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Introduction

The Dirac operator plays a fundamental role in the geometry and topology of Rie-
mannian manifolds, and special classes of manifolds have properties that reflect features
of their Dirac operators. A case in point is the description of Dolbeault cohomology on a
Kahler manifold in terms of the Dirac operator with coefficients in an appropriate bun-
dle. The aim of this note is to highlight some aspects of the analogous theory concerning
quaternionic Kahler manifolds, which form a large class of Riemannian manifolds with
reduced holonomy.

In the last section, we announce some new linear relations amongst the Betti num-
bers of compact quaternionic Kéhler manifolds with positive scalar curvature. These are
analogues of Kéhler-Einstein manifolds whose cohomology is exclusively of type (p,p).
Our results give further evidence for supposing that the only such manifolds are the
quaternionic Kahler symmetric spaces, especially when combined with knowledge that
the complex Grassmannians Gry(C"*?) are the only examples with b, > 0 [15]. Exte-
rior power operations and the y-filtration in K-theory are used in the formulation of the
main computational lemma 5.3. The results were obtained as part of a joint project
with C.R. LeBrun on the topology of quaternionic Kahler manifolds, and full details will
appear in a forthcoming paper [16].

The rest of the note is organized with the last section in sight. Two preliminary
sections set up the rudiments of index theory from the point of view of Dirac operators.
The situation for K&hler manifolds, described by Hitchin [10], is summarized so as to
reveal exact parallels with the quaternionic case, and a concise survey of quaternionic
Kahler theory is inserted as an interlude. The material was presented at the conference
on Differential Geometry and its Applications in Opava, Czechoslovakia in August 1992,
and thanks are due to the organizers of that event.

1. Dirac operators

Throughout the paper M denotes a compact 4n-dimensional oriented Riemannian
manifold. In this first section, we shall suppose that M is a spin manifold, so that there
exists a principal Spin(4n)-bundle P over M such that P/Z; is isomorphic to the bundle
of oriented orthonormal frames. The local isomorphism between P and P/Z, allows the
Levi Civita connection to be lifted to a connection on the principal bundle P invariant by



Spin(4n). It is this connection that is especially well suited to the definition of differential
operators linked to the geometry of M.

A representation p of a compact Lie group is determined by its restriction to a maxi-
mal torus, and the simultaneous eigenvalues of this restricted action are the weights of p.
Of relevance to us is the existence of a faithful representation of Spin(4n) on a complex
vector space V of dimension 22" with weights

with respect to standard coordinates on the Lie algebra of a maximal torus. This rep-
resentation arises from the realization of Spin(4n) as a subgroup of the Clifford algebra
Cyn, and the group action preserves an antilinear mapping

o:V =V with o= (-1)" (2)

this allows us to view V as the complexification of a real space (the fixed points of o)
when n is even, or as underlying a quaternionic space (with o = j) when n is odd.
Combining the real or quaternionic structure ¢ with an invariant Hermitian metric gives
an equivariant isomorphism V = V*.

The representation of Spin(4n) on EndV = V®V has kernel Z, and therefore
factors through SO(4n). Indeed, there is a SO(4n)-equivariant isomorphism

4n
VeV = Ak, (3)

k=0

where A* denotes the exterior power A*T" of the basic representation given by
Spin(4n) — SO(4n) — Aut C*". (4)

The representation 7" has a real structure, and we shall generally replace it with the
equivalent representation 7™ to conform to certain conventions. The fundamental formula
(3) may be deduced from a standard method of decomposing tensor products involving
dominant weights.

Given a complex representation of Spin(4n), one may associate to P a complex vector
bundle. In particular, the associated vector bundle P X gpinn) V' is called the total spin
bundle, and we shall denote it by V. The connection on P induces one on V which
provides a covariant differentiation operator

V:I(V) — T(T"®V), (5)
where T" = P X gpin(4n) T* denotes the complexified cotangent bundle of M.
Example. The well-known isomorphism Spin(4) = SU(2) x SU(2) allows one to describe
the representation V' of Spin(4) in terms of the action of the two SU(2)’s; indeed V =
V. ®V_, where V,,V_ are the standard complex 2-dimensional representations of the
two SU(2)’s. Similarly, the cotangent representation is defined by 7* = V, ® V_, and the

invariant element of the symmetric product S*I'™* is the product of invariant skew forms
that trivialize A?V.. In the isomorphism

VeV =Ce (V;®V_)e (S, eSV.) e (V,®V_)® C

illustrating (3), S?*V.. can be identified with the eigenspaces A% of the * operator on A?.
These facts are crucial to an understanding of 4-dimensional Riemannian geometry.



