Geometry \& Topology of Wolf Spaces

Levico Spa 18 June 2010
http://calvino.polito.it/~ salamon

CONTENTS

1. Definition of the Wolf spaces
2. Nilpotency and TDS's
3. Associated complex geometry
4. Index theory and QK manifolds
5. BETTI NUMBERS OF SYMMETRIC SPACES

1.1 Riemannian symmetric spaces

$$
M^{d}=\frac{G}{H}
$$

If the isometry group G acts faithfully then H is the holonomy group and $H \subset O(d)$.

The action of H on each tangent space $T_{m} M$ can give a model for more general Riemannian manifolds:

Kähler, quaternion-Kähler, H-structure with torsion, ...
Some aspects of the topology only depend on the holonomy H. Others depend on G; spaces with a common isometry group have a hidden affinity *

1.2 Quaternionic symmetric spaces

are analogues of the Hermitian symmetric spaces. The classical compact ones of real dimension $4 n$ are

$$
\begin{aligned}
& \mathbb{H}^{p}=\frac{S p(n+1)}{S p(n) \times S p(1)} \\
& \mathbb{G r}_{2}\left(\mathbb{C}^{n+2}\right)=\frac{S U(n+2)}{S(U(n) \times U(2))} \\
& \mathbb{G r}_{4}\left(\mathbb{R}^{n+4}\right)=\frac{S O(n+4)}{S O(n) \times S O(4)} .
\end{aligned}
$$

Of these, only $\mathbb{G r}_{2}\left(\mathbb{C}^{n+2}\right)$ (and $\mathbb{G r} \mathrm{r}_{4}\left(\mathbb{R}^{6}\right)$) are Kähler.
Exceptional ones have real dimensions 8,28,40,64,112:
$\frac{G_{2}}{S O(4)}, \quad \frac{F_{4}}{S p(3) S p(1)}, \quad \frac{E_{6}}{S U(6) S p(1)}, \quad \frac{E_{7}}{S p i n(12) S p(1)}, \quad \frac{E_{8}}{E_{7} S p(1)}$.
Recall that $S O(4)=S p(1) S p(1)=S p(1) \times_{\mathbb{Z}_{2}} S p(1)$ is not simple.

1.3 Wolf's construction

Given a compact simple Lie algebra \mathfrak{g}, choose a Lie subalgebra $\mathfrak{s u}(2)=\mathfrak{s p}(1)$ arising from a highest root. Set

$$
H=K S p(1)=\{g \in G: \operatorname{Ad}(g)(\mathfrak{s u}(2))=\mathfrak{s u}(2)\}
$$

Then

$$
M=\frac{G}{K \operatorname{Sp}(1)}=\frac{G}{H}
$$

is quaternion-Kähler (QK), meaning

$$
H \subseteq S p(n) S p(1) \subset S O(4 n)
$$

This means that M admits a parallel 4 -form Ω equivalent to

$$
1234+5678+\frac{1}{3}(1256+1278+3456+3478+1357+1386+4257+4286+1458+1467+2358+2367) .
$$

All compact QK homogeneous spaces arise like this (Alekseevsky). What happens if we take other $\mathfrak{s u}(2)$'s in \mathfrak{g} ?

1.4 The isotropy representations

of these spaces have special merit. For each Wolf space $G / K S p(1)$, we get a symplectic representation $K \rightarrow \operatorname{End}\left(\mathbb{C}^{2 n}\right)$.

Example. Consider $\mathfrak{e}_{6}=\mathfrak{s u}(6) \oplus \mathfrak{s p}(1) \oplus \mathfrak{m}$, where

$$
\mathfrak{m}_{c}=\Lambda^{3,0} \otimes \Sigma=\mathbb{C}^{40}, \quad \Sigma=\mathbb{C}^{2} .
$$

But E_{6} also acts on

$$
\begin{aligned}
\mathbb{C}^{27} & =\left(\Lambda^{1,0} \otimes \Sigma\right) \oplus \Lambda^{0,2} \\
& =6+6+15 \\
& =\left\langle a_{i}\right\rangle \oplus\left\langle b_{i}\right\rangle \oplus\left\langle c_{i j}\right\rangle
\end{aligned}
$$

giving Schläfli's configuration of the 27 lines on a cubic surface:

2.1 Nilpotent coadjoint orbits

can obtained [JM] by choosing $\mathfrak{s u}(2) \subset \mathfrak{g}$ and setting

$$
\mathscr{N}=\left(\operatorname{Ad} G_{c}\right)(e) \subset \mathfrak{g}_{c}, \quad e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \in \mathfrak{s l}(2, \mathbb{C}) .
$$

Kronheimer proved that $Z=\mathscr{N}$ admits a hyperkähler metric, but $\mathscr{N} / \mathbb{C}^{*}$ is compact only if \mathscr{N} is minimal. In this case, $Z=$ $G / K U(1)$ is the so-called twistor space that fibres over $G / K \operatorname{Sp}(1)$.

Example. For G_{2} there are four non-zero orbits:

$$
\begin{array}{llll}
\mathfrak{s u}(2)_{+} & \subset \mathfrak{s o}(4) & \subset \mathfrak{g}_{2} \\
\mathfrak{s u}(2)_{-} & \subset \mathfrak{s o}(4) & \subset \mathfrak{g}_{2} \\
\mathfrak{s o}(3) & \subset \mathfrak{s o}(4) & \subset \mathfrak{g}_{2} \\
\mathfrak{s o}(3)_{\mathrm{pr}} & & \subset \mathfrak{g}_{2}
\end{array}
$$

Then

$$
Z=\frac{G_{2}}{U(2)_{+}} \longrightarrow \frac{G_{2}}{S O(4)}=M^{8} .
$$

By contrast,

$$
\mathbb{G r}_{2}\left(\mathbb{R}^{7}\right) \cong \frac{G_{2}}{U(2)_{-}} \longrightarrow \frac{G_{2}}{S U(3)}=S^{6},
$$

in which $\operatorname{SU(3)}$ is the fixed point set of an automorphism of order 3 on G_{2}.

2.2 Calibrations

The fundamental 3-form

$$
F(X, Y, Z)=\langle[X, Y], Z\rangle
$$

on the Lie algebra \mathfrak{g} defines a function f on $\mathbb{G}=\mathbb{G} r_{3}(\mathfrak{g})$ for which
(i) $V \in \mathbb{G}$ is critical iff V is a subalgebra;
(ii) f achieves its maximum on the Wolf space parametrizing minimal $\mathfrak{s u}(2)$'s;
(iii) we can easily compute $\operatorname{Hess}(f)$ at any $V=\mathfrak{s u}(2)$.

Example. Let $V=\mathfrak{s o}(3)_{\mathrm{pr}} \subset \mathfrak{s u}(3)$. Then $\mathfrak{s u}(3)_{c} \cong \Sigma^{2}+\Sigma^{4}$ where $\Sigma^{q}=S^{q}\left(\mathbb{C}^{2}\right)$, and

$$
T_{V} \mathbb{G} \cong V \otimes V^{\perp} \cong \Sigma^{2} \otimes \Sigma^{4} \cong \Sigma^{2} \oplus \Sigma^{4} \oplus \Sigma^{6}
$$

$$
+\quad 0 \quad-
$$

Whilst the critical manifold $C^{5}=\frac{S U(3)}{\mathbb{Z}_{3} S O(3)}$ has tangent space Σ^{4}, both

$$
\begin{aligned}
& \Sigma^{2} \oplus \Sigma^{4} \cong \Sigma^{3} \otimes \Sigma^{1} \\
& \Sigma^{4} \oplus \Sigma^{6} \cong \Sigma^{5} \otimes \Sigma^{1}
\end{aligned}
$$

are quaternionic or $\operatorname{Sp}(2) S p(1)$ modules.

2.3 Morse theory

The associated unstable manifold U^{8} is the union of C^{5} and the upward flow lines of the vector field grad f. It is diffeomorphic to a rank 5 vector bundle over C^{5} with fibre Σ^{4}, and $T_{c} U=\Sigma^{2} \oplus \Sigma^{4}$. Moreover [G], it is a \mathbb{Z}_{3} quotient

$$
U^{8}=\frac{1}{\mathbb{Z}_{3}}\left(\frac{G_{2}}{S O(4)} \backslash \mathbb{C P}^{2}\right)
$$

More generally, if G is any compact simple Lie group,
Theorem [S]. f is a Morse-Bott function on $\mathbb{G r}_{3}(\mathfrak{g})$. The unstable manifold determined by a critical manifold containing $\mathfrak{s u}(2) \subset \mathfrak{g}$ is QK and its twistor space is $\mathscr{N} / \mathbb{C}^{*}$.

