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1. Introduction

Let M be a smooth manifold of dimension 2n , and let g be a Riemannian metric on M .

An almost-complex structure (abbreviated acs) J on M is an endomorphism of the tangent
bundle TM , or equivalently the cotangent bundle T ∗M , of M such that J2 = −1. Such a
tensor induces an orientation on M by taking the 2n-form e1 ∧ Je1 ∧ · · · ∧ en ∧ Jen to always
be a positive multiple of the volume form. The triple (M, g, J) is called almost-Hermitian if J
is an orthogonal transformation relative to g , i.e. if

g(JX, JY ) = g(X,Y )

for all tangent vectors X,Y . This equation implies that the tensor ω defined by ω(X,Y ) =
g(JX, Y ) is anti-symmetric; it is called the fundamental 2-form of the almost-Hermitian struc-
ture. Any two of the tensors g, J, ω determine the third.

The acs J is said to be integrable if the Nijenhuis tensor

NJ(X,Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X,Y ] (1)

vanishes. Indeed, the Newlander-Nirenberg theorem [36] implies that NJ = 0 if and only if
(M,J) is a complex manifold in the sense that there exist local complex coordinates z1, . . . , zn

such that Jdzk = i dzk , 1 ≤ k ≤ n . In these circumstances one also says that (M, g, J) is a
Hermitian manifold.

We shall be concerned with the problem of finding different Hermitian structures on a given
Riemannian manifold (M, g), and the following terminology will be convenient.

Definition. An orthogonal complex structure (OCS) on (M, g) is an integrable acs J on M
such that g(JX, JY ) = g(X,Y ).

If M is already oriented then an OCS J may or may not induce the chosen orientation, and
according to case we say that J is positively or negatively oriented.

The purpose of this note is to investigate the following

Problem. Given a Riemannian manifold (M, g), does there exist an OCS? If so, describe the
set of all OCS’s.
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The question can be asked either (i) globally, or (ii) locally, and the corresponding questions
can be rather different in nature. Given an OCS J defined over a compact manifold, one may
ask to what extent it is unique (at least up to sign) and it may be appropriate to consider
separately the case in which J is positively or negatively oriented. In the case in which M is
a symmetric space, the question has been successfully tackled by Burstall and Rawnsley [12]
by introducing the twistor space of M , and in general this is a valuable tool for characterizing
the existence of OCS’s.

Note that an OCS J remains orthogonal if the metric g is replaced by a conformally
equivalent one efg . The above problem therefore relates more accurately to the conformal class
[g] determined by g . Any 2-dimensional oriented conformal structure uniquely determines an
integrable complex structure, so we shall always suppose that n ≥ 2. Posing the above question
in another way leads to the

Problem. Find conformal structures (M, [g]) which admit an abundance, at least locally, of
OCS’s.

We shall see that continuous families of such OCS’s arise from the partial integrability of
the twistor space, which is determined by properties of the Weyl conformal curvature tensor
W . The study of twistor spaces of Riemannian 4-manifolds has advanced considerably since
their inception in [4], and the most important aspect of the preceding problem for n = 2 is
the classification of self-dual structures. A summary of the state of this art is included in
Section 4, and provides motivation for work on higher-dimensional situations. We shall see
that a pre-requisite for progress here is a more complete algebraic understanding of W , and
the extent to which it may be constrained.

The next series of examples illustrate and clarify the above problems.

Example 1. (i) If n > 1 then the sphere S2n has no OCS J relative to its standard metric.
Indeed, it is well known that for n 6= 1, 3, the sphere S2n does not even admit an almost
complex structure. But it is also true that S6 has no OCS (see e.g. [29]), even though it does
have a G2 -invariant non-integrable acs.

(ii) Let x ∈ S2n ; the induced metric on S2n \ {x} is conformally equivalent to the flat metric
on R

2n . The latter admits infinitely many OCS’s including the constant ones parametrized by
the homogeneous space O(2n)/U(n).

