Orthogonal Complex Structures and Twistor Surfaces

Simon Salamon joint work with Jeff Viaclovsky arXiv:0704.3422

Bayreuth, May 2007

Definitions and examples

Let Ω be an open set of \mathbb{R}^4 . An OCS on an open set $\Omega \subset \mathbb{R}^4$ is a (C^1) map

 $J: \Omega \to \{M \in SO(4): M^2 = -I\} \cong \mathbb{CP}^1$

satisfying $Nij(J) \equiv 0$.

 J_0 is defined on $\mathbb{R}^4\cong\mathbb{C}^2$ by fixing complex coordinates $z_1,z_2.$

 J_1 is defined on $\mathbb{R}^4 \setminus \{0\}$ by applying to J_0 the map $q \mapsto 1/q$ where $q = z_1 + jz_2 \in \mathbb{H}$.

 J_2 is defined on

 $\mathbb{R}^4 \setminus \ell \cong S^2 \times \mathbb{R}^+ \times \mathbb{R} \cong S^2 \times H^2,$

a domain with a conformally-flat complete Kähler metric (Pontecorvo 1992).

Liouville theorems

Let J be an OCS on an open set $\Omega = \mathbb{R}^4 \setminus K$.

1 If $\mathcal{H}^1(K) = 0$ (Hausdorff measure) then *J* is defined on \mathbb{R}^4 or $\mathbb{R}^4 \setminus \{p\}$ and is at least conformal to J_0 .

2 If K is a straight line or (equivalently) a round circle then J is conformal to J_0 or J_2 .

Theorem 1 was known, at least when $K = \emptyset$. If J is defined on \mathbb{R}^4 then it must be constant. Proofs will use the Penrose twistor space \mathbb{CP}^3 fibring to $S^4 = \mathbb{R}^4 \cup \{\infty\}$.

The language of deformations

Start with J_0 and $\Lambda^{1,0}(J_0) = \begin{cases} dz_1 \\ dz_2. \end{cases}$

Define J by the isotropic family

$$\Lambda^{1,0}(J) = \begin{cases} dz_1 - a d\overline{z}_2 \\ dz_2 + a d\overline{z}_1 \end{cases} = \begin{cases} dW_1 \\ dW_2 \end{cases} \mod da,$$

where $W_1 = z_1 - a\overline{z}_2$ and $W_2 = z_2 + a\overline{z}_1$ and

$$a = a(z_1, z_2) = a(W_1, W_2).$$

Equivalently, $J = P_{\phi} J_0 P_{\phi}^{-1}$, where

$$\phi = \begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix} \in \Gamma(\Theta \otimes \Lambda^{0,1}).$$

The integrability condition is that a be a holomorphic function of W_1, W_2 ; explicitly

$$\frac{\partial a}{\partial \overline{z}_1} - a \frac{\partial a}{\partial z_2} = 0 = \frac{\partial a}{\partial \overline{z}_2} + a \frac{\partial a}{\partial z_1}$$

The language of quaternions

Let $W_1 = z_1 - a\overline{z}_2$ and $W_2 = z_2 + a\overline{z}_1$. A holomorphic function $a : \Omega \to \mathbb{C} \cup \{\infty\}$ defines a surface

 $\left\{ \begin{bmatrix} 1, a, W_1, W_2 \end{bmatrix} : z_1, z_2 \in \mathbb{C} \right\} \subset \mathbb{CP}^3 \setminus \mathbb{CP}^1$ $\left\{ \begin{bmatrix} 1+ja, W_1+jW_2 \end{bmatrix} \right\} \subset \mathbb{HP}^1 \setminus \begin{bmatrix} 0, 1 \end{bmatrix}$ $(W_1+jW_2)(1+ja)^{-1} = z_1+jz_2$

The fibres \mathbb{CP}^1 of π parametrize SO(4)/U(2).

