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LECTURE 1

Complex structures on 6-manifolds

1 2t 23
Example The complex Heisenberg group G consists of (z1,2%,2%)=| 0 1 22
0 0

1
with
(u',u?,u?) - (24,27, 2%) = (u' + 21, v + 2%, ud + 2° + u'2?).
It is a complex Lie group; if L, denotes left multiplication by u = (u!, u*,u?) then
Ly(dzr) = d(u + ),
L (dz? — 2'd2?) = d(u? + 2° + u'2? — (u'+2Y)d(u?+2%)) = d2° — 2'd2>.

Let
dzl = el +ie?, d? =ed+iet, —d2*+ 2'd2? = €® +ied.

Then {e',... €%} forms a basis of g*, the space of real left-invariant 1-forms,
satisfying

(0, 1<i <4,

de" =< eld 2 =05,

\ el +e¥,  i=6.

These relations determine the Lie bracket on g by the rule e"([u, v]) = —de"(u, v)

and we obtain a complex

gt EA N 2 N By L



Consider the subgroup
I'={(z}2%2%) € G: 2" =a" +ib" € Z[i]}.
The Iwasawa manifold N = I'\G (set of right cosets) is the total space of a principal
bundle 7 : N — T with fibre T2, where 7 is induced from (21, 22, 23) s (21, 22).
The 1-forms ¢’ are well defined on NV, and
D = (e', €2, €3, e!) = 7" (TFTY).
Observe that )
d(g) c A'D c A'D,

where A\"D is the 3-dimensional subspace of ‘self-dual’ 2-forms (relative to the
obvious inner product). This is one of many examples that illustrates the role that
self-duality plays in higher-dimensional geometry.

Question What algebraic structure does the bi-invariant complex structure of G
(that passes to N) impose upon g*?

Familiar answer: an endomorphism J : g* — g* with Je! = —e? etc, so that
Jdz" =idz", and satisfying [J X, JY| = [ X, Y]+ [J X, Y]+[X, JY].

Less familiar answer: a real 2-dimensional space of closed 3-forms, spanned by
¢ — (613—|—642)65 _ (614+623)66,

where ¢ + 1) = (el +ie?) A (e3+ie?) A (e’ +ieb) = p+ir).



Lemma® {g*¢ : g € GL(6,R)} is an open set O of A’RE. Indeed, the stabilizer
of ¢ is SL(3,C), so O = GL(6,R)/SL(3,C).

Given ¢ € O, there is therefore a unique pair (5, J) where 5 € O and J is an
oriented almost complex structure on R® such that ¢+i¢p € A3V @ A%,

Regard O as a subset of /\39*. If dp=0= d$ then J is integrable. The space
C*(g) of invariant oriented complex structures on IV is isomorphic to > /C*, where

S={¢ € kerds N O : do = 0}.

In fact, dim(kerds) = 15 and X is a real cubic hypersurface, so C*(g) has real
dimension 12.

Theorem? C*(g) has the homotopy type of the disjoint union of a point and a
2-sphere S2.

The treatment of symplectic structures is somewhat easier:

Proposition The space S™(g) of invariant symplectic forms on N has real dimension

10, and is homotopic to S°.

|dea. First observe that N admits symplectic forms, like €!®+¢e?°+€3*. One can
also take w = f A €S+ --- for any f € S° C D, the rest of w being uniquely
determined by the orientation and the fact that dw=0.

There is a sense in which S? separates the point and S? of the theorem.

'Recently exploited by Hitchin in a study of Calabi-Yau moduli spaces.
2Proved by G. Ketsetzis, using fact that I is always J-invariant, and extending work of Abbena-Garbiero-Salamon.
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The Kahler condition

Theorem® A nilmanifold (like V') cannot admit a Kahler metric unless it is a torus.

Recall that a Riemannian metric g is Kahler if there exists an orthogonal complex
structure J for which dw = 0, where wy. = Jj'gqc. This implies that VJ = 0,
and parallel transport preserves not only g but J and w: the holonomy group is
contained in U(n).

Definition A Calabi-Yau manifold is a compact Kahler manifold with holonomy
group equal to SU(n).