Example 2. (i) The complex projective space CP
n with the Fubini-Study metric admits a

standard OCS that we denote by J0 , but there are no others apart from −J0 (a result of
D. Burns and the authors of [11]). Note that ±J0 induce the same orientation on CP

n if and
only if n is even.

(ii) In fact on any open set U ⊂ CP
2 , the only OCS’s inducing the standard orientation are

±J0 . By contrast, if x is a point and L a projective line in CP
2 then CP

2 \ {x} has exactly
one pair ±Jx of negatively-oriented OCS’s, and CP

2 \ L has infinitely many OCS’s.
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The last examples show that there is an interesting interface between the global and local
existence questions. Below, we shall explain the above statements and raise a number of related
questions in the course of a general survey of relevant material.

2. Curvature conditions

Let R denote the Riemann curvature tensor of g . To describe this, we fix an arbitrary point
x ∈ M and evaluate all tensors and forms at x . In this way R is an element of the vector
space

R = S2(Λ2) 	 Λ4, (2)

where Λk is an abbreviation for the exterior product
∧k

T ∗
xM and A	B denotes the orthogonal

complement of B in A . Moreover, there is a direct sum

R = S ⊕W,

where W is the kernel of the Ricci contraction, and S ∼= S2T ∗
xM is its orthogonal complement

(see e.g. [6, 44]). The component W of R in W is the so-called Weyl tensor. This is (at least
up to scale) independent of the choice of metric within a conformal class, and vanishes if and
only if g is locally conformally equivalent to the flat metric.

Relative to an acs J on TxM there is a decomposition

(
∧2

T ∗

xM)C = Λ2,0 ⊕ Λ1,1 ⊕ Λ0,2

of complexified 2-forms into types. The real vector space WJ underlying

S2(Λ2,0) 	 Λ4,0 (3)

is a summand of W since any contraction of Λ2,0 with itself is zero. It is also orthogonal to
the space containing the curvature tensors of a Kähler metric, and it follows that if J extends
to an orthogonal acs on a neighbourhood U of x then the component WJ of W in WJ is
completely determined by the ‘torsion tensor’ ∇J and its derivative at x [19]. In fact, for
algebraic reasons, only that part of ∇J represented by the Nijenhuis tensor NJ contributes
to WJ , and one obtains the following interpretation of a result of Tricerri and Vanhecke [47,
Theorem 11.4] (who denote WJ by W7 = C5 ):

Proposition 1. If J is an OCS on an open set U then WJ ≡ 0 on U .

The dimension of the space of curvature tensors is given by the well-known formula

dimR = 1
12 (2n)2((2n)2 − 1), (4)

that may be deduced from (2). Thus,

dimW = dimR− 1
2 (2n)(2n + 1) = 1

3 n(4n3 − 7n − 3).
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The complex dimension of (3) is found by replacing 2n by n in the right-hand side of (4), and
so

dimWJ = 1
6 n2(n2 − 1).

This dimension count has an amusing consequence. Let us temporarily say that a set of k OCS’s
is independent if the respective spaces WJ span their maximum k. 1

6 n2(n2 − 1) dimensions.
Then because dimW < 8 dimWJ for all n ≥ 2, we have the

Corollary. If there are 8 independent OCS’s on U then (regardless of dimension) W ≡ 0 on
U .

It follows that there are severe restrictions on the existence of OCS’s on non conformally-
flat manifolds, though the corollary would be of more practical benefit if one knew equivalent
characterizations of independence. The fact of the matter is that multiple OCS’s tend to appear
in continuous families which constrain rather than annihilate W . The situation in 4 dimensions
is rather easy in this respect and is described below; that in 6 dimensions should be simpler
than the general case but has not yet been studied systematically. In fact, 6 independent OCS’s
suffice to render M 4 conformally flat, and 7 independent OCS’s render M 6 conformally flat.

