INTRINSIC TORSION VARIETIES

Simon Salamon

with Georgi Miyahlov

Lecce, June 2007

in honour of Oldřich Kowalski

lecce.jpg

Introduction

Riemannian pre-holonomy

Choose a structure group $H \subset SO(n)$ Reductions are parametrized by the homogeneous space $F = \frac{SO(n)}{H}$ An *H*-structure is a section *s* of the associated bundle $\downarrow F$ M^n

Its intrinsic torsion τ is given by $\nabla^{\mathsf{LC}}s:TM \to TF$ Note that $\mathfrak{so}(n) = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$ with $\mathfrak{h}^{\perp} \cong T_{s(m)}F \implies \tau_m \in \mathbb{R}^n \otimes \mathfrak{h}^{\perp}$ This measures the "holonomy failure" of s at each point $m \in M$

Examples in six dimensions

... arise from choosing $H \subset SO(6)$

Two irreducible non-symmetric holonomies:

pre-Kählerpre-Calabi-YauHU(3)
$$SU(3)$$
F $\frac{SO(6)}{U(3)} = \mathbb{CP}^3$ $\frac{SO(6)}{SU(3)} = \mathbb{RP}^7$

Their reductions can be described using the action of $Spin(6) \cong SU(4)$ on the spaces \mathbb{C}^4 and \mathbb{R}^8 of spinors

We shall focus on \mathbb{CP}^3 and other adjoint orbits in $\mathfrak{so}(6) = \mathfrak{su}(4)$ such as

$$\mathbb{G}r_2(\mathbb{R}^6) = \frac{SO(6)}{SO(2) \times SO(4)} \cong \frac{U(4)}{U(2) \times U(2)} = \mathbb{G}r_2(\mathbb{C}^4)$$

Coadjoint orbits

Complex flag manifolds

Symplectic fibrations

Such fibrations are characterized by the existence of a 2-form ω on the total space for which $d\omega(V_1, V_2, \cdot) = 0$ with V_i vertical. Here we can choose $d\omega = 0$

Borel-Weil theory and practice

Theorem: Let V be an irreducible complex representation of G with highest weight $\lambda \in \mathfrak{t}^*$ and vector $v_{\lambda} \in V$. Then

$$\mathbb{P}(V) \supset G_c \cdot [v_{\lambda}] \cong \frac{G_c}{P} = \frac{G}{H} = F$$

and $V \cong H^0(F, \mathcal{O}(L_{\lambda}))$

Example:
$$\mathbb{CP}^5 = \mathbb{P}(\Lambda^2 \mathbb{C}^4) \supset Q = \frac{SL(4,\mathbb{C})}{P} = \mathbb{G}r_2(\mathbb{C}^4)$$

Penrose studied the Klein quadric with SU(2,2) in place of SU(4) and resulting field theory. Baston–Eastwood generalized this to arbitrary flag manifolds

3-symmetric spaces and harmonic maps

Twistor theory used double fibrations to construct new harmonic maps from old (often holomorphic) ones.

Geometrical structures on 6-manifolds

SO(6) in place of SU(4)

The action of T^3 will provide a moment map of each space to \mathbb{R}^3

Classification of 2-forms

Each space is embedded in $\Lambda^2(\mathbb{R}^6)^*$ as an SO(6)-orbit of 2-forms For example, $\sigma \in SO(6) \cdot e^{12}$ iff $||\sigma|| = 1$ and $\sigma \wedge \sigma = 0$

Almost complex and product structures

The Klein correspondence

Recall:

(i)
$$Q = \mathbb{G}r_2(\mathbb{C}^4)$$
 parametrizes \mathbb{CP}^1 's in \mathbb{CP}^3
(ii) A point $x \in \mathbb{CP}^3$ determines a plane $\Pi_{\alpha} \cong \mathbb{CP}^2$ in Q
(iii) A point $y \in (\mathbb{CP}^3)^*$ determines a plane $\Pi_{\beta} \cong \mathbb{CP}^2$ in Q

Interpretation:

(i) Given $\mathbb{R}^6 = \mathscr{V} \oplus \mathscr{H}$ there is a \mathbb{CP}^1 of compatible OCS's (parametrized by $\omega \in S^2 \subset \Lambda^2_+ \mathscr{H}$)

