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Definitions and examples

Let 2 be an open set of R*. An OCS on an
open set Q Cc R* is a (C1) map

J:Q —{M e SO(4): M?=—1} = CP!
satisfying Nij(J)=0.
Jg is defined on R* = C? by fixing complex
coordinates zq, 25.

Jy is defined on R*\ {0} by applying to Jy
the map ¢ — 1/q where ¢ = z;+7j2, € H.

Jo is defined on
R¥\ ¢ = $°xRTxR & S$2xH?,

a domain with a conformally-flat complete
Kahler metric (Pontecorvo 1992).



Liouville theorems

Let J be an OCS on an open set = R*\ K.

1] If H1(K) = 0 (Hausdorff measure) then

J is defined on R* or R*\ {p} and is at least
conformal to Jj.

2| If K is a straight line or (equivalently) a
round circle then J is conformal to Jy or J,.

Theorem 1 was known, at least when K = ().
If J is defined on R? then it must be constant.

Proofs will use the Penrose twistor space CP3
fibring to S% = R* U {o0}.



T he language of deformations

le

Start with Jgy and AL9(J,) = {dz
2.

Define J by the isotropic family

A = {dz2+adzl = {dW2 mod da,

where W]. — Zl—CLEQ and W2 — 22 —I— CLE]_ and
a = a(zy,25) = a(Wq,W5).

Equivalently, J = PyJoF, *, where

(,5:(0 —Oa> e r(es A

a

The integrability condition is that a be a
holomorphic function of W, W,; explicitly

oa Jda __ ~ __ Oa
9z %925 — 0 = 9z, T 9%92;"



T he language of quaternions

holomorphic function a : 2 — CuU{oco} defines
a surface

{[1,a, Wy, Wy]:2;,2p€C} C CP3\CP!

| =
{[1+ja, Wi +5iWy]} c  HP\ [0,1]
(W1 +iWo)(1+ja)~t = 2452

The fibres CP! of = parametrize SO(4)/U(2).

Conclusion. An OCS J on  C R* can be re-
garded as a “holomorphic” section  — CP3,
or rather a map  — CP3 whose differential is
complex linear relative to the endomorphism
J induced on €2.



Liouville theorems revisited

Let J be an OCS on an open set Q = R4\ K.

1|| If H1(K) = 0 then J arises from some

plane CP? c CP3.
E.g. Jg is defined by a=0, and J; by W;=0.

Sketch proof: J() is analytic in CP3\n—1(K).
Key point is to deduce that J(€2) is analytic,
SO algebraic of degree 1.

2| If K is a line or circle then J arises from

a unique quadric in CP3.

E.g. J, is defined by W, = alV;.

Sketch proof: There exists a quadric £ such
that #—1(K) disconnects both J(2) and 2.

If € is a remaining component of J(2), we
deduce that ¢ is analytic.



Removal of singularities

Hausdorff measure is defined in terms of a
cover by sets of increasingly small diameter.
If E; C R™, let r; = 3diam(E;) and

mr2)d/2
v?® = vol(B%(r;)) = (r(d%il).
2

i —
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Shiffman’s Theorem (1968). U open in C",
E closed in U. If A% C U\ E is analytic and
H2k=1(E) = 0, then ANU is analytic.

Based on the proof of

Bishop’'s Theorem (1964). U open in C" and
B analytic in U. If A%f c U\ B is analytic
and H2*(An B) =0 then ANU is analytic.

A generalization of Remmert-Stein (1953).



Classification of the discriminant locus

Definition. Given a quadric 2 c CP3 and a
point ¢ € R*, set D = Dy U D; where

q€ Dy & m1(¢) c 2
q€ D; & 7 1(g) is 1 point.

Theorem 3||| There are three types of non-

degenerate quadrics 2 C CP3 — §%:

(0) Zis “real” (meaning invariant by j acting
on C* = H?) and D = Dy = S1. We get an
OCS +J on R*\ K where K = D.

(1) D = D1 = S'xS! is a smooth unknotted

torus in R%. We get an OCS's J,J on R4\ K
where K = S1 x B? is a solid torus.

(2) D is a torus pinched over two points gy, ¢,
In both (0) and (1), = Y (K) N2 = s1x 52,



The “real” structure on CP3

Is induced from multiplication by j:
(17 W]_7 a, WQ) = (_aa _W27 17 W]_)

A matrix G € C** belongs to gl(2,H) iff

A B
G = (—E Z)
Then G € SL(2,H) 24 SOo(5,1) if det G = 1.

