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Riemannian pre-holonomy

Choose a structure group H ⊂ SO(n)

Reductions are parametrized by the homogeneous space F =
SO(n)

H

An H-structure is a section s of the associated bundle

P

↓ F

Mn

Its intrinsic torsion τ is given by ∇
LC

s : TM → TF

Note that so(n) = h ⊕ h⊥ with h⊥ ∼= Ts(m)F ⇒ τm ∈ Rn ⊗ h⊥

This measures the “holonomy failure” of s at each point m ∈ M
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Examples in six dimensions

. . . arise from choosing H ⊂ SO(6)

Two irreducible non-symmetric holonomies:

pre-Kähler pre-Calabi-Yau

H U(3) SU(3)

F SO(6)
U(3)

= CP3 SO(6)
SU(3)

= RP7

Their reductions can be described using the action of Spin(6) ∼= SU(4) on the

spaces C4 and R8 of spinors

We shall focus on CP3 and other adjoint orbits in so(6) = su(4) such as

Gr2(R
6
) =

SO(6)

SO(2)×SO(4)
∼=

U(4)

U(2)×U(2)
= Gr2(C

4)



Coadjoint orbits
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Complex flag manifolds

U(4)

U(1)×U(1)×U(1)×U(1)

↓ CP
1

U(4)

U(2)×U(1)×U(1)

CP
2

ւ ց CP
1

U(4)

U(3)×U(1)

U(4)

U(2)×U(2)
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Symplectic fibrations

9780521443234.gif
U(4)

U(1)×U(1)×U(1)×U(1)

↓ CP
1

U(4)

U(2)×U(1)×U(1)

CP
2

ւ ց CP
1

CP
3

Gr(C
4)

Such fibrations are characterized by the existence of a 2-form ω on the total

space for which dω(V 1, V 2, ·) = 0 with Vi vertical. Here we can choose dω = 0
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Borel-Weil theory and practice

Theorem: Let V be an irreducible complex representation of G with highest

weight λ ∈ t∗ and vector vλ ∈ V . Then

P(V ) ⊃ Gc · [vλ]
∼=

Gc

P
=

G

H
= F

and V ∼= H0(F,O(Lλ))

Example: CP
5 = P(Λ2

C
4) ⊃ Q =

SL(4, C)

P
= Gr2(C

4)

Penrose studied the Klein quadric with SU(2,2) in place of SU(4) and resulting

field theory. Baston–Eastwood generalized this to arbitrary flag manifolds
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3-symmetric spaces and harmonic maps

Twistor theory used double fibrations to construct new harmonic maps from

old (often holomorphic) ones.

The general scheme takes
an isotropic map as input:

F

CP
2 ↓ ց

X −→ CP3 Gr2(C
4)

Analogous liftings occur
in Musso’s CMC set-up:

SL(2, C)

↓ SU(2)

X −→ H3



Geometrical structures

on 6-manifolds
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SO(6) in place of SU(4)

SO(6)

T3

↓ CP
1

SO(6)

SO(2)×U(2)

CP
2

ւ ց CP
1

U(4)

U(3)×U(1)

U(4)

U(2)×U(2)

The action of T3 will provide a moment map of each space to R3
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Classification of 2-forms

e
12

+2e
34

+ 3e56 ∈
SO(6)

T3

↓ CP
1

e
12

+e
34

∈
SO(6)

SO(2)×U(2)

CP
2

ւ ց CP
1

e
12

+e
34

+e
56

∈
SO(6)

U(3)

SO(6)

SO(2)×SO(4)
∋ e

12

Each space is embedded in Λ2(R6)∗ as an SO(6)-orbit of 2-forms

For example, σ ∈ SO(6) · e12 iff ‖σ‖= 1 and σ ∧ σ = 0
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Almost complex and product structures

A point of F determines an

OCS J and a J-invariant OPS:

F =
SO(6)

SO(2)×U(2)

CP
2

ւ ց CP
1

CP3

parametrizes OCS’s

J with J2 = −1

Gr2(R
4)

parametrizes OPS’s

R6 = V ⊕ H with
dimV = 2, dimH = 4
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The Klein correspondence

Recall:

(i) Q = Gr2(C
4) parametrizes CP1’s in CP3

(ii) A point x ∈ CP3 determines a plane Πα
∼= CP2 in Q

(iii) A point y ∈ (CP3)∗ determines a plane Πβ
∼= CP2 in Q

Interpretation:

(i) Given R6 = V ⊕ H there is a CP1 of compatible OCS’s

(parametrized by ω ∈ S2 ⊂ Λ2
+H )

(ii) Given an OCS J, we have the J-invariant 2-planes 〈v, Jv〉

(iii) Given J, we have the oppositely-oriented 2-planes 〈v,−Jv〉
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Mixed structures

A point of F determines an

OCS J and a J-invariant OPS:

F =
SO(6)

SO(2)×U(2)

Let us call an SO(2)×U(2) structure on a 6-manifold M a ‘mixed structure’.

