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Introduction

Riemannian pre-holonomy

Choose a structure group H C SO(n)
SO(n)

Reductions are parametrized by the homogeneous space F = o

P
An H-structure is a section s of the associated bundle | F

M’n,

Its intrinsic torsion T is given by V-s: TM — TF

Note that so(n) = bh @ bt with b+ =T, v = 71, eR"Q® b+

(m

This measures the “holonomy failure” of s at each point me M
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Examples In six dimensions

... arise from choosing H C SO(6)

Two irreducible non-symmetric holonomies:

pre-Kahler pre-Calabi-Yau
H U((3) SU(3)

SO(6) __ 3 SO(6) __ 7
F 1 Tay =CP7 | sgiEy=RP

Their reductions can be described using the action of Spin(6) = SU(4) on the
spaces C* and R8 of spinors

We shall focus on CP3 and other adjoint orbits in so(6) = su(4) such as

SO(6) ~ U(4)

o\ o~
G = 52y % 50@) — U@ xU(2)

= Gro(C*
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Coadjoint orbits

Complex flag manifolds

U(4)
U()xU(1)xU(1)xU(1)

| CP?

U(4)
UR)xU(1)xU(1)

2 1
CP / \(CIP

U(4) U(4)

UB)xU(1) UR)xU(2)
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Symplectic fibrations

U(4)
U(1)xU(1)xU(1)xU(1)

| CP?

U(4)
UR)xU(1)xU(1)

2 1
CP / \(CIP

cp3 Gr(c?)

Symplectic
Fibrations
il &g

Multiplieity
Niagrams

| 150 i,::'.-._' 1)
Kl Cierybam

Such fibrations are characterized by the existence of a 2-form w on the total
space for which dw(V {,V,, *) =0 with V; vertical. Here we can choose dw = 0



Coadjoint orbits =

Borel-Weil theory and practice

Theorem: Let V be an irreducible complex representation of G with highest
weight A € t* and vector vy, € V. Then

o G G
and V = HO(F,O(Ly))
Example: CP? =P(A%C*) > Q = SL(%,C) = Gro(CH

P

Penrose studied the Klein quadric with SU(2,2) in place of SU(4) and resulting
field theory. Baston—Eastwood generalized this to arbitrary flag manifolds
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3-symmetric spaces and harmonic maps

Twistor theory used double fibrations to construct new harmonic maps from
old (often holomorphic) ones.

F
Thg gener'al scheme.takes CP? | N
an isotropic map as input:

X — CP3 Gro(CH

SL(2,C)
Analogous liftings occur

in Musso's CMC set-up: L sU(2)

X — 3
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on 6-manifolds



Geometrical structures

SO(6) in place of SU(4)

SO(6)
T3
l CP!
SO(6)
SO(2)xU(2)
CP? / \(CIP’l
U(4) U(4)
U3)xU(1) U2)xU(2)

The action of T3 will provide a moment map of each space to R3



Geometrical structures

Classification of 2-forms

SO(6)
T3

o2 L 23 1356 ¢
l CP!

24 S50(6)
S S0(2)xU(2)
CP? S/ \(CIPl

SO(6) SO(6) 12
U(3) SO(2)xS0(4) ~°

12

e +e

12 34 56
e +e He €

Each space is embedded in A2(R®)* as an SO(6)-orbit of 2-forms
For example, o € SO(6) -el? iff |[o]|=1 and c Ac =0



Geometrical structures

Almost complex and product structures

A point of % determines an
OCS J and a J-invariant OPS:

SO(6)
SO2)xU(2)

CP? / \ CP!
(CIPB GrQ (R4)

parametrizes OPS’'s
RS =¥ @ s with
dm? =2, dmst =4

F =

parametrizes OCS's
J with J2 = —1
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The Klein correspondence

Recall:

(i) Q =Gro(C*) parametrizes CPl's in CP3

(ii) A point = € CP3 determines a plane My, = CP? in Q
(iii) A point y € (CP3)* determines a plane I‘IﬁE(CIP2 in @

Interpretation:

(i) Given R® = ¥ @ 7 there is a CP! of compatible OCS'’s
(parametrized by w € §2 C A7)

(i) Given an OCS J, we have the J-invariant 2-planes (v, Jv)
(iii) Given J, we have the oppositely-oriented 2-planes (v, —Jv)
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Mixed structures

A point of % determines an
OCS J and a J-invariant OPS:

SO(6)

F = SO(2)xU(2)

Let us call an SO(2) x U(2) structure on a 6-manifold M a ‘mixed structure’.
Given the Riemannian metric, it is determined by a section of the associated
bundle with fibre .#, or by a rank 4 distribution .7 = [.#1:9] equipped with an

almost complex structure

Is this concept worthwhile? What are the key examples and properties?
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Double integrability