For the remainder of this section we suppose that n = 2, and thus let M = M 4 denote an
oriented 4-dimensional Riemannian manifold. The Hodge operator ∗: Λ2 → Λ2 gives rise to an
SO(4)-invariant decomposition

∧2
T ∗

xM = Λ+ ⊕ Λ−,

where Λ± is the ±-eigenspace of ∗ . The Weyl tensor is the sum of two components

W = W+ + W−, W± ∈ S2(Λ±). (5)

Keeping the point x fixed, we begin by analysing the tensor W + in more detail. Regarding
W+ as a self-adjoint transformation of the subspace Λ+ , the latter has an orthonomal basis
{ω1, ω2, ω3} of eigenvectors and we may suppose that

W+ = aω1
2 + b ω2

2 + c ω3
2,

where a ≥ b ≥ c . In fact W + has zero trace, so c = −(a + b) and a + 2b ≥ 0.

Suppose that J is an orthogonal acs on the vector space TxM with fundamental 2-form

ω = xω1 + y ω2 + z ω3, x2 + y2 + z2 = 1.

Relative to J , Λ2,0 is a subspace of (Λ+)C , and it follows that WJ ⊂ S2(Λ+). If |z| = 1 then
Λ2,0 is spanned by ω1 ± xω2 , and WJ = 0 if and only if a = b . In the generic case |z| < 1 the
real vector space underlying Λ2,0 is spanned by

−y ω1 + xω2, xz ω1 + yz ω2 + (z2 − 1)ω3,
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and a calculation shows that WJ = 0 if and only if ω or −ω is one of

√

a − b

2a + b
ω1 +

√

a + 2b

2a + b
ω3, (6)

√

a − b

2a + b
ω1 −

√

a + 2b

2a + b
ω3. (7)

A related result in the context of Hopf surfaces can be found in [22].

These calculations have the following consequences. Suppose that J extends to an OCS
on a neighbourhood U of x . Then we may choose the sign of ω3 so that the fundamental
2-form of J equals (6) at x . If there is an oriented OCS on U distinct from ±J at x its
fundamental form must be plus or minus (7). In general though the 2-form (7) will determine
an acs whose Nijenhuis tensor satisfies a certain first-order differential equation. Specializing
further, the existence of three pairs of oriented OCS’s on an open set U , with distinct values
at x , will force W + to vanish at x . If W + vanishes identically on M , the latter is said to be
anti-self-dual (ASD). We can therefore summarize this discussion by

Proposition 2. Each point x ∈ M 4 is contained in an open set U on which there are zero,
one, two, or infinitely many distinct pairs of positively-oriented OCS’s.

If U has exactly one pair of positively-oriented OCS’s, W + may or may not have a repeated
eigenvalue at x . If it does then the corresponding eigenvector is the fundamental 2-form of an
integrable acs. This is the situation for a Kähler surface, and justifies the first statement in
Example 2(ii). A Riemannian analogue of the Goldberg-Sachs theorem [38, 3] asserts that W +

must also have a repeated eigenvalue on any Einstein-Hermitian surface; such metrics were first
considered in [16].

Metrics which are ‘doubly-Hermitian’ in the sense that they admit exactly two pairs of
OCS’s on an open set have been described by Kobak on tori and Hopf surfaces [28]. Taking
account of the opposite orientation these examples admit a total of 4 pairs of OCS’s. Whether
there is a direct relationship between ASD and such doubly-Hermitian metrics is as yet unclear,
although the deformation theory of [27] is likely to be relevant to this study. In Section 4 we
shall see that even if M is ASD it may or may not admit a global OCS.

3. Riemannian twistor spaces

Let J0 denote a standard acs on the vector space R
2n . The orthogonal group O(2n) acts on

R
2n , and the stabilizer

{g ∈ O(2n) : g ◦J ◦g−1 = J}

of J is isomorphic to the unitary group U(n). The correspondence g ◦J ◦g−1 ↔ gU(n) is
therefore a bijection between between the set of orthogonal acs’s on the vector space R

2n , or
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equivalently constant OCS’s on the manifold R
2n , and the coset space O(2n)/U(n). The latter

is isomorphic to two copies of the Hermitian-symmetric space

Hn =
SO(2n)

U(n)
, (8)

corresponding to the two possible orientations of R
2n .

