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Preface

Interest in special classes of Riemannian metrics stems from several fronts, but there
are two particular reasons for picking out metrics distinguished by a holonomy re-
duction. First, these metrics frequently satisfy the vacuum Einstein equations, and
are consequently the subject of relentless study by physicists. Second, the theory
surrounding a particular holonomy group or groups has often turned out to be ex-
tremely rich, and worthy of consideration as a separate topic, endowed with its own
characteristic techniques. The foremost example is the theory of Kahler manifolds,
based on the unitary group, which blends together complex and Riemannian geome-
try. Examples arising from various other groups at first seemed elusive, but are now

known to exist in abundance.

These notes represent an expanded version of a 1986 lecture course, which was
motivated in part by a seminar that Robert Bryant had presented on the local
existence of metrics with exceptional holonomy groups. His visit to Oxford on that
occasion signalled the beginning of a joint search for explicit examples of such metrics,
some of which it was possible to describe in the course. For my part, the realization
of these examples was accelerated by ideas I had encountered in the work of both
Alfred Gray and Stefano Marchiafava. I should also like to thank Nigel Hitchin for
presenting the problem to me in the first instance, and for the influence he has had

on my work.

Many other people have assisted, sometimes unwittingly, with the production of
this volume. I am grateful particularly to Simon Donaldson for his constant en-
couragement and interest, and also to Piotr Kobak, Claude LeBrun, Marco Mamone

Capria, Sun Poon and Andrew Swann for useful suggestions.

Simon Salamon



Introduction

A Riemannian manifold M having n dimensions is modelled at each point on a
Euclidean vector space with a standard inner product. The group O(n) of orthogonal
transformations that preserve this inner product appears as the “structure group”
of the manifold, and all natural operations on M are compatible with the pointwise
action of this group. For example, the canonical connection on M allows one to set
up parallel transport, which will define an isometry between tangent spaces at two
points x,y, given a path between them. Dependence on the path is measured by
taking x and y coincident, and parallel transport along all loops at = generates the
so-called holonomy group H, which is then a subgroup of O(n).

The action of the holonomy group H provides a way of assessing how an object
defined on M varies from point to point. Of particular significance is the way that H
acts on the curvature tensor R, which itself detects the infinitesimal effect of parallel
transport, and it is not surprising that there is an intimate link between curvature
and holonomy. At a given point, the curvature tensor can be thought of as a linear
map that assigns to any two vectors z,y a skew-symmetric transformation R, .
Generically, these transformations would be expected to generate the Lie algebra of
all skew-symmetric endomorphisms, which implies (if M is oriented) that H equals
SO(n). If the holonomy group is a proper subgroup of SO(n), then M is “special”
in some sense; for example if H acts reducibly on R™, then the metric is locally a
product. One of the main purposes of these notes to elaborate the special features
in detail for groups H that act irreducibly on R™.

Symmetric spaces are characterized by the invariance of the curvature tensor R
under parallel translation, which corresponds to the algebraic statement that H acts
trivially on R. The classification of symmetric spaces was accomplished by E. Cartan
in the 1920’s, and involves a remarkable correspondence with simple Lie algebras. It
also provides quite a large list of different holonomy groups, but the case of metrics
which are not symmetric was not tackled until much later. In 1955, Berger proved

the following result.

Theorem Let M be an oriented simply-connected n-dimensional Riemannian man-

ifold which is neither locally a product nor symmetric. Then H must equal one of
SO(m), U(L), SU(L), Sp(™)Sp(1), Sp(L), Ga, Spin(7) or Spin(9).

The list is not only one of groups, but also one of representations, the action
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of each group on the tangent space being completely specified. Consequently each
of the groups apart from SO(n) gives rise to a structure with its own geometrical
flavour. The structures can be broadly divided into three categories, corresponding
to Kahler (and therefore complex) manifolds, quaternionic manifolds (whose real
dimension is a multiple of four), and finally manifolds whose Ricci tensor is zero
(which therefore cannot also be holonomy groups of symmetric spaces). Strictly
speaking, each category is characterized by the inclusion of H in one of the indicated
groups, and the intersection of all three defines the class of so-called hyperkahler
manifolds, which includes the group SU(2)=Sp(1) when n = 4.

Ricct FLAT
G Spin(7 Spin(9
n i 7 n g 8 ( ) nZi 16( )
U(3) SU(3) Sp(%) Sp(%)Sp(1)
— A (QUATERNIONIC
KAHLER KAHLER
HYPERKAHLER

There remained the question of which of these groups actually arise from the
holonomy of non-symmetric metrics. The answer, namely all except Spin(9), has
resulted from subsequent work that has only been completed in the last few years,
and that we shall describe presently. The observation by Borel that Berger’s list
coincided almost exactly with the list of Lie groups that can act transitively on a
sphere led Simons to prove this fact directly in 1962, thereby giving an independent
proof of the above theorem. The two Bianchi identities play fundamental and some-
times mysterious roles in Riemannian geometry, and whereas Berger had exploited
consequences of both of them, Simons succeeded in proving an algebraic version of

the theorem by exploiting the full power of just the first identity. A new proof of
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Berger’s theorem that avoids some of the classification issues has recently been found
by Bryant.

By far the greatest impetus to the holonomy problem since Berger’s theorem has
come from Yau’s resolution of the Calabi conjecture. This effectively converts the
study of compact manifolds with holonomy group SU(m) or Sp(k) to the study of
Kéhlerian manifolds with zero first Chern class. Here “Kéhlerian” means admitting
some (possibly uninteresting) Kahler metric, the point being that the existence is
then guaranteed of another Kahler metric with the reduced holonomy. Projective
geometry then provides an abundant source of manifolds which admit a Riemannian
metric with zero Ricci tensor, but there remains the problem of describing these
metrics in a more explicit way. Calabi’s construction of Ricci-flat Kahler metrics on
the total space of vector bundles not only provides some sort of first approximation
to the Yau metrics, but can in some sense be used in collaboration with them to
generate new compact examples.

Metrics whose holonomy group is contained in Sp(k) are called hyperkdhler be-
cause they are simultaneously Kéhler with respect to a family of complex structures.
They constitute the most important examples of a much larger class of quaternionic
manifolds, but are usefully studied from the viewpoint of symplectic geometry. Al-
though there seems to be no meaningful theory of quaternionic submanifolds, the
discovery by Hitchin, Karlhede, Lindstrom and Rocek that hyperkdhler manifolds
are amenable to being quotiented has had far-reaching implications. One of its
corollaries is the existence of metrics with holonomy equal to Sp(k) on a large class
of moduli spaces of solutions to the Yang-Mills equations.

Finding compact manifolds with holonomy group equal to Sp(k) for k£ > 2 proved
to be more delicate, but examples were eventually forthcoming despite belief at one
stage that none existed. The work on hyperkahler manifolds has also led to a greater
understanding of metrics with holonomy group equal to Sp(k)Sp(1). Although this
group arises as the isotropy subgroup of a symmetric space, and is not in general the
holonomy group of a complex manifold, it is a little surprising that the enlargement
from Sp(k) to Sp(k)Sp(1) does not lead to greater flexibility. However, there do
appear to be intimate links between metrics with these two holonomy groups.

The fact that any Riemannian manifold with holonomy group Spin(9) is locally
isometric to the Cayley projective plane or its dual is mainly the result of an algebraic
calculation, first carried out by Alekseevskii. The local existence of metrics with
holonomy group equal to G5 and Spin(7) was established in the 1980’s by Bryant
using, appropriately enough, techniques which Cartan had developed more than fifty
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years previously. Increased confidence of finding such metrics has since led to the
discovery of complete examples on total spaces of vector bundles over manifolds of
dimension three and four. Here, we have chosen to describe these examples in a wider
context, and this we do at the expense of treating the abstract existence theory. The
metrics themselves are remarkably simple to describe; although only by following
the steps in their construction can one fully appreciate the reason for the holonomy
reduction. A more direct and thorough treatment appears in the joint paper of
Bryant and the author. Bearing in mind the history concerning other holonomy
groups, and the one-time pessimism about the existence of any metrics with G5 or
Spin(7) holonomy, it seems not unreasonable to suppose that compact examples do

exist.

As we have made clear, our ultimate concern is more with individual classes
of Riemannian metrics and manifolds, than with the general theory of holonomy
groups. Nevertheless, two basic concepts of differential geometry pervade the ma-
jority of chapters, namely torsion and curvature. An equivalent way of asserting the
existence of a Riemannian manifold M with a given holonomy group H is by means
of a torsion-free connection preserving a reduction of structure to H. This explains
why an understanding of torsion is essential for a systematic treatment of different
structure groups, and at several key points we implicitly make use of the related
notion of weak holonomy group, introduced by Gray. The relevance of curvature has
already been indicated, but its full appreciation necessitates a working knowledge of
the representations of compact Lie groups. This is something we have attempted to
build up from scratch, which explains an algebraic bias and the inclusion of chapter 6

tackling the practicalities of decomposing tensor products.

We shall not dwell on the contents of individual chapters here, since each has
its own summary. They are arranged as follows. The first two are preparatory,
and include relevant definitions of the holonomy group, but we have not duplicated
proofs of standard theorems which already appear in a number of good references. At
this juncture, the reader may care to read the excellent survey on holonomy groups
in Besse’s book on Einstein Manifolds. Chapters 3,4,5 begin dealing with various
applications and contain standard results interspersed with less familiar material.
An outline of the classification theorem for irreducible manifolds based on Simons’s
approach is included for completeness in chapter 10, so that recent research is the
subject of the remaining chapters 7,8,9,11,12. Of these, the seventh is the most

crucial, since it promotes techniques that are employed frequently thereafter.
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The notes still follow the broad outline of a lecture course in which chapter was
originally responsible for about one lecture, and as a consequence do not aspire to
give an exhaustive survey of the subject. For the sake of simplicity, we restrict
ourselves entirely to consideration of positive definite metrics, although there are
many unresolved problems in the pseudo-Riemannian case. Only the tip of the
iceberg forming the theory of Ricci-flat Kéhler manifolds is revealed, and (except
in chapter 8) there is little discussion of the interesting topological restrictions that
accompany a holonomy reduction, and which are likely to point the way to further
examples. On the other hand, the notes do cover a range of topics in Riemannian

geometry, in which Lie groups play a fundamental role.



1 Manifolds and Structure Groups

The aim of this chapter is to summarize basic techniques concerning the differential
geometry associated to a smooth manifold M. Because of the important role that
Lie groups will play, we choose to define many concepts in terms of the principal
frame bundle LM of M, at least in the first instance. This ensures a coordinate-free
approach, and encourages one to treat total spaces of bundles as manifolds in their
own right. A subgroup H of GL(n,R) determines its own brand of geometry, which
is implemented by the choice of a subbundle P of LM with fibre H; the Riemannian
case corresponds to the orthogonal group H = O(n).

Linked with the definition of such an H-structure P, there is the notion of an
H -connection which permits one to differentiate tensors arising from representations
of H. This formalism will be invaluable in the sequel, when H will often stand
for a holonomy group which equals O(n) or one of its subgroups. In general, the
existence of connections compensates for the absence of canonical coordinate systems,
and in some sense the compatibility of a particular connection with coordinates is
measured by its torsion. This will be quantified at the end of the chapter, even
though thereafter we shall be working exclusively with connections whose torsion is

Z€ero.

The first few pages are designed to establish some basic notation, which will

appear frequently.

Preliminaries

Let M be a smooth paracompact manifold of dimension n. Thus, M has an atlas
consisting of charts (U,, ¢,), where {U,} is an open covering of M, and the maps
¢o: U, — R are homeomorphisms onto open sets of Euclidean space with ¢go¢,*
infinitely differentiable wherever it is defined. The smooth structure of M is then
specified by assigning to every open set U of M the space C*°U of functions f: U —
R for which fog,' is always infinitely differentiable.

At m € M, there is a well-defined subspace A,, of C*°M consisting of functions

which are constant to first order at m, and the cotangent space at m may be defined
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as the quotient

C>*M
Ap

T M =

The projection C*°M —T>» M maps a function f to its differential df,,. Of course,
M may be replaced by any open set containing m, and if m lies in the domain U, of
a chart with coordinates ¢, = (z',...,2"), then we may write A,, = {f € C®°M :
gaj; = 0,Vi}. The tangent space T,,M is the space of R-linear maps X:C*M — R
annihilating A,,, and has a basis consisting of the operators 6(3:1' .

A vector field is, intuitively, a smooth assignment to each m € M of an element of
T, M. Equivalently, it is an R-linear map C*M — C*°M satisfying the derivation

property
X(fg) = Xflg+ f(Xg), f,g€C®M,

since (f — f(m))(g —g(m)) € Ap,. The commutator [X,Y] = XY —Y X then gives
the set of vector fields XM the structure of a Lie algebra. In general, a Lie algebra
is a vector space g with an alternating bilinear map or bracket [, :g® g — g

satisfying the Jacobi identity
[X, [V, Z]] + [V, [Z, X]] + [Z, [ X, Y]] = 0. (1.1)

For each £ > 1, the bracket extends to

b A AZaAt g 20 ge A g — A, (1.2)
in which the first map is an inclusion, and the last is anti-symmetrization. The
Jacobi identity is equivalent to the assertion that b2 = 0.

If we treat XM as a module over the ring C°M , then /\k.’{M is dual to the set
OFM of differential forms of degree k. A element o of Q¥ M is a smooth assignment
m— 0,, € N*T M. The de Rham complex

0= C°M=0M - O'M -4 2M — -« — Q"M — 0

is formed from the exterior derivative d: Q*M — QFt' M, which is an anti-derivation

extending the differential on functions. The de Rham cohomology groups of M are
defined by

ker(d: Q¥ M — QF+1 M)

H'(M,R) = d(QF—1M) ’




and their dimensions equal the Betti numbers b, of M.
The only formula relating the definition of d to Lie brackets that is likely to

2do(X,Y) = X(oYV)-Y(0cX)—0o[X,Y]. (1.3)

for a 1-form o. The initial “2” is optional; its insertion here results from our con-
vention of identifying the exterior product v A w with (v ® w — w ® v). Given a
smooth map F: M — N between manifolds with f(m) = n, we write

Fo:ToM —T,N,  F*TN — T:M,

for the induced linear maps, the second of which extends to a cochain mapping of
the de Rham complex.

The integral curves or flow lines associated to a single vector field X determine
a local one-parameter group of diffeomorphisms of M. Consider instead a subspace
X' of XM defining a distribution of subspaces T = {X|, € T,,M: X € X'} of
constant dimension p > 1. The Frobenius theorem asserts that the 7, are tangent
to a submanifold of M if and only if X’ is a Lie algebra. By (1.3), this is equivalent
to the assertion that the ideal of differential forms annihilating X’ is closed under
exterior differentiation.

A Lie group can be defined as a group H which has the structure of a smooth
n-dimensional manifold for which the multiplication H x H — H is a smooth map.
The tangent space T,H to H at the identity can be identified with an n-dimensional
subalgebra h of XH, equal to the space of left-invariant vector fields. Each such
vector field X generates a one-parameter subgroup h; = exp(tX) of H, that defines
the exponential mapping exp:h — H. More generally, any subalgebra h' of b is
tangent to a unique connected Lie subgroup H' of H. In the sequel, we shall also use
freely the bijective correspondence between connected, simply-connected Lie groups
and finite-dimensional Lie algebras [Ch].

Let H be a Lie gro;lp. If Xq,...,X, form a basis of T,H, with dual 1-forms

w ... w", then w = Y w'®X; may be treated as a canonical 1-form on H with

i=1
values in the Lie algebra h. Because of (1.3), it satisfies the Maurer-Cartan equation

n

do = =3 > (W AF)R[X), Xi] = —1[w,w]. (1.4)

Jik=1



The brackets on the right-hand side indicate wedging the 1-forms together, and
performing the Lie bracket at the same time, in accordance with the inclusion of
A’ (R")*® A°h in the symmetric product O)*((R*)*®b).

The Maurer-Cartan form w characterizes the local geometry of H , in the following
manner. Let M be a manifold equipped with a 1-form w™ with values in the Lie
algebra b, and satisfying (1.4). Then each point of M has a neighbourhood U
admitting a diffeomorphism f:U — f(U) C H with w™ = f*w. For more details

see, for example, [S].

The principal frame bundle

When the tangent space T,,M has no preferred basis, a remedy is to consider all
bases simultaneously. Any such basis or linear frame can conveniently be described
by an isomorphism p: R* — T,,M . Their union as m varies is the principal frame
bundle LM , and is naturally a smooth manifold with a projection 7: LM — M, and
the following properties:

(i) The group GL(n,R) of non-singular transformations of R" acts freely on LM
on the right with the quotient LM/GL(n,R) isomorphic to M. If p:R* — T,, M,
and g € GL(n,R), we write

Ry(p) = pg = pog.

(ii)) A “moving frame”, consisting of a set {X1,..., X, } of smooth, everywhere
linearly independent, vectors fields on an open set U of M, determines a section
s:U — LM, mos = 1. Let I'(U, LM) denote the set of such sections; then any
s € (U, LM) defines a local trivialization

7 'U =2 U x GL(n,R).

(iii) There are special elements s = {Xi,...,X,} of I'(U, LM) which we shall
call integrable sections, characterized by the property that all Lie brackets [X;, X;]
vanish. In these circumstances, if U is sufficiently small, it is the domain of a chart

(x,...,2™) which induces s so that X; = %
X
It is the last property that reminds us that LM has features not enjoyed by
an arbitrary principal bundle on M. Indeed, there exists on LM a canonical or

“soldering” 1-form € with values in R", defined at p € LM by
oY) =p '(mY), Y e€T,(LM). (1.5)
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If s is the integrable section {%, cel a%n }, then s*@ is the dual basis {dz?, ..., dz"}
of 1-forms. Thus integrable sections are characterized by the condition 0 = d(s*0) =

s*(d@), which leads to the following pointwise statement.

1.1 Lemma A subspace D of T,(LM) is tangent to a integrable section if and
only if (i) it is horizontal in the sense that the restriction m.|p is an isomorphism,
and (i) df|r2p = 0.

Such a subspace D represents the 2-jet of a local diffeomorphism from R" into M,
or an element of the principal bundle of “2-frames” on M, to use the formalism
exploited by Kobayashi and others [K3].

If H is a subgroup of GL(n,R), an H-structure on M is a principal subbundle
P of LM with group H. This means that, given P, there exists an open covering
{Us} of M and local sections s,: U, — LM such that

P, =7 'm)NP = {so(m)h:he H}, mecU,,
and we write s, € ['(Uy,, P). The transition functions
haﬂi U, N Uﬂ — H

of P are defined by sg = syhap. The fact that they have values in H rather than
GL(n,R) expresses the fact that the structure group of LM has been reduced to the
subgroup H, and an H-structure P should be regarded as a set of “distinguished
frames”. To the extent that we shall require it, an H-structure really just provides
a useful way of describing and unifying concepts which are already familiar and
commonly used.

Consider the orthogonal group O(n) of linear transformations of R" preserving
a positive definite inner product. Then an O(n)-structure is none other than a
Riemannian metric, or a smoothly varying inner product g on each tangent space
T, M. The standard inner product on R™ (thought of as a space of column vectors)

is transferred to 7,, M by setting
9 X,Y)=(p ' X)'(p'Y), X,Y€T,M, (1.6)

for any p € P, (the choice is clearly immaterial). Elements of P are precisely the
isometries R*” — T, M or, in terms of bases, the orthonormal frames.
If GL™(n,R) denotes the identity component of GL(n,R), consisting of matrices

with positive determinant, then a GL™(n,R)-structure @ defines an orientation on
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M , and its elements are those frames compatible with the orientation. Superimposing
the two examples determines the SO(n)-structure P N @ of oriented orthonormal
frames.

An H-structure P is said to be integrable if it admits integrable sections, so that
given m € M, there exists s € ['(U, P), m € U, with s*df = 0. The bundles
P and @) above illustrate extreme behaviour; @) is always integrable, whereas P is
integrable if and only if in a neighbourhood of any point, there exist local coordinates

with {6%1’ Ce 6%} orthonormal. In the latter case the Riemannian metric has

locally the standard form > dz* ® dz®, the flat situation considered further in 2.7.
=1

1=
A linear representation of a Lie group H is determined by a continuous homo-
morphism H — AutV, where V is a vector space which we are apt to refer to as
an H-module. If M is a smooth manifold with an H-structure P, then a function

f on P with values in V', which is equivariant in the sense that

f(ph) =h7'(f(p)), heH, (1.7)

defines what is called a tensor on M. As p ranges over P, the pair (p, f(p)) deter-
mines a section of the vector bundle VM = P xgz V over M, obtained by taking
the quotient of P x V by the right action of H given by (p,v)h = (ph, h~'v). This
vector bundle is called the bundle associated to P with fibre V.

For example, if V is an H-invariant subspace of A"(R")*, then f extends to
the whole of the frame bundle LM, and defines a k-form lying in a distinguished
subbundle VM of /\kT*M . More generally, we may replace V' by any set V upon
which H acts on the left (that is, ev = v and (gh)v = g(hv) for all v € V and
g,h € H), to form the bundle PxgV. For example the coset space V = GL(n,R)/H
parametrizes reductions of GL(n,R) to the subgroup H, and an H-structure defines
in a tautologous fashion a section of the associated bundle. If V is contractible, such a
section will always exist, since by assumption M admits partitions of unity. Applying

the argument for H = O(n) establishes the existence of a Riemannian metric.

Connections and covariant differentiation

Let us consider the problem of differentiating a tensor, described by an equivariant
function f on the principal frame bundle LM, with values in a fixed vector space
V', acted on by GL(n,R). At a point p of LM, the effect of the differential df on

11



vectors tangent to the fibres is clearly determined by f(p). Let C, = ker(m,) denote
the vertical space at p, and gl(n,R) = T,GL(n,R) the Lie algebra of all linear maps

R® — R™. Then there is a natural isomorphism
¢:Cp — gl(n,R),
characterized by the property that

df (X) = (X[)(p) = —¢(X)f(p), X €y (1.8)

To evaluate the differential df in directions transverse to the fibres, one introduces

a connection, which consists of a smooth equivariant distribution
D, CT,LM, Dyg = (Ry):D,p
of horizontal subspaces in LM . This gives rise to an equivariant splitting
T,LM = C, @ D,, (1.9)

and ¢ may be extended to a 1-form on LM with values in gl(n, R) by declaring that
its restriction to D, be zero. From (1.5), (1.7) and (1.8), we have

(Rg)*‘g = g—le’ (Rg)*df = g_ldfa (Rg)*(b = g—lqs’

where GL(n,R) acts on gl(n,R) by the adjoint representation or, in other words,
conjugation. The V-valued 1-form df + ¢ f then satisfies the same equivariance law,
and represents the horizontal component of df. Hence, there exists an equivariant
function Vf with values in the tensor product (R*)*®V such that

OV f = df + 67, (1.10)

where juxtaposition with # denotes the obvious contraction that converts elements
of (R")* to 1-forms on LM . More informally, the covariant derivative is given by
“V=d+o¢".

The 1-form ¢ + 60 on LM has values in gl(n,R) & R*, which may be identified
with the Lie algebra formed by extending the bracket of gl(n,R) as follows:

[A,z] = —[z,A] = Az,
[z,y] =0, Ae€egl(nR), z,yeR".

(1.11)
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This is the Lie algebra of the affine group, which in the present circumstances is best
thought of as the frame bundle LR™. Thus ¢+ 6 defines an “absolute parallelism” or
{e}-structure on LM, and from (1.4) its failure to conform with the corresponding

Maurer-Cartan form is measured by
dp+0)+i[o+0,0+6] = +06,
where

® = do+3[0,0],
© = df+ [¢,0],

(1.12)

and Lie brackets are now carried out simultaneously with wedging together of 1-
forms, in the same vein as (1.4). The exterior derivative of (1.10) yields the so-called

Ricci identity:
1.2 Lemma &f —OVf+ (QAO)V2f=0.

Suitable choices of f show that ® and © are “horizontally-valued” 2-forms on
LM, being equal to zero upon insertion of a vertical vector. In analogy to (1.10),
they are the contractions with 6 A § of equivariant functions R(p), T(p), known as

the curvature and torsion tensors, with values in

A’ (R")*®gl(n,R) = Hom (A’R", gl(n, R))
A’ (R")*®R" = Hom (A\’R",R*)
respectively. These functions may be defined more simply as the compositions

R(p): \R* =5 A2D, —2%, g1(n, R),
(1.13)

T(p): N°R* = A’°D, —¥ R»,

in which the initial isomorphisms are induced by €. The connection is said to be
torsion-free if T(p) is everywhere zero. This means that the restriction of df to
/\2D],J vanishes for all p € P, and from 1.1, each D, is tangent to an integrable
section. The interpretation of R(p) is even clearer; by the Frobenius theorem, it is

the obstruction to the integrability of the distribution of horizontal spaces D,.
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Given an H-structure P C LM, one may consider connections which are com-
patible with P in the sense that D, C T,P for every p € P. In this case, the
connection reduces to one on the principal bundle P, and one loses no information
by restricting attention to P. Such H-connections are characterized by the fact that
the pullback of the 1-form ¢ to P takes values in the Lie algebra h of H. If H equals
the stabilizer of some element 7 in a GL(n,R)-module V', that element extends to

an equivariant function on LM, constant on P. In these circumstances,

1.3 Lemma A connection reduces to P if and only if n is covariant constant, that
1, Vn = 0.

The reader is welcome to interpret tensors in terms of sections of appropriate
bundles on M, as explained after (1.7). Moreover, one can always presume to have
an H-connection, by taking H = GL(n,R) and P = LM to cover the general case.
The curvature tensor of an H-connection becomes a section of the associated vector
bundle

P xu (AN2(R*)'®b) 2 A*T*MeyM (1.14)

over M, where H M = P X g b is the so-called adjoint bundle. However, the principal
bundle formalism does provide a clear picture of what effect the group has on things.
For example, we will be particularly interested in the situation when the curvature
R(p) is constant on the fibres of an H-structure P; in this case it is invariant rather
than just equivariant.

The covariant derivative (1.10) may be regarded as a differential operator acting

on sections of associated vector bundles, enjoying the Koszul property
V(Af) =AVf+d\Qf, A€ C*M. (1.15)

For example, if s = {Xi,...,X,} is a section of P over an open set U of M, then

one writes

VX, =Y (0@ Xy ViX; =D (8(s.2))5 Xk,

k k

where Z € T, M and m € U. When s is a integrable section with X; = %, this
)%, so that

information is carried by the Christoffel symbols Pfj = @(s. 6(2:’

V(?/(’)z’ 8 J Z Fzg 63:’“
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The 1-form s*¢ measures the non-horizontality of s, and the matrix entries (s *qﬁ) are
the connection 1-forms relative to the chosen basis or “gauge”. A smooth function

g:U — H gives rise to a new gauge sg and new 1-form

(s9)*¢ = Ad(g7")s"¢ + g~ 'dg,

with a transformation law analogous to (1.15).

Measuring torsion

Consider first the special case of 1.2 in which f is (the pullback of) an ordinary
R-valued function, so that OV f = ( A9)V2f and OV f = df. Replacing V f by an

arbitrary equivariant (R")*-valued function o on LM gives

1.4 Lemma Oa = (0A0)Va—d(fa).

Here 6 should be regarded as performing a tautological role, and « is really a 1-form
on M. As such, the torsion of a connection simply measures the difference between
the skew-symmetric component of Va, and da. If the torsion is zero, the exterior
derivative factors through the covariant derivative; it is easy to see that this is also
true for forms of arbitrary degree.

An equivalent formalism can be given in local coordinates z*,...,z" on M. From

1.4, the components of the torsion tensor T are given by

o 0., . _ ,0 0
e 90\ = (g " g VI (1.16)

= §(P§j - Ffz)

T(

In terms of arbitrary vector fields X =) ai% , Y =>"b; %, we obtain
{ J

ob; 0 5&1 5
VT ZJ( oxi Ori bi 029 83:2) + Zaz W
9. ,-7’
= [X,Y] +2T(X,Y). (1.17)

The difference of two connections is a tensorial object. For let ¢’, ¢ be connection
forms on an H-structure P. In view of (1.8), their difference ¢ — ¢ annihilates ver-

tical vectors, and therefore equals the contraction of @ with an equivariant function

¢(p) € Hom (R, h) = (R*)"®b, (1.18)
15



which itself determines a section of the associated vector bundle Hom (7'M, h M) over
the manifold M.