A discrete version of the construction (and Nahm's equations) gives rise to the following dynamical system. Given a subspace $V=\left\langle\boldsymbol{v}_{1}, v_{2}, v_{3}\right\rangle \subset \mathfrak{g}$, define

$$
V^{\prime}=\left\langle\left[v_{2}, v_{3}\right],\left[v_{3}, v_{1}\right],\left[v_{1}, v_{2}\right]\right\rangle
$$

For generic V, one expects

$$
V^{(n)} \rightarrow \mathfrak{s u}(2)_{\min } \in \frac{G}{K S p(1)} \quad \text { as } n \rightarrow \infty .
$$

3.1 The twistor space

The total space of the fibration

$$
Z=\frac{G}{K U(1)} \xrightarrow{\pi} \frac{G}{K S p(1)}=M
$$

is a real adjoint orbit in \mathfrak{g} and a polarized variety. Wolf pointed out that Z has a complex contact structure θ.

Example. $\mathbb{C P}^{2 n+1}\left(\rightarrow \mathbb{H} \mathbb{P}^{n}\right)$ has anticanonical bundle $\bar{\kappa}=\mathcal{O}(2 n+2)$.
In general, only $L=\mathcal{O}(2)$ is defined and Z is Fano of index $n+1$. There is a holomorphic short exact sequence

$$
0 \rightarrow D \rightarrow T Z \xrightarrow{\theta} L \rightarrow 0
$$

of vector bundles, in which D is a horizontal distribution and $\theta \in H^{0}\left(Z, \Omega^{1}(L)\right)$. The fibre

$$
\pi^{-1}(m) \cong \frac{S p(1)}{U(1)}=\mathbb{C P}^{1}=S^{2}
$$

parametrizes compatible almost complex structures on $T_{m} M$ and has normal bundle $2 n \mathcal{O}(1)$.

3.2 The Penrose correspondence

between M and Z is much more general:

M positive $Q K$	Z contact Fano
point	rational curve
complex structure	holomorphic section
$b_{2}(M)+1$	$=b_{2}(Z)$
Killing field X	$s \in H^{0}(Z, \mathcal{O}(2))$
Dirac operator	$\bar{\partial}$ on $\Lambda^{0, *} \otimes \mathcal{O}(-n)$

The interpretation of solutions to linear field equations as elements of Čech cohomology is the essence of the Penrose programme.

Big questions. Is every compact QK manifold ($H \subseteq \operatorname{Sp}(n) \operatorname{Sp}(1)$, automatically Einstein) with scalar curvature $s>0$ necessarily symmetric? Is every contact Fano manifold $Z^{2 n+1}$ homogeneous? Open if $n \geqslant 3$.

3.3 A moment mapping

Suppose that $M^{4 n}$ is a QK manifold with an isometry group G with $\operatorname{dim} G=\ell$. Consider the morphism

$$
\begin{aligned}
\Phi: Z & \rightarrow \mathbb{P}\left(\mathfrak{g}_{c}^{*}\right)=\mathbb{P}\left(H^{0}(Z, \mathcal{O}(L))^{*}\right) \\
z & \mapsto\left[s_{1}, \ldots, s_{\ell}\right],
\end{aligned}
$$

a moment map for the contact structure θ preserved by G_{c}. Suppose $\mathcal{\&} \in S^{k} \mathfrak{g}^{*}$ is an invariant polynomial. Then either
(a) the image of $\boldsymbol{\gamma}^{\sharp} \in S^{k} \mathfrak{g}_{c} \rightarrow H^{0}\left(Z, \mathcal{O}\left(L^{k}\right)\right)$ is non-zero, or
(b) $\Phi(Z)$ lies in the zero set of \wp.