Conclusion. An OCS J on $\Omega \subset \mathbb{R}^4$ can be regarded as a "holomorphic" section $\Omega \to \mathbb{CP}^3$, or rather a map $\Omega \to \mathbb{CP}^3$ whose differential is complex linear relative to the endomorphism J induced on Ω .

Liouville theorems revisited

Let J be an OCS on an open set $\Omega = \mathbb{R}^4 \setminus K$.

1 If $\mathcal{H}^1(K) = 0$ then J arises from some plane $\mathbb{CP}^2 \subset \mathbb{CP}^3$.

E.g. J_0 is defined by a=0, and J_1 by $W_1=0$. Sketch proof: $J(\Omega)$ is analytic in $\mathbb{CP}^3 \setminus \pi^{-1}(K)$. Key point is to deduce that $\overline{J(\Omega)}$ is analytic, so algebraic of degree 1.

2 If K is a line or circle then J arises from a unique quadric in \mathbb{CP}^3 .

E.g. J_2 is defined by $W_2 = aW_1$.

Sketch proof: There exists a quadric \mathscr{Q} such that $\pi^{-1}(K)$ disconnects both $J(\Omega)$ and \mathscr{Q} . If \mathscr{C} is a remaining component of $J(\Omega)$, we deduce that $\overline{\mathscr{C}}$ is analytic.

Removal of singularities

Hausdorff measure is defined in terms of a cover by sets of increasingly small diameter. If $E_i \subset \mathbb{R}^m$, let $r_i = \frac{1}{2} \text{diam}(E_i)$ and

$$v_i^d = \operatorname{vol}(B^d(r_i)) = \frac{(\pi r_i^2)^{d/2}}{\Gamma(\frac{d}{2}+1)}$$

$$\mathcal{H}^{d}(K) = \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} v_{i}^{d} : K \subseteq \bigcup_{i=1}^{\infty} E_{i}, r_{i} < \delta \right\}$$

Shiffman's Theorem (1968). U open in \mathbb{C}^n , E closed in U. If $A^{2k} \subset U \setminus E$ is analytic and $\mathcal{H}^{2k-1}(E) = 0$, then $\overline{A} \cap U$ is analytic.

Based on the proof of

Bishop's Theorem (1964). U open in \mathbb{C}^n and *B* analytic in *U*. If $A^{2k} \subset U \setminus B$ is analytic and $\mathcal{H}^{2k}(\overline{A} \cap B) = 0$ then $\overline{A} \cap U$ is analytic.

A generalization of Remmert-Stein (1953).

Classification of the discriminant locus

Definition. Given a quadric $\mathscr{Q} \subset \mathbb{CP}^3$ and a point $q \in \mathbb{R}^4$, set $D = D_0 \cup D_1$ where

$$\begin{array}{l} q \in D_0 \Leftrightarrow \pi^{-1}(q) \subset \mathscr{Q} \\ q \in D_1 \Leftrightarrow \pi^{-1}(q) \text{ is 1 point} \end{array}$$

Theorem 3 There are three types of nondegenerate quadrics $\mathscr{Q} \subset \mathbb{CP}^3 \to S^4$:

(0) \mathscr{Q} is "real" (meaning invariant by j acting on $\mathbb{C}^4 = \mathbb{H}^2$) and $D = D_0 = S^1$. We get an OCS $\pm J$ on $\mathbb{R}^4 \setminus K$ where K = D.

(1) $D = D_1 = S^1 \times S^1$ is a smooth unknotted torus in \mathbb{R}^4 . We get an OCS's J, J' on $\mathbb{R}^4 \setminus K$ where $K = S^1 \times B^2$ is a solid torus.

(2) D is a torus pinched over two points q_1, q_2 and $D_0 = \{q_1, q_2\}.$

In both (0) and (1), $\pi^{-1}(K) \cap \mathscr{Q} \cong S^1 \times S^2$.