Another interpretation of the last fact starts from the homomorphism 7,: TP —
7 YT M of vector bundles on P, where 7T M denotes the pulled-back bundle whose
fibre at p € P is by definition Ty, M. The kernel of m, is the bundle of vertical
vectors, naturally isomorphic to P x . Quotienting by the action of H yields a

short exact sequence

TP
0—>bM—>7<:>TM—>O (1.19)

of vector bundles over M. Then an H-connection is exactly the same as a splitting of
(1.19); this interpretation was exploited by Atiyah [A] in the holomorphic category,

where there are obstructions to the existence of connections.

1.5 Figure Difference of two connections

P
)Z*/
T —£(p), = 6(X)
p %
v ; X =po

The indicated splitting of (1.19) assigns to X € T,, M the class {X’ €eT,P:pe
7~1(m)} of horizontal lifts, any one of which acts on vector-valued functions on P
so as to define the value of the operator Vx at m (cf. (2.8)). In this way, sections
of the vector bundle TP/H correspond to certain first order differential operators
on M. Any two splittings differ by a section of Hom (7'M, H M) which measures the
deviation X’ — X between the two horizontal lifts X' € H,, and X € H,.

Given a connection form ¢, and £ as in (1.18), there is a unique connection form
¢’ = ¢ + 6¢ which inverts the above construction. The set of connections on an
H-structure P is therefore an affine space modelled on I'(M, T*M ®hHM).
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1.6 Proposition Any H-structure P has a connection, and if P is integrable, it

admits a torsion-free connection.

Proof. A local section s € T'(U, P) is tangent to a unique connection on 7 *(U); if
s is integrable, s*df = 0, and the connection is torsion-free. By above, the space of
connections is certainly convex, so local connections can be patched together with a

partition of unity, and torsion is additive. O

The existence of a torsion-free H-connection means that P is integrable “to first
order”. The Frobenius theorem provides a simple setting in which this is also a
sufficient condition for integrability, H being the subgroup of GL(n,R) preserving
a p-dimensional subspace in R". Other situations of varying difficulty for which the
existence of a torsion-free connection implies integrability include almost symplectic

and almost complex structures, discussed in chapter 3.

Once again, let P be an H-structure endowed with two distinct connections.
From (1.12), ©' — © = [¢' — ¢, 0], and

T'(D)ay — T(D)ay = 5(EP)ay — EP)yz), z,y € R;

the first term signifies the result of applying the torsion to z A y. In terms of the

H-equivariant homomorphism

5: (R")'®h — (R*)*®@(R")*@R" — A*(R")"®R" (1.20)
built from the obvious inclusion and anti-symmetrization, we may write simply

T —T = —4§¢.
Existence and uniqueness questions for H-connections on P are then settled by

1.7 Proposition (i) If ¢', ¢ are torsion-free, then &(p) € kerd;
(i) P has a torsion-free connection if and only if T'(p) € Im§ for all p € P.

The torsion T'(p) of any particular connection determines another equivariant

function Tj(p) on P with values in the quotient

/\Q(R")*@R"
o((R")*®b) -

coker§ = (1.21)
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By design, Ty(p) is independent of the choice of connection, and is called the structure
function of P; it is the obstruction to the existence of a torsion-free connection on P,
or to first order integrability, and was introduced by Bernard [Ber]. In the language
of Spencer cohomology, the space (1.21) is H%!(h); other cohomology groups house
higher order obstructions to integrability, described by Guillemin [G], and Singer and
Sternberg [SS].

Of particular interest is the case when Ty(p) vanishes, or failing that when it is
H-invariant, which means constant on the fibres of P. A conceptually important
example is provided by the {e}-structure defined on a Lie group G, for which P = M,
and Ty(p) = Ty(m) is the Lie bracket b € A’*g*®g.

18



2 Parallel Transport

The so-called fundamental theorem of Riemannian geometry asserts the existence
and uniqueness of a metric connection whose torsion is zero. We explain how this
works using the terminology of the preceding pages, and point out that its proof
gives valuable information when the manifold has a structure defined by a subgroup
of O(n). In practice, such a subgroup is often furnished by the holonomy group,
generated by parallel transport along closed curves. This transport is most easily
described in terms of the horizontal subspaces that arise as the kernel of the connec-

tion form at each point of the principal bundle of orthonormal frames.

In a certain sense, the holonomy group is also generated by the Riemann curvature
tensor R, which is a measure of infinitesimal parallel transport, but the relationship
between curvature and holonomy is quite subtle. In the course of this chapter, we
shall begin to familiarize ourselves with R, but a more systematic account of its
properties will appear in due course. These properties impose severe restrictions on
the holonomy group of a Riemannian manifold, restrictions which do not apply for

arbitrary connections, even ones with zero torsion [HO].

Part of the theory is valid for a pseudo-Riemannnian manifold with an indefinite
metric. However one feature special to the positive definite case is that the metric
is locally a product if and only if H acts reducibly on the tangent space. This
fact implies, amongst other things, that the identity component of H is compact.
Other essential properties of holonomy groups are discussed briefly, but for detailed
proofs of the major theorems, and more exhaustive definitions, we refer the reader

to Kobayashi and Nomizu’s treatment [KN, chapter 2 and appendices 4,5,7].

The Levi Civita connection

We shall now suppose that M is an n-dimensional Riemannian manifold with metric
tensor g, as described in (1.6). The corresponding principal bundle P of orthonormal
frames constitutes an O(n)-structure. The structure group O(n) preserves an inner
product on the vector space R", which induces an isomorphism R* = (R")*. In
classical notation, this corresponds to the indez lowering operation a’' — g;;a’, where

a’ denote the coefficients of a vector relative to a basis of R", and g¢;; = g(%, %)

19



are the coefficients of the metric tensor. Moreover

EndR* = (R*)*®R* = A'QA!
= Q') e AN\ (2.1)
= RoXZa A

In general, we shall use ©¥ | A¥ as abbreviations for the spaces OF(R*)*, A*(R")* of
totally symmetric and skew-symmetric tensors respectively. In (2.1), the identity en-
domorphism corresponds to the inner product, and the space of traceless self-adjoint
endomorphisms is identified with the space 3 of symmetric 2-tensors orthogonal to

the inner product. More importantly, there is an isomorphism
so(n) & A% (2.2)

between the Lie algebra of skew-adjoint endomorphisms and the space of 2-forms.
Given the Lie algebra h = so(n), the fundamental homomorphism (1.20) that

sends the difference of two connections to the difference of their torsions is the natural

mapping
§: AN'®A? — A’RAL. (2.3)

Using indices, an element a;j; of A'®A? can be thought of as the difference of the
respective Christoffel symbols of two connections, and ¢(a;;x) = %(aijk — ajit). The

amusing formula
Qijk = Qjik = —Qjks = —Okji = Qg5 = QAikj = —Q4jk,
valid for a;;; € ker d, confirms that ¢ is an isomorphism. Consequently,

2.1 Proposition An O(n)-structure has a unique torsion-free connection.

This connection is called the Levi Civita or Riemannian connection. We shall refer
to it with either of the two symbols ¢, V, which stand respectively for its connection
form on P and its covariant differentation.

The above theory can be carried out in almost the same way for the pseudo-
orthogonal group O(p,q), using the analogue so(p,q) = A? of (2.2), and there is
a unique torsion-free connection preserving the indefinite metric. In fact, suppose

that H is a closed subgroup of GL(n,R), n > 3, for which any H-structure on any
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manifold admits a unique torsion-free connection. Then a theorem of Weyl, described
in [Cy], asserts that necessarily g = so(p,q). Other groups (like the quaternionic
linear group GL(k,H) which will be mentioned again in chapter 8) give rise to
structures in which existence of a torsion-free connection is not guaranteed, but if it
does exist it is unique.

There are various equivalent ways to express the fact that the Levi Civita con-
nection reduces to the O(n)-bundle P. From 1.3, the metric tensor g is parallel,

which means that
%y _ O (0 2,
oxk — Oxk 9\ 5zt Bz
0 0 0 0

= Z (ingm- + girFZj)'

T

The symmetry of the Christoffel symbols (recall (1.16)) then leads to the explicit

formula
g1 09 09ij
r 1 j _08i4
Z L9 = 2 ( ort + ord  Ox! )

Given any orthonormal frame p € P, let D, denote the horizontal subspace of

T,P determined by the Levi Civita connection. By 1.1, there exists an integrable
section s = {%, cee %} of LM tangent to D, at p. Not only are the elements

of s orthonormal at m = 7(p), but they are covariant constant at m; thus

Giilm = i
2.5)
09i; 1 /7 j (
m
Of course, the coordinates z',...,2" need not necessarily be normal ones that are

defined by means of geodesics.

Now suppose that H is a closed subgroup of O(n), equal to the stabilizer of
some element 7 in an O(n)-module V', like the situation underlying 1.3. Typically
V will be an exterior power AF of the basic representation, and n will give rise to
a differential form on the manifold. Let b denote the Lie algebra of H, and h* its
orthogonal complement in so(n) = A?. Restricting to the subalgebra h gives an

updated version of (1.20), namely a monomorphism
S:A'®h — AP®AL
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for which
cokerd = (Imd)*- = A'®bt. (2.6)

Recall that the H-structure function Ty(p) is defined to be the component in
(2.6) of the torsion of any H-connection ¢'. In view of 2.1, this torsion is effectively
the tensor & with values in A'®so(n), for which ¢ = ¢' — ¢. The differential of
the action of O(n) on n defines a linear map so(n) — V with kernel h. Thus bt
is embedded in V', and (Vn)(p) = —&(p)(n) belongs to A'®h+ for each p € P. In

summary,

2.2 Corollary The obstruction Ty(p) to the existence of a torsion-free H-conn-

ection can be identified with (Vn)(p), and has values in the space A'®b= .

The value of 2.2 is enhanced by the knowledge that in many useful cases, the
representation h* turns out to be irreducible; for example, this is so when H is
simple and the isotropy subgroup of an irreducible symmetric space (see also (5.17)).
Notice that for any closed subgroup H C O(n), there exists a unique H -connection
with torsion T'(p) = Ty(p); it is sometimes convenient to work with this “normalized”
connection instead of the Riemannian one. The structure function Tj(p) occurring
in 2.2 is described in similar terms by Bryant [Bro] as the intrinsic torsion of the

H -structure.

Horizontality

Curvature measures non-integrability of the horizontal distribution on the bundle P
of orthonormal frames. Indeed, if P’ is any submanifold of P whose tangent spaces
are contained in the horizontal distribution, then the pullback of the 2-form & to P’
is zero (see (1.13)). Of course, there is no obstruction to the existence of horizontal

1-dimensional submanifolds, or curves.
2.3 Lemma If v:(a,b) — M is a smooth curve, and p € w'(y(a)), then there
exists a unique smooth lift 7: (a,b) — P, moy =y, with ¥(a) = p.

Proof. 1t suffices to consider the case in which « is embedded in M; in this case
the result follows by restricting attention to the manifold 7!(v) equipped with its

integrable horizontal fields. Put more rigorously, the induced bundle y~'P over
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[a,b] has a section ¥ = { X7, ..., X,,} made up of vector fields X, along v such that

VzX, =0, where Z = 4(t) is tangent to 7, and V is the induced connection whose

. . dr)/.] 6
curvature is zero. In terms of local coordinates, Z = ) P and
J

dX! Cdy .
dtr + ZF;kEX’" =0, 1<i4,7r<n, (2.7)
Jik
has unique solutions X, = > X" 8(2:" , given the initial value p. U
i

Because the horizontal distribution is equivariant, if 7 is a horizontal curve, then

so is its right translate R o7%. It follows that for every ¢ € [a, b], the operation
I = ’?(t)o(’?(a))_IZTW(a)M = TyyM

of parallel transport is an isometry that depends only on the projection v = 7o7.
Given a tangent vector Z € T,, M, choose a curve vy with y(a) = m and ¥(a) = Z.
Then for any vector field X on M,

d
X = —| II''X. 2.8

This is just a restatement of the definition of (1.10) of the covariant derivative as
differentiation in the horizontal directions of the principal frame bundle.

Define two points p,q of P to be equivalent (p ~ q) if there exists a horizontal
curve 7:(a,b) — P with 4(a) = p and 7(b) = ¢. From now on, we allow piece-
wise smooth curves, in order that ~ is obviously an equivalence relation. Fix an

orthonormal frame p € 7'(m) C P, and let

Q) ={¢eP:p~q}

denote the equivalence class consisting of all frames obtained from p by parallel
transport.

Of special interest is the set of frames

H(p)={g9€0(n):pg€Qp)}=Qpm N "(m)

in the same fibre as p. Thus g belongs to H(p) if and only if there is a loop
v:(a,b) - M with vy(a) =m=1(b), ¥(a) = p and F(b) = q. The usual operations
on loops ensure that H(p) is a subgroup of O(n); it is called the linear holonomy

group with reference point p.
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2.4 Figure Product and inverse in H(p)

Pg192¢ P
Rg2 0’71
Dbg e
Pgae ”5/

- Dy

72

Rg—l o:y_l
Pe

pg 't

If p ~ ¢, then clearly H(p) = H(q); furthermore,

H(pg) =g 'H(p)g, g€ O(n).

When the reference point is not important, we shall denote the holonomy group
simply by H; as such it is well defined up to conjugation in O(n). The interest
expressed in chapter 1 in H-structures and H-connections stems from the following

“Reduction Theorem”.

2.5 Proposition Q(p) is an H(p)-structure to which the Levi Civita connection

reduces.

Proof. Each fibre of Q(p) is isomorphic to H(p), and one has to exhibit smooth local
sections of the equivalence class Q(p). Such a section passing through p is generated
by the horizontal lifts of radial curves with respect to a coordinate system centred
at m = 7(p). The tangent to this section at p will equal the horizontal subspace D,
defined by the Levi Civita connection. The latter therefore reduces to Q(p). 4

The principal subbundle Q(p) is called the holonomy bundle with reference to
the fixed frame p; changing p obviously leads to an isomorphic bundle. In fact, Q(p)
is a maximal integral submanifold of the distribution {7,(Q(q)) : ¢ € LM}, and

this implies that the holonomy groups defined by working with curves of class C*,
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1 < k < o0, all coincide. We refer the reader to [KN, chapter 2, sections 6,7] or [NO]
for more details.

There are in fact distinguished sections of Q(p), constructed canonically from
the so-called basic vector fields on LM. An element x € R" gives rise naturally
to a vector field X on LM, whose value at a frame ¢ is defined to be the unique
horizontal vector X|, for which ¢z = m,(X|,). The projection v = mo7y of any
integral curve 7 of X has the property that its tangent vector is parallel along itself.

Such a curve 7 is a geodesic on M ; from (2.7) it is a solution of the equation

dfy] dfy
Do gr dt dt

dt2

The Riemannian manifold M is complete if the length parameter ¢ of every geodesic
extends to (—o00,00); in this case any two points may be joined by at least one
geodesic [HR].

Fix a point m in M. Provided the vector z is sufficiently small, it will determine
another point in M which lies a unit parameter distance along v from m. As z varies,
this process sets up the erponential mapping from a neighbourhood of 0 in R* to
a neighbourhood of m. The components z!,..., 2" of the vector z then constitute
the distinguished system of normal coordinates centred at m, and satisfying (2.5).
These coordinates give rise to two distinct sections of LM , which are both tangent
to D, at p. One is the integrable section s = {6%1’ ceny 8;2”}, and the other is the
local section of Q(p), swept out by the basic integral curves 5 passing through p.

For the remainder of this chapter, we fix an orthonormal frame p. Let (M)
denote the fundamental group of M, consisting of equivalence classes of homotopic
loops based at 7(p). Any element of m; (M) may be represented by a piecewise
smooth loop «y, which determines an element in H = H(p). If H° = H°(p) denotes
the normal subgroup of H formed by parallel transport along null-homotopic loops,

we obtain an epimorphism
M) —H 2.9
m (M) — Hjppo. (2.9)

The subgroup HY is itself called the restricted holonomy group. Clearly H° is a
subgroup of SO(n), and (2.9) implies that H/H? is countable.

The advantage of a null-homotopic loop is that, as shown by Lichnerowicz [L], it
may be factorized into a product of “lassos” 7, 'oygo7y1, where 7, lies in the domain

of a coordinate chart and v; forms half of the “noose” originating from 7(p). One
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can then deduce that any element of H° can be joined to the identity by a family of
piecewise smooth curves that lie in H°. Using a theorem of Kuranishi and Yamabe

[Ya], one obtains the following corollary, which we shall take for granted:

2.6 Theorem H is a Lie subgroup of O(n), whose identity component is H°.

The Riemann curvature tensor

If the curvature tensor R(p) of the Levi Civita connection vanishes, then the tensors
®, O are both identically zero on the frame bundle LM, and ¢ + 6 satisfies the
Maurer-Cartan equations (1.4) for the affine group. Another way of saying this is
provided by the well-known

2.7 Proposition The curvature tensor of a Riemannian manifold M wvanishes

identically if and only if its O(n)-structure P is integrable.

Proof. If ® = 0, the distribution of horizontal spaces D, on P is integrable, and
any point of M has a neighbourhood U with a horizontal section s € I'(U, P). Then
s*df = s*© = 0, and on a possibly smaller neighbourhood U’, the section s arises

as a coordinate-induced orthonormal basis {%, e %} O

The above proposition may be rephrased by saying that the restricted holonomy
group H® of M reduces to the identity if and only if the metric can be put locally
in standard form Y "  dz'®dz’; in either case M is said to be flat. Let M be
a complete, connected flat Riemannian manifold. Parallel transport then trivializes
the frame bundle LM over any simply-connected domain, and the universal covering
space of M is isomorphic to R". It follows that M is itself the quotient of R™ by
a discrete group of isometries, which can be identified with m(M). Moreover, it is

not hard to see that the kernel of the holonomy presentation
T (M) — H,
given by (2.9), equals the subgroup N consisting of pure translations.
In the above situation, the fundamental group 71 (M) acts properly discontinously
on R*. If M is also compact, m (M) is a so-called crystallographic group, and by
Bieberbach’s theorem [Bi|, the holonomy group H 22 7;(M)/N is finite. Thus there

is a finite covering
R*/N —- R"/m (M) = M, (2.10)
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of M by a flat torus, which itself has trivial holonomy group. For more details we
refer the reader to [KN, chapter 5, theorem 4.2], or [W3]. Auslander and Kuranishi
[AK] have shown that any finite group H is known to arise as the holonomy group

of a suitable flat compact Riemannian manifold.

Let ¢ be an orthonormal frame in the holonomy bundle @ = Q(p), so that it is
joined to the fixed frame p by a horizontal curve. Because the connection reduces
to Q(p), the curvature operator R(q)zy = R(q)(z A y) defined by (1.13) belongs to
the holonomy algebra b, for any x,y € R*. This fact may be understood intuitively
by choosing vector fields X,Y on a neighbourhood of m = 7w(g), with X|,, = gz,
Y|m = qy, and (VX)|,, = 0= (VY)|,. Then 1.2 implies that R(g),, equals the

value of the commutator
[Vx,Vy] = VxVy —VyVy

at ¢. The formula (2.8) then interprets R(¢),, as an infinitesimal measure of the
non-commutativity of parallel transport in the directions determined by X and Y.

The links between curvature and holonomy are made more precise by the following
“Holonomy Theorem”, due to Cartan [C3] and Ambrose and Singer [AmS], which
asserts that the Lie algebra b is actually determined by the values of the curvature
function R(q) as ¢ ranges over . To be more precise, we regard R(g) as a map
from A? to so(n), and consider its image Im(R(q)) = {R(q)zy : z,y € R*}. In these

terms, we have
2.8 Theorem § = span{lm(R(q)):q€ Q}.
Proof. First note that

bm = span{Im(R(q)): ¢ € 7~'(m) N Q}
= span{(Ad h)Im(R(q)) : h € H(q)},

(2.11)

is an ideal of h, where (just) for the last line ¢ is fixed.
The standard proof then goes on to consider the span §’ of the b,,, m € M,
which is conceivably a proper ideal of f. The key point is that the 2-form

® = d¢ + 3[4, ¢]

on @ takes values in §', and it follows immediately from the Frobenius theorem
that the distribution {X € TQ : ¢(X) € b’} is integrable. Since this distribution
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engulfs the horizontal subspaces D, which are annihilated by ¢, a maximal integral
submanifold @' contains any horizontal curve emanating from p. Therefore Q' = @,
which forces ' = b. d

If one knew, for example, that § were a simple Lie algebra, then b, of § would
either be zero, or equal to . One is tempted to call the subalgebra b,, the “pointwise
holonomy algebra” at m, but its definition still requires knowledge of the holonomy
group itself. Another approximation to § is given by the span of all covariant deriva-
tives of the curvature tensor, evaluated at a fixed ¢ € (). This defines the so-called
infinitesimal holonomy algebra h™ (q), and sandwiched between h™(q) and b is the
local holonomy algebra §'°¢(q) defined in the same way as b, but using arbitrarily
small neighbourhoods of m. These notions were introduced by Nijenhuis [N], who
proved that in real analytic case, hi*f = plo¢ = .

Decomposable Metrics

The action of the holonomy group H = H(p) provides an invaluable guide to the
behaviour of the Riemannian metric. A striking illustration of this occurs when H
acts reducibly on the tangent space representation, so that R™ contains a proper
subspace V invariant by H. Such a subspace V gives rise, in the presence of a
positive definite metric, to complementary invariant subspace V+, so at the end of

the day there is always a direct sum
R*=VioVid- -V, (2.12)

in which H acts trivially (i.e., as the identity) on V5, which may or may not be zero,

and H acts irreducibly on each Vj for £ > 1.

2.9 Proposition Under the assumption (2.12), the restricted holonomy group H°

1s 1somorphic to a product

{e} x Hy x --- x Hy, (2.13)
and M is locally isomorphic to a Riemannian product

My x My X --- X M,
with My flat.
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Proof. Relative to a frame ¢ € Q(p), the curvature operator R,, = R(q),, has values

in b, and so

Ry lv, = 0,
dic (2.14)

Ryy(Vi) C Vi, 1<i<k.

Let x =Y x;, y =Y.y, so that z; and y; are the components of x and y in V;. In

view of (2.14), it would be convenient to suppose that

in fact this equation is an immediate consequence of the well-known symmetry

9(Row,y) = g(Reyv, w)

that will be discussed fully in chapter 4.
As ¢ ranges over 7 '(m) N Q(p), and z,y over R", the operators R,,,, span an

ideal (h;)m C EndV; of . Varying m then leads to a decomposition

h =00 @by,

whence (2.13).

The proof of the second part of the proposition, that we shall sketch, is based
on a geometrical interpretation of the preceding algebra. Because V; is H-invariant,
it gives rise via parallel translation to a well-defined distribution V;M C T M, with
the property that VxY belongs to V;M whenever X,Y do. It follows from (1.17)
and the Frobenius theorem that V;M is integrable. The condition (2.14) is then
the infinitesimal counterpart of the fact that any integral manifold of V; M is totally
geodesic, which means that geodesics initially tangent to it remain so.

On a neighbourhood of m, we may now choose coordinates

1 1. el Tk
Tiyeeoy X1 oee Tgy e e, T,

9 9 v -
B all tangent to V;M. If X = BT Y = 927 with 7 # j, then

VxY = VyX belongs to ;M NV;M = {0}. Using (2.4), one deduces that the

component of the metric tensor corresponding to V;M is annihilated by % when-
J

with =t ...

ever j # 1, and is a function only of z},...z}". It then suffices to take M; to be the

maximal integral submanifold of V;M through m. 0
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The decomposition theorem of de Rham theorem [dR] is a global version of 2.9
which asserts that a complete, simply-connected Riemannian manifold whose holon-
omy group H = H° acts reducibly is a Riemannian product, whose factors consist
of the maximal integral manifolds M;. In this case, it is clear that each subgroup
H; that arises is the holonomy group of the Riemannian manifold M;. In general,
it makes sense to use the terminology locally irreducible for a Riemannian manifold
whose holonomy representation on R" is irreducible.

Now a connected Lie subgroup of SO(n) acting irreducibly on R™ is known to be
a closed subgroup. This fact, when combined with the “complete splitting” of 2.9,
has the following important consequence.

2.10 Theorem [BL,] The restricted holonomy group H° of an n-dimensional

Riemannian manifold is compact.

An open problem is to determine under what circumstances the (unrestricted)
holonomy group H of a compact Riemannian manifold M is itself compact. The
definitions imply that H is contained in the normalizer of H°, so the latter must
not be “too big” if H is to be non-compact. At the other extreme, we have already
explained that if H® = {e}, then H is finite. In fact, if M is compact and connected
with dim Vj < 1 in (2.12), then H is compact (see, for example, [Bes; 10.117]).
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3 The Unitary Holonomy Group

The most familiar non-generic holonomy group is the maximal subgroup U(m) of
SO(2m). Metrics whose holonomy group is contained in U(m) are called Ké&hler;
their study blends together complex and Riemannian geometry, and they arise nat-
urally from both local and global considerations. For example, if the derivatives
0%f/0220%" of a real function f on an open set of C™ define a positive definite
matrix, they constitute the coefficients of a Kahler metric. In algebraic geometry
Kahler metrics arise on submanifolds of the complex projective space, which is itself

the fundamental compact example.

Throughout this chapter we shall be dealing with a manifold of real dimension
n = 2m. The crucial algebraic concept is that of an almost complex structure,
which in the present context originates from the centre of the Lie algebra u(m)
of skew-Hermitian matrices, and gives rise also to a non-degenerate 2-form. It is
then appropriate to consider both complex and symplectic manifolds, both of which
are introduced using the formalism of torsion and structure functions. After some
simple constructions of Kéhler manifolds, the chapter concludes with remarks and

generalities concerning the Dolbeault complex.

Hermitian algebra

The unitary group U(m) may be defined as the set of complex linear transformations
of C™ preserving the Hermitian form n = Y ", dz>®dz". We may regard the
forms dz* as elements of the dual space (C™)*, which we denote by A, and dz"

as elements of its conjugate \%! = (C™)*. More generally, we set

1= AP(C) RAN(Cm),

so that 7 is an invariant element of the space A\!. Actually, it is not necessary to
be quite so fussy with the notation, since 1 defines an isomorphism C™ 2 (C™)*,

and a bar and an asterisk cancel each other out.
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Of primary interest is the action of U(m) on the real vector space A! underlying

both A% and A%!. In real coordinates, the Hermitian form is

I
I
NgE

(dz® + idy®)®(dz® — idy*)

Q
I

A (3.1)
= ) (dz°®dz® + dy*®dy®) — 2i ) dz* A dy®.

The real part ¢ = Ren is the standard inner product on R?™ so that U(m) acts on
A' as a subgroup of O(2m). The unitary group U(m) also commutes with the real
endomorphism I of R?*™ satisfying Idz® = —dy®, Idy® = dz®, which is induced from
multiplication by i on AM?, or equivalently —i on A%!. If we order the coordinates
of R*™ as (z',...,2™ y',...,y™), then the inclusion U(m) < O(2m) is given in
terms of matrices by

A -B

X=A+iB — , (3.2)
B A

and XX = 1 translates into AA' + BB' = 1 and AB! — BA' = 0. Since U(m)
is connected, its image must actually lie in SO(2m), and the determinant of the
right-hand side of (3.2) equals one. The main point is that the image of the scalar
matrix i1 may be identified with I € SO(2m) N so(2m).

