Orthogonal Complex Structures and Twistor Surfaces

Simon Salamon
joint work with Jeff Viaclovsky
arXiv:0704.3422

Bayreuth, May 2007

Definitions and examples

Let Ω be an open set of \mathbb{R}^{4}. An OCS on an open set $\Omega \subset \mathbb{R}^{4}$ is a (C^{1}) map

$$
J: \Omega \rightarrow\left\{M \in S O(4): M^{2}=-I\right\} \cong \mathbb{C P}^{1}
$$

satisfying $\operatorname{Nij}(J) \equiv 0$.
J_{0} is defined on $\mathbb{R}^{4} \cong \mathbb{C}^{2}$ by fixing complex coordinates z_{1}, z_{2}.
J_{1} is defined on $\mathbb{R}^{4} \backslash\{0\}$ by applying to J_{0} the map $q \mapsto 1 / q$ where $q=z_{1}+j z_{2} \in \mathbb{H}$.
J_{2} is defined on

$$
\mathbb{R}^{4} \backslash \ell \cong S^{2} \times \mathbb{R}^{+} \times \mathbb{R} \cong S^{2} \times H^{2}
$$

a domain with a conformally-flat complete Kähler metric (Pontecorvo 1992).

Liouville theorems

Let J be an OCS on an open set $\Omega=\mathbb{R}^{4} \backslash K$.
1 If $\mathcal{H}^{1}(K)=0$ (Hausdorff measure) then J is defined on \mathbb{R}^{4} or $\mathbb{R}^{4} \backslash\{p\}$ and is at least conformal to J_{0}.

2 If K is a straight line or (equivalently) a round circle then J is conformal to J_{0} or J_{2}.

Theorem 1 was known, at least when $K=\emptyset$. If J is defined on \mathbb{R}^{4} then it must be constant. Proofs will use the Penrose twistor space $\mathbb{C P}^{3}$ fibring to $S^{4}=\mathbb{R}^{4} \cup\{\infty\}$.

The language of deformations

Start with J_{0} and $\wedge^{1,0}\left(J_{0}\right)=\left\{\begin{array}{l}d z_{1} \\ d z_{2}\end{array}\right.$
Define J by the isotropic family
$\Lambda^{1,0}(J)=\left\{\begin{array}{l}d z_{1}-a d \bar{z}_{2} \\ d z_{2}+a d \bar{z}_{1}\end{array}=\left\{\begin{array}{l}d W_{1} \\ d W_{2}\end{array} \bmod d a\right.\right.$,
where $W_{1}=z_{1}-a \bar{z}_{2}$ and $W_{2}=z_{2}+a \bar{z}_{1}$ and

$$
a=a\left(z_{1}, z_{2}\right)=a\left(W_{1}, W_{2}\right)
$$

Equivalently, $J=P_{\phi} J_{0} P_{\phi}^{-1}$, where

$$
\phi=\left(\begin{array}{cc}
0 & -a \\
a & 0
\end{array}\right) \in \Gamma\left(\Theta \otimes \wedge^{0,1}\right)
$$

The integrability condition is that a be a holomorphic function of W_{1}, W_{2}; explicitly

$$
\frac{\partial a}{\partial \bar{z}_{1}}-a \frac{\partial a}{\partial z_{2}}=0=\frac{\partial a}{\partial \bar{z}_{2}}+a \frac{\partial a}{\partial z_{1}} .
$$

The language of quaternions

Let $W_{1}=z_{1}-a \bar{z}_{2}$ and $W_{2}=z_{2}+a \bar{z}_{1}$. A holomorphic function $a: \Omega \rightarrow \mathbb{C} \cup\{\infty\}$ defines a surface

$$
\begin{array}{lcc}
\left\{\left[1, a, W_{1}, W_{2}\right]: z_{1}, z_{2} \in \mathbb{C}\right\} & \subset & \mathbb{C P}^{3} \backslash \mathbb{C P}^{1} \\
& & \downarrow \pi \\
\left\{\left[1+j a, W_{1}+j W_{2}\right]\right\} & \subset & \mathbb{H P}^{1} \backslash[0,1] \\
\left(W_{1}+j W_{2}\right)(1+j a)^{-1}=z_{1}+j z_{2}
\end{array}
$$

The fibres $\mathbb{C P}^{1}$ of π parametrize $S O(4) / U(2)$.
Conclusion. An OCS J on $\Omega \subset \mathbb{R}^{4}$ can be regarded as a "holomorphic" section $\Omega \rightarrow \mathbb{C P}^{3}$, or rather a map $\Omega \rightarrow \mathbb{C P}^{3}$ whose differential is complex linear relative to the endomorphism J induced on Ω.