The "real" structure on \mathbb{CP}^3

Is induced from multiplication by j:

 $(1, W_1, a, W_2) \mapsto (-\overline{a}, -\overline{W}_2, 1, \overline{W}_1)$

A matrix $G \in \mathbb{C}^{4,4}$ belongs to $\mathfrak{gl}(2,\mathbb{H})$ iff

$$G = \begin{pmatrix} A & B \\ -\overline{B} & \overline{A} \end{pmatrix}$$

Then $G \in SL(2, \mathbb{H}) \xrightarrow{2:1} SO_0(5, 1)$ if det G = 1.

Definition. Let $Q, Q' \in \mathbb{C}^{4,4}$ be symmetric. Then $Q \sim Q'$ if $Q' = \lambda G^{\top}QG$ for some $\lambda \in \mathbb{C}^*$ and $G \in SL(2, \mathbb{H})$.

The space of orbits has dimension 20-17=3.

Any symmetric $Q \in \mathbb{C}^{4,4}$ equals $P_1 + iP_2$ with $P_\alpha \in \mathfrak{gl}(2, \mathbb{H})$. If rankQ = 4, then $Q \sim I + iP_3$ with $\operatorname{tr} P_3 = 0$.

Conformal canonical form

Given $Q = I + iP_3$, the stabilizer

$$SO^*(4) = SL(2, \mathbb{H}) \cap O(4, \mathbb{C})$$

of I is isomorphic to

$$SL(2,\mathbb{R}) \times_{\mathbb{Z}_2} SU(2) \xrightarrow{2:1} SO(2,1) \times SO(3).$$

 P_3 is determined by $X \in \mathbb{R}^{3,3}$, and the space of orbits has dimension 9-6 = 3. We use SVD to diagonalize X and Q, and obtain

Theorem 4 Under the action of the group $SO_0(5,1)$ on $\mathbb{CP}^3 \to S^4$, any non-degenerate quadric is represented by the matrix

$$\begin{pmatrix} e^{\lambda+i\nu} & 0 & 0 & 0\\ 0 & e^{\mu-i\nu} & 0 & 0\\ 0 & 0 & e^{-\lambda+i\nu} & 0\\ 0 & 0 & 0 & e^{-\mu-i\nu} \end{pmatrix}$$

for some $\lambda, \mu, \nu \in \mathbb{R}$.

A fundamental domain

In view of equivalences such as $\nu \leftrightarrow \frac{\pi}{2} - \nu$, we may restrict to

The origin $0 \sim (0, 0, \frac{\pi}{2})$ represents the real quadric and J_2 . The pinched case (2) arises from the open half line $\ell = \{(\lambda, \lambda, 0) : \lambda > 0\}$. Quadrics lying on the face $\mathcal{F} = \{(0, \mu, \nu)\}$ required special attention.

(i) It is straightforward to determine that $D_0 = \emptyset$ outside ℓ , and $\#D_0 = 2$ if $\lambda = \mu > 0$. (ii) Consider the discriminant

 $\Delta = B^2 - AC : \mathbb{R}^4 \to \mathbb{R}^2:$

then rank(grad Δ) < 2 only on ℓ .

(iii) $\Im \mathfrak{m} \Delta$ is a smooth 3-sphere in \mathbb{R}^4 if $\nu \neq 0$.

(iv) We then use $\chi(D) = 2\chi(S^2) - \chi(\mathcal{Q}) = 0$ to prove that D has no S^2 components, and is in fact connected, at all interior points.

(v) D is then a smooth torus except on ℓ .

Example for case (1): $(0, 0, \frac{\pi}{4})$

The quadratic form equals

$$e^{i\nu}(1+a^2) + e^{-i\nu}(W_1^2 + W_2^2)$$

= $Aa^2 + 2Ba + C.$

The discriminant $\Delta = B^2 - AC$ equals

$$i - i|\mathbf{z}|^4 + z_1^2 + \overline{z}_1^2 + z_2^2 + \overline{z}_2^2$$

in terms of $\mathbf{z} = (z_1, z_2) = (\mathbf{x}, \mathbf{y})$.