Although Spin(4n) is a simple group for n > 1, the representation V' of Spin(4n)
always decomposes as

V:V+®V_, (6)

where V,,V_ are irreducible representations of equal dimension. Indeed, both restrict
to the unique 22" !-dimensional irreducible representation of Spin(4n — 1), under the
natural inclusion Spin(4n — 1) C Spin(4n). The isomorphisms

V+®V+ = AO ® A2 D A2n—2 Y Ain,
ViV 2 AN @ @A 3@ AT (7)
VRV, =2 NN @ --® A 29 A,

refine (3), and involve the eigenspaces A2" of *, which defines an involution of A?".

The inclusion T7* 2~ A! C End V determined by (3) gives rise to a Spin(4n)-equivariant
homomorphism p: T*®V — V', called Clifford multiplication, with the property

w(I" Vi) = V.
The total Dirac operator is the composition
poV:I'(V) — I'(V),

and is both elliptic and self-adjoint. It is convenient to decompose the total Dirac operator
into the two operators

D:T(V,) —T({1), D*:T(V_) — (V).

If {e;}, {€'} are dual orthonormal bases of local sections of T, T* respectively then we
may write

4n

Dv = Zu(ei@)veiv), vel'(V,).

i=1

Associated to the operator D in the context of K-theory is the virtual vector bundle

E — K+ - K—) (8)
which is central to much of the discussion below, and we shall refer to the corresponding
element V' =V, — V_ in the representation ring of Spin(4n) as the “signed” spin repre-
sentation. In practice, we shall be more concerned with Dirac operators with coefficients

in some auxiliary complex vector bundle F' itself equipped with a covariant derivative
V(F):T(F) — I'(T*®F). The coupled Dirac operator

D(F):T(V,&F) — I'(V_QF) (9)
is then the linear operator determined by

Dw®f)=Dvaf+» uE®vV(F).f, vel(V), feTl(F).

=1



Example. Take F to be V., and V(F) to be the natural connection. The first two
formulae from (7) and an examination of the underlying algebra show that

DF): TN @A ®-- - @A) —TA' @A @ oA (10)

coincides with the operator built up in a natural way from exterior differentiation d and
its adjoint d*. The space ker D(F') may be computed summand by summand, and is the
direct sum of the spaces

H* = {a € T(A*) : da = 0 = d*a}

of harmonic forms for 0 < k < 2n and the space H* = {a € T'(A>*) : d*a = 0} of
self-dual harmonic forms.

The restriction of D*(F) to A ! equals dt + d*, where d* is the composition of d
with the linear projection A>™ — A%". Integrating the formula

d(a Ada) = (da)? = (||d*a|®* = ||d"a||?)(vol form)

shows that d*a = 0 implies da = 0, and it follows that ker D*(F) is a direct sum of
H?-! for 1 < k < 2n. The Dirac operator coupled to V, has special significance when
n =1 in the treatment of Yang-Mills theory over 4-manifolds.

2. Index classes

On a compact manifold M, the kernel of any elliptic operator is finite-dimensional.
In particular, the kernel and cokernel of any coupled Dirac operator (9) (which may be
regarded as the cohomology spaces H° and H' of the corresponding 2-step complex) are
finite-dimensional. The index of D(F) is the integer defined by

ind D(F) = dim ker D(F') — dim coker D(F)
= dim ker D(F) — dim ker D*(F).

This quantity is invariant under deformation, and can in fact be computed entirely in
terms of the Pontrjagin classes of M and the Chern classes of F' by means of the Atiyah-
Singer Theorem which is stated below.

Characteristic classes assign cohomology classes to bundles over a manifold M. One
of the simplest is the first Chern class of a complex line bundle, or equivalently the Euler
class of an oriented real rank 2 vector bundle. This is an element = = ¢;(L) in H*(M,Z)
that is easy to define directly in terms of transition functions using Cech cohomology. A
complex vector bundle which decomposes as a direct sum

F=L® - &L, (11)
of line bundles gives rise to classes z1, ..., z,, and the elementary symmetric polynomials
c1,...,¢. in these classes depend only on F', and not on the choice of splitting. These

are the Chern classes of F', and can be defined for an arbitrary complex rank r vector
bundle by pulling back to a suitable space over which a splitting of the form (11) exists.

Given a complex line bundle L on a manifold M, there exists an integer k£ and a
mapping f: M — CP* such that L is isomorphic to the pullback f~'O(1) of the standard



line bundle over CP* and ¢(L) = f*r, where x generates the cohomology of CP*. The
first Chern class of a line bundle is then seen to arise from the cohomology of the classifying
space By() = CP* associated to the Lie group U(1) = SO(2). From this point of view,
x1,...,z, correspond to the weights of the standard representation of U(r) and are really
cohomology classes on the classifying space of a maximal torus 7. An induced mapping

H*(By(y) — H*(Br)

identifies the Chern classes cy, ..., c. with these weights that are invariant by the Weyl
group of U(r). We adopt this approach of treating characteristic classes as formal power
series with all terms present, without regard to the dimension of any underlying manifold.
This will be important in the statement of 2.1 below.