We may regard Hn as a set totally isotropic complex n-dimensional subspaces of C
2n

(endowed with an SO(2n)-structure). This shows that the trivial bundle Hn × C
2n possesses

a holomorphic rank n subbundle V , and we let Z+ denote the total space of the quotient or
dual bundle V ∗ . Consider the mapping

R2n × Hn
f

−→ Z+

(ξ, x) 7→ fx(ξ),

where fx is the composition of the inclusion R
2n ⊂ C

2n with the projection from C
2n to the

fibre of V ∗ at x . The linearity of fx implies that f is a bijection, and it is easy to see that f
is holomorphic if we endow R

2n × Hn with the acs J1 defined by

J1(ξ,X) = (Jxξ, JHX), ξ ∈ R
2n, X ∈ TxHn,

where Jx is the acs defined by x itself and JH is the standard Hermitian-symmetric complex
structure. Then (Z+, J1) is the twistor space of R

2n ; note that π2:Z
+ → Hn is holomorphic,

and π−1
2 (x) is a complex submanifold of Z+ equivalent to (R2n, Jx).

More generally, given a 2n-dimensional oriented Riemannian manifold M , let P → M
denote the canonical principal SO(2n)-bundle. One may then form the associated bundle

π:Z+ = P ×SO(2n) Hn −→ M,

each fibre π−1(x) of which parametrizes positively-oriented orthogonal acs’s on the vector space
TxM . By construction, an orthogonal acs J on an open set U of M determines a local section
sJ :π−1(U) → U of Z+ . The following result was effectively proved by Atiyah, Hitchin and
Singer [4] although they restricted attention to n = 2; here we are following the approach of
[43].

Theorem 1. The total space Z admits an acs J1 with the property that sJ is holomorphic
if and only if J is integrable.

To make sense of the last statement, note that sJ : (U, J) → (Z, J1) is a mapping between
almost-complex manifolds and one says that it is holomorphic if and only if its differential is
complex-linear, i.e.

(sJ)∗ ◦J = J1 ◦(sJ)∗.
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One may define J1 by choosing a suitable connection; done in the right way one sees that both
Z+ and J1 depend only on the conformal class [g] [15, 23].

An acs J on U is integrable if and only if its Nijenhuis tensor NJ vanishes. If this is the
case then

NJ1
((sJ)∗X, (sJ)∗Y ) = (sJ)∗NJ(X,Y ) = 0

and, what is more, the Nijenhuis tensor NJ1
of J1 vanishes along sJ(U). In fact, the the value

of NJ1
at a point z ∈ Z+ corresponding to an acs J on TxM can be identified with the tensor

WJ of Section 2 [5, 37]. Now, as J varies along the fibre π−1(x) ⊂ Z+ , the corresponding
spaces WJ generate W (if n ≥ 3) or the space containing W + (if n = 2). This is the essence
of

Theorem 2 [4, 37]. (Z+, J1) is a complex manifold if and only if (for n ≥ 3) W ≡ 0 , or (for
n = 2) W + ≡ 0 .

For all n , the bundle Z− of negatively-oriented orthogonal acs’s is defined in the same way
as Z+ , and if n is odd the mapping J 7→ −J induces an isomorphism Z+ ∼= Z− .

Example 3. The even-dimensional sphere S2n = SO(2n + 1)/SO(2n) with its standard
conformally-flat metric has a twistor space with fibre Hn and total space

Z+ =
SO(2n + 1)

U(n)
.

This is a set of totally isotropic complex n-dimensional subspaces in C
2n+1 , and any such

subspace may be extended uniquely to a positively-oriented isotropic (n+1)-subspace in C
2n+2 .

