Tensors and representations

Let (M,g) be a Riemannian manifold of dimension d. Let ϕ be a tensor with $\{a\in SO(n): a\cdot \phi=\phi\}=G$.

The holonomy group is a subgroup of G iff $\nabla \phi \equiv 0$. Given

$${\textstyle \bigwedge}^2 T^* \cong \mathfrak{so}(d) = \mathfrak{g} \oplus \mathfrak{g}^{\perp},$$

Lemma $\nabla \phi$ can be identified with an element of the space

$$T^*\otimes \mathfrak{g}^\perp=:\mathcal{W}=igoplus_{i=1}^N\mathcal{W}_i,$$

with say N irreducible components.

Examples

{	d	ϕ	G	N
	2n	almost complex structure ${\it J}$	U(n)	4
	2n	non-degenerate 2-form ω	U(n)	4
	7	positive generic 3-form	G_2	4
	4k	quaternionic 4-form $\sum_1^3 \omega^i \wedge \omega^i$	Sp(k)Sp(1)	6

Sixteen classes of almost Hermitian manifolds

Given (M^{2n},g) with $\phi=J$ and G=U(n),

Proposition [GH 80]

$$\nabla J \in \underbrace{\mathcal{W}_1 \oplus \mathcal{W}_2}_{} \oplus \underbrace{\mathcal{W}_3 \oplus \mathcal{W}_4}_{}$$

Two halves of equal dimension $n^2(n-1)$ lead to a sort of duality:

- $\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \iff (d\omega)^{1,2} = 0$
- ullet $abla J \in \mathcal{W}_3 \oplus \mathcal{W}_4 \iff M$ is Hermitian

M is Kähler iff $\nabla J \equiv 0$.

Sixteen classes of almost Hermitian manifolds

Given (M^{2n},g) with $\phi=J$ and G=U(n),

Proposition [GH 80]

$$\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$$

Two halves of equal dimension $n^2(n-1)$ lead to a sort of duality:

$$\bullet \ \nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \ \Leftrightarrow \boxed{(d\omega)^{1,2} = 0}$$

ullet $abla J \in \mathcal{W}_3 \oplus \mathcal{W}_4 \iff M$ is Hermitian

If M is locally conformally Kähler then $abla J \in \mathcal{W}_4$.

Proposition [G 65] If M has $(d\omega)^{1,2}=0$, and $M'\subset M$ is pseudo-holomorphic, then M' is minimal.

<u>Definition</u> M is nearly-Kähler if $\nabla J \in \mathcal{W}_1$, equivalently $(\nabla_X J)X = 0$ for all X.

Basic model is $S^6 = \frac{G_2}{SU(3)}$, but there is a large class of homogeneous examples.

3-symmetric spaces

M=G/H is a 3-symmetric space if H is the fixed point set of an automorphism θ of G with $\theta^3=1$. Defining $J=\frac{1}{\sqrt{3}}(2\theta+1)$ gives a canonical a.c.s. on T_mM .

Theorem [WG 68] Any 3-symmetric space has a nearly-Kähler metric.

Classification includes

- ullet generalizations of S^6 with irreducible isotropy (e.g. $\frac{E_8}{SU(9)}$)
- $G \times G = \frac{G \times G \times G}{G}$ (e.g. $S^3 \times S^3$)
- ullet twistor spaces over symmetric spaces (e.g. $\mathbb{CP}^3,\,\mathbb{F}^3$)

3-symmetric spaces

M=G/H is a 3-symmetric space if H is the fixed point set of an automorphism θ with $\theta^3=1$. Defining $J=\frac{1}{\sqrt{3}}(2\theta+1)$ gives a canonical a.c.s. on T_mM .

Theorem [WG 68] Any 3-symmetric space has a nearly-Kähler metric.

Examples include

ullet generalizations of S^6 with irreducible isotropy (e.g. $\frac{E_8}{SU(9)}$)

•
$$G \times G = \frac{G \times G \times G}{G}$$
 (e.g. $S^3 \times S^3$)

ullet twistor spaces over symmetric spaces (e.g. $\mathbb{CP}^3,\,\mathbb{F}^3$)

The latter are extensively used in the study of minimal surfaces and harmonic maps. Any such Z has an integrable complex structure J_1 in addition to $J = J_2$

 $\underline{\mathsf{Proposition}} \ \mathsf{lf} \ f \colon \Sigma \to (Z,J_2) \ \mathsf{is a pseudo-holomorphic curve then} \ \pi \circ f \ \mathsf{is harmonic}.$

$$\frac{U(p+q+1)}{U(p)\times U(q)\times U(1)} = Z$$

$$\downarrow \pi$$

$$S^2 = \mathbb{CP}^1 \to \frac{U(n+1)}{U(n)\times U(1)} = \mathbb{CP}^n$$

Metrics with exceptional holonomy

Theorem [G 76] If M^6 is nearly-Kähler (and $\nabla J \neq 0$), it is Einstein.

E.g. (\mathbb{CP}^3, J_2) . In fact, $R = sR_{S^6} + R_{CY}$ with scalar curvature s > 0.