Any endomorphism I of a real vector space with I? equal to minus the identity
is called an almost complex structure. Notice that I plays a different role to the

symbol 7 in (3.1), which identifies the complexification
A @il = A'®@gC = A" @ A

of A'. Taking exterior powers of the last equation gives the decomposition of com-

plexified k-forms according to type:

MerC = P A, 0<k<2m. (3.3)
ptg=k

As a space of forms, ¢ is spanned by dz A---Adz» AdZ" A--- AdZ’*. However,
because of our ultimate interest in real quantities, it is convenient to define real
vector spaces [AP1], [APP] by

[\]@rC = AP @ AP, p#q,
I:)\pap]®RC — Apyp'

(3.4)

32



If u(m)* denotes the orthogonal complement of 1u(m) as a subalgebra of s0(2m),

then in view of (2.2), the following decompositions are essentially equivalent:

A2 — [)\1,1] sy [[)\0,2]]

(3.5)
s0(2m) = u(m) & u(m)=*.
As a real subspace of 2-forms, [A\1] contains the invariant element
w=Imn=—i) d* Nd2", (3.6)

which is —¢ times the anti-symmetrization of 1. The orthogonal complement [/\(1)’1]
of w in [Ab!] can be identified with the Lie algebra su(m). As a bilinear form, w is
non-degenerate, which is equivalent to the assertion that w™ # 0.

Wedging with w determines an U(m)-equivariant mapping L: \P"1¢" 1 — AP,
and there is a well-known theory that develops properties of L and its adjoint, by
regarding them as generators of the Lie algebra sl(2,C) [We|. All we shall need to
know is that L is injective, provided p 4+ ¢ < m. For this range of p, g, the space
AT of so-called primitive forms can then be defined by the Hermitian direct sum
M0 = NP9 gy L(A\P~1471) | so that AP0 = \P°| and

3.1 Lemma Forp>q and p+q < m, there is a U(m)-decomposition

AP 22 Z\BT g \PTHT gy NETTHD gy AP0,

In practice, this provides the following expressions for the exterior algebra of the
tangent space in terms of irreducible U(m) spaces, all of which are non-zero only

when m > 5:
A = X,
AT =AM,
A=) e e A
N=D3 e [N e Al (3.7)
A=) e [N @ [N @ A%
A= ] e o'l e [l @ A%

etc.
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Complex and Kahler manifolds

Suppose that M is a manifold of even real dimension 2m with a U(m)-structure
P C LM. Any frame p € P gives isomorphisms R*™ = T,,M, A' = T* M, and
permits all the preceding algebra to be transferred to the tangent and cotangent
spaces of M. In particular g, I and w extend to equivariant functions on LM , and
define tensors on M, satisfying the identity

9(X,Y) =w(IX,Y) = g(IX,IY). (3.8)

The transformation I is both orthogonal and self-adjoint relative to the metric g,

and determines the homotopy class of the reduction to U(m).

3.2 Figure Structures associated to subgroups of GL(2m,R)

Oriented
Riemannian
S0(2m), g
Kahler
U(m)
Complex Symplectic
GL(m, C) Sp(m’ R)
I w

If n denotes one of the three tensors g, I, w, its stabilizer H in GL(2m,R) is
the structure group of a unique subbundle of LM containing P. Moreover, U(m)
and P are recovered as the intersection of any two of these three groups or H-
structures. The stabilizer of the almost complex structure I is the group GL(m,C)
of complex linear transformations, embedded in GL(2m,R) just as in (3.2). The
non-degenerate 2-form w defines an “almost symplectic structure” invariant by the
group Sp(m,R). Note the missing “2” in our notation for this group, which is a real
form of Sp(m,C); in some sense, the complexification of 3.2 leads to the theory of

hyperkédhler manifolds, discussed in chapter 8.
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For each group H and tensor n in 3.2, we can investigate the Bernard structure
function T(p), giving the obstruction to the existence of a connection without torsion
on the corresponding H-structure. The existence of such a torsion-free connection
leads to the type of geometrical structure written above the group in question. For
example, SO(2m) obviously involves no additional condition; we tackle the remain-
ing groups in the order U(m), GL(m,C), Sp(m,R).

Any torsion-free U(m)-connection is unique, and exists if and only if the un-
derlying Levi Civita connection V reduces to the U(m)-structure P. A real 2m-
dimensional manifold is called Kdhler if it has a torsion-free U(m)-structure, which
implies that Vw = 0. Equivalently, a Kéhler manifold is a Riemannian manifold
whose holonomy group equals U(m). The following result is a direct consequence of
2.2 and (3.5).

3.3 Lemma The structure function Vw of the U(m)-structure takes values in the

space
A1®[[/\0’2]] o [[)\0,1®)\0,2]] oy [[)\1,2]].

If H is one of the groups GL(m,C) or Sp(m,R), with Lie algebra b, the space

AZQA!
COk@I"é = m (39)

containing the structure function 7y(p) can be identified with some subspace of
A'®u(m)*. In each case, it follows that Ty(p) is a sum of H-invariant components
of Vw.

The spaces A7 are G L(m, C)-invariant, and the associated vector bundles A7\
consist of complexified differential forms of type (p, ¢) relative to the almost complex
structure /. It is an easy matter to verify that the obstruction to the existence of
a torsion-free GL(m, C)-connection can be identifed with the component of Vw in

the real space underlying

)\0,1®)\0,2 (o] ()\1,0)*®)\0,2
Hom (A0, \02).

I

This obstruction can now be identified with the tensor determined by mapping a
(1,0)-form o € T'(M, A\"9M) to the component (da)®? € I'(M, A2 M) of its exterior
derivative. It vanishes if and only if

d(T (M, XM)) C T'(M,NTHIM @ N\PIHM), (3.10)
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which is in turn the condition that guarantees the existence of a double complex

0:T'(M, \PIM) — T'(M, NP+14M),
0:T(M, \POM) — T\(M, NP4+ M),

(3.11)

with d =9+ 8 and 0= d = (92,00 + 00,9 ).
In terms of vector fields X,Y € X(M), the GL(n,C)-structure function Tj(p)

translates into the so-called Nijenhuis tensor

N(X,Y) = —Re(1—il)[X+ilX,Y+ilY]
= [IX,IY]-I[IX,Y]-I[X,IV] - [X,Y],

of the almost complex structure [Fry], since
(de)®*(X,Y) = de(X+iIX, Y +ilY) = —ta[X+ilX,Y +ilY]

vanishes for all (1,0)-forms « if and only if N(X,Y) =0.
Clearly N vanishes if, in a neighbourhood of each point m, there exist closed
(1,0)-forms o, ..., o™ that are linearly independent at m. This amounts to having

complex coordinates
A=zt iyt 2" =™ 4™

on a possibly smaller neighbourhood U of m with

0,_ 0
ozr’ Oy’

dzt e T(U,AYY), or I

and is precisely the condition that the GL(m, C)-structure is integrable, with local

sections of the form

0 0 0 0
T e Ty E Ty ey T (s 12
{axl’ ’axm’ay17 ’aym} (3 )

It is customary to define complex tangent vectors by the formulae
0 1 ( 0 .0 )
_— = = — — 77—
0z 2\9z>  oye/’
0 1 ( 0 n 0 )
- = = — 11—
0z*  2\0za Oy’
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0
so that W(dzﬁ) = 044, and

0 .0

Hae) =iga

The Newlander-Nirenberg theorem [NN] asserts that the existence of such com-
plex coordinates is actually equivalent to the first order condition N = 0, which is
the converse to the second statement in 1.6. In this situation, any two sets of com-
plex coordinates are related by a holomorphic transformation between open sets of
C™, and M is a complexr manifold. A Riemannian metric g on a complex manifold is

called Hermitian if it is compatible with the complex structure in the sense of (3.8).
0 0
9277 §z°
associated 2-form is expressed locally as

It has components g,5 = ¢( ) with respect to complex coordinates, and the

w = —1 Z Go5dz" N %ﬂ,
a,p

which is the non-flat version of (3.6). The following result is well known:

3.4 Proposition A Hermitian metric is Kahler if and only (dw)™* = 0.

Proof. Because the Levi Civita connection V is torsion-free, the exterior derivative
dw can be recovered from the components of Vw in 3.3. This is apparent from the

decompositions

AN = 1 g N0
(3.13)
ALZ 22 (02 @ A0

of the relevant spaces into irreducible U(m)-components; dw is the image of Vw

under the anti-symmetrization
ARA? — A3,

whose kernel is isomorphic to the real space [V] underlying V. Observe that the
component (dw)®? of dw of type (0,3) is a constituent of N, vanishing automatically
when M is complex. On the other hand (dw)'? determines the component of Vw

in 3.3 complementary to the Nijenhuis tensor. O
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Using (3.9), it follows that it is precisely the Sp(m,R)-structure function Tp(p)
which can be identified with dw, regarded as a sum of components of Vw. The ana-
logue of the Newlander-Nirenberg theorem for a Sp(m,R)-structure, namely that
the structure is integrable if and only dw = 0, is the more elementary theorem
of Darboux. This time, integrability is equivalent to the existence of real coordi-
nates z',y!, ..., 2™, y™ such that w = —2 Yoo, dz* Ady®. A non-degenerate closed
2-form w on a manifold is called a symplectic form, and determines an element
[w] € H?(M,R) of de Rham cohomology satisfying [w]™ # 0 if M is compact. On a
compact manifold, Moser [Mo] proved that if w; is a one-parameter family of sym-
plectic forms with [w;] constant, then there exist diffeomorphisms F; such that such
that wy = Fjw.

The symplectic form w also gives rise to a homotopy class of almost complex
structures on M, a representative I of which is defined by reducing the structure
group to U(m) as in (3.8). In these circumstances, the almost complex structure I
is said to be calibrated by w (a notion exploited by Harvey and Lawson in [HL]), and
the resulting first Chern class ¢;(M) € H?(M,Z) may be compared with [w]. The
homotopy class of I includes the bigger set of almost complex structures tamed by a
fixed symplectic form w, meaning that w(IX, X) is positive whenever X is non-zero
[Gry].

If M isopen (i.e. M —0M has no compact component), then any almost complex
structure on M is homotopic to one calibrated by some symplectic form w. This
is a consequence of Gromov’s powerful h-principle for open manifolds, which asserts
that a section of a jet bundle representing a suitable differential relation of order r is
homotopic to the r-jet of some section (see [Gry]). In addition it is now easy to choose
w so as to realize any class in H?(M, R), which contrasts with the compact case. The
first example of a compact symplectic manifold admitting no Kahler structure was
given by Thurston [T] (for descriptions from the viewpoint of Riemannian geometry,
see [Ab],[CFG]). A simply-connected example was later discovered by McDuff [Mc]

using the notion of symplectic blowing-up.

When M has real dimension 2m = 4, the spaces \%® and )\(1)’2 are zero, so in this
case the complex and symplectic conditions are trully complementary. Properties of
dw on a compact complex surface were exploited by Gauduchon [Ga;]. The general
situation is illustrated below, and allows one to give a finer classification of the

U(m)-structure P according to the non-zero components of Vw [GH].
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3.5 Figure Components of the U(m)-Structure function Vw, m > 3

[V] [A*°]

P P

0 0 0 0 ? 0
0 0 ? ? 0 0
Kéhler Complex Symplectic

Examples and further properties

Let f be a real function on C™. The Levi form of f is the real closed (1,1)-form

¥ — &f 8
—i00f = —1i dz* Ndz",
100 f ZQ;I 022078 o z
and will define a Kahler metric, if it is positive definite. Conversely, a closed 2-form
w is locally expressible as dr, where 9(7%°) = 0 = 9(7®!). Using holomorphic
analogues of the Poincaré lemma, there exist functions fi, fo on a sufficiently small

open set such that 71° = 9f, and 7%! = 0f,. Hence
w = DOf, + 00f, = —i0df,

where f =i(—f; + f2) is the so-called Kdhler potential. The latter is unique, up to

the addition of a pluriharmonic function, by definition, one whose Levi form vanishes.
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The potential of the flat K&hler metric on C™*! is the square ||z||* = >_0"_, [2*|?
of the usual Hermitian norm of a point z = (2°,...,2™) of C™*!. Consider instead
the function f = log(||z||?), whose Levi form —iddf is unchanged when z is replaced
by Az, where A is a non-zero complex scalar which may be regarded as a coordinate

on any fibre of the projection
m C" {0} — CP™

to the complex projective space. Since the pullback of 90 f to a fibre of 7 is propor-
tional to A(||\||?) = 0, there must exist a closed (1,1)-form w on CP™ such that
m*w = —i00f. This 2-form is non-degenerate and defines a Kihler metric on CP™,
the so-called Fubini-Study metric.

The tautological line bundle, denoted for the moment L=, on CP™ is the sub-
bundle of the trival vector bundle CP™ x C™*! whose fibre at m € CP™ is simply
the complex line containing 7 *(m). Then the total space of L=! is C™*! with its
origin 0 blown up, that is replaced by a copy of CP™ representing the set of direc-
tions at 0. The purely imaginary 2-form iw may be interpreted as the curvature of
a canonical connection on L™' (see the beginning of chapter 8). Combining the two

potentials mentioned in the preceding paragraph yields

3.6 Lemma The 2-form —2'85(”2”2 + alog(||z||2)) defines a Kdihler potential on
Cm™+1 —{0} that extends to the total space of L™, for any a > 0.

The associated metric is readily seen to equal the restriction of a product metric
on CP™ x C™'. Analogous constructions apply to CP™"! minus a point which,
by projection from that point, can be identified with the total space of the dual
line bundle L. The latter is the so-called hyperplane bundle, any section of which
vanishes in turn on a hyperplane CP™~!.

The Fubini-Study metric on the complex projective space is invariant by the
group U(m + 1) of unitary transformations of C™*! | which leads to the coset space
description

Um+1) SU(m +1)/Z,

" = <o - Om) (3:-14)

The action of U(m+1) then lifts to the total spaces of the line bundles L and L' =
L*, which are associated to representations of the centre of the second denominator

U(m). For k > 0, the space of holomorphic sections of the k-fold tensor product
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LF = ®k L (which, in future, we shall denote by O(k), which also stands for the
associated sheaf of germs of local holomorphic sections) is isomorphic to the space
of homogeneous polynomials of degree k, which is an irreducible representation of

U(m+ 1). In tensor notation,

@ ' (CcP™, 0(k)) = P OF(C™), (3.15)

k>0 k=0

and when m is odd, the £ = 2 summand can be identified with the subalgebra
sp(2(m+1),C) of u(m + 1), a fact which will be relevant in chapter 9.

The exterior product representation A"(C™t!) has a similar interpretation as
a space of holomorphic sections of a suitable vector bundle over CP™ , as part of a
general scheme of Beilinson [Be]. Alternatively, to exhibit it as a space of holomorphic
sections of a line bundle, one must pass to a different base manifold, for example a
complex Grassmannian, and use the Borel-Weil theorem.

If j: N — CP™ denotes a holomorphic embedding, the pull-back j*w is a Kahler
metric on the complex submanifold N. In other words, any projective algebraic
manifold is Kahler. In the reverse direction, a compact complex manifold N admit-
ting an integral cohomology class represented by a positive-definite (1,1)-form w is
called a Hodge manifold, and is necessarily algebraic. For Kodaira’s theorem asserts
that some multiple of w represents the curvature of a holomorphic line bundle 5*L

on N for which the natural mapping

g N — CP™

3.16
z = [s0(2),-- -, 8m(2)] ( |

is an embedding, where {sy,..., sy} is a basis of sections of L. Properties of j are
encoded into the induced homomorphism of (3.15) onto By, H(N, O(5*L¥)).
The simplest submanifolds of CP™ are the zero sets of a single homogeneous
polynomial. The hyperquadrics correspond to degree & = 2, a standard one being
defined in homogeneous coordinates as the set Q™! = {m(z) : D" (2*)* = 0}.
Equivalently, @™ ! is the set of totally isotropic complex 2-dimensional subspaces

of C™*!, and is isomorphic to the real Grassmannian

— SO(m+1)

Gry(R™) = SO(m —1) x SO(2) (3:17)

of oriented real 2-dimensional subspaces in R™*!.
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For example, Q% = é’vrg (R*) is isomorphic to CP' x CP', which is contained in
CP? via the Segre embedding determined by the tensor product C* = C2®C?. The
latter is the complexification of the basic representation of SO(4), which is locally
isomorphic to the product SU(2) x SU(2) (cf. 6.2). A hypersurface of degree 3 in
CP? is a del Pezzo surface, one of degree 4 is a K3 surface (see the end of chapter 7),

ones of higher degree are examples of the so-called surfaces of general type.

The subcomplex of the de Rham complex formed by the operators 9 in (3.11) is
used to define the Dolbeault cohomology
ker (0: T'(M, \PIM) — T'(M, \P4+1))

HPY(M,0) = BT (M, v 101 . (3.18)

This is best illustrated when m = 2, and (3.11) takes the form

T(A%2M) — T(AM) — T(A22M)

) T T
POO'M) — TOM'M) — T(O2'M)
1o 1 t

rpeoan & Ty - To2o).

The groups (3.18) appear when the double complex is derived in vertical directions,
and constitute terms E? = HP(M,d) in the associated Frolicher spectral sequence
[Fry]. The residual operators & induce new horizontal maps E*? — EP* and the

resulting cohomology groups F%'? are linked by two knights’ moves a, §3:

0,2 1,2 2,2 0,2 1,2 2,2

E” — E” — Ej E, E, 3 E,

0,1 1,1 2,1 0,1 1,1 2,1

B — By — B E, E, E,
5 «

0,0 1,0 2,0 0,0 1,0 2,0

B — Ey — EY Ey Ey Ey

This information can be used to relate de Rham and Dolbeault cohomology. For
example, there is a filtration of H?(M,R) with successive quotients coker o, E21’1,

ker 5. However, when M is a compact complex surface, all the maps immediately
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above are actually zero, generalizing the fact that any holomorphic function is con-

stant. Then the cohomological version

HY(M,R) = ) H™(M,9). (3.19)

of (3.3) is valid for k£ = 2, whereas the situation for £k = 1 depends upon the parity
of b;. See, for example, the treatment in [BPV].

On the other hand, (3.19) is valid on a compact Kdhler manifold of arbitrary
dimension (cf. 4.11). The strong compatibility between complex and Riemannian
structures on a Kahler manifold M is illustrated by the following fact. Let D, denote
the horizontal space at a frame p belonging to the U(m)-structure P of M. Because
D, is torsion-free in the sense of 1.1, and tangent to the GL(m, C)-structure, one
can arrange an integrable section (3.12) to be tangent to D,. With respect to the

corresponding complex coordinates,

ga3|m = 0ap;

agaﬁ
027 m_ ’

so that the metric osculates the flat one, in analogy to (2.5).

The Dolbeault complex exists only in the context of a complex structure, but it
is sometimes possible to build up analogous complexes of differential operators in
non-integrable situations. With this goal, it is particularly appropriate to consider
almost complex manifolds M of dimension 2m = 6, for then there is the possibility
that the Nijenhius tensor N actually determines an isomorphism MOM = \O2)M .
The following result is the first of several we shall encounter that characterize a
specific type of geometrical structure in terms of the existence of a subcomplex of

the de Rham complex. In this instance, we consider the sequence
0= TAM) BT M @ A M) BTN M @ A2M) B T M) =0

of complex vector bundles of dimensions 1,6,11,6, linked by successive operators
D, each of which denotes exterior differentiation d followed by a suitable projection

induced from the linear algebra.
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3.7 Proposition The U(3)-structure function Vw takes values in the diagonal
space [A\0' @ \%?] of 8.5 if and only if D* = 0.

Proof. The first two D’s coincide with d, so their composition is obviously zero. It
is zero for the last two if and only if the image by d of the subbundle of (A*T*M)¢
spanned by w and A>°M (the missing ingredients) has no component in A\y*M.
It follows that D? = 0 is equivalent to (i) (dw)y”® = 0, and (ii) Vw having no
component in the subspace V of Hom(A\29, \y?).

Other features pertinent to the above situation were studied by O’Brian and
Rawnsley [OR]. The more restrictive condition Vw € [A%3] characterizes the class
of nearly Kdihler manifolds, which includes the sphere S®, whose Riemannian metric
is determined up to homothety by the Nijenhuis tensor of a canonical non-integrable
almost complex structure. The importance of this class can be seen in a theorem of
Gray [G3, theorem 5.2], which asserts that any 6-dimensional nearly K&hler manifold,
which is not Kéahler, is necessarily Einstein. Further examples arise as total spaces
of S%2-bundles over 4-manifolds, and will play an important role in our construction

of metrics with exceptional holonomy.
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4 Riemannian and Kahler Curvature

The curvature tensor R of a Riemannian manifold can be defined directly by means
of various derivatives of the metric g. For a surface it is just a scalar, the so-called
Gaussian curvature, but in higher dimensions it lies in a space R which is a non-trivial
representation of the orthogonal group O(n), and whose properties are described by
well-known symmetries of R. The irreducible components of } are determined as an
informal exercise in representation theory; this leads to the definition of the Weyl,
Ricci and scalar curvature. Each of these components has relevance to particular
geometrical questions, but our main interest lies in what happens to them in the
presence of special holonomy.

The space R of curvature tensors associated to a holonomy group H takes into
account restrictions imposed on R by the holonomy reduction, which are often severe.
In due course, the structure of R¥ will be found for a handful of Lie groups; in the
present chapter we confine ourselves to the subgroups U(m) and SU(m) of SO(2m)
that arise in connection with Kahler geometry. Curvature plays an important role
in the study of differential operators between vector bundles, via the Weitzenbock
formula, which is essentially a comparison of two different ways of decomposing a
double covariant derivative. Hodge theory can then provide valuable information

about the cohomology groups of the manifold.

Spaces of curvature tensors

Let M be a Riemannian manifold of dimension n > 3. We shall consider the value of
the Riemann curvature tensor R = R(p) with respect to a fixed orthonormal frame
p. The exterior derivative of the vanishing torsion equation ©® = 0 on the principal
O(n)-bundle P of orthonormal frames yields the first Bianchi identity [®,6] = 0,
valid for any connection without torsion. As in chapter 1, brackets denote wedging
combined with the action of the Lie algebra so(n) on R*. To obtain the more
familiar version of the identity, one must therefore let the curvature operator R,
act on z, and then anti-symmetrize the vectors z,y, z € R*. Because R, is already

anti-symmetric in z, y, a cyclic sum is sufficient:

4.1 Proposition R,,z+ Ry,,xz+ R,y =0.
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An element ™' € O(n) acts on R = R(p) by

(h™'R)ey = R(ph)ay
= (Ad hfl)Rhw,hy
= hiloRhw,hyoha
and differentiation determines the action of the Lie algebra:

(AR)wy = RwyoA — AORwy + RA:L‘,y + R;E’Ay, A€ 50(77,). (41)

For a fuller understanding of the action of the group on the space of curvature

tensors, it helps to “lower the first index” of R according to the isomorphism
A’®so(n) = A?®A? (4.2)

(cf. (2.2)), and 4.1 can now be expressed by saying that R lies in the kernel of the

composition
b: A2Q@A% — A2QATRA — ASRAL,

consisting in essence of anti-symmetrization on the first three factors. Accordingly,

the full space of curvature tensors associated to the orthogonal group O(n) is defined
by

R = ROM = kerb. (4.3)
Related to b is the linear mapping
a: >’QA% — A*,

determined by wedging together 2-forms. Since this is a symmetric pursuit, the
kernel of a contains the skew part /\2(A2) of the tensor product, and there is an
induced map ()*(A%) — A*. Incidentally a 2-form o satisfies the Pliicker equation
a(c®o) =0 if and only if 0 = a A S is a simple or indecomposable form. This useful

property is readily checked by observing that an arbitrary 2-form can be written in

the form
n—1
o= ZcieZ Aet
i=1
for some orthonormal basis {e,...,e"} of A' = (R")*, with ¢; € R.
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4.2 Lemma R = kera N O*(A2?).

Proof. With the task of identifying ker b, we find ourselves in a similar, but more
complicated, situation to (2.3). As in that case it is possible to give an explicit
proof (an elegant one is furnished by the tetrahedron in [Mi]) of the required result.
However, we shall require more precise information, and a more systematic approach
is to decompose all spaces in sight into irreducible components relative to the action
of O(n).

It is not hard to guess that there are three irreducible components of A'®@A3
under the action of O(n), at least for n > 4. There is the GL(n,R)-invariant
subspace of totally skew forms, which we can denote by A? without ambiguity.
There is also the subspace c*(A?), where c* is the adjoint of the O(n)-equivariant
contraction A'®A®> — A%. Now, it is well known that A* is O(n)-irreducible, for
all k. Furthermore, general principles (which we shall elaborate later) then affirm
that the orthogonal complement U of A* @ ¢*(A?) in A'®A? is also irreducible.

Proceeding in this fashion, we obtain the irreducible decompositions

AMRA3 =2 Ao AaU,
N°(A?Y) = AoV, (4.4)
QA% = ReXZoAMoW.

The projection A*(A?) — A® may be identifed, via (2.2), with the Lie bracket.
When n = 3, the above decompositions remain valid provided A2, U,V,W are all
replaced by zero.

The linear map b is defined by symmetries, so is certainly O(n)-invariant. By
I. Schur’s lemma, its restriction to each summand of A2® A? is zero or an isomor-
phism. It is an easy matter to check that the image of b does not miss any summand
of A'®A?, and consequently that b is onto. It follows from a dimension count that
U=~V %W, and b has to be zero on the irreducible spaces W, ¥2, R, since these

do not occur in A'®A3. The lemma follows. O
As a corollary of the above proof, we record for future purposes
4.3 Theorem [ST| At any p € P, R(p) belongs to the space

2R, n=3
WoeX2eR, n>4

R =
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The Levi Civita connection, and therefore the curvature tensor R = R(p), are
determined explicitly by the Riemannian metric. Using coordinates for which the

metric is constant to first order at m = 7(p), so that dg;;/0z"|, = 0, we find

1 a2gik aQij 5292’1 5299‘1

2 |9zidat  Oxidxl  Oxidzk | dwidrk|

Rijn =

It is this expression that emphasizes the inherent symmetries of R, as opposed to its

skewrsymmetries. Indeed, the tensor with coefficients
Sikji = %(Rijkl + Ryjir), (4.5)

is symmetric, not only in the indices ¢, k, but also in j,/, and is also unchanged
when these two pairs are interchanged. Moreover it belongs to the kernel of the total

symmetrization
5: 02®@Y% — XN

As a reflection of a widespread, and often mysterious, duality between the sym-

metric and exterior algebras, one has the following analogue of 4.2:

4.4 Proposition Equation (4.5) induces an isomorphism of R with the space
kers N (O*(T?).

This and related decompositions may be found, for example, in [BBG].
The value of the curvature tensor with reference to the frame p is completely
determined by polarizing S(z,y) = g(R.yx,y) separately in z and y. In fact, the
sectional curvature
S(z,y) 9(Rayz, y)
lz Ayl lzlPlyl? - (a(,y))?

of the 2-plane spanned by the tangent vectors pz, py represents the induced Gaussian

(4.6)

curvature of the corresponding surface generated by the exponential map. If the value
¢ of (4.6) depends only on m, then S is the orthogonal projection of g®g in ker s,

and R has coeflicients

Riju = C(gikgjl - gilgjk)a (4.7)

and belongs to the 1-dimensional invariant subspace of R. If (4.7) also holds for all
m € M, an application of the second Bianchi identity 10.1 establishes F. Schur’s

lemma, namely that ¢ is even independent of m (assuming always that n > 3).
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Although 4.4 provides a more elegant description of R than 4.2, it is in reality
more complicated, since the space Y2 = X2 @R is reducible. Indeed, performing the

trace X2 — R on either factor gives the Ricci tensor

Ricyi = ¢ Sigji = 9" Riju (4.8)
that encapsulates the components ¥2 and R of . Performing the remaining trace
gives the scalar curvature

t = g"¢" Riju.

The Ricci tensor is remarkable in that it is exactly the same species of tensor as
the Riemannian metric g, namely a quadratic form on each tangent space. Moreover,
Ric is unchanged when g is rescaled by some constant. A Riemannian manifold M
of dimension n > 3 is called Finstein if the Ricci tensor is a constant multiple of the

metric at each point, so that R has no component in the component 2 of . Then
. 1
R’Lle = Et 9gji, (49)

and another application of 10.1 shows that the scalar curvature ¢ must actually be
constant on M. In the special case n = 3, it is clear from 4.3 that (4.7) and (4.9)
must be equivalent.

The component of R in the space W is called the Weyl tensor. It is only present
when n > 4, in which case it is known to be the obstruction to the integrability of
the underlying conformal structure of M, defined by the group CO(n) = Rt x O(n)

[Ei]. A typical representation-theoretic argument is illustrated by the simpler

4.5 Lemma The component of R in W (regarded as a tensor with values in

A?®s0(n)) is conformally invariant.

