Geometry & Topology of Wolf Spaces

LEVICO SPA 18 JUNE 2010 http://calvino.polito.it/~salamon

CONTENTS

- 1. DEFINITION OF THE WOLF SPACES
- $2. \ Nilpotency \ and \ TDS's$
- 3. Associated complex geometry
- 4. INDEX THEORY AND QK MANIFOLDS
- 5. Betti numbers of symmetric spaces

1.1 Riemannian symmetric spaces

$$M^d = \frac{G}{H}$$

If the isometry group *G* acts faithfully then *H* is the holonomy group and $H \subset O(d)$.

The action of *H* on each tangent space $T_m M$ can give a model for more general Riemannian manifolds:

Kähler, quaternion-Kähler, H-structure with torsion, ...

Some aspects of the topology only depend on the holonomy H. Others depend on G; spaces with a common isometry group have a hidden affinity *

1.2 Quaternionic symmetric spaces

are analogues of the Hermitian symmetric spaces. The classical compact ones of real dimension 4n are

$$\mathbb{HP}^{n} = \frac{Sp(n+1)}{Sp(n) \times Sp(1)}$$
$$\mathbb{G}r_{2}(\mathbb{C}^{n+2}) = \frac{SU(n+2)}{S(U(n) \times U(2))}$$
$$\mathbb{G}r_{4}(\mathbb{R}^{n+4}) = \frac{SO(n+4)}{SO(n) \times SO(4)}.$$

Of these, only $\mathbb{G}r_2(\mathbb{C}^{n+2})$ (and $\mathbb{G}r_4(\mathbb{R}^6)$) are Kähler.

Exceptional ones have real dimensions 8, 28, 40, 64, 112:

 $\frac{G_2}{SO(4)}, \quad \frac{F_4}{Sp(3)Sp(1)}, \quad \frac{E_6}{SU(6)Sp(1)}, \quad \frac{E_7}{Spin(12)Sp(1)}, \quad \frac{E_8}{E_7Sp(1)}.$ Recall that $SO(4) = Sp(1)Sp(1) = Sp(1) \times_{\mathbb{Z}_2} Sp(1)$ is not simple.

1.3 Wolf's construction

Given a compact simple Lie algebra \mathfrak{g} , choose a Lie subalgebra $\mathfrak{su}(2) = \mathfrak{sp}(1)$ arising from a highest root. Set

$$H = KSp(1) = \{g \in G : \mathrm{Ad}(g)(\mathfrak{su}(2)) = \mathfrak{su}(2)\}.$$

Then

$$M = \frac{G}{KSp(1)} = \frac{G}{H}$$

is quaternion-Kähler (QK), meaning

 $H \subseteq Sp(n)Sp(1) \subset SO(4n).$

This means that *M* admits a parallel 4-form Ω equivalent to

 $1234 + 5678 + \frac{1}{3}(1256 + 1278 + 3456 + 3478 + 1357 + 1386 + 4257 + 4286 + 1458 + 1467 + 2358 + 2367).$

All compact QK homogeneous spaces arise like this (Alekseevsky). What happens if we take other $\mathfrak{su}(2)$'s in \mathfrak{g} ?

1.4 The isotropy representations

of these spaces have special merit. For each Wolf space G/KSp(1), we get a symplectic representation $K \to \text{End}(\mathbb{C}^{2n})$.

Example. Consider $\mathfrak{e}_6 = \mathfrak{su}(6) \oplus \mathfrak{sp}(1) \oplus \mathfrak{m}$, where

$$\mathfrak{m}_c = \Lambda^{3,0} \otimes \Sigma = \mathbb{C}^{40}, \qquad \Sigma = \mathbb{C}^2.$$

But E_6 also acts on

$$\mathbb{C}^{27} = (\Lambda^{1,0} \otimes \Sigma) \oplus \Lambda^{0,2}$$
$$= 6 + 6 + 15$$
$$= \langle a_i \rangle \oplus \langle b_i \rangle \oplus \langle c_{ij} \rangle$$

giving Schläfli's configuration of the 27 lines on a cubic surface:

2.1 Nilpotent coadjoint orbits

can obtained [JM] by choosing $\mathfrak{su}(2) \subset \mathfrak{g}$ and setting

$$\mathscr{N} = (\operatorname{Ad} G_c)(e) \subset \mathfrak{g}_c, \qquad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{C}).$$

Kronheimer proved that $Z = \mathcal{N}$ admits a hyperkähler metric, but \mathcal{N}/\mathbb{C}^* is compact only if \mathcal{N} is minimal. In this case, Z = G/KU(1) is the so-called twistor space that fibres over G/KSp(1).