Liouville theorems revisited

Let J be an OCS on an open set $\Omega=\mathbb{R}^{4} \backslash K$.
1 If $\mathcal{H}^{1}(K)=0$ then J arises from some plane $\mathbb{C P}^{2} \subset \mathbb{C P}^{3}$.
E.g. J_{0} is defined by $a=0$, and J_{1} by $W_{1}=0$. Sketch proof: $J(\Omega)$ is analytic in $\mathbb{C P}^{3} \backslash \pi^{-1}(K)$. Key point is to deduce that $\overline{J(\Omega)}$ is analytic, so algebraic of degree 1 .

2 If K is a line or circle then J arises from a unique quadric in $\mathbb{C P}^{3}$.
E.g. J_{2} is defined by $W_{2}=a W_{1}$.

Sketch proof: There exists a quadric \mathscr{Q} such that $\pi^{-1}(K)$ disconnects both $J(\Omega)$ and \mathscr{Q}. If \mathscr{C} is a remaining component of $J(\Omega)$, we deduce that $\overline{\mathscr{C}}$ is analytic.

Removal of singularities

Hausdorff measure is defined in terms of a cover by sets of increasingly small diameter. If $E_{i} \subset \mathbb{R}^{m}$, let $r_{i}=\frac{1}{2} \operatorname{diam}\left(E_{i}\right)$ and

$$
\begin{gathered}
v_{i}^{d}=\operatorname{vol}\left(B^{d}\left(r_{i}\right)\right)=\frac{\left(\pi r_{i}^{2}\right)^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} \\
\mathcal{H}^{d}(K)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{i=1}^{\infty} v_{i}^{d}: K \subseteq \bigcup_{i=1}^{\infty} E_{i}, r_{i}<\delta\right\}
\end{gathered}
$$

Shiffman's Theorem (1968). U open in \mathbb{C}^{n}, E closed in U. If $A^{2 k} \subset U \backslash E$ is analytic and $\mathcal{H}^{2 k-1}(E)=0$, then $\bar{A} \cap U$ is analytic.

Based on the proof of
Bishop's Theorem (1964). U open in \mathbb{C}^{n} and B analytic in U. If $A^{2 k} \subset U \backslash B$ is analytic and $\mathcal{H}^{2 k}(\bar{A} \cap B)=0$ then $\bar{A} \cap U$ is analytic.

A generalization of Remmert-Stein (1953).

Classification of the discriminant locus

Definition. Given a quadric $\mathscr{Q} \subset \mathbb{C P}^{3}$ and a point $q \in \mathbb{R}^{4}$, set $D=D_{0} \cup D_{1}$ where

$$
\begin{aligned}
& q \in D_{0} \Leftrightarrow \pi^{-1}(q) \subset \mathscr{Q} \\
& q \in D_{1} \Leftrightarrow \pi^{-1}(q) \text { is } 1 \text { point. }
\end{aligned}
$$

Theorem 3 There are three types of nondegenerate quadrics $\mathscr{Q} \subset \mathbb{C P}^{3} \rightarrow S^{4}$:
(0) \mathscr{Q} is "real" (meaning invariant by j acting on $\mathbb{C}^{4}=\mathbb{H}^{2}$) and $D=D_{0}=S^{1}$. We get an OCS $\pm J$ on $\mathbb{R}^{4} \backslash K$ where $K=D$.
(1) $D=D_{1}=S^{1} \times S^{1}$ is a smooth unknotted torus in \mathbb{R}^{4}. We get an OCS's J, J^{\prime} on $\mathbb{R}^{4} \backslash K$ where $K=S^{1} \times B^{2}$ is a solid torus.
(2) D is a torus pinched over two points q_{1}, q_{2} and $D_{0}=\left\{q_{1}, q_{2}\right\}$.
In both (0) and (1), $\pi^{-1}(K) \cap \mathscr{Q} \cong S^{1} \times S^{2}$.

