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1.1 Riemannian symmetric spaces

M ==
H

If the isometry group G acts faithfully then H is the holonomy
group and H c O(d).

The action of H on each tangent space T,,M can give a model
for more general Riemannian manifolds:

Kéhler, quaternion-Kéhler, H -structure with torsion, ...

Some aspects of the topology only depend on the holonomy H.
Others depend on G; spaces with a common isometry group have
a hidden affinity *



1.2 Quaternionic symmetric spaces

are analogues of the Hermitian symmetric spaces. The classical
compact ones of real dimension 4n are

Sp(n+1)
" Sp(n) x Sp(1)
SU(n+2)
S(U(n) xU(2))
S0O(n +4)
SO(m) x SO@)
Of these, only Gry(C™?) (and Gry(R®)) are Kihler.

HIP"

GI‘Q ( Cn+2) —

GI‘4 (Rn+4) —

Exceptional ones have real dimensions 8,28,40,64,112:

Gy F4 Eq E; Eg
SO4)” Sp(B)Sp(1)” SU(6)Sp(1)” Spin(12) Sp(1)” E;Sp(1)

Recall that SO(4) = Sp(1)Sp(1) = Sp(1) xz,Sp(1) is not simple.




1.3 Wolf’s construction

Given a compact simple Lie algebra g, choose a Lie subalgebra
su(2) =sp(1) arising from a highest root. Set

H=KSp(1) ={geG:Ad(g)(su(2)) =su(2)}.

Then
G G

M —_ —_
KSp(l) H

is quaternion-Kéhler (QK), meaning

H C Sp(n)Sp(1) | € SO(4n).

This means that M admits a parallel 4-form Q equivalent to
1234 + 5678 + %(1256 + 1278 + 3456 + 3478 + 1357 + 1386 + 4257 + 4286 + 1458 + 1467 + 2358 + 2367).

All compact QK homogeneous spaces arise like this (Alekseevsky).
What happens if we take other su(2) ’sin g?



1.4 The isotropy representations

of these spaces have special merit. For each Wolf space G/ K Sp(1),
we get a symplectic representation K — End(C?").

Example. Consider ¢; = su(6) @ sp(1) ® m, where
m.=AYex=CY  Z=C-
But E¢ also acts on
C¥ = (AMeX) o AV
= 6 + 6 + 15
= (a;) ® (b;) ® (cij)

giving Schléfli’s configuration of
the 27 lines on a cubic surface:




2.1 Nilpotent coadjoint orbits

can obtained [JM] by choosing su(2) C g and setting
N =(AdGy)(e) Cge,, e=(),) €5l(2,C).

Kronheimer proved that Z = .4 admits a hyperkdhler metric,
but .4 /C* is compact only if .4 is minimal. In this case, Z =
G/KU(1) is the so-called twistor space that fibres over G/ K Sp(1).

Example. For G, there are four non-zero orbits:

su(2), Cso(4) C g
su(2). Cso(4) C g
s0(3) Cso(4) C g

50(3)pr C g
Then . .
Z=—"— — — = M°
ue), SO@4)
By contrast,
Gry(R)) 2 2 C2__s

U(Q2)- SU (3)
in which SU(3) is the fixed point set of an automorphism of order 3 on G,.



2.2 Calibrations

The fundamental 3-form
F(X,Y,Z)=([X,Y], Z)

on the Lie algebra g defines a function f on G = Gr3(g) for which
(i) V € G iscritical iff V is a subalgebra;

(ii) f achieves its maximum on the Wolf space parametrizing
minimal su(2)’s;

(iii) we can easily compute Hess(f) atany V = su(2).
Example. Let V = s0(3),r C su(3). Then su(3). = X* + X* where
>4 = §9(C?), and

TvG =2 VeVt = 3234 = S2¢3te Xt
+ 0 -

Whilst the critical manifold C° = —ngl(g?z;)
both
et = Bg>l
Shg 36 = 35 g3l

are quaternionic or Sp(2)Sp(1) modules.