Example. For G_2 there are four non-zero orbits:

$\mathfrak{su}(2)_+$	$\subset \mathfrak{so}(4)$	С	\mathfrak{g}_2
$\mathfrak{su}(2)_{-}$	$\subset \mathfrak{so}(4)$	С	\mathfrak{g}_2
$\mathfrak{so}(3)$	$\subset \mathfrak{so}(4)$	С	\mathfrak{g}_2
$\mathfrak{so}(3)_{\mathrm{pr}}$		С	\mathfrak{g}_2

Then

$$Z = \frac{G_2}{U(2)_+} \longrightarrow \frac{G_2}{SO(4)} = M^8.$$

By contrast,

$$\mathbb{G}\mathrm{r}_2(\mathbb{R}^7) \cong \frac{G_2}{U(2)_-} \longrightarrow \frac{G_2}{SU(3)} = S^6,$$

in which SU(3) is the fixed point set of an automorphism of order 3 on G_2 .

2.2 Calibrations

The fundamental 3-form

$$F(X, Y, Z) = \langle [X, Y], Z \rangle$$

on the Lie algebra \mathfrak{g} defines a function f on $\mathbb{G} = \mathbb{G}r_3(\mathfrak{g})$ for which (i) $V \in \mathbb{G}$ is critical iff V is a subalgebra;

(ii) f achieves its maximum on the Wolf space parametrizing minimal $\mathfrak{su}(2)$'s;

(iii) we can easily compute Hess(f) at any $V = \mathfrak{su}(2)$.

Example. Let $V = \mathfrak{so}(3)_{pr} \subset \mathfrak{su}(3)$. Then $\mathfrak{su}(3)_c \cong \Sigma^2 + \Sigma^4$ where $\Sigma^q = S^q(\mathbb{C}^2)$, and

$$T_V \mathbb{G} \cong V \otimes V^{\perp} \cong \Sigma^2 \otimes \Sigma^4 \cong \Sigma^2 \oplus \Sigma^4 \oplus \Sigma^6 + 0 -$$

Whilst the critical manifold $C^5 = \frac{SU(3)}{\mathbb{Z}_3 SO(3)}$ has tangent space Σ^4 , both $\Sigma^2 \oplus \Sigma^4 \cong \Sigma^3 \otimes \Sigma^1$

$$\Sigma^{4} \oplus \Sigma^{5} \cong \Sigma^{5} \otimes \Sigma^{1}$$
$$\Sigma^{4} \oplus \Sigma^{6} \cong \Sigma^{5} \otimes \Sigma^{1}$$

are quaternionic or Sp(2)Sp(1) modules.

2.3 Morse theory

The associated *unstable manifold* U^8 is the union of C^5 and the upward flow lines of the vector field grad f. It is diffeomorphic to a rank 5 vector bundle over C^5 with fibre Σ^4 , and $T_c U = \Sigma^2 \oplus \Sigma^4$. Moreover [G], it is a \mathbb{Z}_3 quotient

$$U^8 = \frac{1}{\mathbb{Z}_3} \left(\frac{G_2}{SO(4)} \setminus \mathbb{CP}^2 \right).$$

More generally, if *G* is any compact simple Lie group,

Theorem [S]. *f* is a Morse-Bott function on $\mathbb{G}r_3(\mathfrak{g})$. The unstable manifold determined by a critical manifold containing $\mathfrak{su}(2) \subset \mathfrak{g}$ is QK and its twistor space is \mathscr{N}/\mathbb{C}^* .

A discrete version of the construction (and Nahm's equations) gives rise to the following dynamical system. Given a subspace $V = \langle v_1, v_2, v_3 \rangle \subset \mathfrak{g}$, define

$$V' = \langle [v_2, v_3], [v_3, v_1], [v_1, v_2] \rangle.$$

For generic *V*, one expects

$$V^{(n)} \to \mathfrak{su}(2)_{\min} \in \frac{G}{KSp(1)}$$
 as $n \to \infty$.

3.1 The twistor space

The total space of the fibration

$$Z = \frac{G}{KU(1)} \xrightarrow{\pi} \frac{G}{KSp(1)} = M$$

is a real adjoint orbit in \mathfrak{g} and a polarized variety. Wolf pointed out that *Z* has a complex contact structure θ .

Example. $\mathbb{CP}^{2n+1}(\to \mathbb{HP}^n)$ has anticanonical bundle $\overline{\kappa} = \mathcal{O}(2n+2)$.

In general, only L = O(2) is defined and Z is Fano of index n + 1. There is a holomorphic short exact sequence

$$0 \to D \to TZ \xrightarrow{\theta} L \to 0$$

of vector bundles, in which *D* is a horizontal distribution and $\theta \in H^0(Z, \Omega^1(L))$. The fibre

$$\pi^{-1}(m) \cong \frac{Sp(1)}{U(1)} = \mathbb{CP}^1 = S^2$$

parametrizes compatible almost complex structures on T_mM and has normal bundle 2nO(1).

