COMPLEX STRUCTURES AND TWISTORS

Simon Salamon, Milan, 6 May 2010

Based on recent work of
[BV] Borisov-Viaclovsky
[BSV] Borisov-Salamon-Viaclovsky
[PS] Povero-Salamon
[SV] Salamon-Viaclovsky
and earlier work of
[B] Bishop 1964
[L] LeBrun 1986
[P] Pontecorvo 1992
[S] Slupinsky 1996
[W] Wood 1992

A Kähler manifold

$$
\begin{aligned}
Z_{n} & =\frac{S O(2 n)}{U(n)} \\
& =\left\{\text { orthogonal acs's on }\left(\mathbb{R}^{2 n},+\right)\right\} \\
& =\{J \in \mathfrak{o}(2 n) \cap O(2 n): \operatorname{Pf} J=1\} ;
\end{aligned}
$$

recall $\operatorname{det} X=(\operatorname{Pf} X)^{2}$ for X skew-symmetric.
Any two of

$$
J+\widehat{J}=0, \quad J \widehat{J}=I, \quad J^{2}=-I .
$$

implies the third.

$$
n=1 \quad \Rightarrow \quad J= \pm\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Complex coordinates

$$
Z_{n}=\left\{\text { maximal isotropic subspaces } \Lambda \subset \mathbb{C}^{2 n}\right\}
$$

where Λ should be thought of as $\Lambda^{1,0} \subset\left(T_{x}^{*} M\right) \otimes_{\mathbb{R}} \mathbb{C}$.
On a dense open set of Z_{n},

$$
\Lambda=\left\langle d z^{i}+\sum_{j} \zeta_{j}^{i} d \bar{z}^{j}: i=1, \ldots n\right\rangle
$$

with $\zeta_{j}^{i}+\zeta_{i}^{j}=0$ for orthogonality.

$$
\Longrightarrow \operatorname{dim}_{\mathbb{C}} Z_{n}=\binom{n}{2}=0,1,3,6,10, \ldots
$$

A complete atlas to cover Z_{n} requires spinors.

Pure spinors

$\operatorname{Spin}(2 n)$ acts on $\Delta=\Delta_{+} \oplus \Delta_{-}$, with

$$
\Delta_{+} \otimes \Delta_{+} \cong \Lambda_{+}^{n} \oplus \Lambda^{n-2} \oplus \Lambda^{n-4} \oplus \cdots
$$

$\delta \in \Delta_{+}$is 'pure'

$$
\begin{aligned}
& \Longleftrightarrow \operatorname{ker}\left(\delta: \mathbb{C}^{2 n} \rightarrow \Delta_{-}\right) \text {is maximal }(=\Lambda) \\
& \Longleftrightarrow \delta \otimes \delta \in \Lambda_{+}^{n} .
\end{aligned}
$$

$$
Z_{1}=\mathrm{pt}, \quad Z_{2}=\mathbb{P}^{1}, \quad Z_{3}=\mathbb{P}^{3}, \quad Z_{4}=Q^{6} \subset \mathbb{P}^{7}
$$

For $n \geqslant 5$, we get an intersection of quadrics:

$$
Z_{n}=\bigcap_{i} Q_{i} \subset \mathbb{P}\left(\Delta_{+}\right)=\mathbb{P}^{N}, \quad N=2^{n-1}-1 .
$$

Twistor fibration

$$
Z_{n}=Z^{\binom{n}{2}}=Z\left(\mathbb{R}^{2 n}\right)
$$

A decomposition $\mathbb{R}^{2 n+2}=\left\langle e_{0}\right\rangle \oplus \mathbb{R}^{2 n+1}$, equivalently a reduction from $S O(2 n+2)$ to $S O(2 n+1)$, gives

$$
\begin{array}{cc}
Z_{n+1} & \ni J \\
\pi \begin{array}{cc}
\downarrow & \\
& S^{2 n}
\end{array} \ni J\left(e_{0}\right)
\end{array}
$$

Each fibre $\pi^{-1}(x)=Z\left(T_{x} S^{2 n}\right)=Z_{n}$ parametrizes acs's on $T_{x} S^{2 n}$ and is a complex submanifold of Z_{n+1}.

A local section $s: U \rightarrow Z_{n+1}$ defines an orthogonal almost complex structure on $U \subset S^{2 n}$.

Over the six-sphere

$$
\begin{aligned}
& Z_{4}=Q^{6} \\
& \mathbb{P}^{3} \downarrow \\
& \quad \downarrow \quad \\
& S^{6} \quad \supset \mathbb{R}^{6}
\end{aligned}
$$

An orthogonal complex structure on S^{6} would have a graph Γ that is holomorphic, inducing a Kähler metric on S^{6}, impossible [L].

But does \mathbb{R}^{6} admit a non-constant complex structure, compatible with the conformally flat metric?

