INTRINSIC TORSION VARIETIES

Simon Salamon

with Georgi Miyahlov

Lecce, June 2007

in honour of Oldřich Kowalski

Introduction

Riemannian pre-holonomy

Choose a structure group $H \subset S O(n)$
Reductions are parametrized by the homogeneous space $F=\frac{S O(n)}{H}$
An H-structure is a section s of the associated bundle $\begin{gathered}P \\ \downarrow F \\ M^{n}\end{gathered}$
Its intrinsic torsion τ is given by $\nabla^{\mathrm{LC}} s: T M \rightarrow T F$
Note that $\mathfrak{s o}(n)=\mathfrak{h} \oplus \mathfrak{h}^{\perp}$ with $\mathfrak{h}^{\perp} \cong T_{s(m)} F \quad \Rightarrow \quad \tau_{m} \in \mathbb{R}^{n} \otimes \mathfrak{h}^{\perp}$
This measures the "holonomy failure" of s at each point $m \in M$

Examples in six dimensions

... arise from choosing $H \subset S O$ (6)

Two irreducible non-symmetric holonomies:

	pre-Kähler	pre-Calabi-Yau
H	$U(3)$	$S U(3)$
F	$\frac{S O(6)}{U(3)}=\mathbb{C P}^{3}$	$\frac{S O(6)}{S U(3)}=\mathbb{R P}^{7}$

Their reductions can be described using the action of $\operatorname{Spin}(6) \cong S U(4)$ on the spaces \mathbb{C}^{4} and \mathbb{R}^{8} of spinors

We shall focus on $\mathbb{C P}^{3}$ and other adjoint orbits in $\mathfrak{s o}(6)=\mathfrak{s u}(4)$ such as

$$
\mathbb{G} r_{2}\left(\mathbb{R}^{6}\right)=\frac{S O(6)}{S O(2) \times S O(4)} \cong \frac{U(4)}{U(2) \times U(2)}=\mathbb{G} r_{2}\left(\mathbb{C}^{4}\right)
$$

Coadjoint orbits

Complex flag manifolds

$$
\begin{gathered}
\frac{U(4)}{U(1) \times U(1) \times U(1) \times U(1)} \\
\downarrow \mathbb{C P}^{1} \\
\frac{U(4)}{U(2) \times U(1) \times U(1)} \\
\mathbb{C P}^{2} \\
\swarrow \\
\frac{U(4)}{U(3) \times U(1)} \\
\searrow \mathbb{C P}^{1} \\
\\
\frac{U(4)}{U(2) \times U(2)}
\end{gathered}
$$

Symplectic fibrations

$$
\frac{U(4)}{U(1) \times U(1) \times U(1) \times U(1)}
$$

$$
\downarrow \mathbb{C P}^{1}
$$

$\frac{U(4)}{U(2) \times U(1) \times U(1)}$

$\mathbb{C P}^{2} \swarrow$	$\searrow \mathbb{C P}^{1}$
$\mathbb{C P}^{3}$	$\mathbb{G r}\left(\mathbb{C}^{4}\right)$

Such fibrations are characterized by the existence of a 2-form ω on the total space for which $d \omega\left(V_{1}, V_{2}, \cdot\right)=0$ with V_{i} vertical. Here we can choose $d \omega=0$

Borel-Weil theory and practice

Theorem: Let V be an irreducible complex representation of G with highest weight $\lambda \in \mathfrak{t}^{*}$ and vector $v_{\lambda} \in V$. Then

$$
\mathbb{P}(V) \supset G_{c} \cdot\left[v_{\lambda}\right] \cong \frac{G_{c}}{P}=\frac{G}{H}=F
$$

and $V \cong H^{0}\left(F, \mathcal{O}\left(L_{\lambda}\right)\right)$

Example: $\mathbb{C P}^{5}=\mathbb{P}\left(\wedge^{2} \mathbb{C}^{4}\right) \supset Q=\frac{S L(4, \mathbb{C})}{P}=\mathbb{G r} r_{2}\left(\mathbb{C}^{4}\right)$

Penrose studied the Klein quadric with $S U(2,2)$ in place of $S U(4)$ and resulting field theory. Baston-Eastwood generalized this to arbitrary flag manifolds

3-symmetric spaces and harmonic maps

Twistor theory used double fibrations to construct new harmonic maps from old (often holomorphic) ones.