Given the Riemannian metric, it is determined by a section of the associated

bundle with fibre F , or by a rank 4 distribution H = [[H 1,0]] equipped with an

almost complex structure

Is this concept worthwhile? What are the key examples and properties?
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Double integrability

Definition: Let us say that such a mixed structure on a 6-manifold N is doubly

integrable if Nij(J) ≡ 0 and [V , V ] ⊆ V (V being the 2-dimensional distribution)

The local model is then a fibration

N

↓ π

M4

whose total space N is complex

This captures two very different classes of examples:

(i) N is a holomorphic bundle over a complex surface, and elliptic fibrations

(fibre T2) of importance in deformation theory

(ii) M4 has a conformal structure with Weyl+≡ 0 and N ⊂ Λ2
+T ∗M is its twistor

space. Each S2 fibre is a rational curve with normal bundle O(1) ⊕O(1)
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Specific examples

(i) N is the Iwasawa manifold
HC

Γ
over M = T4.

Stability theorem: Any invariant complex structure J on N arises from one,

say J, on T4 and the induced j on the T2 fibre is determined by J

This and similar examples typically possess bihermitian structures

(ii) CP3 =
SO(5)

U(2)
↓

S4 =
SO(5)

SO(4)

F =
SU(3)

T2

↓

CP2

Hitchin’s theorem: Any Kähler twistor space is either CP3 or F



Intrinsic torsion
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Almost product classes

An SO(2)×SO(4) structure on M6 gives TmM = V ⊕ H

Its intrinsic torsion τm lies in

R6 ⊗ h⊥ ∼= (V ⊕ H )V H

∼= V V H ⊕ H H V

∼= V ⊕ 2H ⊕ H S2
oV ⊕ V S2

oH ⊕ V Λ2
+H ⊕ V Λ2

−H

and has 7 irreducible components, giving rise to 27 classes

This compares with 6 for O(p)×O(q) giving Naveira’s 36 classes
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Other Gray-Hervella type classes

dim
R
F TM # τ-irreducibles

6 [[Λ1,0]] 4

8 [[V 1,0]] ⊕ H 7

10 [[V 1,0]] ⊕ [[H 1,0]] 16

12 [[V
1,0
1 ]] ⊕ [[V

1,0
2 ]] ⊕ [[V

1,0
3 ]] 36

Good news: The intrinsic torsion of a mixed structure is completed determined

by that of the associated OCS and OPS Proof: TF = TCP3 + TGr2(R
6)

Corollary: The standard mixed structure on the Iwasawa manifold belongs to

W3 ∩ V Λ2
+H , a single irreducible component of real dimension 2



Toric invariance
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The moment mapping

. . . for the action of T3 on complex projective space has the form

µ : CP
3 −→ so(6)∗ = Λ2(R6)∗

π
−→

〈

e12, e34, e56
〉

Its image is a solid tetrahedron T , useful

for describing the torsion of nilmanifolds

The maximal torus T3 acts transitively

on µ−1(t) ∼= T k with k = 0,1,2,3, so

CP3/T3 ∼= T . Vertices, edges and faces

correspond to k = 0,1,2 respectively
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Application to nil torsion

Let (e1, . . . , e6) be an ON basis of 1-forms on the Iwasawa manifold N6

According to the fundamental theorem of Riemannian geometry, τ = ∇LCs is

completely determined by

6
∑

r=1

er ⊗ der = e5 ⊗ (e13 + e42) + e6 ⊗ (e14 + e23)

= Re
[

(e5 − ie6) ⊗ (e1+ ie2) ∧ (e3+ ie4)
]

and is the real part of an eigenvector for T3 with weight −θ1+ θ2+ θ3

Corollary: Each of the 16 Gray-Hervella subsets of CP3 is T3 invariant and

determined by its image in T
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The moment mapping

. . . for the action of T3 on the Grassmannian is

µ : Gr2(R
6)

Plücker
−→ Λ2(R6)∗

π
−→

〈

e12, e34, e56
〉

If V = 〈α, β〉 with α =
∑

are
r, β =

∑

bre
r orthonormal then

µ(V ) = π(α ∧ β) = (x, y, z) where











x = a1b2−a2b1
y = a3b4−a4b3
z = a5b6−a6b5

The Cauchy-Schwartz inequality yields

Proposition: The image of µ satisfies |x|+|y|+|z| 6 1, with equality iff β = Jα

where J = ±e12 ± e34 ± e56
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The image is a solid octahedron O

The external faces represent CP2’s that parametrize J-invariant 2-planes. The

symplectic quotient
µ−1(x, y, z)

T3
is generically CP1, so Gr2(R

6)/T3 is formed

from an S2 bundle over O with degenerations on faces, edges and vertices
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Concluding example

Let N6 again be the Iwasawa manifold with its standard metric. Each point

p ∈ Gr2(R
6) = Gr2(n) defines an OPS structure on N via n = V ⊕ H with

dimH = 4, and we may compute its intrinsic torsion

Proposition: If [H , H ] ⊆ H then µ(p) = (x, y,0) lies in the internal (light

blue) coordinate plane in O representing singular values of µ

Vanishing of a selection of the 7 torsion classes will be characterized by a subset

of Gr2(R
6)/T3. Complementary choices must yield non-intersecting subsets,

since the holonomy of N is not SO(2)×SO(4) and no point has τ = 0.

The images of each subset in the octahredon O will provide some measure of

the associated torsion constraint
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