This gives an isomorphism of complex manifolds

(Z+, J1)
∼=
→ (Hn+1, JH).

The resulting fibration Hn+1 → S2n can be described very simply; it assigns to an acs J on
R

2n+2 the element
Je ∈ 〈e〉⊥ ∼= R

2n+1,

where e is a fixed unit vector in R
2n+2 . The twistor space Z+ of S2n was used in the study

of harmonic maps by Calabi [13].

Referring to the last example, suppose that J is an OCS on S2n . Since Hn+1 is Kähler,
the complex submanifold sJ(S2n), and therefore S2n itself, has a Kähler metric. But this is
impossible unless b2 > 0, i.e. n = 1. Thus,

Corollary. The standard sphere S2n admits no global OCS for n ≥ 2 .

This result is only significant for n = 3, since it is known that there is a topological obstruction
to the existence of an acs in all other cases. The above argument is equivalent to LeBrun’s [29];
a completely different proof can be found in [45]. We shall return to the theme of the corollary
in Section 5.
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4. Anti-self-dual 4-manifolds

This section provides, for the sake of completeness, a very brief survey of results concerning
ASD manifolds, i.e. oriented 4-manfolds with a conformal structure for which W + is identically
zero. The twistor space Z+ of M is then a complex 3-manifold, any local holomorphic section
of which will define a local OCS on M . Examples with no distinguished complex structure are
often referred to as self-dual in the literature, as they can be oriented so that W − ≡ 0. On the
other hand, sticking to the ‘ASD’ terminology emphasizes that an OCS often plays a crucial
role in the construction of such a manifold, if only on an open set.

The following list contains most of the examples of ASD 4-manifolds that were known until
the late 1980’s:

Examples 4. (i) CP
2 , the complex projective plane with its opposite orientation, that has

signature σ = −1 and Euler characteristic χ = 3. This manifold admits no global acs with the
same orientation, because the potential Todd genus (σ + χ)/4 is not an integer. But of course
the manifold does admit an OCS (namely the standard one, J0 ) with the opposite orientation.

(ii) CP
2#CP

2 , the connected sum of 2 projective planes was shown to admit an ASD metric
by Poon [41]. This manifold has σ = −2 and χ = 4, and again cannot admit an acs.

(iii) On a Kähler surface S the tensor W + is completely determined by s , so if s ≡ 0 then
S is automatically ASD; such metrics are called scalar-flat Kähler (SFK). The obvious metric
on the product of the Poincaré disk ∆ with constant Gausssian curvature K ≡ −1 and the
sphere with K ≡ 1 is both SFK and conformally flat. Such metrics can therefore be found on
Σg × S2 , where Σg is any Riemann surface of genus g ≥ 2.

(iv) A simply-connected 4-manifold admits a Ricci-flat Kähler metric if and only if it is hyper-
Kähler, meaning that Z+ is trivialized by a family

{aI + bJ + cK : IJ = K = −JI, a2 + b2 + c2 = 1} ∼= S2 ∼= CP
1, (9)

of parallel OCS’s. The torus T 4 , regarded as H/Z
4 admits a flat hyper-Kähler metric, as does

any K3 surface by Yau’s theorem [49].

(vi) S1 × S3 , regarded as a discrete quotient of H \ {0} , admits a conformally-flat metric that
is hyper-complex, meaning that Z+ is trivialized by an S2 -family as in (9) of integrable (but
not parallel) complex structures.

Donaldson and Friedman [17] and Floer [20] then showed that under certain conditions
the ASD condition is preserved by the connected sum operation. Explicit ASD structures on
the connected sum kCP

2 of k copies of the projective plane, for arbitrary k ≥ 2, were found
by LeBrun [30] by realizing this space as a 1-point compactification of a SFK metric with S 1

symmetry, which is constructed using the so-called hyperbolic ansatz and a suitable moment

map. The twistor spaces of the ASD structures on kCP
2 are also studied in detail. Related

techniques produce ASD structures on blow-ups (S1 × S3)# kCP
2 of Hopf surfaces [31].