The general scheme takes an isotropic map as input:

Analogous liftings occur in Musso's CMC set-up:

Geometrical structures
 on 6-manifolds

$S O(6)$ in place of $S U(4)$

$$
\begin{aligned}
& \frac{S O(6)}{T^{3}} \\
& \downarrow \mathbb{C P}^{1} \\
& \frac{S O(6)}{S O(2) \times U(2)} \\
& \mathbb{C P}^{2} \\
& \frac{U(4)}{U(3) \times U(1)} \\
& \frac{U(4)}{U(2) \times U(2)}
\end{aligned}
$$

The action of T^{3} will provide a moment map of each space to \mathbb{R}^{3}

Classification of 2-forms

$$
\begin{gathered}
e^{12}+2 e^{34}+3 e^{56} \in \frac{S O(6)}{T^{3}} \\
\qquad \begin{array}{l}
\mathbb{C P}^{1} \\
e^{12}+e^{34} \in \frac{S O(6)}{S O(2) \times U(2)} \\
\mathbb{C P}^{2} \swarrow \\
e^{12}+e^{34}+e^{56} \in \frac{S O(6)}{U(3)}
\end{array} \frac{\mathbb{C P}^{1}}{} \quad \frac{S O(6)}{S O(2) \times S O(4)} \ni e^{12}
\end{gathered}
$$

Each space is embedded in $\Lambda^{2}\left(\mathbb{R}^{6}\right)^{*}$ as an $S O(6)$-orbit of 2 -forms
For example, $\sigma \in S O(6) \cdot e^{12}$ iff $\|\sigma\|=1$ and $\sigma \wedge \sigma=0$

Almost complex and product structures

$$
\begin{gathered}
\begin{array}{c}
\text { A point of } \mathscr{F} \text { determines an } \\
O C S J \text { and a } J \text {-invariant OPS: } \\
\mathscr{F}=\frac{S O(6)}{S O(2) \times U(2)} \\
\mathbb{C P}^{2} \\
\mathbb{C P}^{3}
\end{array} \\
\begin{array}{l}
\text { parametrizes } O C \mathbb{C P}^{1}
\end{array} \\
J \text { with } J^{2}=-1
\end{gathered} \begin{aligned}
& \mathbb{G r}_{2}\left(\mathbb{R}^{4}\right) \\
& \begin{array}{l}
\text { parametrizes OPS's } \\
\mathbb{R}^{6}=\mathscr{V} \oplus \mathscr{H} \text { with } \\
\operatorname{dim} \mathscr{V}=2, \operatorname{dim} \mathscr{H}=4
\end{array}
\end{aligned}
$$

The Klein correspondence

Recall:
(i) $Q=\mathbb{G r} r_{2}\left(\mathbb{C}^{4}\right)$ parametrizes $\mathbb{C P}^{1}$'s in $\mathbb{C P}^{3}$
(ii) A point $x \in \mathbb{C P}^{3}$ determines a plane $\Pi_{\alpha} \cong \mathbb{C P}^{2}$ in Q
(iii) A point $y \in\left(\mathbb{C P}^{3}\right)^{*}$ determines a plane $\Pi_{\beta} \cong \mathbb{C P}^{2}$ in Q

Interpretation:
(i) Given $\mathbb{R}^{6}=\mathscr{V} \oplus \mathscr{H}$ there is a $\mathbb{C P}^{1}$ of compatible OCS's (parametrized by $\omega \in S^{2} \subset \Lambda_{+}^{2} \mathscr{H}$)
(ii) Given an OCS J, we have the J-invariant 2-planes $\langle v, J v\rangle$
(iii) Given J, we have the oppositely-oriented 2-planes $\langle v,-J v\rangle$

Mixed structures

A point of \mathscr{F} determines an
OCS J and a J-invariant OPS:

$$
\mathscr{F}=\frac{S O(6)}{S O(2) \times U(2)}
$$

Let us call an $S O(2) \times U(2)$ structure on a 6-manifold M a 'mixed structure'. Given the Riemannian metric, it is determined by a section of the associated bundle with fibre \mathscr{F}, or by a rank 4 distribution $\mathscr{H}=\left[\left[\mathscr{H}^{1,0}\right]\right]$ equipped with an almost complex structure

Is this concept worthwhile? What are the key examples and properties?