Let F' be a complex vector bundle of rank r over M. Its Chern character is given by
h(F) = e
ch(F) =r+ Z RS
k=1

where si is defined inductively in terms of the Chern classes of F' by Newton’s formula

sp—c18p_1+ -+ (=1 tep_ys1 + (=1)Fkey = 0.

In terms of the formal factorization that expresses c; as the kth elementary symmetric
function in z1,s,...,z,, we have s, = >_;_, z*, and

r

ch(F) =Y e

i=1
This definition is designed so that

ch(Fy ® F,) = ch(Fy) @ ch(F),
Ch(F1®F2) Ch(Fl) Ch(FQ)

Consider now a familiar index in differential geometry, namely the Euler characteristic

4n

X(M) =) (—1)*b,

k=1

of a manifold M (of dimension 4n) with Betti numbers b, = dim H*(M,R). By Hodge
theory, X (M) coincides with the index of the 2-step de Rham complex

d+d*: r(éﬁk) — r(éggk—l) (12)
k=0 k=1

Recalling the discussion of (10), it is easy to see that this index equals the difference of
the indices of D(V,) and D(V_). It follows that X (M) is formally the index of the

Dirac operator coupled to the virtual vector bundle (8).

The Gauss-Bonnet Theorem states that X (M) is obtained by evaluating a certain
class e € H*"(M,R) on the fundamental cycle [M]; e is the Euler class of the tangent



bundle of M. For computational purposes, we shall suppose that M has an almost
complex structure, so that its complexified cotangent bundle has the form

T =TT (13)

Then e coincides with the top Chern class ¢y, of the holomorphic tangent bundle 70,

which we know is determined by the polynomial Hfﬁl x;, where the z; are weights on a

common maximal torus of U(2n) and SO(4n). Since e is the restriction of a well-defined

invariant polynomial on the Lie algebra so(4n), it characterizes the Euler class in general.
By comparison, observe that

ch(V) = ch(V,)—ch(V_),

2n
— (ezi/2 _ ef.’ti/2)
g (14)
2n
- ([f)
i=1
where P is a power series in z2, ..., Ts,> with constant term 1. The Chern classes of the

complexified tangent bundle 7" are given by

2n

1+C1++c4n:H(l+$’)(1_$z)’
i=1

in view of the decomposition (13). The kth elementary symmetric polynomial

P = (—1)*ca
in 7,2, ...,75,° is the kth Pontrjagin class of (the tangent bundle of) M. To sum up,

2.1 Lemma There exists an invertible formal power series P in the Pontrjagin classes
such that e = ch(V)P~'.

The fact that ch(V) vanishes to high order will be of vital importance in Section 5. If
« is a cohomology class of mixed degree, we use | 1 @ to denote the number obtained by
evaluating the component of a of top degree (4n in our case) on the fundamental cycle
[M]. The Atiyah-Singer Theorem [1] may now be quoted in the following form.

2.2 Theorem The index of the Dirac operator coupled to F' is given by

ind D(F) = / ch(F) P!
M
The characteristic class
2n

-1 _ .’L‘z/2
P = H sinh(z;/2)

=1

is called the A-class of (the tangent bundle of) M , and its first terms are readily computed:



_ A 1
P1:A:1_ﬂp1+45%27(7p12—4p2)+“'- (15)

It can itself be regarded as a type of Chern character determined by the symbol of D. The
Gauss-Bonnet theorem is the special case of 2.2 in which the terms of P! of non-zero
degree do not enter, and amounts to identifying e and ch(V) as elements of H*(M,R).

Each coefficient bundle F' that we shall need to consider will have a real or quater-
nionic structure in the sense of (2), so its Chern classes will, in common with A, be
present only in degrees that are multiples of 4. With this assumption,

ch(F) = r+%52+is4+~~

= 7’—62+%(622—204)+"'-

Example. Let F' be the total spin bundle V. =V, ®©V _ with its natural connection. The
resulting operator

DIF):TA @A @ @A "OA) - TA @A @ @A™ @A™  (16)

is, in contrast to (12), formally the sum of D(V ) and D(V_). Its index equals bt — b,
where b* = dim H* (see (10)), and by Hodge theory coincides with the signature of M,
i.e. of the bilinear form S*H?(M,R)) — H*(M,R) given by cup product. The class

appearing in the corresponding integral formula

bt — b — / ch(V)A (17)

is the Hirzebruch L-class, and arises from the formal factorization

2n

2n
H(ez,—/2 + e_l’i/Q)A = Hsz COth(xz/Z)

=1 =1

Its first terms are given by

1 1
L=1-3p+ 5z (Tp2—p*) + -+

3. Kahler spinors and cohomology

In this section, M continues to denote a compact Riemannian manifold of dimension
4n. We shall also suppose that the Riemannian structure is Kahler, which means that
there exists an orthogonal almost complex structure J which is parallel with respect to the
Levi Civita connection. The last condition guarantees (via the Newlander-Nirenberg The-
orem) that J is integrable so that M is a complex manifold possessing local holomorphic
coordinates z!,...,dz*" for which Jdz* = idz*.