This means that there is a parallel (n,0)-form ¢+, and that the algebra of
parallel forms is generated by w, ¢, 1.

Let M be a compact Kahler manifold of real dimension 6, with a nowhere-zero
closed (3,0) form ®. Then the canonical bundle A3 is trivial, ¢;(M) = ¢;(TM) =
—c1(AY) vanishes in H*(M,R). Yau's Theorem implies that M has a Ricci-flat
Kahler metric, and it can then be shown that V& = 0.

Proposition Such an M is projective, i.e. a submanifold of some CP™.

Relies on the fact that H*°=0. The cone of Kahler forms on (M, J) is open in
H?(M,R) = H"! and so intersects H*(M,7Z) = H(M,O*). The result follows
from the Kodaira embedding theorem.

3Proofs by Hano, Benson-Gordon, McDuff, Campana and others.
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Two constructions

1. The intersection of two hypersurfaces 21, %5 in CP° defined by polynomials
f1, fo of degrees dy, ds. If dfi; A dfs # 0 at all points of M =31 N Yy then M is a
complex manifold.

TCP’|yy = TM @ O(dy) ® O(dy),

and 6 = ¢1(TM) + dy + ds. So ¢y =0, (dy,ds) is one of (1,5),(2,4),(3,3). The
first case gives a quintic in CP*, and x = ¢3 = —200, —176, —144 respectively.

2. An example more akin to a Kummer surface®: Let ¢ = (—1 + v/3)/2 be a
primitive cube root of unity, and set

D= {(z,2%2%) : 2" = a" + eb" € Z[¢]}.

Then T'\(C?,+) is diffeomorphic to 7° Multiplication by € on C? induces a
mapping 6 : T — T with > = 1 that preserves the 3-form dz' A dz? A d23.
Then 6 has 27 fixed points, and T°/(#) has 27 singular points locally resembling
Cg/Zg.

Now C?\ {0} can be identified with the total space of the tautological line bundle
O(—1) over CP? minus its zero section. It follows that the total space A*" of
O(—3) — CP? admits a mapping 7 to C3/Z3 such that 771(0) = CP?. Since
A?? also has a canonical (3, 0)-form (d of the tautological (2, 0)-form), there exists
an overall resolution X of 7°/(#), with both a Kihler metric and nowehere-zero
holomorphic (3,0)-form. Thus, X has a Calabi-Yau metric. Since b,=9 + 27 and
bs=2, X has h’'=0 (bad news for the ‘mirror’ of X) and x="76.

4Thousands of distinct CY manifolds have been enumerated by various generalizations of this construction.
’Due to Roan.



LECTURE 2

(G5 Structures on real 7-manifolds

On R there is a standard
e inner product g = Y0 e" @ ¢"
o 2formw =30 Je" @€ =12+ 34 + 56
e 3-form ¢ = (134 42)5 — (14 + 23)6
Consider
w=0¢—wAe =—(12+34)7+ (13 +42)5 — (14 4 23)6 — 567.
This form is invariant by subgroups SU(3) and (a non-standard) SO(4) of SO(7).

Proposition O = {g*¢ : g € GL(7,R)} is an open set of /\3]R7. In fact,
Stab(y) = Gy C SO(7) has dimension 14 and O = GL(7,R)/Gs.

Corollary Let ¢ be a ‘positive’ 3-form on a 7-manifold M, meaning that g € O C
/\3T*M at each point. Then ¢ determines a metric g and also a 4-form p=x, ¢.

If dp =0 = dip then Vi =0 and g has holonomy in G5 [FG]|. This is because

{/\T*Nso( ) Y gy ®T*

whereas Vxyp € T and Vo € T*Q T*
N’'T* =~ Ry @ [T @ S2T

If Vo = 0, the Rlemann curvature tensor R belongs to the kernel of the linear
mapping S*(g2) — AT (given by wedging 2-forms), which is an irreducible
77-dimensional subspace.® Hence ¢ is Ricci-flat.

6Beware that there are two inequivalent 77-dimensional irreducible representations of go; the other is the kernel of the Lie
2
bracket /A g2 — g2.