Proof. If the Riemannian metric ¢ is altered by a conformal factor to ¢’ = efg
then, by 1.7, the tensor £ measuring the difference of the corresponding Levi Civita

connection forms has values in the kernel of
§: A'®co(n) — A’QA',

where co(n) = R® so(n). In view of (2.3), this kernel is isomorphic to A'; indeed &
is determined by df. From

O —d = d¢f —do+L[¢,¢'] — Lo, 0]
= d(6¢) + [¢,0€] + $[6¢,6¢]
= (OA0)(VE+L[E €],
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it follows that R’ — R has values in the O(n)-module A'®A', and so belongs to
Re 3. O

Curvature of a Kahler manifold

For the remainder of this section, we continue to fix an orthonormal frame p € P.
Let @ = Q(p) denote the holonomy bundle consisting of frames obtained from p by
parallel transportation, and let H = H(p) be the corresponding holonomy group.
On @ the curvature operator takes values in the Lie algebra h of H; combining this
fact with 4.2 yields

4.6 Proposition At any point g € Q), the curvature R(q) belongs to the space
R = RN (hQA?) = kera N .

We shall refer to R as the reduced space of curvature tensors corresponding to
the subgroup H of O(n). The label H will remind us to treat it as a representation
of the Lie group, rather than just the Lie algebra, although the notation is abusive
since the definition depends crucially on the way H acts on O(n), and not just H

as an abstract group:

R Q) o
U U I (4.10)

RE —— O —— AL

Clearly, a knowledge of irreducible components of R is essential to an understanding
of the holonomy reduction, but it also provides a tool for the classification of possible
holonomy groups. For many subgroups H C O(n), the restriction of a to ()b is
injective, so ®7 = 0, and H is ruled out of court.

The most important case is that in which H equals the group U(m) of unitary
transformations of a complex vector space \°. As usual, the underlying real vector

space of dimension n = 2m is denoted by A!, and from (3.5), we have
O = ()
=~ QRO NM) & AN)BAT)

022 @ \22,

1%
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In analogy to the decomposition

2222 22 g OR, (4.11)
which is only really valid when m > 4, we may write

0*? = Ba )\ OR, (4.12)
for all m > 2, where B denotes a “primitive” component.

4.7 Proposition [Aly] For m > 2,
RUM)  ~ B@ )\(1),1 DR,
RSU(M =~ B,

Proof. At this point, it is possible to make an informed guess as to what effect the
map a: )’h — A? has on the summands of (4.11) and (4.12). As in the discussion
of O(n)-invariance, Schur’s lemma tells us that the restriction of a to each of these

irreducible components is either zero or an isomorphism. First suppose m > 4; since
A= DY e [ Te e e\ eR

(cf. (3.7)) does not contain B, the latter is forced to put in an appearance in the
kernel of a. Furthermore, as a general guideline, one expects the image of a to be as
large as Schur’s lemma allows; in this case that means equal to the subspace [A\*?]
of A*. Verification of this last assertion is easy. If {e!,...,e™} is a unitary basis of
b0 then the symmetric product (e' A€?)®(e® Ae*) defines a complex element of
Ao, which a maps to e! A e® A& A&2. Similarly, the image of (e' A2%)®(e' AE?)
by a has non-zero components in both )\(1)’1 and R. The cases m = 2,3 are similar,
except for the disappearance of certain summands in the above decompositions.
The Lie algebra of the group SU(m) of special unitary transformations of A
is obtained by removing the centre from u(m), so su(m) = A\;y'. Consequently,
O?*(\") is obtained by removing A\;* @ R from the components of ()*(A"'), and

only B remains in the kernel of a. O

This proof supplies more than the irreducible components of the spaces of curva-
ture tensors; one can also deduce how those components behave under the inclusion
KU s R. In the following diagrams, lines represent non-zero projections that

couple the respective components of the spaces of curvature tensors.
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4.8 Figure Riemannian versus Kahler curvature

ROCmM)  ~ | R O 114 5 »2
RUM >~ | R D B I PY
ROW >~ TR | WieW. | & |X2
RU@ = | R @ B| & |\
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The component of R in the space B is called the Bochner tensor, and plays a role
in Kéhler geometry somewhat analogous to that of the Weyl tensor in Riemannian
geometry [Y]. For generalizations to the non-Kéhler situation, consult [TV]. The
case of a real 4-dimensional Kahler manifold requires some comment, for then the
image of B in R is actually an irreducible representation of the special orthogonal
group SO(4). Indeed, when n = 4, neither of the spaces W, A? are irreducible by
SO(4), a fact that develops into the theory of self-duality (see chapter 7). Thus, to
some extent the Kahler decomposition is already detected at the Riemannian level;
in particular, the Bochner tensor coincides with exactly one half of the Weyl tensor.

The Ricci tensor (4.8) of a Kéhler manifold M is determined by the components
of R in the submodules R and Ay of V(™. Because SU(m) is the kernel of the

representation
det : U(m) — U(1) C Aut(\™"), (4.13)

a holonomy reduction to SU(m) is characterized by the existence, on any simply-
connected domain, of a covariant constant section of the associated canonical line
bundle kK = X™YM . In fact, Ric can also be identified with the (1,1)-form tr(R)

which represents the curvature of x, where this time the trace
tr : A" ®@u(m) — AP QEnd(A™0) =2 A1

is induced from the derivative of (4.13). Figure 4.8 indicates that tr(R) is completely
determined by the Weyl tensor of M, provided m > 3.

4.9 Corollary (i) The Ricci tensor of a Kdhler manifold vanishes if and only if
its restricted holonomy group H° is contained in SU(m), m > 2;

(i) A conformally flat Kdihler manifold of real dimension at least siz is flat.

A counter-example to (ii) with m = 2 is provided by the product of two real 2-
dimensional surfaces with equal and opposite constant Gaussian curvatures.
With respect to local complex coordinates, the curvature tensor R of a Kéahler
manifold is completely determined by its components
o 0
Rz, = 9(R =)
Bvo 90 0 " 950 )’
525557 027" 0z

and the Ricci form is

te(R) = =iy R,d2" AdzZ', (4.14)

7,0
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where R 5 = gO‘BRa%g = g”‘BRa%E is the version of (4.8) in complex coordinates.
In analogy to (4.7), the invariant 1-dimensional subspace of RU(M) is spanned by a

tensor with components
Roys = 905955 T 905967 (4.15)

that has constant holomorphic sectional curvature S(x,Ix) = g(Ry 1,2, I7) = —2.

The Weitzenbock formula

Let M be a Riemannian manifold with holonomy bundle @ = Q(p) and group H =
H(p). Let V' be some representation of H, and « an equivariant V -valued function
on @, or equivalently a section of the associated vector bundle VM = @Q xg V. So
far, we have only really considered the curvature as a tensor acting on the tangent

bundle. In general, one of the Lie algebra factors of the curvature
R=R(p) € O'h C A°®b
may be applied to a to produce a tensor
Ra € hV C A*®V. (4.16)

According to the Ricci identity 1.2, this equals the image of the iterated covariant
derivative V2« under the algebraic skewing map A'Q@ A'®V — A?®V. One can
also contract (4.16) further by applying the residual h to V' to produce

Ra €V, (4.17)

where R should be thought of as the image of R under composition @26 — End V
of endomorphisms of V.

As an illustration, we first take V = A* to be the space of k-forms, so that Vo,
which belongs to

A1®Ak ~ Ak—|—1 oy Uk D Akfl'

Here U* is the O(n)-irreducible intersection of the kernels of the obvious skewing and
contraction linear mappings (cf. (4.4)). Each space on the right-hand side determines

a first order differential operator; the component of Vo in A¥*! equals the exterior
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derivative da (cf. 1.4), and the component in A*~! is by the definition codifferential

d*a. When k = 1, the component of Va in U? = X2 vanishes if and only if « is

dual to a vector field X preserving the conformal structure; the stronger assertion

that Va is totally skew is equivalent to X being a Killing vector field (cf. (5.4)).
Now V2a belongs to

A1®(A1®Ak) — (A1®A1)®Ak,

inside which we may identify the following components:

Vda € A @AF! A2QA* > Ra
Vd'a € A'@AF! RRAF > V*Va (4.18)
AN QU* Y2RAF.

The second component on the right is effectively a k-form, obtained by taking the
trace of V2, or equivalently applying an appropriately-defined operator V* to Va.
Each of the six spaces in (4.18) contains a unique submodule isomorphic to V = A*.
The components of Vda, Vd*« in these submodules equal d*da, dd*a respectively,
and it is easy to see that their sum has zero component in the trace-free space
Y2® AF. This leads to the Weitzenbock formula:

4.10 Proposition The Laplacian A = dd* + d*d satisfies
Aa = V*Va — 2Ra.

When M is compact, d* and V* represent formal adjoints with respect to the

global inner product

(0, ) = /M g(a, )9

on the space Q¥ M = I'(M, A¥T* M) of smooth k-forms (¥ denotes the volume form
on M, and they are “formal” because M is not a Hilbert space). Thus

(Aa,a) = [|d"e|]* + ||de?,
(V*'Va,a) = |[Vel?,
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and we may now consider the space

H = {a€ QM : Aa=0}
= {a € QM :da=0=da}

of harmonic forms. The main conclusions of Hodge theory then assert that #* is

finite-dimensional, that there is an orthogonal decomposition

QFM = HF e A(QFM)
= Hr@d(d (Q*M)) & d*(d(QFM))
= HFd(QF'M) @ d*(QFIM),

and therefore that H* is isomorphic to the de Rham cohomology group H*¥(M,R).

If R is zero, Aa = 0 implies Va = 0. Thus any harmonic form « is necessarily
covariant constant, and by 1.3 the holonomy group H must lie in the stabilizer
of a. For example, when k = 1, it is clear that R € End(A!) can involve only
the Ricci tensor Ric, so a compact irreducible Riemannian manifold with Ric = 0
has b; = 0. These techniques where pioneered by Bochner [Bol,[BY], and furnish
vanishing theorems under the hypothesis that <l~%a, a> < 0 for all non-zero «, which
generally means that the curvature is positive in an appropriate sense.

A second class of examples involves the representation \*° defining the bundle
of forms of type (p,0) on a Kéhler manifold M ; since the submodule B defining the

Bochner tensor does not appear in
EndV = ()\p,O)*®/\p,0 & \PP

once again the operator R applied to the bundle A»°M involves only the Ricci tensor.
From this may be deduced the fact that a compact Kahler manifold with positive

definite Ricci form has "% = 0, for all p > 1 [K,]. Next, consider the representation
m 1
V = @)\M@()\m,ﬂ)—i’
p=0

of SU(m) x U(1). The choice of the exponent of A™° ensures both that V 2V, and
that the action of R on V is determined solely by the scalar curvature ¢. In fact,
V extends to a representation of Spin(2m) (see chapter 12), which leads in general
to Lichnerowicz’s vanishing theorem [L2], which asserts that a compact Riemannian

spin manifold with ¢ > 0 possesses no non-zero harmonic spinors.
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Since both the “rough Laplacian” V*V and the curvature respect any holon-

n
omy reduction, we may conclude that any decomposition of € A* into H-invariant
k=0

submodules induces a corresponding decomposition of the cohomology. Because R
depends only on the choice of representation, one may also deduce that isomorphic
submodules, in whatever dimension, correspond to isomorphic cohomology spaces.
For example, (3.3) and 3.1 imply the Lefschetz decomposition:

4.11 Theorem On a compact Kdhler manifold M of real dimension 2m, there is
a decomposition of cohomology
min(p,q)
H*(M,R) = @ @ = T(M), 0<k<m.

pta=k "0

The even Betti numbers of any compact symplectic manifold are all non-zero

because of the presence of the closed forms w*

. A modest consequence of 4.11 is
that the odd Betti numbers of M are even; this is in general false in the more general
symplectic setting. Further consequences of the existence of a Kahler metric on a

compact manifold exploit the basic identity
A =20y = 2Ag,

relating the Laplacians of the operators d,d,d [We]. This can be used to prove that
a differential form « satisfying dda = 0 = dda equals 993 for some 3, which in turn
implies the degeneration of the Frolicher spectral sequence. These last statements
are also valid on compact complex manifolds which can be blown up to Ké&hler
manifolds, and were used in [DGMS] to deduce, in particular, the vanishing of all
Massey products computed from differential forms.

It was Chern [C] who first proposed the systematic generalization of the above

techniques to other holonomy groups, which we shall discuss later.
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5 Lie Algebras and Symmetric Spaces

The previous chapter included a determination of the space of curvature tensors for
the holonomy groups O(n), U(m) and SU(m). In the first two cases, an invariant
tensor corresponds to the curvature of some model space; more generally an invariant
element R of R determines the Lie algebra g of isometries of some homogeneous
Riemannian manifold, called a symmetric space, whose holonomy group is H. The
classification of these spaces, first carried out by E. Cartan, supplies quite a long
list of holonomy groups. Inherent in this classification is the notion of duality and
a remarkable correspondence between irreducible symmetric spaces and simple Lie
algebras, which had themselves been classified in [C1].

Following a discussion of the curvature tensor of symmetric spaces, we show that
manifolds with special holonomy reduction are often equipped with a closed 4-form,
a fact that makes them amenable to techniques generalizing those of symplectic
geometry. Homogeneous spaces then provide a setting for the theory of connections,
and in this context symmetric spaces are defined by the vanishing of torsion. Basic
inclusions between classical Lie groups, invaluable for the sequel, provide examples
of symmetric spaces, as do compact Lie groups. Mention is also made of Hermitian
symmetric spaces, which are characterized by the existence of an invariant complex

structure.

The Cartan algebra

Ignoring geometrical applications for the moment, we first consider, for any Lie

subgroup H of O(n), the space R of curvature tensors defined in 4.6.

5.1 Proposition If R is an H-invariant element of R, then g = h @ R* has
the structure of a Lie algebra with [x,y] = Ryy for z,y € R™.

Proof. With some analogy to (1.11), the Lie bracket of b is extended to a skew-
symmetric operation on g = h @& R" by setting

[A, 2] = —[z,A] = Az,

[x:y]:Rzy: AEf), I,yER".
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This definition converts the Bianchi identity 4.1 into

[[z,y], 2] + [[v; 2], ] + [[2 2], 4] = 0,

which is part of the Jacobi identity (1.1) for g. The h-invariance of R, combined
with (4.1) gives

0= (AR)zy = [RzyvA] + RAz,y + Rm,Ayv

or equivalently,

[[z,y], Al + [1y, AL, «] + [[4,2],4] = 0.

Because § is deemed to be a subalgebra of g, the Jacobi identity holds when all
three elements belong to h. The remaining part involves two elements A, B in b,

and one element x in R®, and is a rearrangement of the formula
[A, B]xz = A(Bz) — B(Ax),
expressing the Lie algebra representation of § on R". U

It is customary to indicate the complement R™ of h in g by m. The Lie bracket

relations

[b;61CH, [hm]Cm, [mm]Ch (5.1)

are then characterized by the existence of a Lie algebra automorphism o of g, whose
restriction to § is the identity, and to m minus the identity. A Lie algebra g carrying
such an automorphism is called involutive or symmetric. In addition, the assumption
that H is a compact group, acting faithfully on m, implies that

(i) g is effective in the sense that h cannot contain a non-trivial ideal b’ of g,
since this would entail Az = [A,z] =0, whenever A € §’ and = € m;

(ii) g is an orthogonal symmetric Lie algebra in the sense that the group of
transformations of g generated by ad(h) is compact, so g admits a positive definite

ad(h)-invariant inner product relative to which h and m are perpendicular.

Now suppose that H = H(p) is the holonomy group of a Riemannian manifold
M, with respect to some fixed orthonormal frame p. Then M is said to be locally
symmetric if its curvature tensor is covariant constant, which means that it is locally

constant as a function on the holonomy bundle Q(p) and defines an h-invariant
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element R € N7 (cf. 1.3). Then the above hypotheses are satisfied, where m is

isomorphic to the tangent space, and the holonomy algebra § equals
[m,m] = Im(R). (5.2)
The Killing form of the Lie algebra g is the bilinear form
K9%(X,Y) = trace¥((adX)(adY)), X,Y € g,

and (5.1) renders h and m perpendicular relative to K9. The restriction of K8 to
b is related to the Killing forms of h and so(n) by

K9(A,B) = traceD((adA)(ad B)) + trace™(AB)
= K%4,B)+ LK%M (4,B), ABeb.

and is, in particular, negative definite.

The restriction of the Killing form of g to m is especially relevant when the
manifold M is irreducible, which means that its holonomy group H acts irreducibly
on m. In this case, one can show that g is semisimple, which means that K9 is
non-degenerate. In fact, any effective symmetric Lie algebra & m with ad h acting
irreducibly on m and [m, m] # 0 is the direct sum of at most two simple ideals [KN,
chapter 11, proposition 7.5]. In any case, the restriction of K¢ to m is also non-
degenerate, and must equal a non-zero constant 1/c times the Riemannian metric g

induced on m, since both bilinear forms are H -invariant. Hence

g(Rwyzaw) = CKg([[x:y]Z]:w)
= cK¥([z,y], [2,w]).

(5.3)

The Ricci tensor must also be non-zero multiple of g, and regarding R as an element
of ®2f) = @26* , we obtain the following result, due to Kostant.

5.2 Corollary The curvature tensor of an irreducible locally symmetric space M
has the form

R =cKY = c(Kh + ﬁKﬁo(n)),

and M 1s Einstein with non-zero scalar curvature.

The Lie algebra g is that of the group of isometries of a Riemannian manifold

upon which M is modelled, and before describing this in the next section, we first
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point out an alternative description of g. On any Riemannian manifold, an infinites-
imal isometry or Killing vector field X is a vector field whose local one-parameter
group of diffeomorphisms preserves the metric, which is equivalent to the asser-
tion that relative to any orthonormal frame p:m — T, M, the covariant derivative
p~1(VX) € m*®m is a skew-symmetric endomorphism.

In general, all one can say is that p~'(VX) lies in the normalizer of the holonomy
algebra b in so(n). However, a calculation involving curvature shows that the com-
ponent of VX orthogonal to h determines a covariant constant endomorphism of
the tangent bundle 7'M, and this allows one to deduce that the endomorphism VX
belongs to §, at least when M is irreducible with non-zero Ricci tensor, or compact.

Moreover, in these circumstances, X is completely determined by the pair of values
(™' (VX),p7'X) € hom, (5.4)

representing an infinitesimal rotation and translation respectively. The Lie bracket
A’m— b can then be computed by means of the covariant derivative p*(V[X,Y])
of the Lie bracket of vector fields. More details may be found in the fundamental
paper of Kostant [Ko,|.

We have seen that the Lie bracket /\2m — b of an orthogonal symmetric algebra
can be encoded into an invariant “curvature tensor” that belongs to the kernel of
the wedging mapping a: )*(A%) — A*. If H is a closed subgroup of SO(n) acting
irreducibly on R", for which the projection ¢ of R¥ to the subspace R of 4.3 is non-
zero, then the 1-dimensional image of the adjoint ¢* is invariant by H. This provides
a sort of converse to 5.2, namely if R contains an element R with non-zero scalar
curvature, then H is the holonomy group of a symmetric space. In fact, case-by-case
studies will show us later that if H is not the holonomy group of a symmetric space,
then any R € R necessarily has zero Ricci tensor.

Irrespective of the representation h < A%, an obvious candidate for an invariant
curvature tensor (the only one if H is simple) is the Killing form K b e O%h. We
can exploit this situation with the hypothesis that H is the holonomy group of a
Riemannian manifold for which K9 does not lie in ®¥. Then a(K b) is non-zero

and, by association to the holonomy bundle, gives rise to a 4-form €2 on M.

5.3 Lemma The above procedure defines a nowhere-zero covariant constant 4-form
Q on M, except possibly when H C O(n) is the isotropy representation of a sym-

metric space.
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We call Q the fundamental 4-form on M associated to the holonomy reduction.
As a corollary, a compact Riemannian manifold M with a holonomy reduction that
does not arise from a symmetric space must have its fourth Betti number b4 non-zero,
for otherwise Q = da and 0 = (d*da, a) = ||2||>. Even if H C O(n) is the isotropy
representation of a symmetric space, there is a good chance that {2 will be non-zero,
at least if H is not simple. On a Kéhler manifold with H = U(m), 5.2 may be
used to show that the 4-form € is a constant multiple of the square w? = w A w of
the symplectic 2-form. In the sequel, we shall meet different types of 4-forms arising

from various holonomy groups.

Homogeneous Spaces

Consider the problem of constructing a Riemannian manifold from a Lie algebra of

the form

g=bom,  [hb]CShH [hm]Cm (5.5)

Let G be the connected, simply-connected Lie group with Lie algebra g, and let H
be the connected Lie subgroup with subalgebra §. At this point, we have generalized
the previous assumptions by allowing the m-component of [m,m] to be non-zero,
and its h-component to equal a proper subset of . However we do impose the
hypotheses:

(i) b contains no non-trivial ideal of g;

(ii) H is compact, and a closed subgroup of G.

The space of left cosets M = G / His a simply-connected manifold. There is no
reason to suppose that the natural left action of G on M is effective, but (i) implies
that its kernel Z = {g € G:gm=m,Ym € M } is a discrete central subgroup

contained in H , and
M=G/H, with G=G/Z, H=H/Z.

Then m is identified with the tangent space to M at the identity coset o = eH via

the composition
m—g=T,G ——T,M,

where 7m: G — M is the projection. The adjoint action of H on m determines the

isotropy representation, that measures the derivative of the action of H at o. By
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(i), the ideal {A € h: [A,z2] = 0, Vx € m} of g is zero, and using the exponential
mapping in G, one can show that the isotropy representation is faithful. By (ii), m
admits an H-invariant inner product, and the choice of an orthonormal basis of m
determines a frame p € LM . The induced action of G on LM describes a principal
H -subbundle containing p isomorphic to G itself; as H C O(n), this is contained in
a unique O(n)-bundle P consisting of the orthonormal frames defining a G-invariant
Riemannian metric on M.

The left translates {Lgm : g € G} of the subpace m of T.G constitute a hor-
izontal distribution on the principal bundle G C P. Not only is this distribution
left-invariant by G, but it is also right-invariant by H, and therefore determines a
connection on LM , the so-called canonical connection of the second kind [N1]. This
fact is a consequence of our assumption that the homogeneous space M is reductive

in the sense that [h, m] C m, for this implies
Ryu(Lgem) = Loy (Adh™")m, g€ G, he H.

The sum ¢ + 6 of the 1-forms on LM defined in chapter 1 now coincides with the
left-invariant Maurer-Cartan form on G. Consequently, the curvature and torsion
(1.13) of the above connection can be identified with the linear maps

A’m — b,

A’m — m,

determined by the respective components of [m, m].

In terms of (1.20), the m-component of [m, m] may be interpreted as an invari-
ant element ¢ of m*®gl(n,R), and vanishes if and only if the Lie algebra (5.5) is
symmetric. On the other hand, the modified form ¢+60¢ always determines a torsion-
free connection on G/H, called the canonical connection of the first kind. The two
canonical connections share the same geodesics, which are the projections of one-
parameter subgroups in GG, and are therefore complete. The canonical connection of
the first kind coincides with the Levi Civita connection if and only if £ € m*®so(n),

which is equivalent to the condition

9(z, [y, 2],) = 9([z, ¥l 2), 2,9,z €m (5.6)
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5.4 Figure Canonical connection of the second kind
Vot GC LM

Lg,m

Ab
"

- _ M =G,

A Riemannian homogeneous space G/H together with a splitting (5.5) satisfying
(5.6) is called naturally reductive, and its Riemann curvature tensor is not a great
deal more complicated than 5.2. An important subclass consists of the normal
spaces for which the splitting (5.5) is orthogonal relative to an Ad G-invariant inner
product on g, for example the Killing form K9 if G is compact. These spaces provide
a rich source of Einstein metrics, many of which have been classified by Wang and
Ziller [WZ],[Besg, chapter 7] and generalize the metrics on symmetric and isotropy

irreducible spaces.

When (5.5) is an orthogonal symmetric Lie algebra, the holonomy group of G/H
is not necessarily equal to H; rather it is the subgroup of H with Lie algebra (5.2).
The holonomy does equal H if G is semisimple, for in this case the orthogonal
complement with respect to K9 of the ideal [m, m] @& m is an ideal of g contained
in b, and must vanish given our assumption that G acts effectively. Combining
results above with a de Rham type decomposition theorem leads to the following

characterization.

5.5 Theorem A complete simply-connected Riemannian manifold with VR = 0
admits a transitive connected group G of isometries, whose isotropy subgroup H
coincides with the holonomy group. Moreover, H is the connected component of the

fized point set of an involutive automorphism o of G.
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A Riemannian globally symmetric space is a coset manifold G/H, where G is a
connected Lie group with an involutive automorphism o, and H is a closed subgroup
lying between the fixed point set of ¢ and its identity component, with AdH a

compact group of transformations of g. For each coset m = gH , the mapping
gH — go(g~'g)H

determines an isometry of G/H, and the fact that its square is the identity can be
used to show that m is an isolated fixed point. This isometry coincides with the
geodesic symmetry s, defined by changing the sign of the parameter of geodesics
emanating from m. Such an s, is defined in a neighbourhood of any point m of
any Riemannian manifold, and satisfies s}, VR = —VR, because VR is a tensor of
odd order. The locally symmetric condition VR = 0 is characterized by s,, being
an isometry, which extends globally only when M has the form G/H above [BL,|.

The simplest, but in some sense universal, instance of the above constructions
starts from the space ® = RO™ of curvature tensors of a generic Riemannian man-
ifold. This space contains an invariant element described by 4.3 and (4.7), which
is essentially the induced inner product on the space /\2R". The corresponding

symmetric Lie algebra is
so(n) R = A’(R*@®R)
> so(n+1),

and the coset space M is the n-dimensional sphere

_ Spin(n+1)  SO(n+1)

5" Spin(n) SO(n)

Observe that as the scalar curvature tends to zero, the left-hand side of (5.7) becomes
the Lie algebra of the symmetric space R* = E(n)/O(n), where E(n) is the group
of Euclidean motions, although this description is not in line with 5.5. In the case of
the sphere, it is easy to find a linear representation of the isometry group G' (namely
the basic one of SO(n + 1) on R**!) whose isotropy representation coincides with
that of M. For a general space M = G/H, such a linear representation of G always
exists, and gives an embedding of M as an orbit in a higher dimensional sphere
[Mos].
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Inclusions between classical groups

The group U(m) consists of complex linear transformations preserving a Hermitian
form. Similarly, the quaternionic unitary group Sp(k) is the set of transformations
of H¥ commuting with right multiplication by quaternion scalars, and preserving the

quaternionic form 2221 dq” ®dg®. This may be analyzed by writing
dg® = dz® + jdw® = dzf +idzxd + jda§ + kdzy, a=1,...,k

successively in complex and real coordinates.
In terms of the underlying complex vector space C* or its dual (C%*)* = \1.0)
the group Sp(k) is the subgroup of U(2k) of elements commuting with the antilinear

map ¢ induced by right multiplication by j on H*, so that in coordinates,
e: (2%, w®) — (—w*, z%).

If A, B are complex k x k-matrices, then in analogy to (3.2), the mapping

A —-B
A+jB— B
B A

determines the left-hand inclusion

U2k) ——— SO(4k)

U
Sp(k) —— SU(2k) (5-8)
of.  H = C2* = R

of Sp(k) into the special unitary group, whose elements have determinant one.

The operator € may be thought of as a linear map A'? — \%! that makes the
two representations AM?, \%! albeit distinct for U(2k), isomorphic relative to the
subgroup Sp(k). In an attempt to continue our previous conventions, we shall denote

the common complex Sp(k)-representation

)\1,0 o AO,I o (AI,O)*
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by AL, and its exterior and symmetric powers by ¥ = AF(A!) and of = OF(A}).

For example,

End C?* = MO0\ = Ceo\* -
= Co )\ @o? )

where the 1-dimensional summand in the last line is spanned by the complex sym-
plectic form 2 2221 dz® A dw®, equal to the j component of 2221 dq” ®dqg*.