Bear in mind that any such OCS on \mathbb{R}^{4} is constant and so equals J_{λ} with $\lambda \in Z_{1}=\mathbb{P}^{1}[\mathrm{~W}]$.

The twistor space of \mathbb{R}^{4}

YES! \mathbb{R}^{6} does admit a non-constant OCS. View \mathbb{R}^{6} as a subset of \mathbb{P}^{3} via the conformal map $\mathbb{R}^{2} \subset \mathbb{P}^{1}$:

$$
\begin{array}{ll}
\mathbb{P}^{3} & \supset \mathbb{R}^{4} \times \mathbb{P}^{1} \supset \mathbb{R}^{4} \times \mathbb{R}^{2}=\mathbb{R}^{6} \\
\downarrow & \\
S^{4} & \supset \mathbb{R}^{4}
\end{array}
$$

Given an algebraic surface $S \subset \mathbb{P}^{3}$ of degree d, let f be the number of fibres (j-invariant skew lines) it contains over S^{4} or \mathbb{R}^{4}. Then

$$
\begin{aligned}
& d=1 \Longrightarrow f=1 . \\
& d=2 \Longrightarrow f=0,1,2 \text { or } \infty .
\end{aligned}
$$

S irreducible $\Longrightarrow f \leqslant d^{2}$.

Cubics and quadrics in \mathbb{P}^{3}

A non-singular cubic has at most 6 skew lines.
Theorem [PS] If $d=3$ and $f \geqslant 5$ then S is reducible.
If S has 5 fibres $L_{i}=\pi^{-1}\left(x_{i}\right)$ they must all meet 2 other lines $L_{6}, L_{7}=j(L)$, but then $\operatorname{dim}\left\langle L_{1}, \ldots, L_{5}\right\rangle=4$ and x_{i} lie on a circle.

$$
\Longrightarrow S=Q \cup \mathbb{P}^{2}, \quad Q \cong S^{2} \times S^{2}
$$

Moreover,

$$
Q \backslash\left(S^{1} \times S^{2}\right) \xrightarrow{2 \times 1} S^{4} \backslash S^{1}=\Omega
$$

defines OCS's $\pm J$ on Ω.
Theorem [SV] If J is an OCS on S^{4} minus a round circle then J arises from a j-invariant quadric in \mathbb{P}^{3}.

The generic quadric in \mathbb{P}^{3}
By contrast,
Theorem [SV] A quadric with $f=0$ will touch the fibres over a smooth torus $S^{1} \times S^{1}=T$ and

$$
Q \backslash\left(S^{1} \times S^{2}\right) \xrightarrow{2 \times 1} S^{4} \backslash \mathbb{T}
$$

is a bihermitian structure $\left(J, J^{\prime}\right)$ on S^{4} minus a solid torus \mathbb{T}.

Problem: characterize the conformal embeddings of T in S^{4} that arise in this way.

Cf. the projection of any holomorphic curve in \mathbb{P}^{3} is a Willmore surface in S^{4}.

A solid torus glued to itself

$$
\mathbb{T} \subset S^{4}
$$

Twisted or warped product OCS's

Recall that $Z_{2}=Z\left(\mathbb{R}^{4}\right)=\mathbb{P}^{1}$.
Any meromorphic $w: \mathbb{C} \rightarrow \mathbb{C}$ defines an OCS

$$
\begin{aligned}
\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{6} & =\mathbb{R}^{4} \times \mathbb{R}^{2} \\
\mathbb{J} & =\left(J_{w\left(z_{3}\right)}, J_{0}\right) .
\end{aligned}
$$

Taking $w\left(z_{3}\right)=z_{3}$ gives the twistor space of \mathbb{R}^{4}.
If w is rational, we shall explain that the graph of \mathbb{J} extends to an algebraic 3-fold in $Q^{6} \subset \mathbb{P}^{7}$.

By contrast, a doubly-periodic function like $w=\wp$ induces a non-standard OCS on T^{6}.

Problem: Classify conformally-flat Hermitian manifolds of real dimension 6, cf. [P].

Bishop's theorem

$$
\begin{aligned}
& \mathbb{P}_{\infty}^{3} \subset Q^{6} \\
& \\
& \\
& \infty \in S^{6} \quad \supset \mathbb{R}^{6}=\mathbb{R}^{4} \times \mathbb{R}^{2}
\end{aligned}
$$

Any constant OCS on $\mathbb{R}^{6}(w=c)$ arises from a $\mathbb{P}_{\text {hor }}^{3}$ that intersects \mathbb{P}_{∞}^{3} in a \mathbb{P}^{2}. These OCS's are correctly parametrized by $\left(\mathbb{P}^{3}\right)^{*} \cong Z_{3}$.

