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A Ka3hler manifold

SO(2n)

Zn = U(n)

— {orthogonal acs’s on (R?", +)}
— {J co2n)NO(2n): PfJ = 1};
recall det X =(Pf X)* for X skew-symmetric.

Any two of

P

J+J=0, JI=1I J=-I
implies the third.

0 —1
n=1 = J—:l:(1 O)'



Complex coordinates

Z, = { maximal isotropic subspaces A C C*" },

where A should be thought of as A0 C (T M) ®gC.

On a dense open set of Z,,,
A= <dzi+zgd2j i=1,...n)
, J
with ¢} + ¢/ = 0 for orthogonality.

—> dim¢ Z, = (3) =0,1,3,6,10,...

A complete atlas to cover Z, requires spinors.



Pure spinors

Spin(2n) actson A = A, & A_, with
AL@A, X ANTOANTPOAN T D

0 € Ay 1is ‘pure’
< ker(6: C*" — A_)is maximal (= A)
— 0®o0 €N

Zi=vpt, Zy=P'. Z,=P Z,=Q°cP".

For n > 5, we get an intersection of quadrics:

Zy =)@ CP(AL)=PY, N=2""'-1



Twistor fibration

n

Z, =78 =z

A decomposition R*"*% = (eg) & R*"*! equivalently
a reduction from SO(2n+2) to SO(2n+1), gives

Zin+1 >J
T
g2n > J(ep)

Each fibre 7 !(z) = Z(T,5*") = Z,, parametrizes acs’s
on T,.5*" and is a complex submanifold of Z,,,;.

A local section s:U — Z,.; defines an orthogonal
almost complex structure on U C S*".



Over the six-sphere

Zy=Q°
P3 |
S0 O RS

An orthogonal complex structure on S® would have
a graph I' that is holomorphic, inducing a Kéahler
metric on S° impossible [L].

But does R® admit a non-constant complex structure,
compatible with the conformally flat metric?

Bear in mind that any such OCS on R* is constant
and so equals J, with )\ € Z;=P' [W].



The twistor space of R*

YES! RS does admit a non-constant OCS. View R
as a subset of P° via the conformal map R* C P :

P3 S RYx P! R*x R? = RS

l

g4 SR

Given an algebraic surface S C P° of degree d, let
f be the number of fibres ( j -invariant skew lines) it
contains over S* or R*. Then

d=1 = f=1.
d=2 = f=0,1,2or cc.

S irreducible = f < d°.



Cubics and quadrics in P’

A non-singular cubic has at most 6 skew lines.

Theorem [PS] If d=3 and f > 5 then S isreducible.

If S has5 fibres L; = 7 !(x;) they must all meet 2
other lines Lg, L7y=j(L), butthen dim (L4,...,L;)=4
and zx; lie on a circle.

— S = Q U P? Q= S%x S

Moreover,
2x1

Q\(S1 X S2) —— 54\5129
defines OCS’s 4+J on ().

Theorem [SV] If J is an OCS on S* minus a round
circle then J arises from a j -invariant quadric in P



The generic quadric in P’

By contrast,

Theorem [SV] A quadric with f =0 will touch the
fibres over a smooth torus S! x S! =T and

O\ (S'x §?) 25 s\ T
is a bihermitian structure (J, J') on S* minus a solid
torus T.

Problem: characterize the conformal embeddings of
T in S* that arise in this way:.

Cf. the projection of any holomorphic curve in P° is
a Willmore surface in S*.



A solid torus glued to itself

Sl % 82 c p3

T c s*
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Twisted or warped product OCS’s

Recall that Z,=Z(R*) =P
Any meromorphic w: C — C defines an OCS

<Zl,22,23> c RO = R* x R?
J = (Jw(23)7 JO)

Taking w(z3) =23 gives the twistor space of R*.

If w is rational, we shall explain that the graph of J
extends to an algebraic 3-fold in Q° C P".

By contrast, a doubly-periodic function like w = p
induces a non-standard OCS on 7°.

Problem: Classify conformally-flat Hermitian mani-
folds of real dimension 6, cf. [P].
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Bishop’s theorem

P c QY

l

o€ GO O RI=R* x R?

Any constant OCS on RY (w = ¢) arises from a P}

that intersects P2, in a P*. These OCS’s are correctly
parametrized by (P%)* = Z3.

If w is rational the graph I' of J has finite ‘energy’,
characterized by Hausdorff 6-measure or a tensor
norm over SY:

H'T) < oo <= [VJ||% < o0.

[ is an analytic subset of P7 [B], so algebraic.

Also in this case, T NP3 _=P? ...
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Main result in dimension 6

Theorem [BSV] Any finite-energy OCS on R® (or on
R® minus n points) is isometric to a warped OCS J
associated to some rational function w: z3 — J,, .

The proof relies on a classification of 3-folds X in Q°
of bidegree (p, 1), meaning

X P =y, X P =1

ver

The analogous theorem is open on R** with n > 4.

A 3 is either a fibre over S° or the twistor space

of a conformal S* in S° [S].
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The graph ' of J

Given ¢ = [x,y] € P(C* @ C?), define Q° by xy = 0.

Assume x # 0 # y. Then ¢ € Q° iff x = yM for
some unique

0 —Rk3 —R2 —ZX]
23 0 —El 22
29 21 0 —53
21 —2Z9 23 0

defining w(q) € C*\ {0} c S°.

M = e R"x(0(4,C) N SU(4))

If J is a warped OCS defined by w,
['={[x,My]:x=(1,0,0,w(z3))}

lies in a singular 4-quadric Qf C P° of rank 4. Here,
x represents J,, € P' C P°.
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Classification of 3-folds

Theorem [BV] An irreducible 3-fold X of bidegree
(1,p) in @Q° is one of:

e a horizontal P° (p=0),
e a smooth 3-quadric Q° (p=1),
e the cone over a Veronese P? C Q* (p=3),

e a Weil divisor in a rank 4 quadric Q? (p > 1).

A @’ example arises from the action of G5 on S,
and defines an OCS on S°\ S* = S° x H”.

We require 7 : X — S® tobe 1 : 1 except over oo,
and 7 !(0c0) = P2, mustintersect X ina P? that con-
tains a line P'=L singularin X. This rules out cases
2 and 3. There is in fact a projection

X\L— % cCcPxP.

We can then reconstruct the warped example.
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The situation in higher dimensions

L

SQ% D) RQTL

Given an OCS of finite energy on R*" all the interest

is concentrated on I' \ T' C Z,, and may define an
OCS on R*" .

But beware: dim Hy,(Z,+1,R) ~ p, is large!
Theorem [BSV] An OCS J on R*" asymptotically

constant: (meaning ||.J(x)—Jo|| — 0 as x — oo then
F\T'=P" ! and J=/, is actually constant.
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