0107177
Duchemin, math.DG/0311436
Giovannini, PhD thesis, Turin (2004)
Salamon, math.DG/0107146
Swann, C R Acad Sci Paris 308 (1989)
Wolf-Gray, JDG 2 (1968)
... and discussions with B. Acharya, D. Conti, D. Matessi

Slides at www.ma.ic.ac.uk/~sms