The two preceding paragraphs present different ways of understanding the action
of ¢; first it was treated like an almost complex structure, and then its antilinear
character made it out to be a type of complex conjugation, but acting on \! with
square —1 rather than +1. Indeed, £ (or to be more accurate e®¢) is an honest
complex conjugation on A'®\!', because (e®e)> = +1. More generally, a repre-
sentation of a compact group G on a complex m-dimensional vector space V is
called real (respectively quaternionic) if G commutes with an antilinear map ¢ on
V' with square +1 (respectively —1). If we choose a Hermitian form on V as in
(3.1), and average it by integration over G and Zs = {1,¢}, the result will be a real
G-invariant non-degenerate element of A\*V* (respectively ()*V*). In other words,
the representation will not only be unitary, but it will factor through the group O(m)
(respectively Sp()).

The fixed points of a real structure € on V define a real vector space which we
denote by [V], whose complexification is V. For example, every summand of (5.9)

is the complexification of a real vector space, and in analogy with (2.2),

1%

sp(k)®rC = 02, or  sp(k) = [0 (5.10)

In general, in the absence of any e, the only reliable way of manufacturing a real
representation is to ignore the action of the scalar 7, so as to obtain the underlying
real vector space. We denote this by [V]; its real dimension is twice the complex

dimension of V', and
[VierRC=2VaV, o [V]Z[VeV].

The definitions are consistent with (3.4).

The antilinear maps with square +1 place the left-hand inclusions in (5.8) and
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U
SO(m) ——— SU(m) (5.11)
cf. RrR™ C cm C H™

on the same footing. All four horizontal inclusions furnish symmetric Lie algebras,

with corresponding symmetric spaces

(5.12)

The first space parametrizes almost complex structures on R?™ that are orthogonal
and compatible with a fixed orientation; its symmetric Lie algebra is the decomposi-
tion (3.5) that played such a crucial role in the study of U(m)-structures, and whose
isotropy representation [A?°] featured with good reason in 3.3. The remaining three

spaces correspond to the Lie algebras
sp(m) = u(m) & [0>°],

su(2k) = sp(k) @ [\3], (5.13)

su(m) =2 so(m) & X3,

where 620 = O?*(A\'?), and Y2 is defined by (2.2).

Further examples and properties

The fact that distinct symmetric spaces may share the same isometry group (witness
the last two families in (5.12)) is clarified by the notion of duality. Any symmetric
Lie algebra g has a dual g* defined by reversing the sign of the curvature operator

/\2m — B, so that as a subalgebra of the complexification of g,
g =bhdim.

The resulting involution on g* is the restriction of the compler conjugation whose
fixed points define the real form g. Clearly, the symmetric Lie algebra g is itself the
dual of g*.
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Applying the above procedure to the algebras underlying (5.12) yields the dual
symmetric spaces
SO(m,H)  Sp(m,R) SL(k,H) SL(m,R)
Ulm) * U@m) ' Sp(k) *  SO(m)
Here SO(m, H) is the intersection SL(m,H)NSO(2n,C) inside GL(2m,C), and its
coset space may be interpreted as the set of all complex structures on R?™ for which
the corresponding totally isotropic subspace V of C*™ = H™ satisfies VNV j = {0}.
The double-covering SL(4,C) — SO(6,C) (cf. 6.2) identifies SL(2,H)/Sp(2) =
S0y(5,1)/SO(5) with the real hyperbolic 5-space. The latter may be thought of

as the group of quaternionic projective or conformal transformations modulo the

(5.14)

subgroup of isometries, and as such is the space of basic self-dual Yang-Mills fields

on S$* modulo gauge equivalence [AHS].

A first step in an investigation of the structure of an arbitrary orthogonal symmet-
ric Lie algebra needed to prove 5.5 is to show, in analogy to 2.9, that it may be de-
composed as a o-invariant direct sum of a “Euclidean” algebra for which [m,m] =0,
and “irreducible algebras” for which g is semisimple and contains § as a maximal
proper subalgebra. Every irreducible algebra is either of of compact or non-compact
type, meaning that the restriction of the Killing form K8 to m is negative definite
(¢ < 0 in (5.3)) or positive definite (¢ > 0). In the former case, K8 is negative
definite on the whole of g which is equivalent to the compactness of the correspond-
ing Lie group, and either g is simple (“type I”), or the sum of two simple ideals
interchanged by o (“type II”). The irreducible algebras of non-compact type (“III”
and “IV”) may then be obtained via duality, although are in some ways easier to
describe directly. We refer the reader to [KN, chapter 11] and [He| for details of the
key facts that we are summarizing.

Using the theory of roots, one can prove that any simple complex Lie algebra is the
complexification gc of a Lie algebra g of some compact group [Wey|. This compact
real form g is unique up to an inner automorphism of g¢, and the problem of finding
other real forms of gc becomes equivalent to finding involutive automorphisms of g.

Indeed, given another real form g*, one can choose the compact form g so that

g = (g"Ng) @ (g*Nig),
g = (g"Ng) @ (ig'Ng),

(5.15)

is a pair of orthogonal symmetric Lie algebras of non-compact and compact type

respectively. The first of these defines the so-called Cartan decomposition of g* [Cs],
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and exhibits g* N g as a maximal Lie subalgebra of g* on which K 8" s negative
definite. In fact, a simple Lie group G* has a maximal compact subgroup H, unique
up to conjugacy [C4], and G*/H is diffeomorphic to Euclidean space. The conjugacy
is equivalent to the assertion that any compact subgroup of G* has a fixed point on
G*/H, and may be proved by exploiting the negative curvature.

Let H be a simply-connected compact simple Lie group. Then G = H x H acts
on H by (z,y)h = zhy~!, and the stabilizer at the identity is the diagonal subgroup.
The Lie bracket makes

g = {(44):Aebhio{(4,-4)} = bheb,
g = {4 Are{l4,-id)} = bheib

(5.16)

into symmetric Lie algebras, the second of which is the real algebra underlying the
complexification of h. The corresponding symmetric spaces are H itself, endowed
with a bi-invariant Riemannian metric, and Hc/H, where Hc is the corresponding
simple complex Lie group. Once again, the space of non-compact type arises from
a maximal compactly embedded subalgebra of a real simple Lie algebra g*, but this
time g* admits an almost complex structure so that its complexification is no longer

simple.

5.6 Theorem [C;] The recipes (5.15), (5.16) establish a bijective correspondence
between real Lie algebras, whose complezification is simple, and pairs of simply-

connected irreducible Riemannian symmetric spaces.

From the point of view of holonomy, it follows that any semisimple compact

connected centreless Lie group H arises, via its adjoint representation
H — SO(dim H), (5.17)

as the holonomy group of a Riemannian manifold. Incidentally, when H is sim-
ple, SO(dim H)/H has irreducible isotropy representation, and in general admits
a normal homogeneous Einstein metric [W,],[WZ]. In contrast to the symmetric

description of H, note that the splitting

g ={(44):Aebh}ta{(0,4)}

makes H into a reductive homogeneous space, for which the connection 5.4 has zero

curvature, and torsion given by Lie bracket.
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Although the last two families of (5.12) both arise from real forms of the complex
special linear group, it is in many ways the first two that have more in common.
The spaces in question both admit a complex structure which originates from the
non-discrete centre of their common holonomy group U(m). The same is true of
complex projective space CP™ (3.14), for which U(m) acts in the standard way on
the tangent space. Since u(m + 1) = [(A\'? @ C)*® (A & C)], the symmetric Lie

algebra for CP™ can be expressed in terms of U(m)-modules as

> y(m) @ [\].

A symmetric space M = G/H corresponding to an orthogonal Lie algebra g =
h @& m is called Hermitian if m possesses an H-invariant almost complex structure
I, which acts as an orthogonal transformation with respect to the metric. In these
circumstances, I extends to a G-invariant almost complex structure on M which is
parallel with respect to the Levi Civita connection, and therefore makes M into a
Kahler manifold.

If ' denotes the subalgebra of so(n) generated by h and I, then h' Gm is also a
symmetric Lie algebra. If G is semisimple, an argument resembling that immediately
preceding 5.5 shows that h’ = b, whence I belongs to b, and therefore to the centre
of h. Conversely, provided H acts faithfully on m, then any element of order 4 in its
centre will define an invariant almost complex structure I. The compact irreducible
Hermitian symmetric spaces are then the spaces G/H, where G is a compact simple
connected centreless Lie group, and H is a maximal connected proper subgroup of
G with non-discrete centre [BL;].

The complexified Lie algebra defining a Hermitian symmetric space has the form

gc = hcdm’ @ m®, (5.18)

where m®!, m%!

are the isotropic i, —i eigenspaces of I. Because [m,m] C b, the
component of [m%! m%®!] in mb0 is certainly zero; geometrically, this corresponds
to the fact that the Lie bracket of any two vector field of type (0,1) is again of
type (0,1). The integrability of the complex structure can be understood directly

by observing that
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is a complex subalgebra of gc. Let G¢ be the simply-connected Lie group with
Lie algebra gc, and let G, H, P denote the connected subgroups of G¢ arising from
g, b, p, regarded as subalgebras of the real Lie algebra underlying gc. The Borel

embedding theorem [Bj3] asserts that the natural mapping
gH —gP, ged

exhibits G/H as an open complex submanifold of the complex coset space G¢/P.
A Hermitian symmetric space G/H = G¢/P of compact type contains its dual
G*/H as an open G*-orbit; complex hyperbolic m-space SU(m,1)/S(U(m)xU(1))
is identified with an affine subset of CP™. More generally, each Hermitian symmetric
space of non-compact type can be identified with a bounded symmetric domain, that
is a bounded open connected subset D of C™, for which each m € D is the isolated
fixed point of a holomorphic diffeomorphism s: D — D, whose square equals the
identity [Cg].

The actual classification of irreducible symmetric spaces G/H is given in [C4];
the table lists the simply-connected ones of compact type, partly in terms of second

homotopy groups which may be computed from the homotopy exact sequence
7T2(H) — 7T2(G) — 7T2(M) — 7T1(H) — 7T1(G) — 0,

implications of which appear in [BR]. There may be several symmetric spaces with
the same compact universal covering G/H, depending upon the size of the centre
of G. There is only one when G is one of G, Fy, Eg, or when G/H is Hermitian
symmetric. In order to achieve visual simplicity, some spaces below are presented
with an isometry group which is neither simply-connected nor effective. The feature
common to the ones labelled “quaternionic” is that the isotropy subgroup contains
a factor isomorphic to Sp(1) or SO(3) in the same way that the Hermitian spaces
have a U(1) or SO(2) in their isotropy; their theory will be pursued in chapter 9.
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5.7 Table Compact simply-connected irreducible Riemannian symmetric spaces

Lie group Hermitian Quaternionic Others
mo(M) =0 mo (M) =17 Wge()f\i)pt:*Zg (M) =0 or Zs
SUm) SU(k +m) *SU(k+2) | SU(m) SU(2k)
S(U (k) xU(m)) SUk)xU?2)) | SO(m)” Sp(k
o SO(2m)  SO(m+2) SO(k + 4) SO(k +m)
pin(n) |\ i) S0(m)xS0(@) | S0 x50() | SO0k xS0(m)
Sp(k *Splk + 1 Sp(k +m
(k) T® SO | S
> Es Eg Eg Eg
6 Spin(10)U (1) SU(6)Sp(1) Fy’ Sp(4).
B Er E; E;
EsU(1) Spin(12)Sp(1) SU(8).~
B, Eg Eg
E;Sp(1) Spin(16).
7 Fy Fy
! Sp(3)Sp(1) Spin(9)
Gy Gs
SO(4)

Juxtaposition A B of two groups generally denotes the quotient A Xz, B

~ tagged on an isotropy group denotes its quotient /Zo
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6 Representation Theory

One aim of this chapter is to explain how to decompose the tensor product of two
irreducible representations of a compact Lie group. A standard method for doing this
lends itself well to computer treatment, but there is much to be gained by learning to
perform the computations by hand without a great deal of subtlety and, in any case,
many geometrically significant representations are relatively simple. The relevant
theory is well documented, so our approach concentrates on the practicalities needed
to give the reader quick access to results in the sequel.

To begin with, we summarize the pertinent facts concerning representations of
compact Lie groups, stating many results without proofs, which may be consulted
in, for example, [Ad] or [BD]. At opportune moments, there is reference to the
link between orbits in the adjoint representation and complex homogeneous spaces.
More detail is injected into the section on examples, which bases an illustration of
the theory on the low-dimensional spin groups, and their mutual inclusion in the
orthogonal group SO(8), a theme which will be taken up again towards the end of

the notes.

Weights and roots

Throughout this chapter, G denotes a compact connected Lie group, and a repre-
sentation of GG signifies a continuous, or equivalently smooth, group homomorphism
p: G — AutcV, where V' is a complex vector space. Taking V' to be complex is no
great restriction, as a real or quaternionic structure may be imposed in the man-
ner explained after (5.9). The derivative of p defines the corresponding Lie algebra

representation
dp:T,G =g — EndV,

which interprets the Lie bracket on g as the usual commutator on End V. A fun-
damental example is the adjoint representation p=Ad of G on V = g®rC, which
is derived from conjugation, and satisfies exp(p(h)X) = hexp(X)h!. In this case
dp(X)Y equals (ad X)Y = [ X, Y] is the operation of Lie bracket, its representation-

theoretic character corresponding to the Jacobi identity (1.1).
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A torus is a connected closed abelian subgroup of G. We fix a maximal one T,
not properly contained in any other torus. Any two maximal tori are conjugate, in
analogy to the result concerning maximal compact subgroups of a semisimple group,
mentioned in connection with symmetric spaces. The Lie algebra t of 7" is a maximal
abelian Lie subalgebra of g, and its dimension defines the rank of G. In fact, the
intersection of t with any orbit of the adjoint representation of G on g is a finite set
of points, itself an orbit of the Weyl group N(T)/T. Moreover

t={Xeg:[X,X,] =0} (6.1)

for a vector X that lies in t but no other maximal abelian subalgebra of g.
Given a representation V' of G, the endomorphisms dp(x) are simultaneously

diagonalizable as x ranges over t. Hence there is a decomposition
V=PV, (6.2)
o

where each V,, is a complex t-invariant subspace, whose label o denotes a real linear

form on t such that
z(v) = 2mia(z), z €t vEV,.

Exponentiation defines a homomorphism from (t,4) to 7', whose kernel is a lattice
of t, and each « in (6.2) belongs to the dual lattice in the sense that a(z) € Z
whenever exp(z) = e. An element of t* with this last property is called a weight,
and the dimension of V,, represents the multiplicity of o as a weight of V.

For the adjoint representation V' = g®gC, it is well known that the only weight
which occurs with a multiplicity greater than one is 0, and almost by definition the
zero weight space is go = t®rC. The non-zero weights that occur constitute the set

R of roots of g, and their weight spaces satisfy

Ya+8; Ck+ﬁ €ER

: (6.3)
0, a+8 ¢ R

[gaagﬂ]':

There exists a subset A of R, comprising the so-called simple roots, such that any
a € R can be written a = ZmeA n;B3;, where the n; are integers, all of the same

sign. Taking the n; all positive defines the R™ of positive roots, and

g =t® P loal (6.4)

acRt
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If (,) is any inner product on t invariant by the action of N(T'), the expression

2(av, B)
(8, B)

(a,B) = (6.5)

is an integer whenever a € t* is a weight, and S is a root. Then the Weyl group

turns out to equal the group generated by reflections
ograrra— (o, B) B, «a€R,

in the hyperplanes of t* orthogonal to the roots, and one can associate to each element
o of the Weyl group its sign (—1)?. A choice of A determines the fundamental (dual)
Weyl chamber

T={yet:(y,8)>0, VBe A},

Any orbit of G on g now has a unique representative in the closure T, and a weight

v lying in T is called dominant. An important quantity

d =

N[ =
(]
Q

has the enviable property that v € Y if and only if v +d € Y. If G is not simply-
connected, d may not itself be a weight.

At this point, we mention the homogeneous spaces that arise as orbits of the
adjoint representation. In analogy to (5.5), the Lie algebra (6.4) corresponds to the
flag manifold G /T, whose tangent space is identified with m = @, z+[g.]. The
choice of an orientation on each 2-dimensional summand [g,] gives rise to a G-
invariant almost complex structure on G/T, which may or may not be integrable.
Such a choice is determined by a set A of simple roots, by taking the space of

(1, 0)-vectors equal to

1,0 __ .
m - @ gaa

a€ERt

this is closed under Lie bracket and defines a complex structure on G/T.
An element X € g is called regular if it does not belong to a root hyperplane; in
this case its G-orbit is of maximal dimension and has the form G/T (hence (6.1)).

Any other orbit is isomorphic to G/C(7y) for some dominant weight v on a wall of
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Y, where C(7) denotes the centralizer of the one-parameter subgroup generated by

~. This leads to the generalization

5= (to @ o) e P lo.l. (6.6)
(a7)=0

(@,7)>0

of (6.4). A theorem of Borel [Se] asserts that any 2m-dimensional compact homo-
geneous space M which is symplectic (or in particular Kéhler) is necessarily of the
form G/C(y) for some . The embedding u: M — g = g* is the moment map
constructed from the symplectic structure of M (see chapter 8).

A choice A of simple roots again determines a complex structure on G/C(7),
which may be described as a complex quotient G¢/P, where P is the parabolic
subalgebra generated by tc and the root spaces g, with (a,7) > 0. A special case
is the Borel subgroup B generated by t¢ and all the positive roots, and there is a

holomorphic fibration
Cpp2Gejp——Ge/p =G,

whose fibre is tangent to the direct sum of terms with (o, ) =0 in (6.6). The case
of a Hermitian symmetric space, discussed in (5.18) arises when the centre of C(7)
is generated by 7. Relevant details are contained in the papers of Wang [Wa| and
Bott [Bot].

Irreducible representations

A complex representation V' is said to be irreducible if it has no proper G-invariant
complex subspace. A little caution is needed if V' has a real or quaternionic structure,
since there may be invariant subspaces which do not inherit the respective structure,
so there are weaker notions of real or quaternionic irreducible. For example, suppose
that V is some complex representation, and let V' denote the conjugate space (so its

elements are the same as those of V', but scalars act conjugated). Then

g9 (z,y) = (y, ), (r,y) eVaV

define antilinear maps that give V @ V both a real and quaternionic structure,

relative to either of which V @ V may be irreducible. However, a self-conjugate
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complex representation V' of a compact group G, irreducible in the complex sense,
has either a real or a quaternionic structure, but not both.

A basic fact is that any compact Lie group G possesses a faithful linear complex
representation V'; this amounts to asserting that G is a Lie subgroup of U(n) for
some n sufficiently large. The set of all irreducible representations with increasing

highest weights can then be realized as submodules of tensor products of the form

(®V)=(Q'7).

where V' = V*. This is a practical version of the Peter-Weyl theorem, and the
reader is invited to get a feeling for the representation theory of a specific group by
attempting to decompose tensor products of two or three low-dimensional faithful
representations.

Returning to (6.2), more can now be said about the set of weights « that arise
in a given irreducible representation V. Certainly, this set is a union of orbits of
the Weyl group. If « is a weight of V', and § a root, then gg(Vj,) is either zero or
contained in the weight space Vjz,,. There is a partial ordering defined on the set
of weights by a < 8 if and only if o — 8 is a sum of positive roots, or zero. One
can associate to any irreducible representation of a compact Lie group G its highest
weight v € Y, which occurs with multiplicity one; each remaining weight has the

form v — «, where « is a sum of positive roots.

6.1 Theorem [Wey| The mapping V — v sets up a bijective correspondence be-
tween tsomorphism classes of irreducible complex representations of G and dominant
weights of G.

The stabilizer of the highest weight space V., thought of as an element of the
complex projective space CP(V (7)), is a parabolic subgroup P of G¢, and there
is a holomorphic embedding i of G¢/P into the projective space. The pullback
L =4*O(1) of the hyperplane line bundle on CP(V (y)) may be identifed with the

line bundle associated to the representation p: P — Aut V>; in compact language,
L=Gx,V} —— o(1)
J’ l (6.7)
G/C(y)  —— CP(V(3))

The space H*(G/C(v),O(L)) of holomorphic sections of L is naturally isomorphic
to V(vy)*; this is the Borel-Weil theorem [Se].
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Now for some examples. The isotropy representation [A\%] of the symmetric space
SU(4)/Sp(2) (see (5.13)) defines a homomorphism p: Sp(2) — O(5) between Lie
groups, that induces an isomorphism sp(2) = so(5) of Lie algebras. Since Sp(2) is
a connected group, the image of p equals SO(5). Moreover, [A3] is the standard

representation of SO(5), and the symmetric Lie algebras

su(4)

sp(2) @[N],
s0(5) @ A

(6.8)
s0(6)

coincide. The maximal Lie subgroup Sp(1) x Sp(1) of Sp(2) fixes a vector in [AZ].
It follows that p(Sp(1) x Sp(1)) = SO(4), and there are identical symmetric Lie

algebras

sp(l) @ sp(1) ®RY,
so(4) @ AL

5p(2)
50(5)

(6.9)

Because the kernel of p equals {1, —1}, the above discussion yields

6.2 Proposition There are double coverings

Sp(1) x Sp(1) = Spin(4) =5 SO(4)
Sp(2) = Spin(5) 25 SO(5)
SU(4) = Spin(6) =2 SO(6).
By definition, the group Spin(n) is the simply-connected double covering of SO(n),

n > 3. The first isomorphism, combined with the well-known Spin(3) = SU(2) =

SO(3) yields a commutative diagram of Lie group homomorphisms

Spin(4) ——— SU@2) x SU(2)
l2:1 12:1 l2;1 (6.10)

so) —%L. s50@) x SO@),
We single out the quaternionic unitary group Sp(2) to give us the simplest and

most effective illustration of the theory. In standard coordinates, the roots of Sp(2)
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can be read off in terms of the isomorphism (5.10) of the complexified Lie algebra

with the second symmetric power of the basic Sp(2)-module. They are

(2,0) (1,1)

(0.2) (1-1) (6.11)
(0,-2) (-1,1)

(-2,0) (-1,-1),

with a choice of simple roots boxed, the highest (2,0) arising from a simple tensor

2

product v®wv € o°. In this instance, the fundamental Weyl chamber is given by

Y = {(a,b) : a > b > 0}, the Weyl group acts by permutations and sign changes,
and d = (2,1):

6.3 Figure Roots and weights of Sp(2)

e roots

* dominant weights

The adjoint representation of Sp(2) has non-generic orbit types

S5p(2) _ Sp(2) . SO(6

) o !
CL,0) ~ S x 0@ - v P (6.12)

Sp(2) _ Sp) . SO()

C(1,1) ~ U(2) ~ SO(3) x SO(2) =QCCPy).

corresponding to a choice of dominant weight in either wall of Y. The first is bi-

holomorphically equivalent to CP?, but with a smaller isometry group than usual.
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The second is the Hermitian symmetric space parametrizing Lagrangian subspaces

of C* (endowed with its standard complex symplectic form), and coincides with the
quadric Q* C CP*.

Tensor products

Given two irreducible representations V = V(o/), W = W (f'), the weights of the
tensor product V®W are precisely those of the form « + 3, where « is any weight
of V', and B any weight of W. Each member « of the set A of distinct weights of
V' will occur with a multiplicity mult(c). The next result implies that the highest
weights of the irreducible summands of V®W can be computed from the list oo+ 3
of weights formed by adding all the weights o € A of V' counted with multiplicity
to only the highest weight 3’ of W.

6.4 Proposition [Br] The multiplicities of the irreducible summands in a tensor
product are given by V(") @V (8') = @ n,V(y), where
v

Ny = Z (—1)’mult(«).

a€A:
o(a+p'+d)=v+d

For each summand, o represents an appropriate element of the Weyl group, as
explained below. The result was quoted by Kostant [Kos|, who finds the multiplicities
of all « in a given representation V' (), and there is a related formula for characters
is due to Steinberg [St].

The remainder of the chapter will focus on the application of 6.4 to low-dimensional
situations. One reason for its power is that the decomposition proceeds in a non-
symmetrical fashion; in practice V(o/) should be chosen to be the simpler of the
two factors. Having said this though, our three examples concern the tensor product
of two identical representations, chosen to provide explicit proofs of the decompo-
sition 4.3 of curvature tensors of a Riemannian manifold of dimension 5,6 and 7
respectively. The first two examples exploit the identifications 6.2 of Spin(5) and
Spin(6), and the resulting “spinorial” descriptions of spaces of tensors, which in a
curious way tends to eliminate the amount skew-symmetry.

Unfortunately, the group Spin(n) is less useful to us in higher dimensions, not

only because of the lack of special isomorphisms, but also because the dimension
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(272 or 2(n=1/2) of a faithful representation increases dramatically. In this respect,
the case n = 8 represents a critical dimension, when tangent vectors and spinors are
g

essentially equivalent (see chapter 12).
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6.5 Figure Decomposition of a tensor product in practice

Write down all
weights of V(o)
with multiplicities

result_
liesin T

d + result
liesin Y—7
Discard Add B to each
X
otherwise
Add d
riens%t_h’;s Apply element o
Discard of Weyl group

to get back in T

otherwise

v

Subtract d

retain with
sign of ¢

Combine weights

Answer after
cancellation gives
highest weights
of irreducible
summands
with multiplicities
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Example 1:
Curvature of a 5-fold or an 8-fold with holonomy Sp(2)

The basic representation C* = A\' of Sp(2) determines a spin representation of

Spin(5), that is, one that does not factor to a representation of SO(5).

6.6 Lemma There are equivalent definitions
O’sp(2) = [0 e OiN] @ N @R,
O’s0(5) 2 WeXioANoR
Proof. From (6.11), the highest weight or root of the adjoint representation of sp(2)

is (2,0). The tensor product of sp(2) = [0?] with itself can now be decomposed by
applying 6.5:

(2,0) (4,0)v/ (4,0)
(0,2) (2,2)v/ (2,2)
(Oa'Q) (2’ ) (4"1) _(4’1) _(2’0)
(' ’0) (070)\/ (070)
(1,1) (3,1)v (3,1)
(1,-1) (3,-1) x

('1’1) (1’1)\/ (1a1)
(-1,-1) (1,-1) x

2(0,0) 2(2,0)v/ 2(2,0).

Using the weights themselves to denote the corresponding Sp(2)-modules, we have
(2,0)®(2,0) = (4,008 (2,2)® (0,0)® (3,1) & (1,1) & (2,0), (6.13)

and it remains to identify the summands. There is a simpler decomposition
(L,H®(1,1) = (2,2)® (2,0) & (0,0),

and since (1,1) = A2, we must have (2,2) = (D2(A\3). The highest weight (4,0)
in (6.13) corresponds to the fourth symmetric power (O*(1,0) = o*, which obvi-
ously lies in (9?(2,0), whereas the weight (2,0) corresponds to the copy of sp(2) in

A’(sp(2)) coming from the Lie bracket. A dimension count now confirms that

@2(2, 0) = (4’ 0) ©® (21 2) S (15 1) S (Oa O)a

which is equivalent to the first isomorphism in the statement of the lemma. The
irreducible components can be reinterpreted in terms of SO(n) to obtain the second
isomorphism, which was established more informally in (4.4). O
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The submodule [¢4] of ()?sp(2), isomorphic to the space W of Weyl tensors on a
5-manifold, is in fact equal to the space R of curvature tensors for the holonomy
subgroup Sp(2) of SO(8) on an 8-manifold (see forward to 9.3).

