Subgroups of G_2

 $G_2\subset SO(7)$ acts on $\mathbb{R}^7\subset\mathbb{C}^7$ leaving invariant a 3-form φ in one of two open $GL(7,\mathbb{R})$ orbits of $\bigwedge^3\mathbb{R}^7$.

subgroup	\mathbb{C}^7	3-forms
SO(3)	$S^6\mathbb{C}^2$	1
SO(4)	$\mathbb{C}^4 \oplus \bigwedge^2_+ \mathbb{C}^4$	2
SU(3)	$\mathbb{C} \oplus (\mathbb{C}^3 \oplus \overline{\mathbb{C}^3})$	3

Starting from SO(4) leads to explicit metrics with holonomy groups equal to G_2 on vector bundles over 3- and 4-manifolds.

SU(3) structures

A reduction to SU(3) on a 6-manifold is characterized by

- a 'Kähler' 2-form ω
- ullet a pair of real 3-forms ψ^+,ψ^-

such that $\psi^+ + i\psi^-$ is a (3,0)-form for an almost complex structure J and $g(X,Y) = \omega(JX,Y)$ is positive definite.

Relative to an orthonormal basis of 1-forms,

$$\omega=e^{12}+e^{34}+e^{56}$$
 $Je^1=e^2,\ Je^3=e^4,\ Je^5=e^6$ with $J^2=-1$ $\psi^++i\psi^-=(e^1+ie^2)\wedge(e^3+ie^4)\wedge(e^5+ie^6)$

giving compatibility equations:

$$\omega \wedge \psi^{\pm} = 0,$$

$$\psi^{+} \wedge \psi^{-} = \frac{2}{3}\omega^{3}$$

Intrinsic torsion

The holonomy group $\operatorname{Hol}(g)$ is contained in SU(3) iff all the forms are constant relative to the Levi-Civita connection:

$$\nabla \omega = 0, \quad \nabla \psi^{\pm} = 0.$$

The extent to which this fails is measured by a torsion tensor τ that takes values in a space

$$\mathfrak{su}(3)^{\perp} \otimes T^* \cong_c (\Lambda^{2,0} \oplus \Lambda^{0,2} \oplus \mathbb{C}\omega) \otimes (\Lambda^{1,0} \oplus \Lambda^{0,1})$$

of 42 dimensions.

Corollary In fact, $Hol(g) \subseteq SU(3)$ iff the forms are closed:

$$d\omega = 0, \quad d\psi^{+} = 0, \quad d\psi^{-} = 0.$$

In this case J is integrable, g is Kähler and the structure is 'Calabi-Yau'.

Components of $\, au\!:$

Key features:

 \bullet The Nijenhuis tensor of J splits into two:

$$Nij = Nij_+ + Nij_-$$

 \bullet 1-dimensional invariants common to $d\omega$ and $d\psi^{\pm}$:

$$d\omega \wedge \psi^{\pm} = \omega \wedge d\psi^{\pm}$$

• Two 6-dimensional components are determined by

$$d(\frac{1}{2}\omega^2) = \omega \wedge d\omega,$$

$$(d\psi^+)^{3,1} = i(d\psi^-)^{3,1}$$

and a linear combination is conformally invariant.

G_2 structures

On a 7-manifold $\mathbb M$ with tangent space $T_x\mathbb M=\mathbb R^6\oplus\mathbb R$ and $SU(3) imes\{e\}$ structure, define

$$\varphi = \omega \wedge e^7 + \psi^+$$
$$*\varphi = \psi^- \wedge e^7 + \frac{1}{2}\omega^2$$

In terms of an orthonormal basis,

$$\varphi = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}$$

$$*\varphi = e^{1367} + e^{1457} + e^{2357} - e^{2467} + e^{3456} + e^{1256} + e^{1234}$$

The associated holonomy group is contained in $\,G_2\,$ iff

$$d\varphi = 0$$
 and $d*\varphi = 0$.