The theory of Killing spinors implies that the cone $M \times \mathbb{R}^+$ has a Ricci-flat metric with holonomy in G_2 .

More generally, if X^7 has a 3-form ϕ defining a G_2 -structure, there is a vector cross product $\bigwedge^2 T^* \to T^*$ [G 67], and

$$\nabla \phi \in T^* \otimes \mathfrak{g}_2^{\perp} \cong T^* \otimes T^* \cong \underbrace{\mathbb{R} \oplus S_0^2 T^* \oplus T^* \oplus \mathfrak{g}_2}_{d \neq \phi}$$

- Corollary [FG 82]
 - ullet X has holonomy in G_2 iff $d(*\phi)\!=\!0$ and $d\phi\!=\!0$
 - $\nabla \phi \in \mathbb{R}$ iff $d\phi = c(*\phi) \ (\Rightarrow d(*\phi) = 0)$

Metrics with exceptional holonomy

Theorem [G 76] If M^6 is nearly-Kähler (and $\nabla J \neq 0$), it is Einstein.

E.g. (\mathbb{CP}^3, J_2) . In fact, $R = sR_{S^6} + R_{CY}$ with scalar curvature s > 0.

The theory of Killing spinors implies that the cone $M \times \mathbb{R}^+$ has a Ricci-flat metric with holonomy in G_2 .

More generally, if X^7 has a 3-form ϕ defining a G_2 -structure, there is a vector cross product $\bigwedge^2 T^* \to T^*$ [G 67], and

$$\nabla \phi \in T^* \otimes \mathfrak{g}_2^{\perp} \cong T^* \otimes T^* \cong \underbrace{\mathbb{R} \oplus S_0^2 T^* \oplus T^* \oplus \mathfrak{g}_2}_{d\phi}$$

- Corollary [FG 82]
 - X has holonomy in G_2 iff $\frac{d(*\phi)=0}{d\phi=0}$ and $\frac{d\phi=0}{d\phi=0}$
 - $\nabla \phi \in \mathbb{R}$ iff $d\phi = c(*\phi)$

In the second case, X^7 has weak holonomy G_2 (associative subspaces are preserved by parallel transport [G 71]), and the cone $X \times \mathbb{R}^+$ has a metric with holonomy in Spin~7. Standard model $S^7 = \frac{Spin~7}{G_2}$ yields the flat metric on \mathbb{R}^8 , but $\frac{SO(5)}{SO(3)} \times \mathbb{R}^+$ has holonomy equal to Spin~7.

Curvature theorems

Theorem [G 77] A compact Kähler manifold with nonnegative sectional curvature and s constant is locally symmetric (i.e. $\nabla R \equiv 0$).

On an almost-Hermitian manifold, $R = K + K^{\perp}$, where

- K satisfies K(W, X, Y, Z) = K(W, X, JY, JZ)
- ullet $K^{\perp} = C(\nabla \nabla J)$ has zero holomorphic sectional curvature

 K, K^{\perp} decompose further under $GL(n, \mathbb{C})$ and U(n).

Proposition [G 76] If M is Hermitian then

$$R(W,X,Y,Z) + R(JW,JX,JY,JZ) = R(JW,JX,Y,Z) + R(JW,X,JY,Z) + R(JW,X,Y,JZ) \\ + R(W,JX,JY,Z) + R(W,JX,Y,JZ) + R(W,X,JY,JZ).$$

This imposes $k = \frac{1}{6}n^2(n^2 - 1)$ equations on the Weyl tensor, itself of dimension < 8k.

<u>Problem</u> A Riemannian manifold M^{2n} has a *finite* number k of orthogonal complex structures locally. What is the maximum value of k?

Volume V(r) of a small geodesic ball $\mathbb{B}(r)$

- $\bullet \ V(1) \! = \! \pi^{d/2}/(d/2)! \ \text{in } \mathbb{R}^d$
- ullet If $V(r_d)\!=\!1$ then $r_d\sim \sqrt{rac{d}{2\pi e}}$ as $d o\infty$
- $\bullet \ \mathbb{B}(r_d) \cap (\mathbb{R}^{d-1} \times [-0.4, 0.4]) \ \text{has volume} > \ 0.8$

[Zoom in]

Volume V(r) of a small geodesic ball $\mathbb{B}(r)$

$$\bullet$$
 $V(1) = \pi^{d/2}/(d/2)!$ in \mathbb{R}^d

$$ullet$$
 If $V(r_d)\!=\!1$ then $r_d\sim \sqrt{rac{d}{2\pi e}}$ as $d o\infty$

$$ullet$$
 $\mathbb{B}(r_d)\cap(\mathbb{R}^{d-1} imes[-0.4,0.4])$ has volume >0.8

On a Riemannian manifold,

$$V(r) = rac{(\pi r^2)^{d/2}}{(d/2)!} \left(1 - rac{s}{6(d+2)} r^2 + c_4 r^4 + c_6 r^6 + c_8 r^8 + \cdots
ight)$$

$$\label{eq:c4} \underline{\text{Theorem}} \,\, [\text{G 73}] \,\, c_4 = \frac{8\|\text{Ric}\|^2 - 3\|R\|^2 + 5s^2 - 18\Delta s}{360(d+2)(d+4)}.$$

Examples [GV 79] There exist metrics with

$$\bullet \ 0 = s = c_4 \ \mathrm{and} \ d = 4$$

$$ullet$$
 $0=s=c_4=c_6$ and $d=734$

Many other asymptotic expansions, and generalizations to tubes.