The choice of an orthogonal almost complex structure on the Riemannian manifold M
may be interpreted by the existence of a principal U(2n)-subbundle of the SO(4n)-bundle
of oriented orthonormal frames. The Kahler condition is that the Levi Civita connection



reduce to this subbundle, which is equivalent to the rahter imprecise statement that “the
holonomy group of M is contained in U(2n)”. A temporary assumption will allow us to
go further. Suppose that the structure on M lifts to a principal SU(2n)xU(1)-subbundle
) compatible with the commutative diagram

SU(2n) xU(1) — Spin(4n)

1 1
U(2n) —  SO(4n),

in which the first vertical homomorphism has kernel 7Z,. Natural vector bundles over
M can now be associated, via @, to representations of SU(2n)x U(1). Consider, in
particular, the summand A of the complexified cotangent bundle

T* — Al,O D AO,l

spanned by forms of type (1,0) relative to J (i.e., those on which J acts as the complex
number ). This bundle is isomorphic to @ X sy(2n)xv) A"?, where A'? denotes the dual
of the standard representation of U(2n) which we choose to write in the form

A~ ExL*, (18)

where E (=2 C?") is the dual of the standard representation of SU(2n), and L (& C) is
the standard representation of U(1). It follows that the canonical line bundle x = A*™°
of the complex manifold M is isomorphic to (L*)®?* = L>". In particular, the spin
assumption ensures the global existence of a square root 5% L.

The first step to investigate the Dirac operator on a Kahler manifold is to examine how
the total spin representation V' of Spin(4n) breaks up relative to SU(2n)xU(1). There
is a standard procedure for doing this in terms of weights, and by general principles the
answer will be a sum of terms, each of which is a product of a representation of SU(2n)
with a power of L. We omit the details, because the result can be quickly derived from
the well-known isomorphism

2n
Ve (qQ:%AO’q) Rk, (19)

[10, 13, 22]. We adopt the standard notation AP for the tensor product of AP(A?) and
N(A%Y) = AI(ATO), and the presence of k2 ensures that V & V* since A% @k = A2 =
(A%*=9)* Then using (18) and an appropriate orientation convention,

2n 2n
V) (-1)INEQLT =Y (—1)P NERQL™P.
q=0 p=0

At this point, we take the opportunity to introduce the exterior power operations of
K-theory [7]. If A, B are elements of a representation ring, one defines

A™(A— B) = i(—m N4 @ S1B;

this formula generalizes the following elementary isomorphism of vector spaces: if A =
B @ C then (A®B) ® N2C = A\’A @ S?B. Then



3.1 Proposition The signed spin representation satisfies "V = N™E — L) with
respect to the action of SU(2n)xU(1).

The isomorphisms (7) tell us what to expect when we compute V®V . The result is
confirmed by tensoring V' with just one of the summands of V':

2n

®(/\pE®Ln—p) ~ Z(_l)qAP,q_

q=0

The associated virtual vector bundle is that which arises in the definition of the coupled
Dirac operator D(/\’E® L™ P). The resulting 2-step complex may be strung out into the
Dolbeault complex

0 = T(AP9) & T(APY) B T(AP?) — -+ — T(AP?") — 0, (20)

whose cohomology at the gth step is denoted by HP4(M, Q).

The “basic” Dolbeault complex obtained by taking p = 0 can itself be coupled to any
holomorphic vector bundle F, or for that matter AP°® F. The spaces HP?(M, O(F)) are
defined accordingly, and the holomorphic Euler chacteristic of AP°® F' is the alternating
sum

2n
X(M,0(AP°®F) =) *(~1)?dim H>*(M, O(F)). (21)

q=0

It follows that this equals the index of the coupled Dirac operator D(F'® NER L"P),
which can be computed with 2.2. Indeed, if ¢; denotes the first Chern class of (the
holomorphic tangent bundle of) M, then

l\J\b—l

ch(s2)A = e 4

is the Todd class td of M, and we obtain the following Riemann-Roch theorem.

3.2 Corollary. X (M, O(AP & F)) — / ch(AP)ch(F) td.

M

The emphasis on the Dirac operator and the A class in the above derivation pays
enormous computational dividends, since it enables one to control the cohomology classes
of degrees not divisible by 4. We shall need an application of 3.2 in which M is replaced
by the twistor space of a quaternionic Kdhler manifold. Observe that in many of the
preceding statements we have implicitly dropped the assumption that the structure of
M 1lift to SU(2n) xU(1) or Spin(4n); the complexes (20) and the computation of their
indices are valid in all cases.