Instances of these equations fit into two cases:

- ullet Nij $^-=0$ ('self-dual'), realized when $\mathbb{M} o M^6$
- $\operatorname{Nij}^+=0$ ('ASD'), realized when $\mathbb{M} \to (a,b)$

If $\mathbb M$ is an S^1 bundle with curvature 2-form $ho=de^7$,

$$0 = d\omega \wedge e^7 + (\omega \wedge \rho + d\psi^+)$$
$$0 = d\psi^- \wedge e^7 + (\psi^- \wedge \rho + \omega \wedge d\omega).$$

Thus $d\omega=0$ and $d\psi^-=0\,.$ In general, if X generates the S^1 action,

$$\omega = X \,\lrcorner\, \varphi, \qquad \mathrm{e}^{-f} \psi^- = X \,\lrcorner\, (*\varphi)$$

are closed, where $|X|\!=\!\mathrm{e}^{2f}$. Thus M has a symplectic SU(3) structure such that

- $\bullet \ (d\psi^-)^{2,2}=0$, and $\,\psi^-\,\lrcorner\,\,d\psi^-\,$ is an exact 1-form;
- ${
 m e}^{3f} \left(\,\omega\, \lrcorner\, (d\psi^+)^{2,2} 2df\, \lrcorner\,\,\psi^ight)$ is a closed traceless 2-form.

Special case: M is Kähler

Let $\mathbb{M}=M imes(a,b)$ with $e^7\!=\!dt$ and ω,ψ^\pm functions of t .

$$0 = \left(d\omega - \frac{\partial \psi^{+}}{\partial t}\right) \wedge dt + d\psi^{+}$$
$$0 = \left(d\psi^{-} + \frac{1}{2}\frac{\partial \omega^{2}}{\partial t}\right) \wedge dt + \frac{1}{2}d(\omega^{2})$$

 $\frac{\text{Definition}}{d(\omega^2)=0}$ An SU(3) structure is half-flat if $d\psi^+=0$ and (21/42 of τ is zero)

Hitchin's theorem enables the equations to be solved on a compact 6-manifold with a half-flat SU(3) structure.

Special case: $d\omega=a\psi^+$ and $d\psi^-=b\omega^2$ (like S^6)

A nilpotent example

Given the complex Heisenberg group

$$G = \left\{ \begin{pmatrix} 1 & z^1 & z^3 \\ 0 & 1 & z^2 \\ 0 & 0 & 1 \end{pmatrix} : z^{\alpha} \in \mathbb{C} \right\},\,$$

define $M=\Gamma\backslash G$ where Γ is the subgroup with $z^{\alpha}\in\mathbb{Z}[i]$. Mapping to (z^1,z^2) realizes M as a T^2 -bundle over T^4 , and the real basis (e^i) of $T_e^*G\cong\mathfrak{g}^*$ with

$$dz^{1} = e^{1} + ie^{2}, \quad dz^{2} = e^{3} + ie^{4}, \quad -dz^{3} + z^{1}dz^{2} = e^{5} + ie^{6}$$

satisfies

$$de^{i} = \begin{cases} 0 & i = 1, 2, 3, 4 \\ e^{13} + e^{42}, & i = 5 \\ e^{14} + e^{23}, & i = 6. \end{cases}$$

Examples of U(3) structures with (e^i) orthonormal:

$$\omega_0 = e^{12} + e^{34} + e^{56},$$
 $\omega_1 = e^{12} - e^{34} - e^{56},$ $\omega_2 = -e^{12} + e^{34} - e^{56},$ $\omega_3 = -e^{12} - e^{34} + e^{56}.$

Whereas $\omega_0, \omega_1, \omega_2$ are complex structures, ω^3 defines an SU(3) structure on M with $d\omega_3=\psi^+$.

Given an invariant SU(3) structure on M, ψ^+ determines J and $\psi^- = J\psi^+$. If $d\psi^+ = 0$, what can one say about $d\psi^-$? Certainly it belongs to $d(\bigwedge^3 \mathfrak{g}^*)$, a space of dimension 5.