Double integrability

Definition: Let us say that such a mixed structure on a 6-manifold N is doubly integrable if $\operatorname{Nij}(J) \equiv 0$ and $[\mathscr{V}, \mathscr{V}] \subseteq \mathscr{V}$ (\mathscr{V} being the 2 -dimensional distribution)

The local model is then a fibration | N |
| :--- |
| |
| |
| M^{4} | whose total space N is complex

This captures two very different classes of examples:
(i) N is a holomorphic bundle over a complex surface, and elliptic fibrations (fibre T^{2}) of importance in deformation theory
(ii) M^{4} has a conformal structure with $\mathrm{Weyl}_{+} \equiv 0$ and $N \subset \Lambda_{+}^{2} T^{*} M$ is its twistor space. Each S^{2} fibre is a rational curve with normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$

Specific examples

(i) N is the Iwasawa manifold $\frac{H_{\mathbb{C}}}{\Gamma}$ over $M=T^{4}$.

Stability theorem: Any invariant complex structure \mathbb{J} on N arises from one, say J, on T^{4} and the induced j on the T^{2} fibre is determined by J

This and similar examples typically possess bihermitian structures

$$
\begin{array}{rlr}
\mathbb{C P}^{3} & =\frac{S O(5)}{U(2)} & \mathbb{F}=\frac{S U(3)}{T^{2}} \tag{ii}\\
\downarrow & \downarrow \\
S^{4} & =\frac{S O(5)}{S O(4)} & \\
\mathbb{C P}^{2}
\end{array}
$$

Hitchin's theorem: Any Kähler twistor space is either $\mathbb{C P}^{3}$ or \mathbb{F}

Intrinsic torsion

Almost product classes

An $S O(2) \times S O(4)$ structure on M^{6} gives $T_{m} M=\mathscr{V} \oplus \mathscr{H}$

Its intrinsic torsion τ_{m} lies in

$$
\begin{aligned}
\mathbb{R}^{6} \otimes \mathfrak{h}^{\perp} & \cong(\mathscr{V} \oplus \mathscr{H}) \mathscr{V} \mathscr{H} \\
& \cong \mathscr{V} \mathscr{H} \oplus \mathscr{H} \mathscr{H} \mathscr{V} \\
& \cong \mathscr{V} \oplus 2 \mathscr{H} \oplus \mathscr{H} S_{\mathrm{O}}^{2 \mathscr{V} \oplus \mathscr{V} S_{0}^{2} \mathscr{H} \oplus \mathscr{V} \wedge_{+}^{2} \mathscr{H} \oplus \mathscr{V} \wedge_{-}^{2} \mathscr{H}}
\end{aligned}
$$

and has 7 irreducible components, giving rise to 2^{7} classes

This compares with 6 for $O(p) \times O(q)$ giving Naveira's 36 classes

Other Gray-Hervella type classes

$\operatorname{dim}_{\mathbb{R}} F$	$T M$	$\# \tau$-irreducibles
6	$\left[\left[\wedge^{1,0}\right]\right]$	4
8	$\llbracket \mathscr{V}^{1,0} \rrbracket \oplus \mathscr{H}$	7
10	$\left[\left[\mathscr{V}^{1,0}\right]\right] \oplus\left[\left[\mathscr{H}{ }^{1,0}\right]\right]$	16
12	$\left[\left[\mathscr{V}_{1}^{1,0}\right] \rrbracket \oplus\left[\mathscr{V}_{2}^{1,0} \rrbracket \oplus\left[\mathscr{V}_{3}^{1,0}\right]\right]\right.$	36

Good news: The intrinsic torsion of a mixed structure is completed determined by that of the associated OCS and OPS Proof: $T \mathscr{F}=T \mathbb{C P}^{3}+T \mathbb{G r}_{2}\left(\mathbb{R}^{6}\right)$

Corollary: The standard mixed structure on the Iwasawa manifold belongs to $\mathscr{W}_{3} \cap \mathscr{V} \wedge_{+}^{2} \mathscr{H}$, a single irreducible component of real dimension 2

Toric invariance

The moment mapping

... for the action of T^{3} on complex projective space has the form

$$
\mu: \mathbb{C P}^{3} \longrightarrow \mathfrak{s o}(6)^{*}=\Lambda^{2}\left(\mathbb{R}^{6}\right)^{*} \xrightarrow{\pi}\left\langle e^{12}, e^{34}, e^{56}\right\rangle
$$

Its image is a solid tetrahedron \mathscr{T}, useful for describing the torsion of nilmanifolds

