COMPLEX STRUCTURES AND TWISTORS

Simon Salamon, Milan, 6 May 2010

Based on recent work of

[BV] Borisov-Viaclovsky

[BSV] Borisov-Salamon-Viaclovsky

[PS] Povero-Salamon

[SV] Salamon-Viaclovsky

and earlier work of

[B] Bishop 1964

[L] LeBrun 1986

[P] Pontecorvo 1992

[S] Slupinsky 1996

[W] Wood 1992

A Kähler manifold

$$Z_n = rac{SO(2n)}{U(n)}$$

$$= \left\{ ext{orthogonal acs's on } (\mathbb{R}^{2n}, +) \right\}$$

$$= \left\{ J \in \mathfrak{o}(2n) \cap O(2n) : \text{Pf } J = 1 \right\};$$

recall $\det X = (\operatorname{Pf} X)^2$ for X skew-symmetric.

Any two of

$$J + \widehat{J} = 0$$
, $J\widehat{J} = I$, $J^2 = -I$.

implies the third.

$$n=1 \quad \Rightarrow \quad J=\pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Complex coordinates

 $Z_n = \{ \text{ maximal isotropic subspaces } \Lambda \subset \mathbb{C}^{2n} \},$ where Λ should be thought of as $\Lambda^{1,0} \subset (T_x^*M) \otimes_{\mathbb{R}} \mathbb{C}$.

On a dense open set of Z_n ,

$$\Lambda = \left\langle dz^i + \sum_j \zeta_j^i d\overline{z}^j : i = 1, \dots n \right\rangle$$

with $\zeta_j^i + \zeta_i^j = 0$ for orthogonality.

$$\implies \dim_{\mathbb{C}} Z_n = \binom{n}{2} = 0, 1, 3, 6, 10, \dots$$

A complete atlas to cover Z_n requires spinors.

Pure spinors

Spin(2n) acts on
$$\Delta = \Delta_+ \oplus \Delta_-$$
, with
$$\Delta_+ \otimes \Delta_+ \cong \Lambda^n_+ \oplus \Lambda^{n-2} \oplus \Lambda^{n-4} \oplus \cdots$$

$$\delta \in \Delta_{+}$$
 is 'pure'
$$\iff \ker(\delta: \mathbb{C}^{2n} \to \Delta_{-}) \text{ is maximal } (= \Lambda)$$

$$\iff \delta \otimes \delta \in \Lambda^{n}_{+}.$$

$$Z_1 = \operatorname{pt}, \quad Z_2 = \mathbb{P}^1, \quad Z_3 = \mathbb{P}^3, \quad Z_4 = Q^6 \subset \mathbb{P}^7.$$

For $n \ge 5$, we get an intersection of quadrics:

$$Z_n = \bigcap_i Q_i \subset \mathbb{P}(\Delta_+) = \mathbb{P}^N, \quad N = 2^{n-1} - 1.$$

Twistor fibration

$$Z_n = Z^{\binom{n}{2}} = Z(\mathbb{R}^{2n})$$

A decomposition $\mathbb{R}^{2n+2} = \langle e_0 \rangle \oplus \mathbb{R}^{2n+1}$, equivalently a reduction from SO(2n+2) to SO(2n+1), gives

Each fibre $\pi^{-1}(x) = Z(T_x S^{2n}) = Z_n$ parametrizes acs's on $T_x S^{2n}$ and is a complex submanifold of Z_{n+1} .

A local section $s: U \to Z_{n+1}$ defines an orthogonal almost complex structure on $U \subset S^{2n}$.

Over the six-sphere

$$Z_4 = Q^6$$

$$\mathbb{P}^3 \downarrow \qquad \qquad S^6 \qquad \supset \mathbb{R}^6$$

An orthogonal complex structure on S^6 would have a graph Γ that is holomorphic, inducing a Kähler metric on S^6 , impossible [L].

But does \mathbb{R}^6 admit a non-constant complex structure, compatible with the conformally flat metric?

Bear in mind that any such OCS on \mathbb{R}^4 <u>is</u> constant and so equals J_{λ} with $\lambda \in Z_1 = \mathbb{P}^1$ [W].