3.2 The Penrose correspondence

between M and Z is much more general:

<i>M</i> positive QK	Z contact Fano	
point	rational curve	
complex structure	holomorphic section	
$b_2(M) + 1$	$= b_2(Z)$	
Killing field X	$s \in H^0(Z, \mathcal{O}(2))$	
Dirac operator	$\overline{\partial}$ on $\Lambda^{0,*} \otimes \mathcal{O}(-n)$	

The interpretation of solutions to linear field equations as elements of Čech cohomology is the essence of the Penrose programme.

Big questions. Is every compact QK manifold ($H \subseteq Sp(n)Sp(1)$, automatically Einstein) with scalar curvature s > 0 necessarily symmetric? Is every contact Fano manifold Z^{2n+1} homogeneous? Open if $n \ge 3$.

3.3 A moment mapping

Suppose that M^{4n} is a QK manifold with an isometry group *G* with dim $G = \ell$. Consider the morphism

$$\Phi: Z \to \mathbb{P}(\mathfrak{g}_c^*) = \mathbb{P}(H^0(Z, \mathcal{O}(L))^*)$$
$$z \mapsto [s_1, \dots, s_\ell],$$

a moment map for the contact structure θ preserved by G_c .

- Suppose $\wp \in S^k \mathfrak{g}^*$ is an invariant polynomial. Then either
 - (a) the image of $\wp^{\sharp} \in S^k \mathfrak{g}_c \to H^0(Z, \mathcal{O}(L^k))$ is non-zero, or
 - (b) $\Phi(Z)$ lies in the zero set of \wp .

In (a), the image of \wp^{\sharp} vanishes on k local sections of $Z \to M$ each of which determines a *G*-invariant complex structure of type aI + bJ + cK. If these are not present, then (b) asserts that $\Phi(Z)$ lies in the nilpotent variety in $\mathbb{P}(\mathfrak{g}_c)$.

Related question. Does a positive QK manifold M^{4n} always have isometries?

Yes, at least if $n \leq 4$.

4.1 Witten rigidity

Let M^{4n} be a Wolf space or QK manifold with isometry group G. Its virtual Spin(4n) representation is

$$\Delta_+ - \Delta_- = \Lambda_0^n (E - \Sigma^1) = \bigoplus_{p+q=n} (-1)^p R^{p,q},$$

where $R^{p,q} = \Lambda_0^p E \otimes \Sigma^q$ with $E = \mathbb{C}^{2n}$, $\Sigma^q = S^q(\mathbb{C}^2)$.

The coupled Dirac operator

$$\Gamma(M, \Delta_+ \otimes R^{p,q}) \longrightarrow \Gamma(M, \Delta_- \otimes R^{p,q})$$

has index $i^{p,q} = \int_M \operatorname{ch}(R^{p,q}) \hat{A}(M)$.

Theorem.
$$(-1)^{p}i^{p,q} = \begin{cases} 0 & \text{if } p+q < n, \\ b_{2p-2} + b_{2p} & \text{if } p+q = n, \\ \dim G & p=0, \ q=n+2. \end{cases}$$

This is a *G*-equivariant statement, and if $p + q \leq n$ the associated *G*-modules are trivial.

4.2 Application to dimension 8

Index theory (and the γ filtration) gives a linear constraint on the Betti numbers and estimates on the isometry group, in terms of characteristic classes including the integral class $u \in H^4(M,\mathbb{Z})$ that represents Ω .

Example. If $d = \dim M = 8$ then

$$b_2 + 1 = b_4.$$

This suggests that $b_2 = 0$ or 1! Moreover

$$\dim G = 5 + \int_M u^2.$$

If $b_4 = 1$ then

$$\dim G = \begin{cases} 5+16 = \dim Sp(3), \\ 5+9 = \dim G_2, \\ 5+4 = \dim Sp(1)^3, \\ 5+1 = \dim SO(4), \end{cases}$$

corresponding to

$$\mathbb{HP}^{2} = \frac{Sp(3)}{Sp(2) \times Sp(1)}, \qquad \frac{G_{2}}{SO(4)}, \qquad \frac{\mathbb{HP}^{2}}{(\mathbb{Z}_{2})^{2}},$$

?

Only the first two spaces are non-singular.

4.3 Towards a classification

Let M^{4n} be a compact positive QK manifold.

Theorem [LS,W]. If $b_2(M) > 0$ then *M* is isometric to $\mathbb{G}r_2(\mathbb{C}^{n+2})$.