has tangent space X%,



2.3 Morse theory

The associated unstable manifold U® is the union of C° and the
upward flow lines of the vector field grad f. It is diffeomorphic to
a rank 5 vector bundle over C® with fibre =%, and T.U = 2% & X2,
Moreover [G], itis a Z3 quotient

u =7 (5o )

More generally, if G is any compact simple Lie group,

Theorem [S]. f is a Morse-Bott function on Grs(g). The unstable
manifold determined by a critical manifold containing su(2) C g
is QK and its twistor space is .4 /C*.

A discrete version of the construction (and Nahm’s equations)
gives rise to the following dynamical system. Given a subspace
V = (v1,v,,v3) Cg, define

V' = ([vy, 03], [03,01], [01,02]) .

For generic V, one expects

v S$U(2) min € as n — oo.

KSp(1)



3.1 The twistor space

The total space of the fibration

G . G
- KU(1) KSp(1)

V4 =M

is a real adjoint orbit in g and a polarized variety. Wolf pointed
out that Z has a complex contact structure 6.

Example. CP*"*!(— HP") has anticanonical bundle x = O(2n+2).

In general, only L = O(2) is defined and Z is Fano of index n +1.
There is a holomorphic short exact sequence

0-D—-TZ-5L1L -0
of vector bundles, in which D is a horizontal distribution and
0 € H(Z,Q'(L)). The fibre
Sp(1)
u(l)

parametrizes compatible almost complex structures on T,,M and
has normal bundle 2n0O(1).

a1 (m) = = CP! = &2
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3.2 The Penrose correspondence

between M and Z is much more general:

M positive QK Z contact Fano

point rational curve

complex structure | holomorphic section
by(M) +1 = b2 (Z)
Killing field X s € H(Z,0(2))
Dirac operator | 0 on A% ® O(-n)

The interpretation of solutions to linear field equations as elements
of Cech cohomology is the essence of the Penrose programme.

Big questions. Is every compact QK manifold (H C Sp(n)Sp(1),
automatically Finstein) with scalar curvature s > 0 necessarily
symmetric? Is every contact Fano manifold Z***! homogeneous?

Openif n > 3.
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3.3 A moment mapping

Suppose that M*" is a QK manifold with an isometry group G
with dim G = €. Consider the morphism

®:Z — P(g:) = P(H(Z,O(L))*)
zZ = [51,...,Sg],

a moment map for the contact structure 6 preserved by G..

Suppose @ € Skg* is an invariant polynomial. Then either

(a) the image of pf € Skg. — H°(Z, O(L¥)) is non-zero, or

(b) ®(Z) lies in the zero set of .
In (a), the image of f vanishes on k local sections of Z — M
each of which determines a G -invariant complex structure of type

al + b] + cK. If these are not present, then (b) asserts that ®(Z)
lies in the nilpotent variety in P(g.).

Related question. Does a positive QK manifold M*" always have
isometries?
Yes, at least if n < 4.

12



4.1 Witten rigidity

Let M*" be a Wolf space or QK manifold with isometry group G .
Its virtual Spin(4n) representation is

A.-A_=N(E-ZH = @D (-1)PRM,
p+q=n

where RP1=NE ® 39 with E=C?", 37=54(C?).
The coupled Dirac operator

I'(M,A; ® RP1) — I'(M, A_ ® RPT)
has index P4 = |, ch(RP1) A(M).
(0 if p+q <mn,

Theorem. (-1)Pi"9 = by,o+by, ifp+g=mn,

| dim G p=0, g=n+2.

This is a G -equivariant statement, and if p + g < n the associated
G -modules are trivial.
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4.2 Application to dimension 8

Index theory (and the y filtration) gives a linear constraint on the
Betti numbers and estimates on the isometry group, in terms of
characteristic classes including the integral class u € H*(M,Z)
that represents €.