(ii) Given an OCS J, we have the J-invariant 2-planes $\langle v, Jv \rangle$

(iii) Given J, we have the oppositely-oriented 2-planes $\langle v, -Jv \rangle$

Mixed structures

A point of \mathscr{F} determines an OCS J and a J-invariant OPS:

 $\mathscr{F} = \frac{SO(6)}{SO(2) \times U(2)}$

Let us call an $SO(2) \times U(2)$ structure on a 6-manifold M a 'mixed structure'. Given the Riemannian metric, it is determined by a section of the associated bundle with fibre \mathscr{F} , or by a rank 4 distribution $\mathscr{H} = \llbracket \mathscr{H}^{1,0} \rrbracket$ equipped with an almost complex structure

Is this concept worthwhile? What are the key examples and properties?

Double integrability

Definition: Let us say that such a mixed structure on a 6-manifold N is doubly integrable if $Nij(J) \equiv 0$ and $[\mathscr{V}, \mathscr{V}] \subseteq \mathscr{V}$ (\mathscr{V} being the 2-dimensional distribution)

The local model is then a fibration $\ \downarrow \ \pi$ $\$ whose total space N is complex M^4

This captures two very different classes of examples:

(i) N is a holomorphic bundle over a complex surface, and elliptic fibrations (fibre T^2) of importance in deformation theory

(ii) M^4 has a conformal structure with Weyl₊ $\equiv 0$ and $N \subset \Lambda^2_+ T^*M$ is its twistor space. Each S^2 fibre is a rational curve with normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$

Specific examples

(i) N is the Iwasawa manifold $\frac{H_{\mathbb{C}}}{\Gamma}$ over $M = T^4$.

Stability theorem: Any invariant complex structure \mathbb{J} on N arises from one, say J, on T^4 and the induced j on the T^2 fibre is determined by J

This and similar examples typically possess **bi**hermitian structures

(ii)
$$\mathbb{CP}^3 = \frac{SO(5)}{U(2)}$$
 $\mathbb{F} = \frac{SU(3)}{T^2}$
 \downarrow \downarrow \downarrow \downarrow \downarrow \mathbb{CP}^2

Hitchin's theorem: Any Kähler twistor space is either \mathbb{CP}^3 or \mathbb{F}

Intrinsic torsion

Almost product classes

An $SO(2) \times SO(4)$ structure on M^6 gives $T_m M = \mathscr{V} \oplus \mathscr{H}$

Its intrinsic torsion $\boldsymbol{\tau}_m$ lies in

$$\mathbb{R}^{6} \otimes \mathfrak{h}^{\perp} \cong (\mathscr{V} \oplus \mathscr{H}) \mathscr{V} \mathscr{H}$$
$$\cong \mathscr{V} \mathscr{V} \mathscr{H} \oplus \mathscr{H} \mathscr{H} \mathscr{V}$$
$$\cong \mathscr{V} \oplus \mathscr{L} \mathscr{H} \oplus \mathscr{H} S_{0}^{2} \mathscr{V} \oplus \mathscr{V} S_{0}^{2} \mathscr{H} \oplus \mathscr{V} \Lambda_{+}^{2} \mathscr{H} \oplus \mathscr{V} \Lambda_{-}^{2} \mathscr{H}$$

and has 7 irreducible components, giving rise to 2^7 classes

This compares with 6 for $O(p) \times O(q)$ giving Naveira's 36 classes

Other Gray-Hervella type classes

${\sf dim}_{\mathbb R}F$	TM	# τ -irreducibles
6	[[$\Lambda^{1,0}$]]	4
8	$\llbracket \mathscr{V}^{1,0} rbracket \oplus \mathscr{H}$	7
10	$\llbracket \mathscr{V}^{1,0} \rrbracket \oplus \llbracket \mathscr{H}^{1,0} \rrbracket$	16
12	$\llbracket \mathscr{V}_1^{1,0} \rrbracket \oplus \llbracket \mathscr{V}_2^{1,0} \rrbracket \oplus \llbracket \mathscr{V}_3^{1,0} \rrbracket$	36

Good news: The intrinsic torsion of a mixed structure is completed determined by that of the associated OCS and OPS Proof: $T\mathscr{F} = T\mathbb{CP}^3 + T\mathbb{Gr}_2(\mathbb{R}^6)$

Corollary: The standard mixed structure on the Iwasawa manifold belongs to $\mathscr{W}_3 \cap \mathscr{V} \Lambda^2_+ \mathscr{H}$, a single irreducible component of real dimension 2