In (a), the image of \mathcal{q}^{\sharp} vanishes on k local sections of $Z \rightarrow M$ each of which determines a G-invariant complex structure of type $a I+b J+c K$. If these are not present, then (b) asserts that $\Phi(Z)$ lies in the nilpotent variety in $\mathbb{P}\left(\mathfrak{g}_{c}\right)$.

Related question. Does a positive QK manifold $M^{4 n}$ always have isometries?
Yes, at least if $n \leqslant 4$.

4.1 Witten rigidity

Let $M^{4 n}$ be a Wolf space or QK manifold with isometry group G. Its virtual $\operatorname{Spin}(4 n)$ representation is

$$
\Delta_{+}-\Delta_{-}=\Lambda_{0}^{n}\left(E-\Sigma^{1}\right)=\bigoplus_{p+q=n}(-1)^{p} R^{p, q}
$$

where $R^{p, q}=\Lambda_{0}^{p} E \otimes \Sigma^{q}$ with $E=\mathbb{C}^{2 n}, \Sigma^{q}=S^{q}\left(\mathbb{C}^{2}\right)$.
The coupled Dirac operator

$$
\Gamma\left(M, \Delta_{+} \otimes R^{p, q}\right) \longrightarrow \Gamma\left(M, \Delta_{-} \otimes R^{p, q}\right)
$$

has index $i^{p, q}=\int_{M} \operatorname{ch}\left(R^{p, q}\right) \hat{A}(M)$.
Theorem. $(-1)^{p_{i} p, q}= \begin{cases}0 & \text { if } p+q<n, \\ b_{2 p-2}+b_{2 p} & \text { if } p+q=n, \\ \operatorname{dimG} & p=0, q=n+2 .\end{cases}$
This is a G-equivariant statement, and if $p+q \leqslant n$ the associated G-modules are trivial.

4.2 Application to dimension 8

Index theory (and the γ filtration) gives a linear constraint on the Betti numbers and estimates on the isometry group, in terms of characteristic classes including the integral class $u \in H^{4}(M, \mathbb{Z})$ that represents Ω.

Example. If $d=\operatorname{dim} M=8$ then

$$
b_{2}+1=b_{4} .
$$

This suggests that $b_{2}=0$ or 1 ! Moreover

$$
\operatorname{dim} G=5+\int_{M} u^{2} .
$$

If $b_{4}=1$ then

$$
\operatorname{dim} G= \begin{cases}5+16 & =\operatorname{dim} S p(3) \\ 5+9 & =\operatorname{dim} G_{2} \\ 5+4 & =\operatorname{dim} S p(1)^{3} \\ 5+1 & =\operatorname{dim} S O(4)\end{cases}
$$

corresponding to

$$
\mathbb{H}_{\mathbb{P}^{2}}=\frac{S p(3)}{\operatorname{Sp}(2) \times \operatorname{Sp}(1)}, \quad \frac{G_{2}}{S O(4)}, \quad \frac{\mathbb{H}^{2} \mathbb{P}^{2}}{\left(\mathbb{Z}_{2}\right)^{2}},
$$

Only the first two spaces are non-singular.

4.3 Towards a classification

Let $M^{4 n}$ be a compact positive QK manifold.
Theorem [LS,W]. If $b_{2}(M)>0$ then M is isometric to $\mathbb{G r}_{2}\left(\mathbb{C}^{n+2}\right)$.
Proof uses Mori theory on the twistor space Z. If $b_{2}(Z)>1$ there exists a second family of rational curves on Z transverse to the fibres over M, and a Fano contraction

$$
Z \rightarrow \mathbb{C P}^{n+1}
$$

with its fibres tangent to the contact dstribution D. This forces $Z=\mathbb{P}\left(T^{*} \mathbb{C} \mathbb{P}^{n+1}\right)$.

Corollary [GMS]. The only Wolf spaces with a (stably) almost complex structure are $\mathbb{H}^{1}=S^{4}$ and $\mathbb{G r}_{2}\left(\mathbb{C}^{n+2}\right)$.

Proof. If $n>1$ then

$$
R^{1, n-3} \oplus R^{1, n-1} \cong\left(E \otimes \Sigma^{1}\right) \otimes \Sigma^{n-2} \cong\left(T^{1,0} \oplus T^{0,1}\right) \otimes \Sigma^{n-2}
$$

forcing $-i^{1, n-1}=1+b_{2}$ to be even.