Example. If d = dim M = 8 then
b, + 1 = by.
This suggests that b, =0 or 1! Moreover
dimG =5+ [, ,u”.
If by =1 then

[ 5+16 =dimSp(3),
5+9 =dim Gz,
5+4 =dimSp(1)?,
| 5+1 =dimSO®4),

dim G = <

corresponding to

_ S5p(3) Ga HP?
S Sp@)xSp(1)” SOM@) (Zo)

Only the first two spaces are non-singular.

HIP?
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4.3 Towards a classification

Let M*" be a compact positive QK manifold.
Theorem [LS,W]. If b,(M) > 0 then M isisometric to Gr,(C"*?).

Proof uses Mori theory on the twistor space Z. If by(Z) > 1 there
exists a second family of rational curves on Z transverse to the
fibres over M, and a Fano contraction

7 — (CIP)rHl

with its fibres tangent to the contact dstribution D. This forces
Z = P(T*CP").

Corollary [GMS]. The only Wolf spaces with a (stably) almost
complex structure are HP'=S* and Gr,(C™*?).

Proof. If n > 1 then
Rl,n—3 ® Rl,n—l =~ (E Q Zl) Q Zn—z =~ (Tl,() ® TO,]) Q Zn—zl

forcing —i'"1 =1 + b, to be even.
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4.4 Spin and the A genus

Let M*" be compact, H C Sp(n)Sp(1) and s > 0.

Key fact: if we ignore HP" then M is spin iff n is even. In this
case, A(M) =0 because s > 0. There is a dichotomy according to
the parity of n.

Theorem [PS]. A positive QK manifold M? is isometric to a Wolf
space.

Attempts to push this to dimension 12 relied on elliptic genera
[HH], but appear to need the assumption A(M) = 0. Significant
progress has been made recently by Amann in higher dimensions:

Theorem. If by =1 and 3 < n < 6 then M = HP".

All exceptional Wolf space have by = 1, including S 3;:;9 D

Theorem [A].If n =5 and A(M) =0 then dimG > 15 and M
is a Wolf space if (for example) [, u’ > 384.

16



5.1 Betti numbers of symmetric spaces

Consider the Poincaré polynomial
P(t) =1+ byt + byt* + bst® + - --
and assume Euler characteristic X = P(-1) # 0. Then
log P(t—1) =log X —dt+<j)t2+

where d = dim M, and
P"(—l) B 1d2.

2d =
(l) 2 x 8
By construction, this coefficient is additive for products:

¢(M x N) = p(M) + ¢(N).

Theorems (i) If M*" is compact hyperkahler, X =0 or ¢ = —2n.
* (ii) [FS]. If M4=G/H is an irreducible compact SS of type ADE
or a HSS,

¢ = 15(h(g) -2)d,
where h(g) is the Coxeter number. If M*" is an ADE Wolf space
then ¢ = in?.
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5.2 The case of Ejg

The odd Betti numbers of a positive QK manifold M*" all vanish
and the intersection form is definite: by;,1 =0 and by, = bJ,.

The signature of an ADE Wolf space space equals its rank: by, = 7.
Its Euler characteristic X equals the number of positive roots.

Es/E;Sp(1) has 8 primitive cohomology classes ox € H* (M, R);
H5% (M, R) = <ok Uultk . k=0,3,5,6, 8,9,11,14>,

exhibiting ‘secondary Poincaré duality” about degree n = 28:

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
© 6 6 6 06 © 0 o6 © o © o o o o
© © o © o o o o o o o o

© © o o o o o o o o

© e o o o o o o o

© o o o o o o

© o o o o o

e o o o

°

Question [HS]. What happens over the integers? Is the quadratic
form H>°(M,Z)xH>*(M,Z) — 7 diagonalizable or the Eg lattice?
The quaternionic volume is

5!9!157!
fM u*® = 23.32.5%,7.31.37.41.43.47.53 = 191231291 — 63468758442600.
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