Toric invariance

The moment mapping

... for the action of T^3 on complex projective space has the form

$$\mu \colon \mathbb{CP}^3 \longrightarrow \mathfrak{so}(6)^* = \Lambda^2(\mathbb{R}^6)^* \xrightarrow{\pi} \left\langle e^{12}, e^{34}, e^{56} \right\rangle$$

Its image is a solid tetrahedron \mathscr{T} , useful for describing the torsion of nilmanifolds

The maximal torus T^3 acts transitively on $\mu^{-1}(t) \cong T^k$ with k = 0, 1, 2, 3, so $\mathbb{CP}^3/T^3 \cong \mathscr{T}$. Vertices, edges and faces correspond to k = 0, 1, 2 respectively

Application to nil torsion

Let (e^1, \ldots, e^6) be an ON basis of 1-forms on the Iwasawa manifold N^6

According to the fundamental theorem of Riemannian geometry, $\tau = \nabla^{\rm LC} s$ is completely determined by

$$\sum_{r=1}^{6} e^r \otimes de^r = e^5 \otimes (e^{13} + e^{42}) + e^6 \otimes (e^{14} + e^{23})$$
$$= \Re \left[(e^5 - ie^6) \otimes (e^1 + ie^2) \wedge (e^3 + ie^4) \right]$$

and is the real part of an eigenvector for T^3 with weight $-\theta_1 + \theta_2 + \theta_3$

Corollary: Each of the 16 Gray-Hervella subsets of \mathbb{CP}^3 is T^3 invariant and determined by its image in \mathscr{T}

The moment mapping

... for the action of T^3 on the Grassmannian is

$$\mu \colon \mathbb{G}r_2(\mathbb{R}^6) \xrightarrow{\mathsf{Plücker}} \Lambda^2(\mathbb{R}^6)^* \xrightarrow{\pi} \left\langle e^{12}, e^{34}, e^{56} \right\rangle$$

If $\mathscr{V} = \langle \alpha, \beta \rangle$ with $\alpha = \sum a_r e^r$, $\beta = \sum b_r e^r$ orthonormal then

$$\mu(\mathscr{V}) = \pi(\alpha \land \beta) = (x, y, z) \quad \text{where} \quad \begin{cases} x = a_1 b_2 - a_2 b_1 \\ y = a_3 b_4 - a_4 b_3 \\ z = a_5 b_6 - a_6 b_5 \end{cases}$$

The Cauchy-Schwartz inequality yields

Proposition: The image of μ satisfies $|x|+|y|+|z| \leq 1$, with equality iff $\beta = J\alpha$ where $J = \pm e^{12} \pm e^{34} \pm e^{56}$

The image is a solid octahedron \mathscr{O}

The external faces represent \mathbb{CP}^2 's that parametrize *J*-invariant 2-planes. The symplectic quotient $\frac{\mu^{-1}(x, y, z)}{T^3}$ is generically \mathbb{CP}^1 , so $\mathbb{Gr}_2(\mathbb{R}^6)/T^3$ is formed from an S^2 bundle over \mathscr{O} with degenerations on faces, edges and vertices

Concluding example

Let N^6 again be the Iwasawa manifold with its standard metric. Each point $p \in \mathbb{Gr}_2(\mathbb{R}^6) = \mathbb{Gr}_2(\mathfrak{n})$ defines an OPS structure on N via $\mathfrak{n} = \mathscr{V} \oplus \mathscr{H}$ with dim $\mathscr{H} = 4$, and we may compute its intrinsic torsion

Proposition: If $[\mathscr{H}, \mathscr{H}] \subseteq \mathscr{H}$ then $\mu(p) = (x, y, 0)$ lies in the internal (light blue) coordinate plane in \mathscr{O} representing singular values of μ

Vanishing of a selection of the 7 torsion classes will be characterized by a subset of $\mathbb{G}r_2(\mathbb{R}^6)/T^3$. Complementary choices must yield non-intersecting subsets, since the holonomy of N is not $SO(2) \times SO(4)$ and no point has $\tau = 0$.

The images of each subset in the octahredon \mathcal{O} will provide some measure of the associated torsion constraint

References

For a survey of almost-Kähler geometry: V. Apostolov, T. Drăghici: math.DG/0302152

For the motivation behind this lecture: V. Guillemin, E. Lerman, S. Sternberg: CUP 1996

