Exceptional and hyperkähler geometry Simon Salamon London, May 2003

We introduce the concept of a G_2 -structure, as a starting point for the construction of T^2 invariant Ricci-flat metrics in 7 dimensions. The underlying geometry brings together symplectic forms and quotients, hyperkähler metrics and Monge-Ampere type equations.

Introduction

$$S^6 = \frac{G_2}{SU(3)} \cong \frac{SO(7)}{SO(6)}$$

Interested in Riemannian 7-manifolds (X,g) whose structure reduces to G_2 . This is detected by a certain 3-form φ at each point $x \in X$ or by the 'dual' 4-form φ^* .

In the simplest case $X=N^6 imes S^1$ with $\eta=dt$ on S^6 ,

$$\varphi = \sigma \wedge \eta + \psi_{+}$$

$$\varphi^{*} = \psi_{-} \wedge \eta + \frac{1}{2}\sigma \wedge \sigma$$

where σ is a non-degenerate 2-form on N and $\Omega=\psi_++i\psi_-$ a complex volume 3-form.

The G_2 -structure on X is said to be torsion-free if $\operatorname{Hol}(g) \subseteq G_2$. This occurs iff φ and φ^* are both closed. In the product case this means

$$d\sigma = 0, \quad d\Omega = 0$$

and N has holonomy in SU(3) ('Calabi-Yau').

Hypersurfaces and quotients

Aim is to construct torsion-free G_2 structures on 7-manifolds.

The resulting metrics are automatically Ricci-flat: $R_{ij}=0$ Let (X,g) be such a structure, with $\operatorname{Hol}(g)\!=\!G_2$.

Reductions to SU(3) can still be accomplished pointwise in the following situations:

$$H^{6} \hookrightarrow X$$

$$\downarrow S^{1}$$

$$Q^{6}$$

How far are H,Q from being CY?

Assume the circle action preserves φ so that $\sigma=V\,\lrcorner\,\varphi$ is a symplectic form on Q. There is an associated almost complex structure J on Q such that

$$t\,\sigma(x,y) = g(x,Jy),$$

where $t=g(V,V)^{-1/2}$ measures the size of the fibres.

<u>Proposition</u> [AS] If Q is Kähler (i.e. J is integrable), the Hamiltonian flow on Q generated by t preserves the SU(3) structure:

$$\mathcal{L}_{J\mathrm{grad}t}\sigma=0, \quad \mathcal{L}_{J\mathrm{grad}t}\Omega=0.$$

Assume this flow arises from a second S^1 action:

$$H_c$$

$$\downarrow S^1$$

$$t^{-1}(c) \quad \stackrel{\mathbb{R}^*}{\longleftarrow} \quad Q'$$

$$\downarrow S^1 \quad \swarrow \mathbb{C}^*$$
 M^4

The 4-manifold

$$M = \frac{t^{-1}(c)}{S^1} \cong \frac{H}{T^2}$$

then has

- ullet a complex structure and holomorphic 2-form $\,\omega_2 + i\omega_3\,$,
- ullet a 1-parameter family of Kähler forms $ilde{\omega}_1\!=\! ilde{\omega}_1(t)$, such that

If $f:(a,b)\times M\to \mathbb{R}$ is defined by

$$t \, \tilde{\omega}_1 \wedge \tilde{\omega}_1 = f \, \omega_2 \wedge \omega_2$$

so that

$$f = t \frac{\text{symplectic volume}}{\text{complex volume}},$$

then

$$\tilde{\omega}_1''(t) = \boxed{\frac{\partial^2 \tilde{\omega}_1}{\partial t^2} = 2i\partial \overline{\partial} f}$$

Setting $\xi = fJdt$ allows one to recover the closed forms

$$\varphi = \tilde{\omega}_1 \wedge \eta + t\omega_2 \wedge \xi + tf\omega_3 \wedge dt + dt \wedge \xi \wedge \eta$$

$$\in$$
 $\bigwedge^2 \mathfrak{base} \otimes \bigwedge^1 \mathfrak{fibre} \oplus \bigwedge^3 \mathfrak{fibre},$

$$\oplus$$
 \bigwedge^3 fibre

$$\varphi^* = \frac{1}{2}t^2\tilde{\omega}_1 \wedge \tilde{\omega}_1 + t^2\tilde{\omega}_1 \wedge dt \wedge \xi + f\omega_2 \wedge \eta \wedge dt + \omega_3 \wedge \xi \wedge \eta$$

$$\in \Lambda^4 \mathfrak{base} \oplus$$

$$\Lambda^2$$
 fibre $\otimes \Lambda^2$ base,

corresponding to the inclusion $SO(4) \subset G_2$.