Example M = S3 x S° has a basis of 1-forms {e', e €, €2, e* €} such that

del = €3, 3 = e°!, ded® = e!3 etc. Consider
i(e! +ee®) A (e® +eet) A (e° +ee®) = ¢ + i

GxGxGi

Multiplication by € on T.M arises from the fact that G X G = 5

7

Sa

3-symmetric space.

Lemma dw = —%gb (so dp = 0) and dyp = w?.

These equations characterize a ‘nearly-Kahler’ (NK) metric on a 6-manifold M.
SU(3)
T2

Theorem® If M is NK then M x R* has holonomy in Gb.

Only other compact examples known are S¢, CP?, F? =

Follows because we may construct closed forms

@ = 4t12¢ — /3t 2w A dt,
xp = t 4 Adt — 51170

M = S° gives the flat metric on R”; other conical metrics can be deformed into
complete metrics with holonomy equal to (G5, analogous to the Eguchi-Hanson
gravitational instanton®.

E.g. A"T*s* > CP?
<7°+1)1/27T*954 + (7“ + 1)_1/2gR3 on total space of dm
S4

"The full theory of these was developed by Gray and Wolf.
8Proved by R. Reyes-Carrion, present in Porto.
9A hyperkihler metric on the total space of O(—2) — CP', also described by Calabi
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Cohomology of compact (Go-manifolds
Let ¢ be a positive 3-form on a compact 7-manifold M with dp=0=d.
e Berger’s list implies that the holonomy equals G5 iff b1 = 0
e H*(M,R) = {3 € I'(A%,) : dB = 0} and

812y U [o] = / trace(RAR) A — || R
M

Here A2, is shorthand for the distinguished subbundle of 2-forms of rank 14 (and
fibre isomorphic to go).

Corollary No compact 7-manifold with 0 = p; € H*(M,R) (e.g. a nilmanifold
which is parallelizable) can have a metric with holonomy equal to Gs.

o V:=H)M,R) =R[p] ®{y €T'(A3;) : dy = 0} represents the tangent space
10

to the space of GGo-structures modulo diffeomorphism.
A real-valued function on V is defined by f([¢]) = [,, A @ and the 1-form
df : V — V*=H*M,R) maps [¢] to [7).

Corollary The set {([¢], [?]) : ¢ is a positive 3-form} is (the graph of df and so) a
Lagrangian submanifold of dimension b3 of the symplectic space V & V* = T*V.

Solving dip=0=d for o= py+&+dn with gauge fixing condition d*¢ € T'(A%,) is
equivalent to an elliptic non-linear PDE (dd* + d*d)n=*dF (£ + dn), where F is
a smooth mapping of a neighbourhood of 0 in /\3T;M to /\4T;M with F'(0)=0.

10Work of Bryant and Joyce.



CCapR
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One of Joyce's examples!! Let 77 = , where ' = (Z & €7)°.

Define o, 8,7 : T7 — T7 by
a(zl, 2%, 25,t) = (ezl, €222, 25, 1)
Bzt 2,55,0) = (624,25, 1+ 1)

(21, 22, 23, t) = (2,22, 2°, —t)

(a, B) = Z3 x Zs3, and A = («a, B,) is a non-abelian group of order 18. A fixes
the flat Go-structure, but not the SU(3) structure on C?, so any desingularization
preserving the G5 structure will then lead to a manifold with Hol=G5.

Lemma 77 /A has singular set consisting of (i) T°/G3 (with z!=2%2=0),
(i) four manifolds 7°/Zs3, (iii) two T* each intersecting 7°/G3 in T'.
Resolving each type, e.g. in (ii) by replacing T° x (C?/Z3) by T° x ALE with
be(ALE) =2,
(bo+1,b3+1) or (by, b3+1) for (i)
(b2, b3) — <« (ba+2,b3+2) or (by, b3+2) for (ii)  giving (0+k+2, 4+15)
(ba+1,b3+3) for (iii)  overall, with 0 < k£ <9

Joyce's exhaustive analysis has furnished 252 other sets of Betti numbers (b, b3)
with 0 < by < 28 and 4 < bg < 215. The vast majority have by + b3 = 3 mod 4.