6.7 Figure Summary of decomposition of &X)*sp(2)

d+ (2,0)+ weights of sp(2),
after discard and cancellation

Four

components
= (2,1
/; 21) of O%p(2)

oe

Example 2:
Curvature of a 6-fold or an 8-fold with holonomy SU(4)

6.8 Lemma There are equivalent decompositions

O%su(4) = Ba [N’ e [\ oR,
O’s0(6) = WaXiaAoR

Proof. Consider U(4), whose adjoint representation representation u(4)®@gC = Al-!
may be understood using (3.5). There are standard coordinates (a,b,c,d) on a
maximal torus of U(4), for which the root (1,0,0,-1) is the highest weight of the
irreducible submodule corresponding to su(4). The Weyl group consists of the 4!
permutations of the coordinates, and a fundamental Weyl chamber is T = {(a, b, ¢) :

a>b>c>d},and d= (,1,-1,-3). Applying 6.5 gives
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(1,0,0,-1) (2,0,0,-2)/ (2,0,0,-2)

(1,0,-1,0) (2,0,-1,-1)/ (2,0,-1,-1)

(1,-1,0,0) (2,-1,0,-1) x

(0,1,0,-1) (1,1,0,-2)/ (1,1,0,-2)

(0,1,-1,0) (1,1,-1,-1)y/ (1,1,-1,-1)

(0,0,1,-1) (1,0,1,-2) x

(0,0,-1,1) (1,0,-1,0) x

(0,-1,1,0) (1,-1,1,-1) (2-3.3-2) —(5,3-5-3) —(1,00:1)

(0,-1,0,1) (1,-1,0,0) x

(-1,1,0,0) (0,1,0,-1) x

(-1,0,1,0) (0,0,1,-1) x

(-1,0,0,1) (0,0,0,0)/ (0,0,0,0)
3(0,0,0,0) 3(1,0,0,-1)y/ 3(1,0,0,-1)

Combining the summands, and assessing their dimensions gives

O%(1,0,0,-1) 2 (2,0,0,-2) & (1,1,-1,-1) @ (1,0,0,-1) & (0, 0,0, 0),
A%(1,0,0,-1) 2 (2,0,-1,-1) & (1,1,0,-2) & (1,0,0,-1),

the first isomorphism being the one sought. O

In particular, the submodule W of R5°0) containing the space of Weyl tensors
on a 6-manifold is isomorphic to the space £5Y™ containing the Bochner tensor of

a Kéhler manifold of real dimension 8 (see 4.7).

Example 3:
Curvature of a 7-fold or an 8-fold with holonomy Spin(7)

In order to split up the tensor product of so(n) with itself for n > 7, one is forced,
in the absence of any further special isomorphisms, to resort to a direct description
in terms of the roots of the orthogonal Lie algebra. The problem with with so(n), as
opposed to su(m) or sp(k), is that there are two fundamentally different descriptions
of the roots, according to the parity of n. Despite this, the form of the decomposition
under discussion does not depend on n. The Lie algebras b, = so(2m + 1), 0, =
s0(2m), and u(m) all have rank m, and share a maximal abelian subalgebra; here

we tackle the case of bs.
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6.9 Lemma ()’so(7) =W oX2a A 3R,

Proof. Given a standard basis {e',..., e’} of A' = (R7)*, the Lie algebra so0(7) = A?
is generated by the elements e A e/, i < j, with a maximal abelian subalgebra
spanned by e! Ae?, €3 Aet, €5 AeS. The roots can be labelled by the eighteen
triples obtained by applying all possible permutations and sign changes to (1,1,0)
and (1,0,0), which arise from the weight spaces

Vi = span{(e1 - ieQ) A (63 — 2'64)}, Vi = spabn{(e1 - ieQ) A 67}.

The fundamental Weyl chamber is then T = {(a,b,¢) : @ > b > ¢}, and half the sum
53 1

212132)"

Given the practice built up from the two preceding examples, it is convenient

of positive roots is d = (

to streamline the notation so as to list only those weights that are not immediately

discarded. These form the first column below.

(1,1,0) (2,2,0)/ (2,2,0)
(1,0,1) (2,1,1)y/ (2,1,1)
(1,-1,0) (2,0,0)/ (2,0,0)
(1’0"1) (2’1"1) (gag"%) - (g’g’%) _(2’110)
(1,0,0) (2,1,0)y/ (2,1,0)
(0,0,1) (1,1,1)y/ (1,1,1)
(-1,-1,0) (0,0,0)+/ (0,0,0)
(0"15'1) (1,0,-1) (%’%"%) _(%i%’%) _(1’0:0)
('15150) (OaQaO) (g’%’%) _(%ig’%) _(1’110)
(0,-1,0) (1,0,0)4/ (1,0,0)
(0’0"1) (1’1"1) (%7%"%) _(%’g’%) _(1’110)
3(0,0,0) 3(1,1,0)/ 3(1,1,0)

Combining the summands, and assessing their dimensions gives

O*(1,1,0) 2 (2,2,0) @ (2,0,0) & (1,1,1) & (0,0, 0),
A*(1,1,0) 2 (2,1,1) & (1,1,0),

the first isomorphism being the one sought. Notice that (1,1,1) is the highest weight
of A®, but that in seven dimensions this is isomorphic to A*. In all three exam-
ples, the A” decompositions illustrate the isotropy-irreducible nature of SO(3n(n—
1))/S0O(n) (cf. (5.17)). O
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It is important to realize that not only does 6.9 remain valid when so(7) is
replaced by so(2m + 1), but that the same method can be applied so as to all the
higher-dimensional cases simultaneously. In the above proof, there were 14 weights of
$0(7) which did not get discarded immediately, of which 3 (spanning t) are zero. For
any m > 4, s0(2m+1) has a total of m(2m + 1) weights, but only 2m + 11 of them
do not get discarded immediately, of which m are zero. All but one of these zero
weights is cancelled by the m—2 weights which feature the adjacent pair ...,-1,1,...
in any position except the second and third, and the single weight (0,...,0,-1). Of
the remaining 11 weights, (0,...,0,-1,-1) gets discarded after applying o in 6.5,
and 4 others cancel in pairs. This leaves a total of 6 weights, 4 of which represent

irreducible summands in the symmetric product (O*so(2m +1).

We leave the reader to complete the proof of 4.3 by working through the calcu-
lations when the dimension n = 2m is even. This case is actually easier, since the
roots of s0(2m) comprise just one Weyl orbit, and do not include (1,0,...,0) etc.
Further computations involving representations of SO(n) occur in chapter 10.

The reason that the three spin groups in 6.4 are subgroups of SO(8), as well as
Spin(8) stems from the fact that Spin(7) can itself be regarded as a subgroup of
SO(8), by means of a faithful representation on R®. The inclusions

Sp(1) x Sp(1) C Sp(2) C SU(4) C Spin(7) C SO(8),

then give rise to a wealth of possible geometrical structures on an 8-dimensional
manifold. Because Spin(7) turns out also to be a possible holonomy group, 6.9 will
be relevant to a description of its ensuing curvature tensor.

To summarize, the highest weight summand housing Weyl tensors in the space
RSOM) coincides with the reduced space R of curvature tensors on an irre-
ducible 8-dimensional Riemannian manifold with holonomy group H = Spin(n) C
SO(8), for n = 5,6 and 7 (see 12.6). In each case the tensors arising in eight
dimensions are also Weyl tensors, with zero Ricci contraction. We leave the reader
to contemplate these links between curvature tensors in different dimensions, and to
decide whether they are purely formal or indicative of actual constructions of metrics

on 8-dimensional manifolds.
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7 Four Dimensions

We now begin an investigation into the geometries arising from some of the low-
dimensional groups discussed in the preceding chapter. First on the agenda is the
special orthogonal group SO(4), which is locally isomorphic to the product of SO(3)
with itself, in contrast to the simplicity of SO(n) for n > 5. This leads to a splitting
of the bundle A’T*M of 2-forms into two halves A2M and A2M, and there is
an analogous decomposition of the Weyl curvature tensor, already encountered in
4.8. The study of metrics which are self-dual and Einstein, which means that their
curvature tensor has a particularly simple form, has important generalizations in
higher dimensions.

The ensuing theory of self-duality is well known for its far-reaching consequences
in the context of the Yang-Mills equations. From our point of view, its richness will
become apparent in the study the 7-dimensional total space of the bundle A% M,
which will subsequently provide examples of a metric with holonomy group equal to
G5. For the present though, we shall have more to say about the hypersurface of
A%Z M consisting of elements of unit norm, in the light of twistor theory developed

from the Penrose programme.

Two-forms and almost complex structures

Consider the action of the special linear group SL(4,R) on (R*)* = A! preserving

the volume form

9 = dz' Adz® Adz® Adzt € A* (7.1)
Setting
oAT = b(o,7)9, o,7€N

defines a non-degenerate bilinear form b on A%, diagonalized by the six basis elements

dat A dz? £ da® A da?,
dz' A dx® £ dz* A d2?, (7.2)
dz' A dz* £+ dz? A d2?.
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In fact, if SOy(3, 3) denotes the connected component of the group of transformations

of A? fixing b (there are three other components), there is a double covering
SL(4,R) — SOq(3,3).

The three elements of (7.2) with a plus sign generate a subspace A% on which
b is positive definite. The subspace A% generated by the remaining three elements
equals the orthogonal complement of Ai with respect to b. It follows that the set of
all 3-dimensional subspaces on A? on which the restriction of b is positive definite
can be identified with the symmetric space
S0(3,3)
SO(3) x SO(3)’

which in view of (6.10) is isomorphic to the space

SL(4,R) _ GL(4,R)

SO() ~ R+ x SO(4)

of all conformal structures on R*. In other words, Ai specifies, up to a scaling, the
metric on A! for which {dz', dx?, dz®, dz*} is an orthonormal basis.

Conversely, given the orientation and metric g on A' (and so on A?), there is an
SO(4)-decomposition

N =N aN, (7.3)

where A% are the eigenspaces of the conformally invariant involution % of A? for
which b(x0,7) = g(o, 7). Two-forms lying in A2 and A? are often called self-dual
and anti-self-dual respectively. From a representation-theoretic point of view, (7.3)

is equivalent to the Lie algebra splitting
s0(4) = s0(3) ®s0(3) = su(2) dsu(2) = sp(l) ®sp(l).

This presents one with the choice of Lie groups to use as the basis of a description
of self-duality, namely SO(3) or SU(2) = Sp(1).

The decomposition (7.3) is also analogous to the splitting of 2-forms into types
which occurs on a complex manifold, and there is an intimate relationship between
the two situations that is of utmost importance for geometrical implications of the
theory. This is readily appreciated by restricting to the subgroup U(2) of SO(4)

preserving a non-degenerate 2-form w; then
A = X e '] @ Ru
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(cf. (3.5)). Modifying slightly the coordinates in (3.1), we may write

w=w'=dz' Adz? - dz* A da*, (7.4)
and the real 2-dimensional subspace [A*°] is spanned by the real components

w? =dz' Ada? — da* Ada?, WP = dat Adat — da? A da? (7.5)
of the complex symplectic form

(dat — idz?) A (do® + idx?) = w? + iw?. (7.6)
The SO(4) and U(2) decompositions of 2-forms are therefore linked by

A2 =", A% = [\*] @ Ru; (7.7)

our choice of orientation stems from the deliberate assumption that U(2) fixes a
non-zero element of A2 .

The orbit SO(4)/U(2) of w equals the 2-sphere
7 = {a1w1 + Qoo + agws : 0,12 -+ (1,22 + 0,32 = 1}, (78)

and in the presence of the metric g, each element of z € Z may be thought of
interchangeably as a 2-form or an almost complex structure in accordance with (3.8).
Just as the splitting (7.3) depends only on the conformal class of g, the same is true
of the set of almost complex structures parametrized by (7.8). As z varies, so does

its corresponding type decomposition, and we may rewrite (7.7) as

A=A, A2 =D [ (7.9)

2€Z 2€EZ

The Lie algebraic structure of A% 2 sp(1) becomes transparent when one considers

the almost complex structures I, I, I3 associated to the basis elements w?, w?, w? of
AZ; they act on R* = H like imaginary quaternions with relations
11]2 - —1211 - 13. (710)
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Associated bundles

Let M be an oriented Riemannian 4-manifold, with corresponding principal SO(4)-
bundle P. One of the direct consequences of self-duality is the splitting of the Weyl
tensor that featured in the description 4.8 of the space RS?® of curvature tensors

of M. This follows from the isomorphism
O'(Al e A?) = O°(A)) @ (MieA?) & O'(A?).

Indeed, comparing the right-hand side with 4.3 gives an isomorphism

Y2 AZRAZ, (7.11)
that emphasizes the conformal invariance of these spaces. Then W = W, @ W_|
where

Wa = Op(Ad), (7.12)

is the space of traceless symmetric products of elements of A2 . We shall now study
the mechanics of the resulting components of the Weyl tensor, and how they relate to
the associated vector bundle A2 M = P xgo) A?

of anti-self-dual 2-forms, defined
by the appropriate homomorphism SO(4) — SO(3).

Let U be an open set of M admitting a section s € I'(U, P), or equivalently an
oriented orthonormal basis of 1-forms at each point. Using these 1-forms in place of
the symbols dz® above, we obtain an orthonormal basis {w', w? w3} of sections of
A? M. From (7.3), the connection 1-form on P has the form

¢=0¢r+0;

here ¢ has values in s0(3) C End(A%). However, the basis s and our preference for

A% will be constant throughout the subsequent discussion, so we may safely write

0 —vy ¥}
sO-=1 45 0 —v3
¥ ¢§ 0
The 1-forms q/);- determine the induced connection on A2 M by means of the
formula
3
Vuw' = Z%@w% (7.13)
7j=1
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and its curvature is constituted from the components

Wl = dyi + g AYF, 1<4,75 <3, (7.14)
of s*® s*(do + 5[0, ¢])-. If we set

2 =Tl 40

U =02 402,

Ul =02 + 02,

where Y. € T'(U, A2 M), the following result is deduced from (7.11),(7.12).

7.1 Proposition (i) the traceless component of the Ricci tensor of M is repre-

sented by
Z\If ®w' € T(U,A2M®A%M);

(i) if t is the scalar curvature, then
D (T - Ltw') 0w € T(U, O (A M)

K3
1s the component of the Weyl tensor in W_.

Thus, M is Einstein if and only if the ¥’ vanish, and a neat consequence of (ii)
is that >, U" Aw’ = —2¢9. When the expression in (ii) vanishes, the Weyl tensor
may be said to be self-dual, although in practice one simply says that M itself is
self-dual, or alternatively half conformally flat. The curvature of A2 M assumes a

particularly simple form when M is both self-dual and Einstein, for
Uy =Lt U= L', U= Liw? (7.15)

A local section of A2 M has the form w = Y. a’w’, and the dual basis {a', a?, a3}
consists of functions or O-forms on the total space of the vector bundle m: A2 M — M.
Observe that

Vw = Z(dai + a7 ) Quw
J

equals the pullback by w of >, b*®c’, where
b = da' + Y aln*ip)]
J

¢ = Wt
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It follows that the 1-forms b', b?, b3 annihilate the distribution of horizontal tangent
vectors on the total space of A2 M. In this context, “horizontal” at a point x € A2 M
means “tangent to a section w with w(m) =2z and (Vw)|,, = 0”. Equivalently, the
horizontal subspace at z is the image of a horizontal subspace D, C T,P in the

principal SO(4)-bundle by the differential of the composition

P — PxA2 — A2M
p = (pu) = pu=uz.

7.2 Table Dictionary of invariant forms on A2 M

Degree | Word Local expression Abbreviation
0 aa | =Y d'a’ = p, (radius)?
1 ab | =Y a'b =1dp

2 abb | = 2(a'b%® + a?b3! + aPb'h?) | =0

ac | = d'd = 7, tautological
2-form
3 abc | = atb?c® + a?b3ct + a®bic?
—a't®*c? — a?bic? — PPt | = «
bbb | = 6b'b%b3 =0
be | =300 =dr
4 acc | =0
bbe | = 2(b"0%c + b?b3ct + bPb'c?) | =1
cc |=) c¢c = —69, cf. (7.1)

The invariant forms listed above are all independent of the choice of basis, and
so are globally defined on the total space of A2 M. They are generated by “words”
consisting of two or three of the letters a, b, ¢, and that correspond to the basis of
quadratic and cubic invariants of SO(3). Two letters together stand formally for

the dot product; for example ac = 2?21 a‘c® is the tautological 2-form, also denoted
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by 7, whose value at a point € A2 M is the pullback of the 2-form that z defines
on M. In computing the result, juxtaposition of forms denotes exterior product; the
symbol A will frequently be omitted in the sequel. Three adjacent letters denote the
determinant or alternating sum, although if two of these are the letter b, a cyclic
sum suffices.

The following identities are valid:

3odp = 2pp,
oT = py + adp,
3vdp = 28T = 6odr, (7.16)

Ty = =209 = adr,
ydr = —2/39.

It remains to calculate the exterior derivatives of the forms o, o, 5, and 7.

7.3 Proposition (i) M is self-dual if and only if one of the equivalent equations

holds:
da =y — %tpﬁ,

dy = Ltddp.

(i) M is self-dual and Einstein if and only if one of the equivalent equations holds:
do = B+ §t(pdr — $7dp),

dpg = ithdp;
Proof. The curvature enters through the first of the formulae:
db' = Z(lﬂﬁr*wzj + ),
J
dd = 4id.
J

Because the results sought do not depend on a choice of basis, computations may be
simplified by working over a point m € M for which 1/};|m = 0. For example, at m,
we have da' = b*, and
da—v = (a'¢® —a®ct)db? + (a*ct — a'c?)db® + (a®c* — a®c®)db!
= (a')?*7*(P2w? + U3 w?) — a?a37* (P2 w3 + U3 w?)

+cyclic permutations.
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If the left-hand side equals —3tpd, then setting a* = 0 shows that ¥2w? = ¥3 w2
equals zero, and using the other terms eventually gives ¥ = %twi. Conversely, the
last equations imply that da — v = —%tpﬂ.

The proofs of the remaining equations are similar. 0

The twistor space

The hypersurface
ZM = {z € A% : p(x) =1}

is a bundle over M, each fibre of which is the 2-sphere (7.8) parametrizing almost
complex structures on the corresponding tangent space to M. Passing from M to
Z M effectively accomplishes a reduction of the structure group SO(4) of M to U(2).
The equations 7.3 simplify considerably when all the forms are pulled back to ZM,
for this amounts to setting dp = 0 = S.

In conjunction with standard metrics on the fibre and base, the 2-forms +o
and 7 give rise to two invariant almost complex structures Ji,Jo on ZM, formed
by combining the tautological structure on the horizontal vectors with one of two
natural complex structures of the real 2-dimensional fibres. The ambiguity is fixed
by selecting an orientation of the fibre. If = is an arbitrary point of ZM, choose the
local basis {w!,w? w3} so that z is represented by the 2-form w!(m) = ele? — e3¢,
where {e',e? €3, e*} is an oriented orthonormal basis of T M. In other words,

a*(z)=0=a?(z), and the space of (1,0)-forms at z is spanned by

b2 4%, 7w (e! —ie?), 7w (e® +ie') for Ji, (7.17)
and

b2 —iab®, 7 (el —ie?), 7*(e® +ie?) for Js. (7.18)

7.4 Theorem [AHS] If M is self-dual, then (ZM, J1) is a complex manifold.

Proof. Consider the form

b = —b'(a® +ia'a®) + b*(a* — ia*a®) + ib®(1 — (a®)?), (7.19)
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whose value at the point x € ZM with a>=0=a3 is the element b + ib* occurring
in (7.17). The fact that g(b,>_ a'd’) = 0 implies that b is tangent to ZM, and
g(b, b) = 0 now shows that b has type (1,0) with respect to J;.

Extend the 1-forms ¢ to a basis that is covariant constant at m, so that de|,, =
0. The value at z of the exterior derivative of b, regarded as a 1-form pulled back
to ZM so that b'|, =0, is

dbl, = db? + idb?
— (WL + i) (7.20)
= (0% —iv?%) — Litr* (w? + iw?),

with the hypothesis that M is self-dual. The 2-forms 7r*\I!iL have type (1,1) relative to
Ji, and 7*(w?+1iw?) has type (2,0) (cf. (7.6),(7.7)). Therefore the exterior derivative
of any “vertical” (1,0)-form at z has no (0,2)-component. A very similar argument,
based on the forms ¢® in place of b°, and consequently not involving curvature,
shows that the exterior derivative of any (1,0) form at z has no (0,2) component.

Integrability follows from the Nirenberg-Newlander theorem, and the invariant nature
of Jl . O

Without any curvature hypotheses, J; is characterized by the following property.
An almost complex manifold defined on an open set U of M by a section w €
I'(U,ZM) is integrable if and only if w(U) is a holomorphic submanifold of the
almost complex manifold (ZM,.J;). In this context, “holomorphic” simply means
that the tangent spaces of w(U) are invariant by J;. Combined with the remarks
following (7.8), this shows that the definition of (ZM, J;) can be made conformally
invariant. Thus, M is self-dual if and only if it possesses, in a neighbourhood of
each point, an abundant supply of (negatively oriented) complex structures that are
compatible with its conformal structure.

When M is self-dual, each fibre 77! (m) = S? is a complex projective line with
normal bundle N, = O(1)®O(1), invariant by the anti-holomorphic involution or
real structure € on ZM induced from multiplication by —1 on A2 M. Thus M may
be thought of as a special sort of quotient of a complex 3-fold. The complexification
of its tangent space T,,M can be identified with the space H°(7m~!(m), O(N,,)) of
holomorphic sections of the normal bundle, and the conformal structure of M is then

recovered from the 1-dimensional kernel of
O*H(x7 (m), O(Ny)) — H (77" (m), O(O* N)).
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The technique of encoding conformal structure into holomorphic data is due to Pen-
rose, and ZM is often called the twistor space of M [PR],[Wel].

The almost complex manifold (ZM, Jy) is never integrable, not even if M is
flat. In fact, Jo has altogether more to do with real symplectic geometry, since it is
characterized by the fact that w € I'(U, ZM) is a closed form on U if and only if w(U)
is a holomorphic submanifold of (ZM, J;). Although such holomorphic sections may
not exist, this fact is extremely relevant to the study of minimal surfaces in M, or

conformal harmonic mappings of Riemann surfaces to M, which lift to holomorphic
curves in (ZM, Jp) [ES].

7.5 Proposition If M is self-dual and Einstein with t # 0, then w = —6t o+ 7
1s a symplectic form on ZM which calibrates J, for t > 0 and Jy for t < 0. In the
former case, (ZM, Jy) is therefore a Kahler manifold.

This result is an immediate consequence of 7.3. Another significant property that the
reader may readily verify from (7.18) is that the “canonical” bundle of (3,0)-forms

relative to J, is trivialized by the invariant form
dr + io; (7.21)

this defines a reduction to SU(3) and means that ¢;(ZM,J>) = 0. Many of the
above results are included in a precise study of the almost Hermitian geometry of
Z M, carried out by Muskarov [Mul].

Two pairs of simply-connected symmetric spaces satisfy the hypotheses of this
proposition, namely the sphere S* and the complex projective plane CP?, and their
duals. Vanishing of the curvature components in the spaces W_ and X2 follows from
the absence in these spaces of invariants relative to the respective holonomy groups
S0(4) and U(2). Of course, both halves of the Weyl tensor of S* vanish, the sphere
being the only compact simply-connected conformally flat manifold.

The self-duality of S* and CP? can also be viewed as a consequence of the
fact that they constitute the first two of a series of quaternionic symmetric spaces
(forming the third column of 5.7). From this point of view it is easy to identify their
twistor spaces; for example the fibration

Z8* = S005) — S06) _ St
U(2) SO(4)
coincides, thanks to (6.12), to the mapping
Sp(2 . 5p(2)

S0 <0 S xS~

CP? =
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that sends a complex line through the origin in C* to its quaternionic span in HZ.
The projection
SU(3) . SU(3)
SUA)xU1)xU(1)) S(U(2) x U(1))

exhibits the twistor space of CP? as the complex 3-dimensional flag manifold. The

ZCP?* = = CP? (7.22)

isotropy representation splits each tangent space of the flag manifold into the di-
rect sum of three complex lines, or rather three real two-dimensional subspaces. In
fact, the choices of orientation on each on these subspaces give ZCP? a total of
23 = 8 almost complex structures invariant by SU(3), of which 3! = 6 are inte-
grable. The latter include Ji, relative to which (7.22) is neither holomorphic nor
anti-holomorphic, and the (distinct but equivalent) complex structure arising from
the identification of ZCP? with the projective holomorphic tangent bundle of CP2.
Generalizations of this simple example lead to the twistor theory of symmetric spaces
in terms of generalized flag manifolds G/C(v) [BR].

In connection with CP?, it is appropriate to make some remarks concerning
the curvature of a general Kahler surface IV, as pictured in 4.8. It is customary
to arrange that the globally defined Kahler form w be positively oriented, so as
to reverse the signs of (7.7). This means that the space A? is unaffected by the
reduction of structure group SO(4) to U(2), leading to the identification

W. = O(A%) = O\l = B
of the negative half 7.1(ii) of the Weyl tensor with the Bochner tensor of N. On
the other hand, the positive half of the Weyl tensor of N is completely determined

by the scalar curvature ¢, and consequently N is anti-self-dual if and only if ¢ is
everywhere zero, a fact exploited by Derdzinski and others [D],[I;],[Boy |

More on self-dual Einstein manifolds

We shall develop properties of the twistor space ZM of a 4-dimensional self-dual
Einstein manifold M. Let L denote the complex line bundle consisting of (1,0)-
vectors relative to J; that are tangent to the fibres. Unless a' =0=a?, its dual L!
is spanned by the 1-form (7.19), and the computation (7.20) also shows that when
M is Einstein, 0b has type (2,0). This means that L~ is a holomorphic subbundle
of AbOM | and there is a short exact holomorphic sequence

05D ——T1Y2M %1 0, (7.23)
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in which D = ker # is a holomorphic distribution transverse to the fibres.

The homomorphism 6 may be thought of as a holomorphic 1-form on ZM with
values in the bundle L. If s is a holomorphic section of L over an openset U C ZM,
then § = a®s, for some 1-form o on U. Although df is not defined on ZM, the

expression
ONdI = (aAda)®s?

makes invariant sense, as its value does not depend the choice of s used in order
to compute the derivative. It follows from (7.20) that 6 A df is nowhere-zero when

t # 0, and defines an isomorphism
k= \NZM = L2 (7.24)

A (2n + 1)-dimensional manifold admitting a line-bundle valued 1-form 6 with
6 A (df)™ nowhere-zero is called a contact manifold; here we are working in the
holomorphic category.

The holomorphic line bundle L is real in the sense that £*L = L. In addition, it
has a natural unitary structure which gives rise to a canonical connection character-
ized by the fact that a section is holomorphic if and only if its covariant derivative
is bundle-valued form of type (1,0). The curvature of this connection equals the
(1,1)-form 08 1log ||s||? (this standard theory is described in more detail at the be-
ginning of the next chapter). Being a “gauge-invariant” 2-form, it must be built up
from those of 7.2, and its pullback to each fibre CP! has to coincide with a standard

(1,1)-form there. The next result is a consequence of these observations.

7.6 Theorem The twistor space ZM of a self-dual Finstein 4-manifold with
non-zero scalar curvature has a complex contact structure, whose line bundle L has

curvature proportional to the real symplectic form w of 7.5.

When the scalar curvature t is positive, L is itself a positive line bundle. In this
case, the above argument also shows that ZM must be Kahler-Einstein; in any case
its Ricci tensor measures the curvature of (7.24).

A contact manifold is in many ways an odd-dimensional version of a symplectic
manifold, but a more direct link arises from the fact that the standard symplectic
structure on the cotangent bundle induces one on the total space of the fundamental

line subbundle (in our case L™') away from its zero section. We shall discuss this a
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little more in chapter 9, but in the meantime this remark may throw more light on
some of the constructions below.

The space HY(ZM,O(T**ZM)) of holomorphic vector fields can be identified
with the Lie algebra of all infinitesimal complex automorphisms of ZM , and contains
the subalgebra g¢ of vector fields X for which [X,Y] is a section of the horizontal
distribution D whenever Y is. In other words, g¢ is the space of infinitesimal
automorphisms of the contact structure; in our setting it is the complexification of
a real Lie algebra defined by the fixed points of the involution €.