Theorem [G 88] A tube of radius r surrounding a hypersurface of degree k in \mathbb{CP}^n has volume $\pi^n(1-(1-k\sin^2r)^n)/n!$

Invariant structures on Lie groups

Any compact simple Lie group G^{2n} admits a complex structure, but no symplectic one. A nilpotent Lie group N^{2n} may or may not admit left-invariant complex or symplectic structures.

Compact nilmanifolds N/Γ never admit Kähler metrics (unless N is abelian). Left-invariant forms provide a minimal model for de Rham cohomology with non-zero Massey products. Dolbeault cohomology is less readily computed:

Proposition [CFG 91] There exist complex nilmanifolds with

•
$$n=4$$
 and $E_2 \neq E_{\infty}$

• n=6 and $E_3 \neq E_{\infty}$.

 $\frac{\text{Theorem}}{\varphi\colon U\to U \text{ fixing } \mathbf{b}\in H^1(U,\mathbb{Z}) \text{ defines a circle bundle } E\to (U\times[0,1])/\varphi \text{ that is symplectic and generally non-K\"{a}hler}.$

E.g. For g=1, E is a Kodaira surface with $b_1=3$.

A generalization of the construction accounts for all symplectic manifolds with a free S^1 action.

<u>Theorem</u> There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \mathfrak{n} admitting structures as shown:

For a metric on $\mathfrak n$, almost-Hermitian structures define points of $\frac{SO(6)}{U(3)}\cong \mathbb{CP}^3$.

Example For the complex Heisenberg group N or Iwasawa manifold N/Γ ,

$$\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \Leftrightarrow J \in \mathbb{CP}^2 \cup \mathbb{CP}^2,$$

and these two 'faces' contain all 15 proper Gray-Hervella classes.

<u>Theorem</u> There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \mathfrak{n} admitting structures as shown:

For a metric on $\mathfrak n$, almost-Hermitian structures define points of $\frac{SO(6)}{U(3)}\cong\mathbb{CP}^3$.

Example For the complex Heisenberg group N or Iwasawa manifold N/Γ ,

$$\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \Leftrightarrow J \in \mathbb{CP}^2 \cup \mathbb{CP}^2,$$

and these two 'faces' contain all 15 proper Gray-Hervella classes.

Norm of component of ∇J in each \mathcal{W}_i is represented by respective colour.

<u>Theorem</u> There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \mathfrak{n} admitting structures as shown:

For a metric on $\mathfrak n$, almost-Hermitian structures define points of $\frac{SO(6)}{U(3)}\cong\mathbb{CP}^3$.

Example For the complex Heisenberg group N or Iwasawa manifold N/Γ ,

$$\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \Leftrightarrow J \in \mathbb{CP}^2 \cup \mathbb{CP}^2,$$

and these two 'faces' contain all 15 proper Gray-Hervella classes.

$$\bullet \ \nabla J \in \mathcal{W}_2 \ \Leftrightarrow J \in S^3$$

<u>Theorem</u> There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \mathfrak{n} admitting structures as shown:

For a metric on $\mathfrak n$, almost-Hermitian structures define points of $\frac{SO(6)}{U(3)}\cong\mathbb{CP}^3$.

Example For the complex Heisenberg group N or Iwasawa manifold N/Γ ,

$$\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \Leftrightarrow J \in \mathbb{CP}^2 \cup \mathbb{CP}^2,$$

and these two 'faces' contain all 15 proper Gray-Hervella classes.

 $\bullet \ \nabla J \in \mathcal{W}_3 \iff J \in \{\mathsf{pt}\} \sqcup \mathbb{CP}^1$

<u>Theorem</u> There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \mathfrak{n} admitting structures as shown:

For a metric on $\mathfrak n$, almost-Hermitian structures define points of $\frac{SO(6)}{U(3)}\cong\mathbb{CP}^3$.

Example For the complex Heisenberg group N or Iwasawa manifold N/Γ ,

$$\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \Leftrightarrow J \in \mathbb{CP}^2 \cup \mathbb{CP}^2,$$

and these two 'faces' contain all 15 proper Gray-Hervella classes.

- $\nabla J \in \mathcal{W}_2 \iff J \in S^3$
- $\bullet \ \nabla J \in \mathcal{W}_3 \ \Leftrightarrow J \in \{\mathsf{pt}\} \sqcup \mathbb{CP}^1$

Final picture displays ∇J as a function of position on the two faces. Pure blue indicates Hermitian structures, and green symplectic ones.