Hyperkähler metrics

A hyperkähler structure on a 4-manifold M is defined by a triple of symplectic forms $\omega_1,\omega_2,\omega_3$ with $\omega_i\wedge\omega_j$ zero if $i\neq j$ and independent of i=j. Then $h(x,y)=\omega_1(\omega_2x,\omega_3y)$ defines a Riemannian metric with $\operatorname{Hol}(h)\!=\!SU(2)$ and

$$J_1 = \omega_2^{-1}\omega_3, \quad J_2 = \omega_3^{-1}\omega_1, \quad J_3 = \omega_1^{-1}\omega_1$$

are compatible complex structures.

If f is constant on M, then

$$\tilde{\omega}_1 = (p + qt)\omega_0 + (r + st)\omega_1$$

with $-\omega_0 \wedge \omega_0 = \omega_1 \wedge \omega_1$ and $(r+st)^2 - (p+qt)^2 > 0$. M must have a reverse almost-Kähler structure, unless p=q=0.

One may choose an orthonormal basis of 1-forms so that

$$\omega_{0} = e^{12} - e^{34}$$

$$\omega_{0} = e^{12} - e^{34}$$

$$\omega_{0} = e^{12} + e^{34}$$

$$\omega_{0} = e^{12} + e^{34}$$

$$\omega_{0} = e^{13} + e^{42}$$

For instance, setting

$$e^{1} = \sqrt{z} dx$$
, $e^{2} = \sqrt{z} dy$, $e^{3} = \sqrt{z} dz$
 $e^{4} = \frac{1}{\sqrt{z}} (dt - x dy)$

gives closed forms

$$\omega_0 = z \, dx \wedge dz - dt \wedge dy$$

$$\omega_1 = z \, dx \wedge dy + dz \wedge dt + x \, dy \wedge dz$$

$$\omega_2 = z \, dx \wedge dz + dt \wedge dy$$

$$\omega_3 = dx \wedge dt - x \, dx \wedge dy + z \, dy \wedge dz.$$

The resulting Gibbons-Hawking metric

$$z(dx^{2} + dy^{2} + dz^{2}) + \frac{1}{z}(dt - x dy)^{2}$$

is conformally equivalent to a left-invariant self-dual metric on a solvable group ${\mathbb C} H^2$.

First example

The construction gives various metrics with G_2 holonomy on manifolds $H^6 \times (a,b)$ where H is a T^2 bundle over T^4 . For instance, let $H=(G/\Gamma)\times (G/\Gamma)$ where

$$G = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}.$$

Then H has a basis of 1-forms (e^i) with

$$de^{i} = \begin{cases} 0 & \text{if} & i = 1, 2, 3, 4 \\ e^{12} & i = 5 \\ e^{34} & i = 6, \end{cases}$$

If $\xi = e^5 - e^6$ and $\eta = -e^5 - e^6$ then $d\xi = \omega_0$ and $d\eta = -\omega_2$.

Take (p,q,r,s) = (0,1,1,0), so $f = t(1-t^2)$ with |t| < 1:

$$\varphi = \left[-2e^{56} + t^2(1 - t^2)(e^{13} + e^{42}) \right] \wedge dt + 2t(e^{345} - e^{126}) - e^{145} - e^{146} - e^{235} - e^{236}$$

$$\stackrel{?}{=} E^{145} + E^{235} + E^{127} + E^{347} + E^{136} + E^{426} + E^{567}$$

The associated orthonormal basis is

$$\begin{split} E^1 &= \sqrt{t(1-t^2)}e^1, \quad E^2 &= \sqrt{t}(e^3-te^1), \\ E^3 &= \sqrt{t(1-t^2)}e^4, \quad E^4 &= \sqrt{t}(e^2+te^4), \\ E^5 &= \frac{1}{1-t^2}\xi, \quad E^6 &= \frac{1}{t}\eta, \quad E^7 &= t\sqrt{1-t^2}dt. \end{split}$$