Exa,mp]e On a compact Kéahler manifold, the compatlblhty between the operators d, d*,
d, & implies that the Laplacians dd* +d*d and 89 + 9 0 are proportional and it is well
known that there is a natural isomorphism

HYM,R) = € H™(M,0), with  H*(M,0)= Hr(M,0).
ptg=k



As an illustration, suppose that M has the very special property that its Dolbeault
cohomology spaces HP(M, Q) vanish whenever p # q. Then the odd Betti numbers of
M vanish, and

ind D(N\PE®L"?) = (—1)Pba,, (22)

a result that is a model for 5.2 below. The integral formulae that result from applying
3.2 to (22) refine both the Gauss-Bonnet theorem for the Euler characteristic 212)10 bap

and the Hirzebruch formula (17) for the signature Zﬁio(—l)pb%.

4. Quaternionic Kahler manifolds

The quaternionic Kahler condition may be defined in terms of the subgroup

Sp(n)Sp(1) = Sp(n) xz,Sp(1), (23)

of SO(4n) that normalizes right multiplication by quaternions i, j, k on H" = R%". The
description (23) is analogous to that of the group U(2n) = SU(2n) Xz, U(1) used to
define the Kahler condition. Accordingly, a quaternionic Kahler manifold is a Riemannian
manifold M for which the Levi Civita connection reduces to a principal subbundle of the
bundle of orthonormal frames with fibre (23), or equivalently “the holonomy group is
contained in Sp(n)Sp(1)”. Despite the terminology, quaternionic Kéhler manifolds are
not in general Kahler manifolds for the simple reason that Sp(n)Sp(1) Z U(2n).

There is a commutative diagram

Sp(n)xSp(l) — Spin(4n)

J/ i (24)
Sp(n)Sp(1) <~  SO(4n),

in which the top horizontal homomorphism is injective when n is odd, and factors through
an inclusion Sp(n)Sp(1) C Spin(4n) when n is even [17]. This is a direct consequence of
5.1 below, and means that a quaternionic Kahler manifold of even quaternionic dimension
n is always spin and its structure may or may not be covered by an Sp(n) x Sp(1)
bundle. The existence of such a Sp(n)x Sp(1)-bundle would give rise to an isomorphism
T* = E® H , analogous to (18), where E, H are vector bundles associated to the standard
complex representations E, H of Sp(n), Sp(1) respectively.

The representation F is compatible with that of the previous section with respect to
the inclusion Sp(n) C SU(2n), but E acquires a quaternionic structure under the action
of Sp(n) (cf. (2)) and can be identified with H". Similarly H can be identified with H.
When n = 1 the spaces E, H coincide with the spin representations V., V_ (see the first
example in Section 1). The choice of a 1-dimensional subspace L* (notation compatible
with (18)) in H determines a maximal isotropic subspace

EQL* C EQH ~T; (25)

in this way the complex projective line P(H) parametrizes a family of complex structures
on 7T'.

The following established facts [6] have helped to motivate further advances in the
subject.



1. Any quaternionic Kdhler manifold (of real dimension at least 8) is Einstein. If the
scalar curvature is zero, then M is (locally) hyperkéhler, and admits parallel complex
structures I, J, K arising from (25) and satisfying the usual quaternion identities.

2. There is a natural family of quaternionic Kdhler symmetric spaces. In fact there is
one of the form G/K for each compact simple Lie group G, where K is the normalizer
of a three-dimensional subalgebra of g corresponding to a highest root [24]. These spaces
consist of the Grassmannians

U(n+2)

n SO(n +4)
Un)xU(2)’

G = 55mxso@ 29

0 Sp(n+1)
B = Sp(n) < Sp(1)"

and five exceptional symmetric spaces.

GI‘Q ((Cn+2 ) —

3. There exist homogeneous non-symmetric quaternionic Kahler manifolds, but none with
positive scalar curvature [2, 3].

From now on, we shall consider exclusively quaternionic Kahler manifolds that are
“positive”, that is for which the scalar curvature is a positive constant. This ensures,
amongst other things, that the quaternionic structure is not subordinate to a Kahler
metric. So far no complete positive quaternionic Kahler metrics are known other than
the symmetric ones, and various results cited below suggest that there may be no others.
First though, we need to introduce a basic technique in the theory.

The twistor space Z of a quaternionic Kahler manifold is the total space of the bundle
m: P(H) — M parametrizing almost complex structures on each tangent space by means
of (25). It has the structure of a complex (2n + 1)-dimensional manifold foliated by
rational curves, namely the fibres of 7. The LeviCivita connection of M determines
a horizontal holomorphic distribution which is locally isomorphic to the tensor product
7*E (1) of 7*E with a holomorphic line bundle O(1) (cf. (18)), whose square O(2) is
globally defined on Z. Moreover, there is a short exact sequence

0— E(1) — TYZ — 0(2) — 0. (27)

These facts are equally valid when M is a self-dual Einstein manifold, the 4-dimensional
incarnation of a quaternionic Kahler manifold.