If w is rational the graph Γ of \mathbb{J} has finite 'energy', characterized by Hausdorff 6-measure or a tensor norm over S^{6} :

$$
H f^{6}(\Gamma)<\infty \quad \Longleftrightarrow \quad\|\nabla J\|_{S^{6}}^{6}<\infty
$$

$\bar{\Gamma}$ is an analytic subset of $\mathbb{P}^{7}[B]$, so algebraic.
Also in this case, $\bar{\Gamma} \cap \mathbb{P}_{\infty}^{3}=\mathbb{P}^{2} \ldots$

Main result in dimension 6

Theorem [BSV] Any finite-energy OCS on \mathbb{R}^{6} (or on \mathbb{R}^{6} minus n points) is isometric to a warped OCS \mathbb{J} associated to some rational function $w: z_{3} \mapsto J_{z_{3}}$.

The proof relies on a classification of 3-folds X in Q^{6} of bidegree ($p, 1$), meaning

$$
X \cdot \mathbb{P}_{\mathrm{hor}}^{3}=p, \quad X \cdot \mathbb{P}_{\mathrm{ver}}^{3}=1 .
$$

The analogous theorem is open on $\mathbb{R}^{2 n}$ with $n \geqslant 4$.
A $\mathbb{P}_{\text {ver }}^{3}$ is either a fibre over S^{6}, or the twistor space of a conformal S^{4} in $S^{6}[\mathrm{~S}]$.

The graph Γ of \mathbb{J}

Given $q=[\mathbf{x}, \mathbf{y}] \in \mathbb{P}\left(\mathbb{C}^{4} \oplus \mathbb{C}^{4}\right)$, define Q^{6} by $\mathbf{x} \widehat{\mathbf{y}}=0$.
Assume $\mathbf{x} \neq 0 \neq \mathbf{y}$. Then $q \in Q^{6}$ iff $\mathbf{x}=\mathbf{y} M$ for some unique

$$
M=\left(\begin{array}{cccc}
0 & -z_{3} & -z_{2} & -z_{1} \\
z_{3} & 0 & -\bar{z}_{1} & \bar{z}_{2} \\
z_{2} & \bar{z}_{1} & 0 & -\bar{z}_{3} \\
z_{1} & -\bar{z}_{2} & \bar{z}_{3} & 0
\end{array}\right) \in \mathbb{R}^{+} \times(\mathfrak{o}(4, \mathbb{C}) \cap S U(4))
$$

defining $\pi(q) \in \mathbb{C}^{3} \backslash\{0\} \subset S^{6}$.
If \mathbb{J} is a warped OCS defined by w,

$$
\Gamma=\left\{[\mathbf{x}, M \mathbf{y}]: \mathbf{x}=\left(1,0,0, w\left(z_{3}\right)\right)\right\}
$$

lies in a singular 4-quadric $Q_{s}^{4} \subset \mathbb{P}^{5}$ of rank 4 . Here, x represents $J_{z_{3}} \in \mathbb{P}^{1} \subset \mathbb{P}^{3}$.

Classification of 3-folds

Theorem [BV] An irreducible 3-fold X of bidegree $(1, p)$ in Q^{6} is one of:

- a horizontal $\mathbb{P}^{3}(p=0)$,
- a smooth 3-quadric $Q^{3}(p=1)$,
- the cone over a Veronese $\mathbb{P}^{2} \subset Q^{4}(p=3)$,
- a Weil divisor in a rank 4 quadric $Q_{s}^{4}(p \geqslant 1)$.

A Q^{3} example arises from the action of G_{2} on S^{6}, and defines an OCS on $S^{6} \backslash S^{2} \cong S^{3} \times H^{3}$.

We require $\pi: X \rightarrow S^{6}$ to be 1:1 except over ∞, and $\pi^{-1}(\infty)=\mathbb{P}_{\infty}^{3}$ must intersect X in a \mathbb{P}^{2} that contains a line $\mathbb{P}^{1}=L$ singular in X. This rules out cases 2 and 3 . There is in fact a projection

$$
X \backslash L \longrightarrow \mathscr{C} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

We can then reconstruct the warped example.

The situation in higher dimensions

$$
\begin{array}{cl}
& Z_{n+1} \\
\pi \begin{array}{ll}
\downarrow & \\
& \\
& S_{n+1} \backslash Z_{n} \\
2 n & \supset \mathbb{R}^{2 n}
\end{array}
\end{array}
$$

Given an OCS of finite energy on $\mathbb{R}^{2 n}$, all the interest is concentrated on $\bar{\Gamma} \backslash \Gamma \subset Z_{n}$, and may define an OCS on $\mathbb{R}^{2 n-2}$.

But beware: $\operatorname{dim} H_{2 n}\left(Z_{n+1}, \mathbb{R}\right) \sim p_{n}$ is large!
Theorem [BSV] An OCS J on $\mathbb{R}^{2 n}$ asymptotically constant: (meaning $\left\|J(\mathbf{x})-J_{0}\right\| \rightarrow 0$ as $\mathbf{x} \rightarrow \infty$) then $\bar{\Gamma} \backslash \Gamma=\mathbb{P}^{n-1}$, and $J=J_{0}$ is actually constant.