The "real" structure on $\mathbb{C P}^{3}$

Is induced from multiplication by j :

$$
\left(1, W_{1}, a, W_{2}\right) \mapsto\left(-\bar{a},-\bar{W}_{2}, 1, \bar{W}_{1}\right)
$$

A matrix $G \in \mathbb{C}^{4,4}$ belongs to $\mathfrak{g l}(2, \mathbb{H})$ iff

$$
G=\left(\begin{array}{cc}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right)
$$

Then $G \in S L(2, \mathbb{H}) \xrightarrow{2: 1} S O_{\circ}(5,1)$ if $\operatorname{det} G=1$.
Definition. Let $Q, Q^{\prime} \in \mathbb{C}^{4,4}$ be symmetric. Then $Q \sim Q^{\prime}$ if $Q^{\prime}=\lambda G^{\top} Q G$ for some $\lambda \in \mathbb{C}^{*}$ and $G \in S L(2, \mathbb{H})$.

The space of orbits has dimension $20-17=3$.
Any symmetric $Q \in \mathbb{C}^{4,4}$ equals $P_{1}+i P_{2}$ with $P_{\alpha} \in \mathfrak{g l}(2, \mathbb{H})$. If rank $Q=4$, then $Q \sim I+i P_{3}$ with $\operatorname{tr} P_{3}=0$.

Conformal canonical form

Given $Q=I+i P_{3}$, the stabilizer

$$
S O^{*}(4)=S L(2, \mathbb{H}) \cap O(4, \mathbb{C})
$$

of I is isomorphic to

$$
S L(2, \mathbb{R}) \times_{\mathbb{Z}_{2}} S U(2) \xrightarrow{2: 1} S O(2,1) \times S O(3)
$$

P_{3} is determined by $X \in \mathbb{R}^{3,3}$, and the space of orbits has dimension $9-6=3$. We use SVD to diagonalize X and Q, and obtain

Theorem 4 Under the action of the group $S O_{0}(5,1)$ on $\mathbb{C P}^{3} \rightarrow S^{4}$, any non-degenerate quadric is represented by the matrix

$$
\left(\begin{array}{cccc}
e^{\lambda+i \nu} & 0 & 0 & 0 \\
0 & e^{\mu-i \nu} & 0 & 0 \\
0 & 0 & e^{-\lambda+i \nu} & 0 \\
0 & 0 & 0 & e^{-\mu-i \nu}
\end{array}\right)
$$

for some $\lambda, \mu, \nu \in \mathbb{R}$.

A fundamental domain

In view of equivalences such as $\nu \leftrightarrow \frac{\pi}{2}-\nu$, we may restrict to

$$
\left\{(\lambda, \mu, \nu): 0 \leqslant \lambda \leqslant \mu, \quad 0 \leqslant \nu<\frac{\pi}{2}\right\} .
$$

The origin $0 \sim\left(0,0, \frac{\pi}{2}\right)$ represents the real quadric and J_{2}. The pinched case (2) arises from the open half line $\ell=\{(\lambda, \lambda, 0): \lambda>0\}$. Quadrics lying on the face $\mathcal{F}=\{(0, \mu, \nu)\}$ required special attention.

The proof ${ }^{\nu}$ of Theorem 3

(i) It is straightforward to determine that $D_{0}=\emptyset$ outside ℓ, and $\# D_{0}=2$ if $\lambda=\mu>0$.
(ii) Consider the discriminant

$$
\Delta=B^{2}-A C: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}
$$

then $\operatorname{rank}(\operatorname{grad} \Delta)<2$ only on ℓ.
(iii) $\mathfrak{I m} \Delta$ is a smooth 3-sphere in \mathbb{R}^{4} if $\nu \neq 0$. (iv) We then use $\chi(D)=2 \chi\left(S^{2}\right)-\chi(\mathscr{Q})=0$ to prove that D has no S^{2} components, and is in fact connected, at all interior points.
(v) D is then a smooth torus except on ℓ.