Setting $t\!=\!\cos\theta\!=\!\cos_{\theta}$ gives the

Corollary (i) $(G/\Gamma)^2 \times (0, \frac{\pi}{2})$ admits a Ricci-flat metric

$$\begin{split} g &= \cos_{\theta} \sum_{i=1}^{4} (e^{i})^{2} + 2\cos_{\theta}^{2} (-e^{1} \odot e^{3} + e^{2} \odot e^{4}) \\ &+ (\csc_{\theta} \xi)^{2} + (\sec_{\theta} \eta)^{2} + (\cos_{\theta} \sin_{\theta}^{2} d\theta)^{2}, \end{split}$$

induced from a Kähler metric on $\,Q=(G/\Gamma)\times T^2\times (0,\,\frac{\pi}{2})\,.$

(ii) The associated 3-form $\boxed{\varphi=\Sigma\wedge(\cos_\theta\sin_\theta^2d\theta)+\Phi^+}$ is described by forms

$$\Phi^+ = \text{(a constant 3-form)} - 2\cos_\theta d(e^{56}),$$

$$\Sigma \wedge \Sigma = \text{(a constant 4-form)} + \cos_\theta^2 \sin_\theta^2 e^{1234}$$

evolving on H along a quartic $y=\frac{1}{2}x^2(1-\frac{1}{4}x^2)$ in \mathbb{R}^2 .

Volume forms

Let $(M^4,\omega_1,\omega_2,\omega_3)$ be hyperkähler, and consider the complex structure J_1 . If $\tilde{\omega}_1=\omega_1+i\partial\overline{\partial}u$ then

$$\tilde{\omega}_1 \wedge \tilde{\omega}_1 = \mathcal{M}(u) \, \omega_1 \wedge \omega_1,$$

where \mathcal{M} is the complex Monge-Ampère operator. The Ricci form of $\tilde{\omega}_1$ is $\tilde{\rho}=-i\partial\overline{\partial}\log\mathcal{M}(u)$.

Theorem Given real analytic data u,v on M with $\omega_1+i\partial\overline{\partial}u$ +definite, there exists a>0 and $U:(0,a)\times M\to\mathbb{R}$ to

$$\frac{1}{2}U''(t) = t \mathcal{M}(U) \quad (=f), \qquad U(0) = u, \ U'(0) = v,$$

with $\omega_1 + i\partial \overline{\partial} U$ is +definite for any $t \in (0, a)$.

Corollary Working on $M \times \mathbb{R}^2_{(p,q)} \times (0,a)$, set $\xi = dp - \frac{1}{2}JdU'$ and assume that $\omega_2 = -d\eta$. Then

$$\varphi = \tilde{\omega}_1 \wedge \eta + t \, \omega_2 \wedge \xi + t f \omega_3 \wedge dt + dt \wedge \xi \wedge \eta$$

defines a Riemannian metric g with $Hol(g) \subseteq G_2$.

Second example

Consider the case in which $\,\partial\overline{\partial}U\wedge\partial\overline{\partial}U=0$, so

$$\mathcal{M}(U) = (\omega_1 + i\partial \overline{\partial} U)^2 = \omega_1^2 + 2i\omega_1 \wedge \partial \overline{\partial} U,$$

and $\mathcal{M} = 1 + 2\Delta$.

Given the standard hyperkähler structure on \mathbb{C}^2 with

$$\omega_1 = \frac{1}{2}i(dz_1 \wedge d\overline{z}_1 + dz_2 \wedge d\overline{z}_2), \quad w_2 + i\omega_3 = dz_1 \wedge dz_2,$$

take $U=U(t,z_1)$ independent of z_2 . Setting $z_1=x+iy$ and $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$, there are separable solutions

$$U(t, x, y) = \frac{1}{3}t^3 + \ell(t)m(x, y),$$

where $\ell(t)$ is a solution of the Airy equation $\,\ell''-ct\ell=0\,$ and $\,\Delta m+cm=0\,.$

For instance,

$$\varphi = (1 + \operatorname{Ai}(t)\sin x)(e^{126} + t^2e^{147} + t^2e^{237})$$
$$-\operatorname{Ai}'(t)\cos x(te^{132} + e^{267}) + e^{346} + e^{567} + te^{135} + te^{425},$$

with $-de^6 = e^{13} + e^{42}$ and $e^7 = dt$ on $H^6 \times (0,a)$.