Definition. Let Q,Q’ € C** be symmetric.
Then Q ~ Q' if Q' =)\G'QG for some \ € C*
and G € SL(2,H).

The space of orbits has dimension 20-17 =3.
Any symmetric Q € C** equals P;+iP, with

Py € gl(2,H). If rank@ =4, then Q ~ [4+iP3



Conformal canonical form

Given @ = I + iP5, the stabilizer
SO*(4) = SL(2,H) nO(4,C)
of I is isomorphic to
SL(2,R) %, SU(2) 2L 50(2,1)xSO(3).

P4 is determined by X € R3:3, and the space
of orbits has dimension 9—6 = 3. We use
SVD to diagonalize X and @), and obtain

Theorem 4| Under the action of the group

S0,(5,1) on CP3 — S4, any non-degenerate
quadric is represented by the matrix

(M0 0 0 )
0 et~ 0 0
0 0 e M 0

\ O 0 0 er

for some A\, u,v € R.



A fundamental domain

In view of equivalences such as v < g—u,
we may restrict to

{p,v):0< A<, 0Ky <5}

V

The origin 0 ~ (0,0,Z) represents the real
quadric and J,. The pinched case (2) arises
from the open half line £ = {(A\, A,0) : A > 0O}.
Quadrics lying on the face F = {(O,pu,v)}
required special attention.



The proof of Theorem 3

(i) It is straightforward to determine that
Dy =0 outside ¢, and #Dy=2 if A=p > 0.

(ii) Consider the discriminant
A=B?—AC : R* - R?;
then rank(grad A) <2 only on /.
(iii) Jm A is a smooth 3-sphere in R* if v % 0.

(iv) We then use x(D) = 2x(52) —x(2) =0
to prove that D has no 52 components, and
is in fact connected, at all interior points.

(v) D is then a smooth torus except on /.



Example for case (1): (0,0,7)

T he quadratic form equals
e (1 +a?) 4 e V(WP + W)
— Aa? 4+ 2Ba + C.
The discriminant A = B2— AC equals
i —ilz|* 4 222 7S
in terms of z = (z1,25) = (X,y).
The zero set D of A is given by
Im o 1= g2 = [x]24 |y
Re 0 = [x|*—|y|*
So |x| = |y| :% and
D = D; & st xs?t

is a smooth Clifford torus.



Example for case (2): (A A\, 0)

We can find G € SL(2,H) such that

([0 0 0 e
0 —e* 0

0 —e* 0

\e=* 0 0 0

and 2 has equation 2e *W,—2e*aW; =0

Gloag =

D = {A = 0} is given by
2|Z1|2_|_4|Z2|2 — 2\, 2_|_€—2>\ 2
Jm . x1y1 = 0
Re : 2(z2+yr) = (c—1)zy°

If c=cosh A > 1 then D is a cone with vertex
at 0 (and oo € S3) and Dy = {0, 00}.



Quartics in CP3 — s4

The surface . with equation
14+ a*+ Wi+ Wi +6ca®=0

is “real” and non-singular for c¢ # +3

Lemma| %, contains no CP! fibres unless
c= —1,0,1, in which cases it has 8.

Generically, D(J#;) is given by
6ABC = 4B3—-2BA? and AB? = AB>,
where A = 1—|—z14—|-z24, B =—z1322—|-z2321 and

C = 2:12222 —|—222212 ~+c.

If c£ {—1,0,1}, consider & = J./Z, and
s\7 YD) %L s*\ D

Then x(D) = —8 and D must be singular.



Higher degrees in general

What are the possible maximal domains of
definition = R%\ K for OCS's?

Let . be an irreducible surface of CP3 of
degree d > 2 with discriminant locus D. If
p € n~ (D) € .# then rank(dmp) =2 and it
follows that dimy D < 2.

Theorem 5

¥ contains the graph of a single-

valued OCS J on S*\ K only if K DO D
and .7 \ 7~ 1(K) is disconnected. Moreover,
H3(K) # 0 unless . is a real quadric.

If d > 2, Dy consists of finitely many points.
If . is j-invariant then #Dy < d?, though
better estimates will be possible.