The sequence (27) determines a complex contact structure on Z if the scalar curvature
of M is non-zero, in which case one deduces that the anticanonical bundle x=! of Z is
isomorphic to O(2n+2). The positivity assumption on M then implies that some power of
k! embeds M into a complex projective space, i.e. that Z is a Fano manifold. Moreover,
long exact cohomology sequences associated to (27) show that HP?(Z) =0 unless p = ¢
[20]. Since H*(Z,R) is a free H*(M,R)-module with one generator of degree 2, it follows
that all the odd Betti numbers by,41 of M are zero.

Full proofs of the following statements are beyond the scope of this note.

4.1 Theorem Let M be a complete positive quaternionic Kahler 4n-manifold.
(i) If H*(M,Zy) = 0 then M is isometric to HP™;

(ii) If b(M) > 0 then M is isometric to Gra(C"*?).

(iii) If n = 2 then M is a symmetric space.

Explanation. Part (i) is a corollary of a somewhat stronger result in [20]; namely M is
isometric to HP™ whenever its structure lifts to Sp(n) x Sp(1) (cf. (24)). The obstruction
to this lifting is measured by a cohomology class € € H?(M,Zs) analogous to the second



Stiefel-Whitney class [17]. When ¢ = 0, one may extract a (n + 1)st root of k™! and a
standard argument implies that Z is biholomorphically equivalent to CP?"*! the twistor
space of HP™.

Part (ii) is a spin-off of Mori programme, first observed in [15]. The crucial property
of the twistor space Z of a positive quaternionic Kahler manifold with by(M) > 0 is
the existence of a rational curve C of “twistor degree” equal to 1 and whose homology
class is not proportional to that of a fibre of Z — M. Through each point the family of
such rational curves actually spans out a projective space CP™ and a Fano contraction
identifies Z with the total space of the projectivization of a holomorphic vector bundle
over a variety X, as described in [23]. The fibres of the contraction are tangent to the
contact distribution, essentially because the pullback of the contact form to C' vanishes
for cohomological reasons. A further argument is needed in order to deduce that X is
isomorphic to CP™*!, and the result follows from this.

Part (iii) was proved in [19], but can be deduced easily from the newer relatively deep
result (ii). The key point is that by = 14b, on any positive quaternionic Kéhler 8-manifold
(a relation that will be generalized to arbitrary dimensions in section 5). The assumption
that b = 0 then implies that all 4-dimensional characteristic classes are proportional,
and the result follows from index formulae [16]. There are three quaternionic symmetric
spaces of dimension 8, namely HP?, Gry(C*) 2 Gry(R%) and G2/SO(4).

The group Sp(n)Sp(1) leaves fixed an element Q of AT, and one way of character-
izing the holonomy reduction of a quaternionic Kahler manifold is by the existence of a
corresponding parallel (and so closed) 4-form. For some purposes, 2 is analogous to the
Kahler 2-form w defined by a reduction to the unitary group, but there are important
differences. One advantage of the quaternionic case is that the metric is completely de-
termined by (2 since its stabilizer in GL(4n,R) is exactly Sp(n)Sp(1); but this means
that, unlike w, the form € is far from being generic as the orbit GL(4n,R)/Sp(n)Sp(1)
has high codimension in A*T". This explains the difficulty in finding metrics with holon-
omy Sp(n)Sp(1), though we conclude this section with some techniques that have been
successful in the construction of incomplete quaternionic Kahler metrics.

Suppose that G is a connected Lie group acting on a positive quaternionic Kahler
manifold M as a group of isometries. Each element A in the Lie algebra g of G determines
a Killing vector field on M. The interior product of this vector field with the closed 4-
form determined by €2 can be shown to equal the exterior derivative of a certain 2-form
pa, itself a real section of the rank 3 vector bundle S?’H. This is exactly analogous to
the procedure for defining a moment mapping in symplectic geometry, except that the
symplectic 2-form as been replaced by Q. Moreover, the section y of S?H®g* defined
by the assignment A — 4 is G-equivariant. Corresponding to the Marsden-Weinstein
reduction in symplectic geometry is the following result of Galicki and Lawson [9].

4.2 Theorem If G acts freely on the zero set My = {m € M : u(m) = 0}, then My/G
is a quaternionic Kahler manifold.

This quotient is often denoted by M /G . For example
Gry(C*?) = HP""' JJU(1),  Gra(R™*) = HP™? J/Sp(1),
where the actions are given by natural inclusions U(1) C Sp(n+2) and Sp(1) C Sp(n+4).

Less standard U(1)’s give rise to a host of quaternionic Kéhler orbifolds, and the procedure
also produces self-dual Einstein metrics in 4 dimensions, for example on weighted complex



projective planes [9]. Although complete metrics with negative scalar curvature exist
[8, 14], singularities seem inevitable in the positive case.