Proof uses Mori theory on the twistor space *Z*. If $b_2(Z) > 1$ there exists a second family of rational curves on *Z* transverse to the fibres over *M*, and a Fano contraction

$$Z \to \mathbb{CP}^{n+1}$$

with *its* fibres tangent to the contact dstribution *D*. This forces $Z = \mathbb{P}(T^* \mathbb{CP}^{n+1})$.

Corollary [GMS]. The only Wolf spaces with a (stably) almost complex structure are $\mathbb{HP}^1 = S^4$ and $\mathbb{Gr}_2(\mathbb{C}^{n+2})$.

Proof. If n > 1 then

$$R^{1,n-3} \oplus R^{1,n-1} \cong (E \otimes \Sigma^1) \otimes \Sigma^{n-2} \cong (T^{1,0} \oplus T^{0,1}) \otimes \Sigma^{n-2},$$

forcing $-i^{1,n-1} = 1 + b_2$ to be even.

4.4 Spin and the genus

Let M^{4n} be compact, $H \subseteq Sp(n)Sp(1)$ and s > 0.

Key fact: if we ignore \mathbb{HP}^n then *M* is spin iff *n* is even. In this case, $\hat{A}(M) = 0$ because s > 0. There is a dichotomy according to the parity of *n*.

Theorem [PS]. A positive QK manifold M^8 is isometric to a Wolf space.

Attempts to push this to dimension 12 relied on elliptic genera [HH], but appear to need the assumption $\hat{A}(M) = 0$. Significant progress has been made recently by Amann in higher dimensions:

Theorem. If $b_4 = 1$ and $3 \leq n \leq 6$ then $M \cong \mathbb{HP}^n$.

All exceptional Wolf space have $b_4 = 1$, including $\frac{F_4}{Sp(3)Sp(1)}$.

Theorem [A]. If n = 5 and $\hat{A}(M) = 0$ then dim $G \ge 15$ and M is a Wolf space if (for example) $\int_M u^5 > 384$.

5.1 Betti numbers of symmetric spaces

Consider the Poincaré polynomial

 $P(t) = 1 + b_1 t + b_2 t^2 + b_3 t^3 + \cdots$

and assume Euler characteristic $\chi = P(-1) \neq 0$. Then

$$\log P(t-1) = \log \chi - dt + \phi t^2 + \cdots$$

where $d = \dim M$, and

$$2\phi = \frac{P''(-1)}{2\chi} - \frac{1}{8}d^2.$$

By construction, this coefficient is additive for products:

$$\phi(M \times N) = \phi(M) + \phi(N).$$

Theorems (i) If M^{4n} is compact hyperkähler, $\chi = 0$ or $\phi = -\frac{5}{6}n$. \star (ii) [FS]. If $M^d = G/H$ is an irreducible compact SS of type ADE or a HSS,

$$\phi=\tfrac{1}{12}(h(\mathfrak{g})-2)d,$$

where $h(\mathfrak{g})$ is the Coxeter number. If M^{4n} is an ADE Wolf space then $\phi = \frac{1}{3}n^2$.

5.2 The case of E_8

The odd Betti numbers of a positive QK manifold M^{4n} all vanish and the intersection form is definite: $b_{2i+1} = 0$ and $b_{2n} = b_{2n}^+$.

The signature of an ADE Wolf space space equals its rank: $b_{2n} = r$. Its Euler characteristic χ equals the number of positive roots.

$$\begin{split} E_8/E_7Sp(1) \text{ has 8 primitive cohomology classes } \sigma_k \in H^{4k}(M,\mathbb{R}); \\ H^{56}(M,\mathbb{R}) = \left\langle \sigma_k \cup u^{14-k} : k = 0, 3, 5, 6, 8, 9, 11, 14 \right\rangle, \end{split}$$

exhibiting 'secondary Poincaré duality' about degree n = 28:

Question [HS]. What happens over the integers? Is the quadratic form $H^{56}(M,\mathbb{Z}) \times H^{56}(M,\mathbb{Z}) \to \mathbb{Z}$ diagonalizable or the E_8 lattice? The quaternionic volume is

 $\int_{M} u^{28} = 2^3 \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \cdot 53 = \frac{5! \, 9! \, 57!}{19! \, 23! \, 29!} = 63468758442600.$

5.2 References, see arXiv or MathSciNet

- [A] Amann
- [FS] Fino–Salamon
- [G] Gambioli
- [GMS] Gauduchon–Moroianu–Semmelmann
- [HH] Herrera–Herrera
- [HS] Hirzebruch–Sladowy
- [JM] Jacobson–Morozov
- [LS] LeBrun–Salamon
- [PS] Poon–Salamon
- [S] Swann
- [W] Wiśniewski