10ne of the more complicated ones in D. Joyce’s book ‘Compact manifolds with special holonomy’ (OUP, 2000) which
incorporates sweeping generalizations of constructions in his previous JDG papers on the subject. See page 338, opposite the
graph of possible Betti numbers.
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LECTURE 3

Special Riemannian 8-manifolds

Let (M3, g) be a simply-connected Riemannian 8-manifold which is irreducible (not
My x Ma, g1 X ga).

Theorem The holonomy (parallel transport) group Hol is one of SO(8), U(4),
SU(4), Sp(2), Spin7, Sp(2)Sp(1), U(2)Sp(1), SU(2)Sp(1), SU(3).1?

e Hol C U(4) = M is Kahler and has a parallel form w=w; € A,
pointwise of type 12+34+56+78

e Hol=SU(4) = M also has a parallel form ¢+iyp € A%,
pointwise (1 + ¢2)(3 + 44)(5 + 6)(7 + i8)

= M is Ricci-flat K3hler (and CY)
We have already discussed these reductions. The next on the list is
e Hol=S5p(2) = M has a parallel holomorphic symplectic form wy+iws € A%,
pointwise (13+42+425+86) + i(14+23+4-58+67)
= M is hyperkahler (HK)

On any HK manifold, the 2-forms wy, wo, w3 determine respective complex struc-
tures Ji, Jo, J3 (with J;e! = —¢' etc) satisfying the quaterion identity J;Jy = J3=
—JoJy.

12The last space was omitted in error in the lecture, as the speaker forgot that any compact Lie group is itself a symmetric
space. The theorem is then a special case of the celebrated classification results of E. Cartan, and Berger’s list.
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e Sp(2)Sp(1) is the stabilizer of wi + ws + wf € AR

If Hol C Sp(2)Sp(1) then M is quaternion-Kzhler (QK); e.g. HIP?.
Such manifolds do not generally admit globally-defined complex structures.

e SpinT is the stabilizer’® of the 4-form w? + wy — w7 in R8

If Hol C Spin 7 then Ricci=0. The theory of these manifolds has many other
similarities with those with Hol=G,.

e The last three in list are holonomy groups of symmetric spaces. Up to local
isometry,

_ __SUM¢) _ || _ 5
Gy, G
U(2)Sp(1) SO(4)
_ SU(3) x SU(3)

Hol=SU(3) = M is itself the Lie group SU(3)= SUG)

Hol=SU(2)Sp(1) = M =

Any QK 8-manifold with Ricci >0 is one of the three spaces above.

Wolf’s theorem For any compact simple GG, there is

e a QK symmetric space %50

i e G inimal nilpotent orbit in g,
e an associated ‘adjoint variety RO minima ”'P‘Zci" orbit in g

The latter is a Fano contact manifold.!4

13Observation of Bryant-Harvey.

14The QK space may be regarded as an H*-quotient of the nilpotent orbit, which itself has a HK metric described by
Kronheimer.
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Curiosities from representation theory

The subgroups U(2) and SU(2) of Sp(2) themselves give rise to

Sp(2) _ SO(5)
U(2)  SO(2) x SO(3)

—=Gry(R%)=Q3 Cc CP*,

— = B, with T, B the irreducible 7-dim rep V7 of SO(3)

SU(2) S0(3)
SO(8) . . . .
STG) is a 20-dim space with a non-integrable almost complex structure

It can be shown!® that
NVvi2vseV,eVie Ve W

It follows that T, B has a unique 3- (and 4-) form invariant by SO(3). The unique

SO(5)-invariant metric on B has strictly positive sectional curvature.!®

Corollary B has a (G5 structure with dip = %y, and (by analogy to the NK case),
B x R* a metric with Hol= Spin 7.

The homomorphism SO(3) — Gy C SO(V7) itself gives a description
go=s503)d V1=V V)
entirely in terms of representations of SO(3) or SU(2)=Sp(1)!