Example. An exceptional situation occurs when one considers the standard action of U(1)
on R” by means of inclusions U(1) C U(3) C SO(7), and has recently been described
in [11]. An open set of the quotient @ = Gry(R7)/U(1) can be identified with an H*
quotient of the adjoint SL(3,C)-orbit {A € sl(3,C) : A% = 0, A2 # 0} of principal
nilpotent elements, which for quite separate reasons admits a quaternionic Kahler metric.
Indeed, any complex nilpotent adjoint orbit gives rise to a quaternionic Kahler space,
although this is singular unless the orbit is minimal in which case it is symmetric [21].
The compact group SU(3), the centralizer of U(1) in SO(7), acts isometrically on @,
which is a locally symmetric orbifold formed as a Zs quotient of G2/SO(4).

5. Quaternionic spinors and Betti numbers

In section 3 we saw that the building blocks for spin representation were the SU(2n)
exterior powers /\PE and the U(1) tensor powers L?. We shall first define the represen-
tations needed to describe spinors in the quaternionic case. The main differences are that
the exterior powers of E are no longer irreducible under the action of Sp(n), and the
1-dimensional representation L has to be replaced by the 2-dimensional one H .

The group Sp(n) leaves invariant a skew form ¢ € A?E. The primitive subspace
/\gE of N\PE is defined to be the Hermitian complement of ¢ A A\P~2E; it is an irreducible
Sp(n)-module of dimension (2;’) - (pQ_"z) if p < mn. The resulting decomposition

NE=NEo N;’EG Ni'Ea - (28)
will also be used immediately below when E is replaced by a virtual representation or
bundle. The role of the representation L? in the Kahler case is taken by the symmetric
tensor product S?H which has dimension ¢ + 1 (cf. (25)). The formula

= Zn:(_m Ny E®SH. (29)

q=0

is proved in [4, 22] modulo a choice of orientation, and provides a direct analogue of 3.1.

5.1 Proposition The signed spin representation satisfies V= A E — H) with respect
to the action of Sp(n)x Sp(1).

It will be convenient to define
RP = NPE®S'H.

Since the summands of V®V exhaust those appearing in a decomposition of (3) under
the action of Sp(n)Sp(1), the representations giving rise to the 2-step de Rham complex
(12) of M can be grouped into pieces

V&R 4, g=0,...,n. (30)

In particular, taking ¢ = n,



2n
V@S'H = (-1)' NE®SH, (31)

q=0

where we may view AE®SIH as a distinguished subspace of AT*. Exactly in analogy
o (20), the right-hand side of (31) gives rise to a subcomplex

0 =T (A% -TAY - T(NERSH) = -+ - T(A"ERS™H) — 0 (32)

of the full length de Rham complex of M. Analogues of this complex are studied in [5],
and develop the theory of Fueter’s quaternionic Cauchy-Riemann equation.

The summands arising from (30) can be used to decompose the exterior forms of a
quaternionic Kéhler manifold M under Sp(n)Sp(1); it would be interesting to know if
they give rise to a filtration of the de Rham complex of M, as in the Kahler case. In any
case, all the spaces concerned can be directly related to the algebra of (p,q)-forms on
the twistor space Z, and an understanding of this relationship leads to the next theorem.
First we define

i"? = ind D(RP), p>0, ¢>0, n+p+qeven;

the parity restriction ensures that the corresponding coupled Dirac operator is globally
defined given that (by 4.1(i)) the individual vector bundles £, H will not usually be.

5.2 Theorem On a positive quaternionic Kédhler manifold of dimension 4n,

e 0 if n=p+q+2r, r>0
(—1)P(bgp—2 + bop) if n=p+gq.

Explanation. We have discussed coupled Dirac operators on both Kahler and quaternionic
Kahler manifolds, and the two theories can be united by recalling that the twistor space
Z of a positive quaternionic Kahler manifold M is itself a Kahler manifold. The key
result is that the cohomology of the Dirac operator on M coupled to S?H is isomorphic
to that of the basic Dolbeault complex on Z coupled to the line bundle O(q — n), and

= X(Z,0(r"NeE (q — n)).

Long exact cohomology sequences associated to exterior powers of (27) relate the Dol-
beault cohomology spaces H%4(Z, O(r* \PE (—p))) and HP4(Z,O), and yield the holo-
morphic Euler characteristic formula

) [0 ifl1<r<n-—p,
X(Z,0(x* NE (~2r — ))—{ (—1)7 dim HP?(Z,0) ifr =0 !

[20], Corollary 6.7. The theorem follows from the decomposition (28) and the fact that
dim HPP(Z,0) = by, 2 + by, with the convention that b = 0.

Theorem 5.2 is of course consistent with the equation » 7 (=1)Pi»"? = X (M)
arising from (12). On the other hand, the signature of M is given by

" —
5 P = b2na



and therefore a positive quaternionic Kahler manifold of dimension 4n has b = 0 or
b~ = 0 according as n is odd or even. This result was discovered by Nagano and Takeuchi
[18] (though they made a different choice of orientation).