The maximal torus T^{3} acts transitively on $\mu^{-1}(t) \cong T^{k}$ with $k=0,1,2,3$, so $\mathbb{C P}^{3} / T^{3} \cong \mathscr{T}$. Vertices, edges and faces correspond to $k=0,1,2$ respectively

Application to nil torsion

Let $\left(e^{1}, \ldots, e^{6}\right)$ be an $O N$ basis of 1 -forms on the Iwasawa manifold N^{6}

According to the fundamental theorem of Riemannian geometry, $\tau=\nabla^{\mathrm{LC}} s$ is completely determined by

$$
\begin{aligned}
\sum_{r=1}^{6} e^{r} \otimes d e^{r} & =e^{5} \otimes\left(e^{13}+e^{42}\right)+e^{6} \otimes\left(e^{14}+e^{23}\right) \\
& =\mathfrak{R e}\left[\left(e^{5}-i e^{6}\right) \otimes\left(e^{1}+i e^{2}\right) \wedge\left(e^{3}+i e^{4}\right)\right]
\end{aligned}
$$

and is the real part of an eigenvector for T^{3} with weight $-\theta_{1}+\theta_{2}+\theta_{3}$

Corollary: Each of the 16 Gray-Hervella subsets of $\mathbb{C P}^{3}$ is T^{3} invariant and determined by its image in \mathscr{T}

The moment mapping

... for the action of T^{3} on the Grassmannian is

$$
\mu: \mathbb{G r}_{2}\left(\mathbb{R}^{6}\right) \xrightarrow{\text { Plücker }} \Lambda^{2}\left(\mathbb{R}^{6}\right)^{*} \xrightarrow{\pi}\left\langle e^{12}, e^{34}, e^{56}\right\rangle
$$

If $\mathscr{V}=\langle\alpha, \beta\rangle$ with $\alpha=\sum a_{r} e^{r}, \beta=\sum b_{r} e^{r}$ orthonormal then

$$
\mu(\mathscr{V})=\pi(\alpha \wedge \beta)=(x, y, z) \quad \text { where } \quad\left\{\begin{array}{l}
x=a_{1} b_{2}-a_{2} b_{1} \\
y=a_{3} b_{4}-a_{4} b_{3} \\
z=a_{5} b_{6}-a_{6} b_{5}
\end{array}\right.
$$

The Cauchy-Schwartz inequality yields
Proposition: The image of μ satisfies $|x|+|y|+|z| \leqslant 1$, with equality iff $\beta=J \alpha$ where $J= \pm e^{12} \pm e^{34} \pm e^{56}$

The image is a solid octahedron \mathscr{O}

The external faces represent $\mathbb{C P}^{2}$'s that parametrize J-invariant 2-planes. The symplectic quotient $\frac{\mu^{-1}(x, y, z)}{T^{3}}$ is generically $\mathbb{C P}^{1}$, so $\mathbb{G r}_{2}\left(\mathbb{R}^{6}\right) / T^{3}$ is formed from an S^{2} bundle over \mathscr{O} with degenerations on faces, edges and vertices

Concluding example

Let N^{6} again be the Iwasawa manifold with its standard metric. Each point $p \in \mathbb{G r} r_{2}\left(\mathbb{R}^{6}\right)=\mathbb{G r} r_{2}(\mathfrak{n})$ defines an OPS structure on N via $\mathfrak{n}=\mathscr{V} \oplus \mathscr{H}$ with $\operatorname{dim} \mathscr{H}=4$, and we may compute its intrinsic torsion

Proposition: If $[\mathscr{H}, \mathscr{H}] \subseteq \mathscr{H}$ then $\mu(p)=(x, y, 0)$ lies in the internal (light blue) coordinate plane in \mathscr{O} representing singular values of μ

Vanishing of a selection of the 7 torsion classes will be characterized by a subset of $\mathbb{G r} r_{2}\left(\mathbb{R}^{6}\right) / T^{3}$. Complementary choices must yield non-intersecting subsets, since the holonomy of N is not $S O(2) \times S O(4)$ and no point has $\tau=0$.

The images of each subset in the octahredon \mathscr{O} will provide some measure of the associated torsion constraint

References

For a survey of almost-Kähler geometry:
V. Apostolov, T. Drăghici: math.DG/0302152

For the motivation behind this lecture:
V. Guillemin, E. Lerman, S. Sternberg: CUP 1996

Visualizing $\mu: \mathscr{F} \rightarrow \mathbb{R}^{3}$