Example for case (1): $\left(0,0, \frac{\pi}{4}\right)$
The quadratic form equals

$$
\begin{gathered}
e^{i \nu}\left(1+a^{2}\right)+e^{-i \nu}\left(W_{1}^{2}+W_{2}^{2}\right) \\
=A a^{2}+2 B a+C .
\end{gathered}
$$

The discriminant $\Delta=B^{2}-A C$ equals

$$
i-i|\mathbf{z}|^{4}+z_{1}^{2}+\bar{z}_{1}^{2}+z_{2}^{2}+\bar{z}_{2}^{2}
$$

in terms of $\mathbf{z}=\left(z_{1}, z_{2}\right)=(\mathbf{x}, \mathbf{y})$.
The zero set D of Δ is given by

$$
\begin{aligned}
\mathfrak{I m} & : & 1=|\mathbf{z}|^{2} & =|\mathbf{x}|^{2}+|\mathbf{y}|^{2} \\
\mathfrak{R e} & : & 0 & =|\mathbf{x}|^{2}-|\mathbf{y}|^{2}
\end{aligned}
$$

So $|\mathbf{x}|=|\mathbf{y}|=\frac{1}{2}$ and

$$
D=D_{1} \cong S^{1} \times S^{1}
$$

is a smooth Clifford torus.

Example for case (2): ($\lambda, \lambda, 0$)

We can find $G \in S L(2, \mathbb{H})$ such that

$$
G^{\top} Q G=\left(\begin{array}{cccc}
0 & 0 & 0 & e^{-\lambda} \\
0 & 0 & -e^{\lambda} & 0 \\
0 & -e^{\lambda} & 0 & 0 \\
e^{-\lambda} & 0 & 0 & 0
\end{array}\right)
$$

and \mathscr{Q} has equation $2 e^{-\lambda} W_{2}-2 e^{\lambda} a W_{1}=0$

$$
\begin{aligned}
& D=\{\Delta=0\} \text { is given by } \\
& \qquad \begin{array}{rlc}
2\left|z_{1}\right|^{2}+4\left|z_{2}\right|^{2}=e^{2 \lambda} z_{1}^{2}+e^{-2 \lambda} \bar{z}_{1}^{2} \\
\mathfrak{I m} & : & x_{1} y_{1}=0 \\
\mathfrak{R e} & : & 2\left(x_{2}^{2}+y_{2}^{2}\right)=(c-1) x_{1}^{2}
\end{array}
\end{aligned}
$$

If $c=\cosh \lambda>1$ then D is a cone with vertex at 0 (and $\infty \in S^{3}$) and $D_{0}=\{0, \infty\}$.

Quartics in $\mathbb{C P}^{3} \rightarrow S^{4}$

The surface \mathscr{K}_{c} with equation

$$
1+a^{4}+W_{1}^{4}+W_{2}^{4}+6 c a^{2}=0
$$

is "real" and non-singular for $c \neq \pm \frac{1}{3}$
Lemma \mathscr{K}_{c} contains no $\mathbb{C P}^{1}$ fibres unless $c=-1,0,1$, in which cases it has 8.

Generically, $D\left(\mathscr{K}_{c}\right)$ is given by

$$
6 A B C=4 B^{3}-2 \bar{B} A^{2} \text { and } A \bar{B}^{2}=\bar{A} B^{2}
$$

where $A=1+z_{1}^{4}+z_{2}^{4}, B=-z_{1}^{3} \bar{z}_{2}+z_{2}^{3} \bar{z}_{1}$ and $C=z_{1}^{2} \bar{z}_{2}^{2}+z_{2}^{2} \bar{z}_{1}^{2}+c$.

If $c \notin\{-1,0,1\}$, consider $\mathscr{E}=\mathscr{K}_{c} / \mathbb{Z}_{2}$ and

$$
\mathscr{E} \backslash \pi^{-1}(D) \xrightarrow{2: 1} S^{4} \backslash D
$$

Then $\chi(D)=-8$ and D must be singular.

Higher degrees in general

What are the possible maximal domains of definition $\Omega=\mathbb{R}^{4} \backslash K$ for OCS's?

Let \mathscr{S} be an irreducible surface of $\mathbb{C P}^{3}$ of degree $d \geqslant 2$ with discriminant locus D. If $p \in \pi^{-1}(D) \in \mathscr{S}$ then $\operatorname{rank}\left(d \pi_{p}\right)=2$ and it follows that $\operatorname{dim}_{\mathcal{H}} D \leqslant 2$.

Theorem $5 \mathscr{S}$ contains the graph of a singlevalued OCS J on $S^{4} \backslash K$ only if $K \supseteq D$ and $\mathscr{S} \backslash \pi^{-1}(K)$ is disconnected. Moreover, $\mathcal{H}^{3}(K) \neq 0$ unless \mathscr{S} is a real quadric.

If $d>2, D_{0}$ consists of finitely many points. If \mathscr{S} is j-invariant then $\# D_{0} \leqslant d^{2}$, though better estimates will be possible.