These examples illustrate the fundamental
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Theorem 3 [46]. Given any oriented Riemannian 4-manifold (M, g) , an ASD metric exists on

the connected sum M # kCP
2 for all sufficiently large k .

More explicit versions of Theorem 3 are known when M admits at least one global OCS

with the same orientation, for then the operation of connecting with CP
2 is realized by blowing

up a point. We therefore focus now on ASD Hermitian surfaces, which are classified by their
first Betti number b1 and 2χ + 3σ = c1

2 :

Proposition 3 [7, 39]. Let M be a compact ASD Hermitian surface.

(i) If b1 is even then M has a SFK metric;

(ii) If c1
2 = 0 then M is a Hopf surface (b1 = 1), or M is a torus (b1 = 4) or a K3 surface

(b1 = 0);

(iii) If c1
2 < 0 then M is a surface of class VII (b1 = 1), or a ruled surface (b1 = 2g ).

It follows that any compact SFK surface with c1 6= 0 (over R) must be ruled. Moreover,

Theorem 4 [25]. A SFK metric exists on some blow-up of any ruled surface.

Building on [32], Kim and Pontecorvo prove the following [26]. If M is a compact SFK surface
with c1 6= 0 then any blow-up of M is SFK, unless M = P(L⊕O) is a split projective bundle
over a Riemann surface Σg with s ≥ 2 and deg L = 0. A corollary is that there exists a SFK

metric on the smooth 4-dimensional manifold (Σg × CP
1)#CP

2 for g > 1, even though it is
known that the blow-up of the product surface Σg × CP

1 at 1 point cannot be SFK.

The determination of the optimal value of k in Theorem 3 outside the SFK regime is a
hard problem, though certain estimates are possible using gluing techniques. For example,

LeBrun and Singer prove that CP
2# kCP

2 has an ASD metric for all k ≥ 14 [33]. Another
important area in which progress has been made is the classification of ASD metrics admitting
a symmetry group of dimension 2 or more [42, 24].

Not only does the above theory provide guidance as to what to study in higher dimensions,
but the twistor space Z+ of a Riemannian 4-manifold M is itself a 6-dimensional almost-
complex manifold worthy of study in its own right. For example, it is a consequence of Taubes’
theorem that any finitely presentable group is the fundamental group of a compact complex
3-manifold Z+ . Moreover, (Z+, J1) always admits a 1-parameter family of almost-Hermitian
metrics gt each of which renders the fibration

π:Z+ −→ M (10)

a Riemannian submersion [35, 40]. In certain situations, Z+ admits a number of natural OCS’s
which are sections of its own twistor space with fibre H3

∼= CP
3 .

9



Example 5. Suppose that M is hyper-complex, with an S2 -family (9) of OCS’s trivializing
Z+ . The latter can then be identified with the product S2×M , and itself admits an S2 -family
of OCS’s

(aI + bJ + cK) + JF , (11)

formed by taking the product of a structure on M with the standard complex structure JF

on the fibre S2 ∼= CP
1 . The complex structures (11) trivialize a subbundle P ∼= Z+ × CP

1 of
the twistor space of Z+ , and are all inequivalent to the acs J1 [48]. The latter is defined as in
(11) but now regarding a, b, c as fibre coordinates, and sJ1

is a non-constant section of P . It
is known that (Z+, J1) cannot admit a Kähler metric, even if M does, though the metrics gt

are balanced [22].

5. Higher-dimensional examples

Let (M, g) be a Riemannian manifold of dimension 2n ≥ 6. If we rephrase the local version of
the first problem in the Introduction in terms of twistor spaces, it makes sense to ask whether,
given (M 2n, g), there exist complex subbundles of Z+ that are complex submanifolds relative
to J1 . Recall that if (M, g, J) is Hermitian then sJ(M) lies in the zero set

Z+
0 = {z ∈ Z+ : NJ1

(z) = 0} (12)

of the Nijenhuis tensor of J1 . This leads to the

Problem. Determine Z+
0 for a given Riemannian manifold (M, g), and investigate any general

properties of this subset.