Roundabout proof: (i) $\omega=\omega_3$ is compatible with an SU(3) structure with $d\psi^+=0$ and $d\psi^-=4e^{1234}$;

- (ii) $K = \ker(d: \bigwedge^3 \mathfrak{g}^* \to \bigwedge^4 \mathfrak{g}^*)$ has dimension 20 5 = 15;
- (iii) The space $\mathcal C$ of invariant complex structures on M can be identified with an open set of $\{\psi^+ \in K: d\psi^- = 0\}/\mathbb C^*$;
- (iv) $\mathcal C$ has complex dimension 6 (= $h^{2,1} h^{2,0} + 3$).

Similar considerations apply to $d\omega \in \bigwedge^3(\mathfrak{g}^*)$ and yield the

Theorem A metric with holonomy G_2 is obtained by deforming the standard half-flat SU(3) structure on M as follows:

$$\begin{array}{lll} \psi^+(t) & = & \psi_0^+ + x(t) \, d(e^{56}) \\ & & \frac{1}{2} \omega(t)^2 \; = \; \frac{1}{2} \omega_0^2 + y(t) \, e^{1234} \end{array} \quad \text{with} \quad \begin{cases} x' = \frac{1}{\sqrt{y+1}}, \\ y' = -4x \end{cases}$$

$$H = \sqrt{y+1} + x^2$$
$$y = (H - x^2)^2 - 1$$

Explicit solutions

Taking H = 1 gives $x^3 + 3x + 3t = 0$ and:

$$x(t) = s^{1/3} - s^{-1/3}, \quad 2s = -3t + \sqrt{4 + 9t^2}$$

$$\omega(t) = (1 - x^2)(e^{12} + e^{34}) + (1 - x^2)^{-1}e^{56}$$

J(t) has $(1,0)\text{-forms}\ e^1+ie^2,\ e^3+ie^4,\ e^5+ie^6+xi(e^5-ie^6)$, and is only integrable for t=0 .

In local coordinates (p,q,\ldots,t) with $r\!=\!p^2+q^2$, the metric (g_{ij}) on \mathbb{M}^7 is given by

$$\begin{pmatrix}
1-x^2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1-x^2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1-x^2+r & 0 & -p & -q & 0 \\
0 & 0 & 0 & 1-x^2+r & q & -p & 0 \\
0 & 0 & -p & q & (1+x)^{-2} & 0 & 0 \\
0 & 0 & -q & -p & 0 & (1-x)^{-2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Taking H=0 is possible with initial condition $\omega(0)=\omega_3$:

$$x(t) = (3t)^{1/3}$$
;

$$\omega(t) = -x^2(e^{12} + e^{34}) + x^{-2}e^{56}$$
 ;

$$J(t)$$
 is constant with $(1,0)$ -forms $e^1-ie^2,\ e^3-ie^4,\ e^5+ie^6$.

As a T^2 -bundle over T^4 , M has an orthonormal basis of 1-forms $xe^1,\,\ldots,\,xe^4,\,x^{-1}e^5,\,x^{-1}e^6$. The Ricci-flat metric on $\mathbb{M}=M\times(0,\infty)$ is

$$t^{2/3}$$
(flat metric on base) $+ t^{-2/3}$ (vertical metric) $+ dt^2$

 $\mathbb M$ has an S^1 quotient $(\Gamma'\backslash G')\times (0,\infty)$ with (1,0)-forms e^1+ie^3 , e^4+ie^2 , x^3dx+ie^5 and Kähler form

$$\omega = x(e^{13} + e^{42}) + dx \wedge e^5 = d(xe^5) = ic \,\partial \overline{\partial}(t^{5/3})$$

built from T^4 .

References

Hitchin, math.DG/0107101 Gibbons-Lu-Pope-Stelle, hep-th/0108191 Chiossi-Salamon, math.DG/0202282.