The non-degeneracy of the restriction of df to the horizontal directions implies
that 0 induces an isomorphism g¢ — H°(ZM, O(L)). For example if X € gc and
f(X) = 0, then X is horizontal, and the condition on [X,Y] implies that X = 0;
surjectivity follows from a similar argument [K3, chapter 1]. These observations lead

to a split exact sequence

0— H°(ZM,O(D)) — H°(ZM,O(T*°ZM)) = H°(ZM,O(L)) — 0.
Because L is a positive line bundle, the Kodaira theorem implies that the sections
of some sufficiently high power of L will define a projective embedding of ZM. In

fact, the morphism
ZM — CP(gr)

defined by the linear system |L| is itself an embedding in the following two basic

situations:
()M =S8, gc = sp(2,C) = O°C'.
The twistor space ZS* = CP? can be identified with the set of projective classes

[a], where « is a non-zero simple tensor product v®wv, v € C*. Such « are charac-

terized by the condition that a®a belong to the 35-dimensional submodule W of
O’g: (see 6.6).

(i) M = CP?, gc 2 5l(3,C) C End C?

The twistor space ZCP? (7.22) can be identified with the set of projective classes
[a], where « is a non-zero endomorphism with square zero. Such a class [a] is
determined by the nested subspaces (Imc,ker«), and defines a point of the flag
manifold. The projection to CP? sends the pair (Ima,kera) to the orthogonal
complement of Imer in ker a. The condition o? = 0 is equivalent to asserting that
a®a belongs to the 27-dimensional submodule B of ()’gs (see (4.12)).
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Basic topological invariants of a 4-manifold include the Euler characteristic x =
2 —2b' + b2 + b” and signature 7 = b3 — b2, where b3 denotes the dimension of
the space of harmonic (equivalently, closed) 2-forms which are sections of A% M.
Hirzebruch’s signature theorem asserts 37 equals the evaluation (p;, [M]) of the first

Pontrjagin class.

7.7 Theorem If M is a compact self-dual Finstein 4-manifold with t > 0, then
the Lie algebra g of real contact automorphisms of ZM can be identified with the
space of Killing vector fields on M, and has dimension 10 — 2b5 .

Proof. Since ZM is Kéhler-Einstein, Matsushima’s theorem [Mat] allows us to iden-
tify g with the subalgebra of infinitesimal isometries of ZM preserving the horizontal
distribution. Since the latter is orthogonal to the fibres, and m: ZM — M is a Rie-
mannian submersion (up to a constant), it follows that any element of g induces an
infinitesimal isometry of M. Conversely, an infinitesimal isometry of M will lift to
an element of g in the standard way. This bijective correspondence has been made
explicit by Nitta and Takeuchi [NiT].

From Serre duality and the vanishing theorem of Kodaira [H], the sheaf cohomol-
ogy group H'(L") = H'(ZM,O(L")) vanishes whenever ¢ > 1 and n > —1. The
dimension h°(L") of the space of holomorphic sections of L™ therefore equals the

index

ch(L™M)td (T Z M), [ZM]>

(
= (entern@A(rzM),[2M])
< " 24p1([[L]]€B7T*TM)),[ZM]>

Y2 1—
= (e (1= L2 = Lapy (M), [ZM)),

ee

computed using the Hirzebruch-Riemann-Roch theorem [H]. We have evaluated the
Todd class of the holomorphic tangent bundle of ZM in terms of the A class of its real
tangent bundle. The symbol ¢ denotes the first Chern class ¢;(L), and [L] is the real
vector bundle underlying L. Now (¢x*p,(TM),[ZM]) = —67, since (£, [CP']) = 2
and a minus sign is needed to to compensate for an orientation reversal. When
n =0, we know that h°(L™) = 1; substituting this in gives (¢3,[ZM]) = 8 — 27 and

W™ = t(n+1) 3+n(n+2)(4—7')], n>—1; (7.25)
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in particular h°(L) = 10 — 27.

Because M has positive Ricci tensor, Bochner’s vanishing theorem implies that
b = 0. A similar vanishing theorem involving the positive curvature of A2 M gives
b%2 = 0, whence the theorem. The fact that y = 2 4+ 7 may also be deduced from an
evaluation of the second Chern class of the complex rank 2 vector bundle D whose

underlying real bundle is 7*T M . U

The formula (7.25) is a result about Fano 3-folds in disguise. In modern termi-
nology, a Fano manifold is a compact complex manifold whose anti-canonical bundle
k! is positive, and its inder is the least positive integer m for which s~ ! has an
m'-root [Mur]. A well-known characterization of complex projective space CP? by
Kobayashi and Ochiai [KO] implies that it is the unique Fano 3-fold of index 4. In
the present situation, given a self-dual Einstein manifold M with ¢ > 0 for which
L has a square root, we are allowed to put n = —% in (7.25) to make both sides,
and consequently 7, equal to zero. In this case, M admits a 10-dimensional group
of isometries, and it follows easily that M is isometric to S*.

A manifold M of dimension n is called spin if there exists a principal Spin(n)-
bundle P so that P = P/Z is a principal SO(4)-subbundle of the frame bundle
LM. When n = 4, this condition is satisfied if and only if the SO(3)-structure of
A? M lifts to SU(2), which is equivalent to L having a square root. Lichnerowicz’s
theorem [Lj], mentioned at the end of chapter 4, then provides a direct proof of
the vanishing of the Weyl tensor Weyl, of a compact self-dual spin 4-manifold with
t > 0. For in the absence of harmonic spinors, the Atiyah-Singer index theorem [AS]

implies the vanishing of

AM) = —L(p,[M])

1
= g3 [ t(RAR) (7.26)

- & /M IWeyls|[* = [Weyi- |},
M

4

where tr denotes the Killing form on so(4), as Weyl_ is already zero.
The classification of compact self-dual Einstein manifolds with ¢ > 0 was first
settled by Hitchin [Ho], and independently by Friedrich and Kurke [FK], by proving

that the linear system |L| always gives rise to a embedding

F:ZM «——CP(g:) = CP0 %",
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By (7.25), the pullback F*O(2) of the square of the hyperplane line bundle has a
(35—87)-dimensional space of sections, and it is possible to reject the possible images
except for (i),(ii) above. Actually, the inequality |7| < 2x for Einstein 4-manifolds
with ¢ # 0, derived from (7.26) and the analogous expression

1 1
x = st [ (IWets P+ [ Wenl |+ 55¢7) .

implies that 0 < 7 < 3, and the cases 7 = 2,3 can be ruled out by considering the
action of g on the harmonic 2-forms resulting from 7.7 [Bes, 13.30]. When 7 =1,
the isotropy subgroup must lie in U(2), and it is easy to conclude M = CP2.

7.8 Corollary A complete self-dual Einstein manifold with scalar curvature t > 0

is isometric to S* or CP?, endowed with standard metrics.

Note that in the presence of a positive definite Ricci tensor, “complete” implies
“compact” (by Myers’s theorem [My]). Actually, S* and CP? are the only compact
simply-connected 4-manifolds with 7 < 1 admitting a self-dual conformal structure
with £ > 0 [Po;]. Other topological consequences and interpretations of self-duality
have been given by LeBrun [Le].

Singular models for the cases 7 = 2, 3 are provided by taking M to be the quotient
of S* or CP? by the Zj-action induced by the geodesic symmetry about a point.
For example, when g¢ 2 so(4,C) = A°C* is the complexification of the isotropy Lie
algebra of S*, a point [a] of FI(ZM) is such that a®« belongs to the 19-dimensional
submodule formed from the spaces (7.11),(7.12), so that -« = 0 = @ A a. Thus
Z M lies in the singular intersection

{[#0, 21, 22, 23, 24, 25) € CP® 1 25 + 22 + 25 = 0= 25 + 25 + 25}
of two quadrics, which can be identified with CP?/Z, induced from the linear map
CoeC — OCaC
(w,v) = (u®u,v®D).

By finding a twistor space which is a small resolution of a less singular intersection
of two quadrics in CP®, Poon [Po;] showed that the connected sum CP%#CP?
admits a self-dual metric with positive scalar curvature. These results have received

significant generalizations in [Pos],[F1],[DF].
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Finally, we consider the case of a self-dual manifold M with zero Ricci tensor.
Such a manifold M is sometimes called half-flat, although “three-quarters flat” might
be more accurate, since only 5 of the 20 curvature dimensions remain. Because (7.15)
is satisfied with ¢ = 0, the vector bundle A%2 M is M is flat. In the context of Yang-
Mills theory, they are “gravitational instantons”, since their tangent bundle is truly
self-dual in the sense that its curvature 2-forms belong entirely to AiM . Half-flat,
and therefore Einstein, metrics also arise from solutions of the anti-Dirac or twistor
equation on an oriented 4-dimensional spin manifold, a fact discussed in [Sq],[L3].

If M is half-flat and simply-connected, there exists a global orthonormal basis
{w!,w? w®} of covariant constant sections of A2 M. The orthogonality of the basis
translates into the quaternionic identities (7.10) for the complex structures Iy, Is, I5.
Then M is hyperkdhler in the sense that its metric is simultaneously Kéhler for each

member of the 2-sphere

arly + agly + azlz, af +a5+a3 =1, (7.27)
of complex structures, that determines a holomorphic projection

p: ZM — S? = CP'.

As a submanifold of ZM , each fibre p~!(z) represents M endowed with the complex
structure in question. For example, removing a real line 7 !(c0) & CP! from the
twistor space CP3 of S* gives a projection CP? — m7!(cc) — CP!, that identifies
the twistor space of R* with the total space of the holomorphic rank 2 vector bundle

O(1) ® O(1) over CP'. Removing another line 7' (0) gives a projection
CP? — (m ' (0) Um *(00)) — CP' xCP' = @?

to the quadric that parametrizes all orthogonal almost complex structures on R*.
Another way to look at the hyperkahler 4-manifold M is to fix the Kéhler struc-
ture defined by w!, and observe that the complex symplectic form 7 = w? + iw?
has type (2,0), and trivializes the canonical bundle £ = A*°M. One deduces the
equivalence of the following conditions for an oriented simply-connected Riemannian
4-manifold:
(i) half-flat, meaning self-dual and zero Ricci tensor,
(ii) hyperkahler, meaning admitting a quaternionic triple of Kahler structures,
(iii) holonomy group H contained in the group SU(2)=Sp(1), whose Lie algebra

. . . 2
is isomorphic to A7 .
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A compact complex 2-dimensional manifold with vanishing first Chern class
¢1(M) = —ci(k), and vanishing first Betti number b, is called a K& surface. These
arise naturally as smooth members of the anti-canonical linear system of divisors on
a Fano 3-fold, discussed above. The simplest example is the quartic X:z’lzo(z"‘)‘l =0

in CP3, and one can check that

Oy2 .1 2
n=(5) ) ~i(5)
extends to nowhere-zero closed (2,0) form on this hypersurface.

In terms of classification theory, K3 surfaces are the minimal models for simply-
connected surfaces of zero Kodaira dimension. Any two K3 surfaces are diffeomorphic
by Kodaira’s classification [Ko], and the set of them is parametrized by an irreducible
complex space of 20 dimensions, 19 of which arise from the algebraic category. If
a finite group of order n acts freely on a K3 surface M, then the quotient has
24/n=x>2+|r| =2+ 16/n, whence n =2 or 4. In fact,

7.9 Theorem [H,] A compact 4-manifold M with restricted holonomy group H°
equal to SU(2) must be a flat torus, a K8 surface, or a quotient of the latter by Zo
or Z2 X ZQ.

The case (M) = Zsy corresponds to an Enriques complex surface. A more
concrete example of a K3 surface is Kummer’s surface obtained by blowing up the
sixteen singular points of T'/o, where T = C? /A is a complex torus and o denotes the
involution (21, 22) — (—z1, —22) of C?>. More explicitly, a punctured neighbourhood
of each singular point resembles (C?> — {0})/c, which is naturally isomorphic to the
total space of the holomorphic line bundle O(—2) minus its zero section, and the
point can be replaced by the zero section CP!.

Unfortunately, finding a closed (2,0)-form falls a long way short of finding a
metric for which it is covariant constant, and the existence of a hyperkahler metric
on any K3 surface is a much deeper result that is a consequence of Yau’s proof of
the Calabi conjecture (see 8.2), and the existence of some Kéhler metric (see [Beas]
and references therein). More elementary is the existence of a hyperkihler metric
on the non-compact total space of the line bundle O(—2) = \°CP!, discovered by
Eguchi and Hanson [EH]|, that we shall discuss in the next chapter. This led to an
intuitive description of Yau’s metric as sixteen such metrics glued in to a flat torus
[P],[H4], a notion made rigorous by Topiwala [To] who identified the twistor space

of a K3 surface.
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8 Special Kahler Manifolds

There are two obvious higher-dimensional generalizations of half-flat metrics on four-
manifolds, namely Kahler ones with vanishing Ricci tensor, or alternatively those
satisfying the stronger condition of being hyperkahler. These two classes are charac-
terized by a holonomy group that is contained in SU(m) or Sp(k) respectively, and
coincide when 2m = 4k = 4.

One of the problems with Kahler geometry is that there are many ways to choose
a Kahler metric on a given complex manifold. Yau’s proof of the Calabi conjecture
singles out a Kahler metric with a preassigned Ricci tensor, and we shall exploit this
theorem to exhibit compact manifolds which must admit Ricci-flat metrics. An es-
sential reference for this is Beauville’s paper [Bea;|. The case of SU(3) holonomy has
attracted a great deal of attention from physicists in the context of ten-dimensional
superstring theory. However, we begin with Calabi’s construction, now understood
as fundamental, of analogues of the Eguchi-Hanson metric with holonomy SU(m+1)
on the total space of a holomorphic line bundle. Similar techniques will be used later
on bundles over 4-dimensional manifolds.

By contrast with the Kahler situation, a hyperkahler metric is more or less speci-
fied by its associated triple I, Iy, I3 of complex structures. More will be said about
this at the end of the next chapter, whereas in the present one we shall exploit the
more accurate characterization of hyperkahler metrics by the corresponding 2-sphere

of real symplectic forms.

The canonical bundle

Recall from chapter 4 that the Ricci tensor of a Kahler manifold M is essentially
the curvature of its canonical bundle xk = A™°M . To be more explicit, the covariant

derivative of a local section s € I'(U, k) has the form
Vs = 9Y®s, (8.1)

for some connection 1-form . Because s is an (m, 0)-form on the complex manifold
M, we have 0s = 0 and

ds = s = P As. (8.2)
107



By definition, s is holomorphic if and only if (8.2) vanishes, which is equivalent to
the assertion that ¢ is a (1,0)-form.

The induced Hermitian structure on k specifies ||s||? = (s, s) by

mls As = i™|s| 2™, (8.3)

and

dlog(|s|?) = ——d{s,s) = ¥+ .

[lsl?

When s is holomorphic, 1 = dlog(||s||?), and the curvature of « is represented by
the (1,1)-form di. However, this will be purely imaginary, and the Ricci form tr(R)
defined by (4.14) equals idv. If s = dz! A--- Adz™ in local complex coordinates,

tr(R) = —idd log(||s||?) = 00 log(det(gag)). (8.4)

The manifold M is Kdhler-Finstein if its Ricci form (8.4) is a multiple of the K&hler

form w at each point.

8.1 Theorem [Cas| If M is Kdhler-Einstein with scalar curvature t # 0, there

exists a Kahler metric with zero Ricci tensor on a domain of the total space of k.

Proof. It is now convenient to take s € I'(U,k) to be a local unitary section, so
that ||s|| = 1 and ¢ is purely imaginary. If a denotes a complex-valued function
on U, then the section as is covariant constant at m € M if and only if V(as) =
(da + ab)®s vanishes at . This allows us to regard the coordinate a as a function

on the total space of k; as such it gives rise to a (1,0) form
b =da+anp

there, with notation just like 7.2. Let p = |a/? denote the radius squared, so that
dp = ab+a@b. By assumption, idiy = tw, where w is some positive constant multiple
of the Kéhler 2-form of M. Then db = b A 7% — iatm*w, whence

W= ur*w—t WibAb (8.5)

is a globally-defined closed (1,1)-form, for any function u = u(p), where u' = du/dp.
We shall assume that v and u’ are strictly positive functions, so that @ determines

a Kahler metric.
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The exterior derivative
dr = daAN7*s+an* (Y As) = bAT"s (8.6)

of the tautological form 7 = an*s on k is a closed or holomorphic form of type

(m 4+ 1,0), whose norm relative to the above Kahler metric is given by

ld[I*(u(p)™u'(p) = t(m + 1),

using (8.3). Now dr is covariant constant if and only if ||d7| is constant, which
1
is solved by taking u = (tp + £)m+1, where ¢ is a constant. Thus (8.5) and some

multiple of (8.6) have determined a metric

_1 __m_ _
g = (tp+ 0™ rgM + —<(tp+ ) "TRe(b®), (8.7)
whose holonomy is contained in SU(m + 1), provided tp+ £ > 0. O

If t > 0 and / is chosen positive, the metric ¢ is defined everywhere on the
total space of the canonical bundle x, and will be complete if M is. To check
this, it suffices to examine the length of geodesics relative to the radial parameter,
and the key point is that [°(tp + £)~™/2m1d(p'/2) diverges. The basic example
comes from the complex projective space M = CP™, with its standard Fubini-
Study metric; in this case the holonomy of x equals SU(m + 1). The canonical
bundle A™°CP™ = O(—m—1) is dual to the (m+ 1)3* power of the hyperplane line
bundle, and away from the zero section resembles C™ ! /Z,,,1. As p — oo, (8.7) is

locally asymptotic to the Euclidean metric
dr? + r2ds®, = p/Hm+), (8.8)

where ds? denotes a standard induced metric on the sphere S?™*1 c C™*!, and r
represents distance from the origin in C™*!.

For k = 1, we obtain the Equchi-Hanson metric over T*CP' = O(—2) described
differently in [EH],[EGH]. Another, at first sight unrelated, example of an anti-self-
dual Kahler metric is the one in 3.6 with m = 1, whose scalar curvature turns out to
be zero (cf. 4.8). This observation of Burns was the starting point of a construction
of LeBrun [Leq] of a family of anti-self-dual K&hler metrics on the total space of
O(—k) over CP! for all k > 0 that includes the two examples cited.
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Calabi-Yau metrics

Let M be a fixed complex manifold. The formula (8.4) shows that the Ricci curvature
of any Kahler metric is determined by its volume form, and the Ricci forms of two
Kihler metrics g, ¢’ differ by —id0u for some real function u. In fact 1/27 times

the Ricci form of any Kahler metric represents the real Chern class

ci(k) = ct(A™M) = —ci(M).

8.2 Theorem [Y,]| Let M be a compact Kahler manifold with Kdhler form w,
and suppose that 5-c is a closed (1,1)-form representing c1(M). Then there exists

a unique Kdhler form w' cohomologous to w with Ricci form c.

The interpretation of the Ricci tensor with volume forms, and the usual 90
lemma, allows one to restate the theorem as follows. Given a smooth positive function
u on M such that fM uw™ = fM w™, there exists a smooth function v such that
W = w — i00v is a positive (1,1)-form satisfying @™ = uw™. The uniqueness of
v and the formulation of the problem are due to Calabi [Cas]. A related theorem
due independently to Aubin and Yau asserts that any compact complex manifold
whose first Chern class is negative admits a Kahler-Einstein metric, unique up to
homothety [Au|. However, we shall require only the corollary of 8.2 that given M,
a necessary and sufficient condition for the existence of a Ricci-flat Kahler metric is
the vanishing of ¢;(M).

Before discussing examples of Kahler manifolds with ¢; = 0, we shall deduce
some topological consequences of 8.2. First consider the 4-dimensional situation,
with the Euler characteristic x = 2 —2b; + b5 +b, and signature 7 = by —b, . If M
is a K3 surface, A2 M is actually trivialized by a basis of covariant constant forms,
and x =5+b;, 7 =3 —b;. Combined with the signature theorem p; = 37, and

standard formulae p; = ¢ — 2¢co = —2¢,, and ¢, = Y, we obtain
b, =19, x =24, 7=-16. (8.9)

In passing from the case of SU(2) to SU(3) holonomy, one encounters an impor-
tant difference, which derives from the fact that a compact manifold with holonomy
equal to SU(m) has no holomorphic (p,0)-forms for 1 < p < m—1. This is a conse-
quence of a lemma of Bochner’s [BY, page 142], which states that any holomorphic
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tensor field on a compact Ricci-flat Kédhler manifold is necessarily covariant constant,
and so SU(m)-invariant. In particular, a manifold M with holonomy group equal
to SU(m), for m > 3, has no harmonic forms of type (2,0). It follows that M
must be projective, for one can approximate the Kahler form by a positive harmonic
(1,1)-form representing a rational cohomology class.

The remaining Betti numbers on a compact real 6-dimensional manifold with
holonomy group equal to SU(3) are then given by by =0, by = h(l)’1 and b3 = th’l,
where h? denotes the dimension of the space of primitive harmonic forms of type
(p,q) (see 3.1, 4.11). Thus the Euler characteristic is

x =214 hyt —hih).

Given a holonomy reduction in dimensions divisible by four, other topological for-

mulae conspire to estimate the Betti numbers. This is illustrated by

8.3 Theorem The Betti numbers of a compact 8-manifold with holonomy group
equal to SU(4) satisfy by + b > 50, and the Euler characteristic is divisible by 6.

Proof. Following the techniques of [S;, section 7], we begin with the formulae

1
o7 (710% - 4172) = 2,

) (8.10)
52— pt) = 7,
which are two applications of the Atiyah-Singer index theorem. The first expresses
the equality of the A or Todd genus with the index of the Dirac or 2-step Dolbeault
complex
T(M, \0M @ 2920 @ 2% M) 259, 1, Ao M @ A3 M), (8.11)
(the Dirac and Dolbeault complexes are equivalent in the presence of the reduction
to the special unitary group; see (12.2)). Vanishing theorems can be used to show
that the only harmonic forms are sections of the trivial bundles A\*°M, \*M | so
the index is indeed 2.
The second formula in (8.10) is the Hirzebruch signature theorem, expressing the
equality between the L-genus and the index 7 of the extension of (8.11) by tensoring
4
both sides with @ M?. The resulting “twisted Dirac complex” is built around the

p=0
spaces

A = DY) e [\] @ [A] SR,
=D Te Ve ] (8.12)
AL = T e N,

111



whose decompositions are deduced from 3.1 and a little guesswork. Thus,

by = 1+ hy',
by = zhg’l, (8.13)
b = 34+h2% by = 2R3t + Ryt

A third equality
dp, — pt = 8x

follows from the equations p; = —2c¢,, ps = 2c4+c¢f and ¢4 = ¥, and is actually valid
for any 8-manifold admitting a (merely topological) reduction of structure group to
Sp(2)Sp(1), Spin(7) or SU(4), a consequence of computations involving a maximal
abelian subalgebra in s0(8). Combined with (8.10), we obtain

X = 37— 96. (8.14)
Combining this with (8.13) yields

h2? 4 o2t = 47 + 3RS + 4R,
he' =kt + byt = Gx -9,

the last equation could also have been found by tensoring (8.11) by AY°M and

computing an index. O

The most straightforward way of exhibiting Kahler manifolds with ¢; = 0 is
as complete intersections of hypersurfaces in a complex projective space CP™. Let
f1, ... fr be homogeneous polynomials of degrees d;, ... d}, in the variables 2°, ..., 2™,
so as to define hypersurfaces Mi,..., M} in CP™. Provided df; A --- A dfy is non-
zero at all points in the intersection M = (), M;, then the latter is a smooth k-

codimensional submanifold M of CP™, and
TCP™ |y = TM ® O(di)|m @ - ® O(d) |-

The total Chern class of M is given by

o(TM) = (L+ 2" [+ diz) ™, (8.15)

=1
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and ¢; = 0 if and only if Zle d; = m+ 1. The Euler characteristic

X = {em-r(M),[M])

of M equals the coefficient of z™* in (8.15) times [[d;. Using the notation

(mldy, ..., dk)y, the first few intersections are

3|4) 24,

415) 200,  (43,2)24,

5/6)2610, (54,2)-176, (513,3)-14a, (5]2,2,2)a,
6/7)30084, (6]5,2)2100, (6[4,3)1476, (6]3,2,2) 144-

New examples can often be created by quotienting out by a finite group. The

(
(
(
(

simplest one consists of the hypersurface Zﬂj}(za)p = 0 of CPP~! with p a prime
number; this admits a free action by the group generated by (z%) — (w®z®), where
w is a primitive p'" root of unity, and m; (M) = Z;. However, non-simply-connected
examples with holonomy group equal to SU(m) can only arise when m is odd. For

when m is even, the Todd or arithmetic genus

m

X(M,0) =Y (=1)Phr°

p=0
is equal to two; this is also true when M is replaced by any covering (necessarily

finite by 10.8), contradicting the multiplicative behaviour of the genus.

Manifolds with holonomy group equal to SU(3), so-called Calabi-Yau spaces,
are much favoured by physicists as an ingredient in the compactification of Fy® Fjg
superstring theory; see, for example, [Hu]. A key point is that the SU(3) holonomy
reduction is characterized by a parallel spinor, which results from the fact that the
restriction of the basic representation of Spin(6) = SU(4) to SU(3) contains an
invariant (cf. 12.3). The search for examples with small Euler characteristic has led

to various ingenious modifications of the above methods, for example

(i) replacing CP™ by a product CP™ x ---CP™ of projective spaces, corre-

sponding to configurations

my diyp --- dig

k
. omi+ 1= dij,
j=1

my drl drk

which have been studied in [Y3],[GHu].
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(ii) replacing CP™ by a weighted projective space, defined as the quotient of
C™t! — {0} by the C* action (2°,...,2™) — (#*02°,...,t¥m2™). In this case the
degrees di,...d; of the intersecting hypersurfaces must satisfy > d; = > w;, and

the intersection must keep clear of the singularities.

(iii) performing a quotient by a finite group with fixed points, and then resolving
the singularities. For example an isolated point associated to a singularity of the form
C?/Z3 can be blown up by “gluing ” in a copy of the complex symplectic manifold
T*CP?%. Yau’s theorem will then guarantee the existence of a metric with SU(3)
holonomy on the resulting non-singular space. Examples occur in [CHSW],[SW],

and we shall be studying a process of this sort for the holonomy group Sp(2) below.

Hyperkahler manifolds

We have been speaking about reductions to SU(m). If m = 2k is even, then, in
view of (5.8), it is natural to seek a further reduction to the quaternionic unitary
group Sp(k). Since Sp(k) equals the subgroup of SO(4k) that commutes with right
multiplication of the imaginary quaternions %, j on R*  the holonomy group H of
a Riemannian manifold is contained in Sp(k) if and only if there exists a pair I3, I
of anti-commuting almost complex structures that are covariant constant. Both Iy
and I, give M the structure of a Kéhler manifold, the Sp(k)-structure being the
intersection of the two corresponding U(2k)-structures. If we set I3 = I 5, then we
obtain a 2-sphere of complex structures > a’I; as in (7.27).

Let w!,w?,w?® denote the Kihler 2-forms corresponding to I, I», I5; in flat space

R* , they are just the imaginary components

8>—A
Il
M=

(dz$ A dz§ — dz§ A dx§)

Q
I
—

(dx§ A dx§ — dx§ A dxf) (8.16)

El\)
I
M=

Q
I
-

80.3
I
M=

(dz$ A dx§ — dzg A dx§)

Q
I
_

of 3., dq" ®dg®, generalizing (7.2). As in the 4-dimensional case (7.6), the form
n = w? + iw?* has type (2,0) relative to I;. It is covariant constant, closed and
holomorphic, and defines a complex symplectic structure. Indeed, n* is a nowhere-
zero section of the canonical bundle x, and determines the underlying SU(2k)-

structure that reminds us that M is Ricci-flat.
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Conversely, suppose that a Kahler metric is given on a 4k-dimensional manifold.
A reduction to hyperkahler is then accomplished by a covariant constant complex
symplectic form n € T'(M, *°M) such that L*(n A7) is a non-zero multiple of
the fixed Kahler form w!, where L* is the natural contraction A\>»? — A“!. This
last condition is automatic if M is irreducible, and in any case will apply on each
invariant subspace of T,, M.

By appealing to Yau’s theorem, a much stronger statement may be given which
puts less emphasis on the existing metric, namely a compact Kahlerian manifold M
with a complex symplectic form 1 admits a hyperkéhler structure. For n* trivializes
the canonical bundle, and so there exists a Ricci-flat Kahler metric. With respect
to this new metric n is covariant constant, because this is true for any holomorphic
tensor on a compact Ricci-flat Kahler manifold, by Bochner’s lemma, already men-
tioned above. A recent result of Todorov shows that even the assumption that M
be Kahlerian be dropped.