4.4 Spin and the Â genus

Let $M^{4 n}$ be compact, $H \subseteq S p(n) S p(1)$ and $s>0$.
Key fact: if we ignore \mathbb{H}^{n} then M is spin iff n is even. In this case, $\hat{A}(M)=0$ because $s>0$. There is a dichotomy according to the parity of n.

Theorem [PS]. A positive QK manifold M^{8} is isometric to a Wolf space.

Attempts to push this to dimension 12 relied on elliptic genera $[\mathrm{HH}]$, but appear to need the assumption $\hat{A}(M)=0$. Significant progress has been made recently by Amann in higher dimensions:

Theorem. If $b_{4}=1$ and $3 \leqslant n \leqslant 6$ then $M \cong \mathbb{H}^{n}$.
All exceptional Wolf space have $b_{4}=1$, including $\frac{F_{4}}{S p(3) S p(1)}$.
Theorem [A]. If $n=5$ and $\hat{A}(M)=0$ then $\operatorname{dim} G \geqslant 15$ and M is a Wolf space if (for example) $\int_{M} u^{5}>384$.

5.1 Betti numbers of symmetric spaces

Consider the Poincaré polynomial

$$
P(t)=1+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+\cdots
$$

and assume Euler characteristic $\mathcal{X}=P(-1) \neq 0$. Then

$$
\log P(t-1)=\log x-d t+\phi t^{2}+\cdots
$$

where $d=\operatorname{dim} M$, and

$$
2 \phi=\frac{P^{\prime \prime}(-1)}{2 x}-\frac{1}{8} d^{2} .
$$

By construction, this coefficient is additive for products:

$$
\phi(M \times N)=\phi(M)+\phi(N) .
$$

Theorems (i) If $M^{4 n}$ is compact hyperkähler, $\mathcal{X}=0$ or $\phi=-\frac{5}{6} n$. \star (ii) [FS]. If $M^{d}=G / H$ is an irreducible compact SS of type ADE or a HSS,

$$
\phi=\frac{1}{12}(h(\mathfrak{g})-2) d,
$$

where $h(\mathfrak{g})$ is the Coxeter number. If $M^{4 n}$ is an ADE Wolf space then $\phi=\frac{1}{3} n^{2}$.

5.2 The case of E_{8}

The odd Betti numbers of a positive QK manifold $M^{4 n}$ all vanish and the intersection form is definite: $b_{2 i+1}=0$ and $b_{2 n}=b_{2 n}^{+}$.

The signature of an ADE Wolf space space equals its rank: $b_{2 n}=r$. Its Euler characteristic X equals the number of positive roots.
$E_{8} / E_{7} S p(1)$ has 8 primitive cohomology classes $\sigma_{k} \in H^{4 k}(M, \mathbb{R})$;

$$
H^{56}(M, \mathbb{R})=\left\langle\sigma_{k} \cup u^{14-k}: k=0,3,5,6,8,9,11,14\right\rangle
$$

exhibiting 'secondary Poincaré duality' about degree $n=28$:

Question [HS]. What happens over the integers? Is the quadratic form $H^{56}(M, \mathbb{Z}) \times H^{56}(M, \mathbb{Z}) \rightarrow \mathbb{Z}$ diagonalizable or the E_{8} lattice? The quaternionic volume is

$$
\int_{M} u^{28}=2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \cdot 53=\frac{5!9!57!}{19!23!29!}=63468758442600 .
$$

5.2 References, see arXiv or MathSciNet

[A]	Amann
$[\mathrm{FS}]$	Fino-Salamon
$[\mathrm{G}]$	Gambioli
$[\mathrm{GMS}]$	Gauduchon-Moroianu-Semmelmann
$[\mathrm{HH}]$	Herrera-Herrera
$[\mathrm{HS}]$	Hirzebruch-Sladowy
$[\mathrm{JM}]$	Jacobson-Morozov
$[\mathrm{LS}]$	LeBrun-Salamon
$[\mathrm{PS}]$	Poon-Salamon
$[\mathrm{S}]$	Swann
$[\mathrm{W}]$	Wiśniewski