The zero set D of Δ is given by

$$\Im \mathfrak{m} : 1 = |\mathbf{z}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2$$

$$\Re \mathfrak{e} : 0 = |\mathbf{x}|^2 - |\mathbf{y}|^2$$

So $|\mathbf{x}| = |\mathbf{y}| = \frac{1}{2}$ and

$$D = D_1 \cong S^1 \times S^1$$

is a smooth Clifford torus.

Example for case (2): $(\lambda, \lambda, 0)$

We can find $G \in SL(2, \mathbb{H})$ such that

$$G^{\mathsf{T}}QG = \begin{pmatrix} 0 & 0 & 0 & e^{-\lambda} \\ 0 & 0 & -e^{\lambda} & 0 \\ 0 & -e^{\lambda} & 0 & 0 \\ e^{-\lambda} & 0 & 0 & 0 \end{pmatrix}$$

and \mathscr{Q} has equation $\,2e^{-\lambda}W_2 - 2e^{\lambda}aW_1 = 0\,$

$$D = \{\Delta = 0\} \text{ is given by}$$

$$2|z_1|^2 + 4|z_2|^2 = e^{2\lambda}z_1^2 + e^{-2\lambda}\overline{z_1}^2$$

$$\Im \mathfrak{m} : \qquad x_1y_1 = 0$$

$$\Re \mathfrak{e} : 2(x_2^2 + y_2^2) = (c-1)x_1^2$$

If $c = \cosh \lambda > 1$ then D is a cone with vertex at 0 (and $\infty \in S^3$) and $D_0 = \{0, \infty\}$.

Quartics in $\mathbb{CP}^3 \to S^4$

The surface \mathscr{K}_c with equation

$$1 + a^4 + W_1^4 + W_2^4 + 6ca^2 = 0$$

is "real" and non-singular for $c \neq \pm \frac{1}{3}$

Lemma \mathscr{K}_c contains no \mathbb{CP}^1 fibres unless c = -1, 0, 1, in which cases it has 8.

Generically, $D(\mathscr{K}_c)$ is given by

 $6ABC = 4B^3 - 2\overline{B}A^2 \text{ and } A\overline{B}^2 = \overline{A}B^2,$ where $A = 1 + z_1^4 + z_2^4$, $B = -z_1^3\overline{z}_2 + z_2^3\overline{z}_1$ and $C = z_1^2\overline{z}_2^2 + z_2^2\overline{z}_1^2 + c.$

If $c \notin \{-1, 0, 1\}$, consider $\mathscr{E} = \mathscr{K}_c / \mathbb{Z}_2$ and $\mathscr{E} \setminus \pi^{-1}(D) \xrightarrow{2:1} S^4 \setminus D$

Then $\chi(D) = -8$ and D must be singular.

Higher degrees in general

What are the possible maximal domains of definition $\Omega = \mathbb{R}^4 \setminus K$ for OCS's?

Let \mathscr{S} be an irreducible surface of \mathbb{CP}^3 of degree $d \ge 2$ with discriminant locus D. If $p \in \pi^{-1}(D) \in \mathscr{S}$ then $\operatorname{rank}(d\pi_p) = 2$ and it follows that $\dim_{\mathcal{H}} D \le 2$.

Theorem 5 \mathscr{S} contains the graph of a singlevalued OCS J on $S^4 \setminus K$ only if $K \supseteq D$ and $\mathscr{S} \setminus \pi^{-1}(K)$ is disconnected. Moreover, $\mathcal{H}^3(K) \neq 0$ unless \mathscr{S} is a real quadric.

If d > 2, D_0 consists of finitely many points. If \mathscr{S} is *j*-invariant then $\#D_0 \leq d^2$, though better estimates will be possible.