15The book by Fulton-Harris on Representation Theory contains examples of this type.
16Proved by Berger, hence the notation.
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Poincaré polynomials 1+4-b;t-+byt*+- - -

CP?, Q3 : 1+t2 4+t 410

ST, B : 1+t

HP?, Go/SO(4) : 14 t* 418
QK
Gro(CH=Gry(RO) : 1+ 124 2t1 + 15 + 8

by =1+ by
K2 - 1 + 23t% + 276t* + 2315 + ¢8
HK
Ko : 1+ 782 + 83 + 108t + 8¢° + 7¢6 + ¢8

bs + by = 46 + 100y

The quadric Q?™*! has the same Betti numbers as CP?*™!. The spaces B and
G3/SO(4) mimic ST and HIP? respectively, but have torsion classes.

Theorem The Betti numbers of compact QK (with Ricci > 0) and HK 8-manifolds
satisfy the highlighted constraints.!”

17The former is an essential ingredient in Poon-Salamon’s proof that there are no other positive QK 8-manifolds
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Let T=T" = R*/Z*, and K a K3 surface formed by resolving T/=1.

The dihedral group D={e, o, a?, o>, 8, a8, a’3, a3} generated by
a2l 22,28, N =(=2°, =24 21, 22), B2, 2228, 2 = (23, 24, 21, 27)
actson 7% =T x T.

Kx K . T xT
S o equivalently of
2

singular T/=41 (which explains why by(K2) =by(T) + 17'8).

Then K[2:=Hilb’K is a resolution of which has 17

T xT +—  {e}
™ (OK) <« (8

? — ()

K2 — D

In this ‘Galois correspondence’, spaces on the left are HK resolutions of T x T
factored out by the indicated subgroup. T2 is a finite quotient of T x K and

contains KK as a submanifold.
TxT

(@)

C*/Z, that admit no resolution with a HK metric.

has isolated singularities of local type

It is impossible to fill the ‘?" since

18The Betti numbers of K™ were computed by Gattsche.
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An application of index theory

Theorem

if M is QK

if Hol=Spin7
if M is CY

if M is HK

A:—%(1+bg—bg—bj+2b;)=<

w N = O

\

Proof. Uses Pontrjagin classes p; € H*(M,R), p, € H3(M,R).

(220 +2by—2b3+by = X = L(dpy — p)

{ bjl_ —b, = o0 = %(7}92 —p12) [Hirzebruch]

| number of || spinors = A = ﬁ(?pf—élpg) [Atiyah-Singer]

The Betti number constraints follow from additional vanishing-type arguments,
namely b3 = b, =0 in the QK case, and by =3 + p and b; = 3p for HK. Any
compact 8-dimensional HK manifold satisfies X < 324.1

Three big problems in the area of special metrics are

(i) to classify compact 6-dimensional NK manifolds;

(i) to prove that all positive QK manifolds are symmetric;

(iii) to find other irreducible HK 8-manifolds.

19 As observed by Beauville and Guan, this follows from a theorem of Verbitski.
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Instantons on the quaternionic plane

M3 = C® (with w = 12+34+56) is a representation of Sp(3,C), whose adjoint
variety is the total space of the Hopf fibration CP° — HIP?.

Let H be tautological bundle over HIP? with fibre C2, so
C'=H,® H

for each z € HIP?2. Then H-' is an ‘instanton’: it has a ‘self-dual’ connection?’

which makes 7* H+ a standard holomorphic rank 4 bundle over CP®.

If ¢ = (13442)5 — (14+23)6 then w A ¢ = 0 and for each = € HP?*,
¢ € N\C® — H, ® \gH} = Hom(H,, \oH,")

Theorem?! (i) V = coker¢ is a complex rank 3 vector bundle on HIP?, with structure
group SU(3);

(ii) ¢ € T(HP?, H ® /\(Q)Hi) is a solution of a ‘twistor equation’;

(iii) 7V is an indecomposable holomorphic vector bundle on CP?, first discovered

by Horrocks.

Condition (i) is a consequence of the generic nature of the 3-form ¢ that was dis-
cussed in the first lecture, and the theorem is another illustration of its importance.

20The defining condition is that curvature takes values in the subspace of /\2T;JHIE”2 isomorphic to sp(2) generalizing /\+, and
this is equivalent to Tian’s condition involving the 4-form. Such connections are minima of the Yang-Mills functional. In fact
H has curvature in sp(1), and H* in sp(2).

21Proved by Mamone Capria-Salamon.
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