On an arbitrary almost-complex manifold there is little that can be said about the zero set
of the Nijenhuis tensor; in particular it need not be complex-analytic. However, there is some
evidence that the subset Z+

0 of a general twistor space is better behaved, and an important
result in this direction is provided by

Theorem 5 [12]. If G/H is a symmetric space of positive or negative type with rankG =
rankH , then Z+

0 is a complex submanifold of Z , each connected component of which is a flag
manifold or domain.

If we identify a tangent space Tx(G/H) with an AdH -invariant complement p of h in g , then
any point z of π−1(x) ⊂ Z+ corresponds to a maximal isotropic subspace p+ of pC . The key
point in the proof of Theorem 5 is that z ∈ Z+

0 if and only if

[[p+, p+], p+] ⊆ p+, (13)

and this converts the problem into a purely algebraic one.

The following illustration of Theorem 5 had its origin in the study of harmonic maps
of surfaces to complex projective space CP

n [18], and belongs to a class of twistor spaces
considered in [9, 43].
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Example 6. The projective holomorphic tangent bundle F = P(T 1,0
CP

n) may be regarded as
a subbundle of Z± over CP

n with fibre CP
n−1 ⊂ Hn as follows. A point of F is a complex

line L ⊂ T 1,0
x CP

n , and this determines the acs

JL =

{

J0 on L,

−J0 on L⊥
(14)

at x . As a complex manifold, (F, J1) is the flag manifold parametrizing pairs (V1, V2) where
Vk is a k -dimensional subset of C

n+1 and V1 ⊂ V2 . However, (14) implies that the twistor
fibration π:F → CP

n is then given by

π(V1, V2) = V2 	 V1. (15)

Extending the argument following Example 3 yields

Theorem 6 [11]. If J is an OCS on a compact symmetric space G/H with rankG = rankH
then G/H is Hermitian and J is G-invariant.

The hypotheses of Theorems 5 and 6 do not require G/H to be irreducible, since the theory
is compatible with deRham decompositions. This is no longer true however when rankG >
rankH [10]; a counterexample to Theorem 6 is furnished by the Calabi-Eckmann OCS’s on
products of odd-dimensional spheres, but its validity in some irreducible cases remains open.

The statement in Example 2(i) is a corollary of Theorem 6. Now let (z1, z2) ∈ C
2 , and

define
V1 = 〈(1, z1, z2)〉 ,
V2 = 〈(1, z1, z2), (1, 0, 0)〉 .

Then (V1, V2) ∈ F provided that (z1, z2) 6= (0, 0), and

π(V1, V2) =
〈

(|z1|
2 + |z2|

2,−z1,−z2)
〉

∈ CP
2.

This defines a J1 -holomorphic section of F over CP
2 \ ({x} t L) where x = 〈(1, 0, 0)〉 and

L = {〈(0, z1, z2)〉 : z1, z2 ∈ C}.

Moreover, s extends holomorphically over L . The OCS Jx on CP
2 \ {x} for which s = sJx

is formed by reversing the standard one J0 according to the formula (14) on radial directions
emanating from x . It follows that Jx is invariant by the isometry group U(2) stabilizing x .

An elaboration of this method establishes the remaining statements in Example 2(ii). In
particular, ±Jx are the only negatively-oriented OCS’s on CP

2 \ {x} . Corresponding to this is
the fact that sJx

extends to the unique divisor D of a standard line bundle over F such that
π−1(x) ⊂ D (the author is grateful to M. Pontecorvo for this observation). Analogous results
will hold for CP

n , and combined with Theorem 6, these remarks lead to the
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Problem. Characterize H -invariant OCS’s on appropriate open sets of Hermitian symmetric
spaces G/H .