We shall now explain that there are non-trivial identities amongst the expressions for
174 given by the Atiyah-Singer Theorem 2.2. For each quaternionic dimension n, we shall
indicate the existence of a virtual representation

Wa= Y R  g€Z,
n=p+q+2r
r>0
with the property that the index of the associated Dirac operator D(W,,) vanishes. The
complexity of the A class (15) leads one to seek W, to satisfy the stronger property that

ch(W,) =0+ +0+y+ pqpy+---, (33)

where y has degree 4n — 4. This ensures that ch(W,)A vanishes as a cohomology class
on a 4n-manifold, so that the required index is zero.

The problem has now been reduced to an algebraic one, and the first step is to find
elements of the represention ring of Sp(n)xSp(1) with the property that their associated
Chern characters vanish to high order. Let J,, denote the space spanned by virtual
representations R such that ch(R) has no terms of degree less than 4n. The resulting
sequence

Fid o DFaDFny1D-e

is an example of the ~y-filtration that can also be described directly in terms of exterior
power operations [7]. Note that R € F; if and only if the virtual dimension of R is zero,
and the filtration is compatible with tensor products in the sense that F,,® F,, C Frin-

If R is a genuine representation of dimension 2n — 2 then clearly AR =2 A" 2R, so

by definition AZR = 0. This is not true if R is a virtual representation, but observe that
2.1 and 5.1 imply that A(E — H) € F,,. Moreover,

nHE—(k+1)H)EFnp, 0<k<n—1;

this follows from the computation of a generalization of the Fuler class for the virtual
vector bundle £ — kH. We shall denote the virtual representation /\g(E — qH) by

Alp,q).

In trying to solve (33), it is futile to introduce representations of Sp(n) other than
the exterior powers of F. This leaves tensor products of the form

Aln—k+1,k)@S™H, k—1—m=2r, r>0,
to play with to obtain linear combinations of the RP? for p + ¢ < n, and at the same

time satisfy the parity condition that n — p — g be even. However, to obtain something
in F,,_1, we are forced to take a linear combination of

W! =A(n,1), W/'=An-1,2)®H, W =A(n-2,3)®(S°H - 3),

bearing in mind that S?H — 3 € F;, and remarkably,



5.3 Lemma A solution to (33) is W,, = %(n —DnW! +3(n—1)W)+6W".

This result was initially established by computer using MATHEMATICA, but proofs of
this and subsequent statements will appear in [16]. It is a straightforward matter to find
the coefficients of RP? with p 4 ¢ =n in W, ; indeed there exist a, € Z such that

W, = (Z apRp’"*P) —6(n+2)A(n — 2,2),
p=0
where
ap = (—1)"a,—p, and Z(—l)pap =0. (34)
p=0

Because A(n — 2,n) is a linear combination of R™? with p + ¢ < n, 5.2 implies that

n

Z(_l)p(ap — api1)bayp = 0,
p=0

with a,+1 = 0. These relations turn out to be quadratic in both n and p:

5.4 Theorem The Betti numbers of any positive quaternionic Kéhler 4n-manifold sat-
isfy the relation

2_: [6p(n —1—p) — (n— 1)(n — 3)]by, = 3n(n — 1)bas.

We recall (Section 4) that the odd Betti numbers by,; of M are already known to
vanish. The new equations for dim M < 32 are listed in the table.

1+ by =by
2by = bg
—1+ 3bs + 3by — bg = 2bg
—4 + 5by + 8by + Hbg — 4bg = 5Hbyg
—5+ 3bg + Tby + Thg + 3bg — 5b19 = 5b12
—8 + 2b2 + 8b4 + 10b6 + 8b8 + 2b10 - 8b12 - 7b14
—35 + by + 25by + 37bg + 37bg + 25b1g + b1a — 35b14 = 28byg

0~ O Ut i W N B

Each equation stops at the middle Betti number so Poincaré duality does not intervene;
nevertheless there is a curious symmetry that arises from (34). More insight can be ob-
tained by replacing by, by the sum ZEPZ/(? ] Bap—ai, where B9, are “primitive Betti numbers”
arising from the injection

H***(M,R) — H?(M,R), p<n+1,

established in [12] by wedging with the closed 4-form 2. Computations of Poincaré
polynomials confirm that the equations are satisfied by the Grassmannians (26), and the
line n = 7 is also applicable to the 28-dimensional exceptional space Fy/Sp(3)Sp(1).



Assuming that M is not the Grassmannian Gry(C""?), we know from 4.1(ii) that
b = 0. The table then shows that a positive quaternionic Kahler 12-manifold, other
than Gry(C?), has all Betti numbers zero except for by = bg. In dimension 16 the single
assumption that by = 1 implies that M has the same real cohomology ring as HP*.
The same assumption implies that the classes p; and [Q] in H*(M,R) are proportional,
a situation that brings into play other methods, such as an equality between the index

i"*20 and the dimension of the group of isometries of M [20]. As a consequence, we foresee

that further progress on the classification of positive quaternionic Kdhler manifolds will
result from an analysis of the fourth Betti number b,.
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