The twistor space of \mathbb{R}^4

YES! \mathbb{R}^6 does admit a non-constant OCS. View \mathbb{R}^6 as a subset of \mathbb{P}^3 via the conformal map $\mathbb{R}^2 \subset \mathbb{P}^1$:

$$\mathbb{P}^3 \qquad \supset \mathbb{R}^4 \times \mathbb{P}^1 \supset \mathbb{R}^4 \times \mathbb{R}^2 = \mathbb{R}^6$$

$$\downarrow$$

$$S^4 \qquad \supset \mathbb{R}^4$$

Given an algebraic surface $S \subset \mathbb{P}^3$ of degree d, let f be the number of fibres (j-invariant skew lines) it contains over S^4 or \mathbb{R}^4 . Then

$$d=1 \implies f=1.$$

 $d=2 \implies f=0,1,2 \text{ or } \infty.$
 $S \text{ irreducible } \implies f \leqslant d^2.$

Cubics and quadrics in \mathbb{P}^3

A non-singular cubic has at most 6 skew lines.

Theorem [PS] If d=3 and $f \geqslant 5$ then S is reducible.

If S has 5 fibres $L_i = \pi^{-1}(x_i)$ they must all meet 2 other lines $L_6, L_7 = j(L)$, but then $\dim \langle L_1, \ldots, L_5 \rangle = 4$ and x_i lie on a circle.

$$\implies S = Q \cup \mathbb{P}^2, \qquad Q \cong S^2 \times S^2.$$

Moreover,

$$Q \setminus (S^1 \times S^2) \xrightarrow{2 \times 1} S^4 \setminus S^1 = \Omega$$

defines OCS's $\pm J$ on Ω .

Theorem [SV] If J is an OCS on S^4 minus a round circle then J arises from a j-invariant quadric in \mathbb{P}^3 .

The generic quadric in \mathbb{P}^3

By contrast,

Theorem [SV] A quadric with f = 0 will touch the fibres over a smooth torus $S^1 \times S^1 = T$ and

$$Q \setminus (S^1 \times S^2) \xrightarrow{2 \times 1} S^4 \setminus \mathbb{T}$$

is a bihermitian structure (J, J') on S^4 minus a solid torus \mathbb{T} .

Problem: characterize the conformal embeddings of T in S^4 that arise in this way.

Cf. the projection of any holomorphic curve in \mathbb{P}^3 is a Willmore surface in S^4 .

A solid torus glued to itself

Twisted or warped product OCS's

Recall that $Z_2 = Z(\mathbb{R}^4) = \mathbb{P}^1$.

Any meromorphic $w: \mathbb{C} \to \mathbb{C}$ defines an OCS

$$(z_1, z_2, z_3) \in \mathbb{R}^6 = \mathbb{R}^4 \times \mathbb{R}^2$$

 $\mathbb{J} = (J_{w(z_3)}, J_0).$

Taking $w(z_3) = z_3$ gives the twistor space of \mathbb{R}^4 .

If w is rational, we shall explain that the graph of \mathbb{J} extends to an algebraic 3-fold in $Q^6 \subset \mathbb{P}^7$.

By contrast, a doubly-periodic function like $w = \wp$ induces a non-standard OCS on T^6 .

Problem: Classify conformally-flat Hermitian manifolds of real dimension 6, cf. [P].

Bishop's theorem

$$\mathbb{P}^{3}_{\infty} \subset Q^{6}$$

$$\downarrow$$

$$\infty \in S^{6} \qquad \supset \mathbb{R}^{6} = \mathbb{R}^{4} \times \mathbb{R}^{2}$$

Any constant OCS on \mathbb{R}^6 (w=c) arises from a $\mathbb{P}^3_{\mathrm{hor}}$ that intersects \mathbb{P}^3_{∞} in a \mathbb{P}^2 . These OCS's are correctly parametrized by $(\mathbb{P}^3)^*\cong Z_3$.

If w is rational the graph Γ of \mathbb{J} has finite 'energy', characterized by Hausdorff 6-measure or a tensor norm over S^6 :

$$H\!f^6(\Gamma)<\infty\quad\Longleftrightarrow\quad \|\nabla J\|_{S^6}^6<\infty.$$

 $\overline{\Gamma}$ is an analytic subset of \mathbb{P}^7 [B], so algebraic.