Suppose that M is a 4-manifold with an OCS with fundamental 2-form ω . Using projections
given in [47], one has

W+(ω2) = 1
12 (3s∗ − s),

where s∗ is the so-called ∗ scalar curvature. The formulae (6),(7) then relate the left-hand
side directly to the eigenvalues of W + . A more significant result of this genre was found by
Gauduchon by integrating a Weitzenbock formula:

Theorem 7 [21]. Let M be a compact Riemannian 2n-manifold with scalar curvature s , and

let c denote the smallest eigenvalue of W on
∧2

T ∗M . If M admits an OCS J then

∫

M

[(n−1)s − n(2n−1)c] ∗ 1 ≥ 0.

Given the OCS J , equality in the last formula implies that its fundamental form ω is an
eigenvector of W corresponding to c . In addition, the resulting Hermitian structure is balanced,
which means that d(ωn−1) = 0 and is the next best thing to being Kähler (see [2, 34]).
Theorem 7 implies that if J is an OCS on a compact quotient of a symmetric space G/H of
negative type then J necessarily arises from a G-invariant complex structure on G/H which
is therefore Hermitian [21].

Given the very extensive analysis that has been carried out in the 4-dimensional case, it
is natural to divert some attention to the theory of OCS’s on 6-manifolds. The following
illustrations concern more non-Kähler manifolds.

Example 7. It is well known that the sphere S6 admits a G2 -invariant non-integrable acs J ,
which relates to the above discussion of twistor spaces as follows. The fibre H3 of Z+ over S6

is isomorphic to CP
3 . If one reduces the structure group SO(7) to G2 , the subbundle of Z+

complementary to sJ with fibre CP
2 is isomorphic to the complex quadric

G2/U(2) ∼=
SO(7)

SO(2) × SO(5)
⊂ CP

6.

This ‘reduced’ twistor space was exploited by Bryant [8] in the description of J -holomorphic
curves on S6 .

Example 8. A compact even-dimensional nilmanifold can only admit a Kähler metric if it is a
torus (see e.g. [14]). One of the simplest 6-dimensional examples is the Iwasawa manifold N ,
defined as a finite quotient of the complex Heisenberg group. There is a fibration

π:N −→ T 4

12



of N onto a 4-torus with fibre a 2-torus T 2 , which to some extent mimics (10), although π∗

is no longer injective on H2(T 4, R). In any case N has, in addition to its standard complex
structure J0 , a 2-sphere S2 of positively-oriented complex structures defined as in (11) [1].
The resulting Hermitian structures are all balanced, but do not correspond to eigenvectors of
the Weyl tensor W (cf. Theorem 7).

The last example leads us to conclude with the following remarks. Let M be an oriented
Riemannian 6-manifold. As a first step to describing the zero set (12), it is natural to investigate
its possible intersection

Z+
0 ∩ π−1(x) ⊆ CP

3

with a given fibre of Z+ . In the examples so far presented, the form of this intersection is
independent of x and is one of

CP
3, CP

2 t {z}, CP
1 t CP

1, CP
1 t {z},

where CP
k is a linear subspace of CP

3 and z is a point corresponding to some standard isolated
OCS.

By contrast, using (13), one can show that the complex 3-dimensional quadric

Q ∼=
SO(5)

SO(2) × SO(3)
∼=

Sp(2)

U(2)

in CP
4 has

Z+
0 = sJH

(Q) t F, F ∼=
SO(5)

T 2
,

where JH is its Hermitian-symmetric complex structure, and

Z+
0 ∩ π−1(x) = {z} t C,

where C ∼= CP
1 is a conic in the complement CP

2 of z . Finally, we saw in Section 2 that a
Riemannian 6-manifold M can conceivably admit 6 independent isolated OCS’s, and it would
be interesting to know whether or not such examples can be realized.

Acknowledgment. This note is based on a lecture at the conference ‘Differential Geometry and
its Applications’ in Brno, 1995, and the author warmly thanks the organizers of that event.
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