Definition: Let us say that such a mixed structure on a 6-manifold N is doubly
integrable if Nij(J) =0 and [¥, 7] C ¥ (¥ being the 2-dimensional distribution)

N
The local model is then a fibration l ™ whose total space N is complex
M4

This captures two very different classes of examples:

(i) N is a holomorphic bundle over a complex surface, and elliptic fibrations
(fibre T2) of importance in deformation theory

(ii) M* has a conformal structure with Weyl, =0 and N C Aﬁ_T*M is its twistor

space. Each S2 fibre is a rational curve with normal bundle O(1) ® O(1)
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Specific examples

H
(i) N is the Iwasawa manifold ?C over M =T4%.

Stability theorem: Any invariant complex structure J on N arises from one,
say J, on T% and the induced j on the T2 fibre is determined by J

This and similar examples typically possess bihermitian structures

(ii) op3 — 290) o SUGB)
U(f) T T2
l
4 SO(5)
%= 50a) CIP?

Hitchin’'s theorem: Any Kahler twistor space is either CP3 or F
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Almost product classes

An SO(2) x SO(4) structure on M° gives T, M =¥ @ ¢

Its intrinsic torsion 7, lies in

(V @)V H

VAV D IV

VG2 B H SV SV SEH B VNLAH & VN2 A

112

112

112

and has 7 irreducible components, giving rise to 27 classes

This compares with 6 for O(p) x O(q) giving Naveira’'s 36 classes



Intrinsic torsion =2

15

Other Gray-Hervella type classes

dimRF T M # T-irreducibles
6 IARC] 4
8 [719] @ .# 7
10 [71.0 @ [#1°] 16
12 | [ Te 7, T e 1751 36

Good news: The intrinsic torsion of a mixed structure is completed determined
by that of the associated OCS and OPS

Proof: T.% = TCP3 + TGr,(R®)

Corollary: The standard mixed structure on the Iwasawa manifold belongs to
W3 ﬂ”///\i%”, a single irreducible component of real dimension 2
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Toric invariance

T he moment mapping

... for the action of T3 on complex projective space has the form

1 CP3 — s0(6)* = A2(RO)* I, <€12,€34,€56>

Its image is a solid tetrahedron .7, useful
for describing the torsion of nilmanifolds

The maximal torus T3 acts transitively
on = 1(t) = Tk with k =0,1,2,3, so
CP3/T3 = 7. Vertices, edges and faces
correspond to k=0, 1,2 respectively

16
20
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Application to nil torsion

Let (el,...,e®) be an ON basis of 1-forms on the Iwasawa manifold N°

According to the fundamental theorem of Riemannian geometry, + = V\'Cs is
completely determined by

§)
Z e’ @ de” = D ® (613 + 642) + o0 ® (614 + 623)
r=1
= fRe [(65 —ie®) ® (el +ie?) A (€3 —|—ie4)]

and is the real part of an eigenvector for T3 with weight —6; + 6> 4 63

Corollary: Each of the 16 Gray-Hervella subsets of CP3 is T3 invariant and
determined by its image in
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The moment mapping

... for the action of T3 on the Grassmannian is

1 Gro(R®) Plucker A2 (R®)* I, <€12,€34,€56>

If ¥ = (a,B) with a=> are’", 3= bre" orthonormal then

w(?7)=n(aNpB) = (x,y,z) where Yy = azb, —a,bsg
z=agbg —agbs

The Cauchy-Schwartz inequality yields

Proposition: The image of u satisfies |z|+4 |y|+|z| < 1, with equality iff 3 = Ja
where J = del? + e3% £ £°6
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The image is a solid octahedron &

The external faces represent CP?’'s that parametrize J-invariant 2-planes. The

~1
H (;féy’ ?) s generically CP!, so Grp(R®)/T3 is formed

from an S2 bundle over & with degenerations on faces, edges and vertices

symplectic quotient
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Concluding example

Let N© again be the Iwasawa manifold with its standard metric. Each point
p € GrQ(]R{6) = Gr,y(n) defines an OPS structure on N via n = ¥ @ J with
dim s =4, and we may compute its intrinsic torsion

Proposition: If [J7, 7] C 2 then u(p) = (x,y,0) lies in the internal (light
blue) coordinate plane in & representing singular values of u

Vanishing of a selection of the 7 torsion classes will be characterized by a subset
of Gro(R®)/T3. Complementary choices must yield non-intersecting subsets,
since the holonomy of N is not SO(2) x SO(4) and no point has 7=0.

The images of each subset in the octahredon & will provide some measure of
the associated torsion constraint
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Visualizing pu:.% — R3