Also in this case, $\overline{\Gamma} \cap \mathbb{P}^3_{\infty} = \mathbb{P}^2 \dots$

Main result in dimension 6

Theorem [BSV] Any finite-energy OCS on \mathbb{R}^6 (or on \mathbb{R}^6 minus n points) is isometric to a warped OCS \mathbb{J} associated to some rational function $w: z_3 \mapsto J_{z_3}$.

The proof relies on a classification of 3-folds X in Q^6 of bidegree (p, 1), meaning

$$X \cdot \mathbb{P}^3_{\text{hor}} = p, \qquad X \cdot \mathbb{P}^3_{\text{ver}} = 1.$$

The analogous theorem is open on \mathbb{R}^{2n} with $n \geqslant 4$.

A $\mathbb{P}^3_{\text{ver}}$ is either a fibre over S^6 , or the twistor space of a conformal S^4 in S^6 [S].

The graph Γ of \mathbb{J}

Given $q = [\mathbf{x}, \mathbf{y}] \in \mathbb{P}(\mathbb{C}^4 \oplus \mathbb{C}^4)$, define Q^6 by $\mathbf{x} \, \widehat{\mathbf{y}} = 0$.

Assume $\mathbf{x} \neq 0 \neq \mathbf{y}$. Then $q \in Q^6$ iff $\mathbf{x} = \mathbf{y}M$ for some unique

$$M = \begin{pmatrix} 0 & -z_3 & -z_2 & -z_1 \\ z_3 & 0 & -\overline{z}_1 & \overline{z}_2 \\ z_2 & \overline{z}_1 & 0 & -\overline{z}_3 \\ z_1 & -\overline{z}_2 & \overline{z}_3 & 0 \end{pmatrix} \in \mathbb{R}^+ \times (\mathfrak{o}(4, \mathbb{C}) \cap SU(4))$$

defining $\pi(q) \in \mathbb{C}^3 \setminus \{0\} \subset S^6$.

If \mathbb{J} is a warped OCS defined by w,

$$\Gamma = \{ [\mathbf{x}, M\mathbf{y}] : \mathbf{x} = (1, 0, 0, w(z_3)) \}$$

lies in a singular 4-quadric $Q_s^4 \subset \mathbb{P}^5$ of rank 4. Here, \mathbf{x} represents $J_{z_3} \in \mathbb{P}^1 \subset \mathbb{P}^3$.

Classification of 3-folds

Theorem [BV] An irreducible 3-fold X of bidegree (1, p) in Q^6 is one of:

- a horizontal \mathbb{P}^3 (p=0),
- a smooth 3-quadric Q^3 (p=1),
- the cone over a Veronese $\mathbb{P}^2 \subset Q^4$ (p=3),
- a Weil divisor in a rank 4 quadric Q_s^4 ($p \ge 1$).

A Q^3 example arises from the action of G_2 on S^6 , and defines an OCS on $S^6 \setminus S^2 \cong S^3 \times H^3$.

We require $\pi: X \to S^6$ to be 1:1 except over ∞ , and $\pi^{-1}(\infty) = \mathbb{P}^3_{\infty}$ must intersect X in a \mathbb{P}^2 that contains a line $\mathbb{P}^1 = L$ singular in X. This rules out cases 2 and 3. There is in fact a projection

$$X \setminus L \longrightarrow \mathscr{C} \subset \mathbb{P}^1 \times \mathbb{P}^1$$
.

We can then reconstruct the warped example.

The situation in higher dimensions

$$Z_{n+1}$$
 $\supset Z_{n+1} \setminus Z_n$
 $\pi \downarrow$ S^{2n} $\supset \mathbb{R}^{2n}$

Given an OCS of finite energy on \mathbb{R}^{2n} , all the interest is concentrated on $\overline{\Gamma} \setminus \Gamma \subset Z_n$, and may define an OCS on \mathbb{R}^{2n-2} .

But beware: dim $H_{2n}(Z_{n+1},\mathbb{R}) \sim p_n$ is large!

Theorem [BSV] An OCS J on \mathbb{R}^{2n} asymptotically constant: (meaning $||J(\mathbf{x})-J_0|| \to 0$ as $\mathbf{x} \to \infty$) then $\overline{\Gamma} \setminus \Gamma = \mathbb{P}^{n-1}$, and $J = J_0$ is actually constant.