The next result, though elementary, is in the same spirit; it assumes the algebraic
reduction to Sp(k) has been accomplished pointwise, and gives a powerful criterion

for the holonomy reduction.

8.4 Lemma [H;] The 2-forms w',w? w? arising from an Sp(k)-structure are all

covariant constant if and only if they are all closed.

Proof. By assumption, M has a Riemannian metric g and almost complex structures
I; which determine the forms w® as in (3.8). The identity I, = I;I3 translates into

w! = C(w?*®w?), where C is an O(4k)-equivariant linear mapping, so
Vw!' = C(Vw’®w? + w’®@Vw?). (8.17)

Let V' be the module with highest weight (0,...,0,-1,-2) that features in 3.5, with
respect to the subgroup U(2k) leaving [; invariant. Then the right-hand side of
(8.17) belongs to the space [V]®[A*°] which does not contain [V as a real sub-

module. Since w! is already closed, it must be covariant constant. ]

An alternative condition to impose on an Sp(k)-structure is that the almost
complex structures I, I, I3 all be integrable. In this case the manifold is said to be
hypercomplex; see 9.12. An analogue of 3.2 replaces U(m) by Sp(k), and the other
three groups by SO(4k), GL(k,H), and Sp(2k,C). Just as a Kdhler metric arises
from compatible symplectic and complex structures, so a hyperkdhler metric arises

from compatible complexr symplectic and hypercomplex structures.
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The cotangent bundle 7% M of any complex manifold admits a complex symplectic
form 7 equal to the exterior derivative of the tautological 1-form. If 2!, ...,2™
are complex coordinates on M, a point of T*M (we should really write A\'X°M to

emphasize the complex structure) has the form ) w,dz®, and

n=w+iw = Z dwo N T dz?. (8.18)

The holomorphic cotangent bundle of CP! is identical to its canonical line bundle,
and the above construction provides a generalization, for m > 2, of this special
case distinct from (8.6). The methods of 8.1 may be applied to construct a real
non-degenerate closed 2-form w! on the total space of T*CP™ which combines with
(8.18) in order that

8.5 Proposition [Cas] The total space of the cotangent bundle T*CP* of complex

projective space has a complete metric with holonomy equal to Sp(k).

The first example, described next, of a compact manifold with holonomy equal
to Sp(k) for k > 1 was given by Fujiki [Fu], thereby revealing an error in the paper
of Bogomolov [Bos]. Let K denote any K3 surface, and consider the space M
formed by blowing up the diagonal in K x K, which gets replaced by the projective
holomorphic tangent bundle Z of K.

ML) Kx K

& &

M —— (KxK)/o.

The quotient M of M by the involution ¢ induced from interchange of the factors

is non-singular, and M is a double cover of M branched over Z.

8.6 Theorem The compact 8-manifold M admits a metric with holonomy group

equal to Sp(2).

Proof. If n denotes the holomorphic symplectic form on the K3 surface K, the form
£ = m™(n®1 + 1®n) is invariant by o and therefore passes to a 2-form & on the
quotient M. Since €2 = £ A € vanishes only on Z, and only to first order there, &2
must be nowhere zero on M. The existence of a hyperkdhler metric on M follows
from the fact that M is Kéhlerian (if K is not algebraic one needs to resort to [V]),

together with Yau’s theorem as explained above.
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The Euler characteristic of M equals

x(M) =

which precludes it from being reducible. The fact that its holonomy group equals
Sp(2) now follows from the classification 10.7, or the stronger decomposition theo-
rem 10.8. U

The techniques of 8.3 combine with decompositions of 9.2 to show the following.
Any Riemannian 8-manifold with holonomy group equal to Sp(2) has x = 37— 144,

and there exist non-negative integers p, ¢ such that

by = 0,
b2 = 3+p,
b3 = 2q7

bi ="76+Tp—2q, b* = 3p.

In particular bs + b > 76, and 6|X. In fact, the latter is true for any compact
Riemannian 8-manifold whose restricted holonomy group H° is contained in SU(4),
by the calculations of 8.3.

The manifold M above is simply-connected, and has b3 = 0, and so (p,q) =
(20,0). It may be regarded directly as a resolution of the symmetric product (K X
K)/o, and as such is the so-called Douady space or Hilbert scheme Hilb’K [Fo].
Theorem 8.6 then exemplifies a general construction, described by Beauville [Beaj |
and Mukai [Mu;], in which it is possible to form new hyperkédhler manifolds out of
“symmetric products” of old ones. If we replace K in 8.7 by a flat torus, M becomes
the product of a torus and a Kummer surface, but starting from K x K x K, one can
produce a simply-connected 8-manifold with holonomy Sp(2), and by = 7. Other

examples and interpretations of this construction occur in [AH].
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Symplectic reduction

Let N be a submanifold of an ordinary (that is, real) symplectic manifold M, and let
i*w denote the pullback of the symplectic form to N. Using the condition d(i*w) =
i*(dw) = 0, one can show that the distribution D C T'N defined by

D, = {X € T,N : X li*w =0}

is integrable. Working locally if necessary, let us suppose that D is tangent to a

foliation with a smooth space of leaves M. The fact that the Lie derivative
Lyw = X Bdw+d(X ) = d(X w)

vanishes whenever the vector field X belongs to D means that +*w is the pullback of
a closed 2-form & on M. It is easy to see that w is non-degenerate, and the quotient
(M, w) is called a symplectic reduction of (M, w).

In order to repeat this procedure above under more controlled circumstances,
suppose now that G is a group of isometries acting on a Kédhler manifold M with
tensors ¢,I,w as in (3.8), such that g*w = w for all ¢ € G. The last condition
is automatic when M is compact or irreducible (cf. (5.4)). An element of the Lie
algebra g of G' can be regarded as a Killing vector field X on M for which 0 =
Lyw =X dw, so locally we can write X 1w = df ,. If Y is any tangent vector,
Y(fy) =w(X,Y)=—g(X,Y), whence (i) X is itself tangent to the level sets of
fx,and (ii) IX is normal to the level sets.

In the above situation, a moment mapping for the action of G on M is an

equivariant mapping u: M — g* satisfying
X lw = {du, Xy,

where the right-hand side represents contraction with X, thought of as an element
of g, leaving an ordinary 1-form on M. Inherent in this definition is the fact that
any coadjoint orbit (that is, of G on g*) has a natural symplectic structure; the
skew pairing between tangent vectors at £ € g* determined by A, B € g equals
(&, [A, B]). Using some concepts from the cohomology of Lie algebras, one can
establish the existence of moment maps under mild assumptions, for example that
H'(M,Z) be zero and that G be compact or semisimple [MW].
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Given i, consider the G-invariant submanifold N = 1~'(0), whose tangent space
at n is the orthogonal complement of {I(X]|,): X € g}. If G acts freely on p~'(0)
with Hausdorff quotient M= pu~1(0)/@G, there is a principal bundle

ot (0) — M,

and a symplectic form w on M such that 7% = i*w. The tangent space TIM can
then be identified with the space of vectors orthogonal to the fibre directions at any
n € m~'(x), and from the resulting equivariant horizontal distribution, M acquires
a Riemannian metric g and almost complex structure I , both compatible with w.
One can verify that w is parallel with respect to g, so that M is a Kihler manifold.

The simplest example of this construction concerns the action of the circle group
U(1) consisting of multiplication by e* on C™*! = R*"*2 endowed with its standard
Kéhler form (3.6). It is easy to see that the square p=>"""  |z*[* of the radius is
a moment function, and as U(1) is abelian, we may apply the above construction to

the inverse image of a non-zero value in g*. The resulting quotient

—1 2m—+1
v st ¢

gives the Fubini-Study metric on complex projective space. The whole procedure is

just a real counterpart of the description of CP™ as the complex quotient parametriz-
ing the generic C*-orbits of C™*!.

The discovery that symplectic reduction adapts naturally to a hyperkahler con-
text was made by Hitchin, Karlhede, Lindstrém and Rocek [HKLR]. Let G be a
group of isometries of a hyperkahler manifold M preserving the holonomy bundle,
so that ¢g*w’ = w® for i = 1,2, 3. We shall suppose that there exist moment maps
for each of the three symplectic forms w?, or more succinctly, a mapping

pg = pli+ pPj + i’k - M — g"QImH = g*®sp(1).

This time the tangent space to p, at n is the orthogonal complement of the span of
the vectors I.(X|,), r=1,2,3, X € g.

8.7 Theorem [HKLR] If the quotient yu;"(0)/G is a manifold, then its induced

Riemannian metric is hyperkahler.

Proof. Briefly, this may be accomplished by emphasizing the role of the complex
symplectic form w? + iw?. The latter has type (2,0) with respect to the complex

structure I; defining w;, which implies that the function
pe = pi° + ip’: M — g"®RC

119



is holomorphic. Then p_'(0) is a Kéhler submanifold of M admitting a real moment

mapping p!, and one can form the quotient

(1) 0) N M(0) _ 1 (0)
G G

From above, this will be Kahler, but we can make do with the weaker assertion

! compatible with the induced metric. For,

that it admits a real symplectic form w
repeating the argument with I, I3 gives two more symplectic forms @?, &%, and the

result follows from 8.4. O

This time the basic example involves the action of U(1) given by left multiplica-
tion by e on HF!, whose flat hyperkihler structure is defined by right quaternion
multiplication. Here 7 is some fixed unit quaternion, and the corresponding infinites-

imal isometry X satisfies

J(f: dg* ndg?) = 3 (igedg — dgeiq®)
a=0

The moment mapping is

k
py = — Zﬁaiq“
= — Z —wj)i(z" + jw®)
= zZ|w — |2 —QkZz“w“
where U(1) acts on the complex coordinates by (za,wa) — (%24, e %w,).
In general, it is allowable to consider the inverse image by the moment mapping

of a point whose components lie in the dual of the centre of g. Complexifying the

above U(1) action yields a complex quotient

pe (1) o {(zaswa) € CH @ CH 1 Y 2pwa = 0, (24) # 0}
U(1) C !

that can be identified with the holomorphic cotangent bundle T*CP* . General prin-
ciples imply that the induced metric is complete, so in this way a proof of 8.5 is
obtained. A modification starting with the action of U(m) on HP®"*? produces

hyperkahler metrics on the cotangent space of the Grassmannian Gr,(C?*¢) [LR].
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Similar constructions produce many examples of previously known hyperkéahler met-
rics, particularly in four dimensions.

The standard complex structure of the line bundle T*CP! = O(—2) defines a
resolution of the singular space C?/Z,, in which the origin of C? has been blown up
to the zero section ig(CP'). This resolution fits in with deformations of the singular
space to form a CP!-family of complex structures on T*CP!, which determines
its hyperkéhler structure. More generally, for any finite subgroup I' of SU(2) the
singularity C?/I" has a minimal resolution described by Brieskorn, which Kronheimer

[Krj] exhibits as a hyperkéhler quotient of the form

= , Eet'®sp(l),

where U is essentially a product of unitary groups, and the Lie algebra t of the
centre of U is identified with the maximal abelain subalgebra of one of root systems
a,, On, €, e7, eg associated to the set of irreducible representations of I'. Provided
the components of £ in § are regular, the metric with SU(2)-holonomy on M is
complete, and asymptotically locally Euclidean or “ALE” (cf. (8.8)). The singularity
itself corresponds to taking & = 0, and the construction yields the expected number
of parameters of such ALE metrics, namely 3dimt — 3 [GHal,[GP]. The A, case,
which corresponds to I' = Z,,1 cyclic was studied previously by Hitchin [Hy| and
gives rise to the so-called multi-Eguchi-Hanson metrics.

The power of 8.7 becomes even more apparent when it is applied in infinite-
dimensional situations, in particular to the moment mapping defined by Atiyah and
Bott [AB] on the space of connections. Let P is a principal G-bundle over a real 2m-
dimensional symplectic manifold M, where G is a compact semisimple Lie group.

By fixing one G'-connection, we identify the set of all of them with the space
A =T(M,Ad PRT*M)

of 1-forms on M with values in the adjoint bundle AdP = P X g (see 1.6). A
symplectic form w on M furnishes A with a symplectic form

(A,B) = / tr(AAB)AWw™ ', A BE€E A,
M

where tr denotes an invariant trace on the Lie algebra g. The infinite-dimensional
gauge group G = Aut P acts on A preserving the symplectic structure, and the
value p(A) of the moment mapping corresponding at A € A can be identified with
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the 2m-form Fy A w™ !, where F4 = dA + ;[A, A] denotes the curvature of the
connection A.

Now suppose that M is 4-dimensional, and possessing a triple of symplectic forms
wl w? w? € T'(M,A%2 M) that define a hyperkiahler metric. The above considerations
then lead, at least formally, to a hyperkahler quotient

pat(0)  {A:F4eT(M,Ad P®A2M)}
g g

consisting of the moduli space of solutions of the Yang-Mills equations with self-dual

curvature. When M is a higher-dimensional hyperkihler manifold, the equations
resulting from the moment mapping are underdetermined, and must be supplemented
by extra integrability conditions to obtain Yang-Mills connections [MaS],[Sk].

We describe very briefly some fundamental examples that can be derived from

the 4-dimensional picture:

(i) When G = SU(2), there is the “classical” 8k-dimensional moduli space of self-
dual connections on $* = R* U {oo} with a framing at infinity. Conformal invari-
ance plays a key role in 4-dimensional Yang-Mills theory. The original description
by Atiyah, Drinfeld, Hitchin and Manin [ADHM] of this space using quaternionic
matrix algebra can be re-interpreted as a finite-dimensional hyperkahler quotient

construction.

(ii) Other moduli spaces arise from dimensional reduction of the self-dual Yang-
Mills equations on R*; for example, translation-invariance in one direction leads to
the Bogomolny equations for monopoles on R®. Solutions satisfying appropriate
boundary conditions constitute a 4k-dimensional moduli space isomorphic to the
space of rational functions f:CP' — CP! with f(co) = 0 [D;]. Corresponding
complete hyperkihler metrics have been studied by Atiyah and Hitchin [AH]. The
theory of Yang-Mills over a Riemann surface, which results from R?-invariance, has

been developed in [Hj].

(iii) Let G be a compact semisimple Lie group, and g its Lie algebra. The coadjoint
orbits of the complex Lie group G¢ on g¢ are naturally complex symplectic, so
it is natural to ask whether they admit hyperkahler metrics, as would be the case
in a compact setting (see above). Kronheimer [Kr3| has indicated that this is so,
and has interpreted special features of the nilpotent orbits, which are in bijective
correspondence with conjugacy classes of homomorphisms su(2) — g. Each orbit
is described as a framed moduli space parametrizing certain invariant anti-self-dual

connections on SU(2) x R extending to S*.
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(iv) On a vector bundle over a projective algebraic surface, Donaldson [Ds] has
established a bijective correspondence between stable holomorphic structures and
anti-self-dual connections. The hyperkahler nature of the relevant moduli spaces
also follows from work of Mukai. For example, if K is the K3 surface formed by the
intersection of a hyperquadric and a hypercubic in CP*, then the 8-manifold M of
8.6 is isomorphic to a moduli space of certain stable holomorphic vector bundles on
K [Mus].
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9 Quaternionic Manifolds

The quaternionic unitary group Sp(k) is not a maximal subgroup of SO(4k), since
it commutes with the action of the group Sp(1) of unit quaternions. In the present
chapter, we shall consider the resulting holonomy group Sp(k)Sp(1), which is only
a proper subgroup of SO(4k) when £ is greater than one. This determines the class
of quaternionic Kéhler manifolds, of which hyperkahler manifolds form a subclass.
Some constructions of the last two chapters are representative of a more general
quaternionic geometry, which in turn provides extra insight into the theory of hy-
perkahler manifolds.

One reason for giving quaternionic Kahler manifolds serious consideration is
Wolf’s observation [W2] that to each compact simple Lie group G, there exists
a quaternionic Kéhler symmetric space G/H . This theory contrasts favourably with
the more sporadic situation of Hermitian symmetric spaces, and the existence of a
complex contact manifold fibring over G/H generalizes to the non-symmetric case.
The presence of a closed, but highly non-generic, 4-form on a quaternionic Kahler

manifold is responsible for both similarities and differences to symplectic geometry.

Quaternionic Kahler manifolds

The group of unit quaternions acting on Hf = R* by right multiplication defines a
subgroup Sp(1) of SO(4k). Its centralizer in SO(4k) is precisely the group Sp(k)
discussed in chapter 5. The intersection of Sp(1) and Sp(k) consists of plus and

minus the identity, and when £ > 1 the two subgroups generate a proper subgroup
Sp(k)Sp(1) = Sp(k) Xz, Sp(1) (9.1)

of SO(4k), also occasionally denoted Sp(k) - Sp(1).

A quaternionic Kahler manifold of dimension 4k > 8 is defined to be a Rie-
mannian manifold whose holonomy group is contained in the group Sp(k)Sp(1) [I].
This established terminology can be confusing, because M may not be a Kahler
manifold in the ordinary (i.e., complex) sense. In practice, the definition general-
izes that of a hyperkadhler manifold as follows. Each tangent space still admits a
triple of almost complex structures I, I, I3 behaving like imaginary quaternions
with I;I, = —I,I; = I3, but there is no preferred basis, and only the 2-sphere (7.27)
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makes invariant sense. Consequently all that can be said is that I, Iy, I3 gener-
ate a distinguished subbundle of skew-symmetric endomorphisms. The holonomy
reduction ensures that this subbundle is preserved by the Levi Civita connection.

It is then possible to make a smooth choice of Iy, I5, I3 on a sufficiently small open
set, but they cannot be assumed to be compler structures. In fact, the existence of
two anti-commuting complex structures even locally would lead to a situation much
closer to that of a hyperkdhler manifold (see 9.12). However, we shall see that the
structure of a quaternionic Kidhler manifold can always be represented locally by a
triple of almost complex structures Iy, I, I5, of which one, I; say, is integrable. This
fact is by no means obvious from the definitions.

In many ways, the structure group Sp(k)Sp(1) provides an appropriate general-
ization of four-dimensional Riemannian geometry, which is itself based on the group
SO(4) = Sp(1)Sp(1). We shall handle the representations of Sp(1) directly, which
amounts to using spinor terminology, rather than passing to the quotient SO(3) as
we did chapter 7. For example, the restriction to the subgroup (9.1) of the represen-

tation on R* defining the tangent or cotangent space has the form

where o denotes the basic representation of Sp(1)=SU(2) on C?, and as usual \!
denotes the basic representation of Sp(k) on C?*. In this light, the real structure of
A! is inherited from the quaternionic structures of \! and o.

There is a decomposition of 2-forms

so(4k) = A2 =2 A’[\®0d]
(O M Ao e [N'NeO]
> sp(k) @ [N?®0?

1%

(9.3)
> sp(k) @ sp(l) ® [N®o?],

in which the subspace sp(1) is spanned by the basis w',w? w? of 2-forms corre-
sponding to Iy, Iy, I3, expressed in real coordinates in (8.16). In future, 0" =
("o will denote the (r+1)-dimensional symmetric tensor product. The final sum-
mand in (9.3) is the irreducible isotropy representation of the homogeneous space
SO(4k)/Sp(k)Sp(1) parametrizing reductions to Sp(k)Sp(1), and which Ziller found
missing from Wolf’s list [W4],[Z2].

125



Acting on R* | the group Sp(k)Sp(1) leaves invariant the 4-form
Q=wAw +w AW+ AP, (9.4)
whose top exterior power QF is a constant non-zero multiple of the volume form.

9.1 Lemma For k > 2, the subgroup of GL(4k,R) preserving Q is equal to
Sp(k)Sp(1).

Proof. It suffices to show that there is no Lie algebra g larger than sp(k)®sp(1)
in sl(4k,R) that annihilates Q. Since SO(4k) does not preserve €2, the quotient

g/ (sp(k)@sp(1)) must appear as an Sp(k)Sp(1)-invariant subspace in

sl(4k,R) 2,01
50(4k) = QO(A)

(9.5)
= (sp(k)®sp(1)) & [AG],
but it is easy to check that neither of the irreducible summands preserve §2. U
Observe that Sp(k)Sp(1) does lie in the proper subgroup
GL(k,H)H* = GL(k,H) xz, Sp(1) (9.6)
of GL(4k,R), with Lie algebra
ol(k,H) @ sp(1) = sp(k) Dsp(l) @[N] DR (9.7)

An immediate consequence of the Clebsch-Gordan formula (12.14) and (9.2) is the
existence of GL(k,H)-modules V yielding an analogue

AT 2 N [N®o]
/2] (9.8)
o~ @[I/;@o"—%], 0 < r < 4k.
5=0
of the type decomposition (3.3). A complete symmetrization of o can only be
matched by a complete anti-symmetrization of ', so V§ = A\". In general, it is
not hard to identify V] as an irreducible representation of GL(k,H) defined by an
appropriate Young diagram.
The decomposition (9.8), found by Bonan [Bons], has been refined by Swann [Sw]

by expressing each V;’ as a sum involving the irreducible Sp(k)-modules

No=(2,...,2,1,...,1,0,...,0), 0<r—2s<k. (9.9)
N e N e’
s r—2s
We abbreviate the real representation [N ®0c?] to to [A'o?], and declare it to vanish
if r —2s > k. The resulting decompositions of exterior forms are listed below for

small k.
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9.2 Proposition For k > 2,
A 2 [\jo!]

A2 = [No®| @ [0%] @ [A]]

A=’ e Mo’ @ Mol @ AL

A = Ngot] @ Mol @ [of] @ [Mo®l @ (Ao’ @ (Mol @ [N5] @ [Nl ® R

A5 2 [N3o%] @ [A3o®] @ [A\o®] @ [Noo®] @ [M3o3] @ [ASot] @ [N3o'] @ A3;
when k£ = 2, only the underlined spaces appear.

The above algebra is transferred to a quaternionic Kahler manifold by supposing
now that w!, w?, w3 represent the 2-forms corresponding to a local choice of I, I, I5.
In view of 9.1, an Sp(k)Sp(1)-structure () on a 4k-dimensional manifold M is
characterized by the existence of a 4-form () linearly equivalent at each point to
the one in (9.4). Then VQ can be identified with the structure function 7j(p)
representing the invariant component of the torsion of any connection on the principal
bundle (Q, and vanishes if and only if M is quaternionic Kéhler.

The definition of a quaternionic Kahler manifold is, in some respects, designed
to capture properties of the quaternionic projective space HP*. We choose to define
the latter as the quotient of HF*! by the group H* of non-zero quaternions acting
by right multiplication (cf. (9.6)). A point of HP* represents a quaternionic line o
in H**'. The notation is not accidental, since this line can be identified with the
corresponding representation of Sp(1). Indeed, the subgroup of Sp(k+1) stabilizing
o is Sp(k) x Sp(1), and the orthogonal complement of o in H*"! may be identified
with the representation \' of Sp(k), so that

H =0 @ A\ (9.10)

These two summands give rise to vector bundles on HP* whose tensor product is iso-
morphic to the tangent bundle, as in (9.2). On an arbitrary 4k-dimensional quater-
nionic Kéhler manifold M, the existence of such vector bundles requires the vanishing
of a certain mod 2 cohomology class, which Marchiafava and Romani proved is equal
to the second Stiefel-Whitney class wo when £ is odd. By contrast, all quaternionic
Kéhler manifolds whose dimension is a multiple of 8 are spin manifolds [MR],[S1].
The above description gives HP* the structure of a symmetric space whose holon-
omy group equals Sp(k)Sp(1), and its curvature is an invariant constituent of the

curvature tensor of any quaternionic Kahler manifold.
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9.3 Proposition The spaces of curvature tensors of quaternionic Kdhler and

hyperkdhler manifolds are given respectively by

RSp(k)Sp(1) o @4[)\1] & R,
RPE) 22 YA,

Proof. In arbitrary dimensions, the decomposition 6.6 is still valid, provided @g[)\g]
is replaced by the module [A\j] of (9.9), and [0*] is renamed. Hence

O’ (sp(k) @ 5(1)) = O’sp(k) @ (sp(K)@sp(1)) & O’sp(1)
=~ O e Mo N eRe Mo a0l oR

The space RP*)SP(1) of curvature tensors is determined by picking out the sum-
mands that are annihilated by the skewing map a of 4.2; an inspection of 9.2 shows
that kera must include the highest weight summand (*[A!], not to mention a
1-dimensional subspace that represents the curvature of HP*. A straightforward,
though somewhat laborious, verification with Schur’s lemma shows that the remain-
ing spaces inject into A*. For example, in terms of the identification (9.2), the 2-form
¢ = (z'y') A (2'y?) belongs to sp(k), for any 2 € A\! and suitable y',4? € 0. One

can then arrange for
a(cl ® CZ) — (l‘lyl) A ($1y2) A (nyl) A (l_2y2)

to have non-zero projections to both the subspaces A3, A2 of A*®xC.
The formula for R57*) now follows from the fact that the curvature of HP*

cannot lie entirely in ()’sp(k) (see 5.2). O

9.4 Corollary Any quaternionic Kdhler manifold is Einstein, and its Ricci tensor
vanishes if and only if it is locally hyperkdhler, i.e. its restricted holonomy group H°

is a subgroup of Sp(k).

Of course, the above statements fail when £ = 1, because A* is “too small”, but
in general @4[)\1] is the appropriate generalization of the space W, housing half
the Weyl tensor. In four dimensions it therefore makes sense to define quaternionic

Kahler to mean self-dual and Einstein.
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Twistor spaces and quotients

Complex projective space is the total space of the Hopf fibration

2k+1 ~u Sp(k+1) o Sp(k +1) ~ k
T E s x UM T Sk xS (811)

which assigns to a complex line in HF*! its quaternionic span. Each fibre

Sp(1) ., Sp(k)Sp(1)

CF =T = Seu)

parametrizes an appropriate reduction of structure, and is a complex submanifold of
the total space. This is true, even though 7 is obviously not holomorphic (in fact
HP* does not even admit a global almost complex structure).

Each point z € 7' (z) determines an almost complex structure I, on the real
tangent space T,HP* below z. To apply I, to a vector X, apply the complex
structure in T,CP?+! to any lift X, and then project back to HP*. The family
of almost complex structures determined in this manner may be identified with the
2-sphere of unit imaginary quaternions. Indeed, if we regard z as a complex 1-
dimensional subspace of the quaternionic line o, it determines a maximal isotropic
subspace \'®z of the complexified cotangent space A'®C to HP* at z. This
subspace is simply the space of forms of type (1,0) relative to the orthogonal almost
complex structure I,, and defines a corresponding 2-form w,, in accordance with the

isomorphisms
CP(0) =2 5? C [0?] = sp(1). (9.12)

On any manifold M with Sp(k)Sp(1)-structure @, it is possible consider the

associated bundle
ZM = Q Xspw)spa) CP(0)

or twistor space with fibre the projective line in (9.12). It may be regarded as the
sphere bundle sitting inside the distinguished rank 3 subbundle VM of A?T*M with
fibre sp(1), just as in the 4-dimensional situation. Remarks above suggest that the
special cases 7.6 and (9.11) of the fibration m: ZM — M are likely to encapsulate

properties of the general case. Indeed,

129



9.5 Theorem [S;] If M is a quaternionic Kdhler manifold, the associated manifold
ZM has a natural complex structure such that

(i) each fibre is a complex projective line with normal bundle CF®O(1), and the
antipodal map on each fibre defines an anti-holomorphic involution of ZM ;

(#i) there is a holomorphic distribution D transverse to the fibres defining a 1-form
0 with values in the quotient line bundle L = T*°ZM/D;

(iii) if the scalar curvature t is non-zero, 6 A (d6)* # 0, and H°(ZM,O(L)) is
1somorphic to the complexification of the Lie algebra of Killing vector fields of M .

A local section s € I'(U, ZM) can itself be regarded as an almost complex structure
I on U, which is integrable if and only if s is holomorphic, as a submanifold of ZM .
This explains an earlier assertion that one of the local almost complex structures
I, I, I5 defining the quaternionic structure can be chosen to be a complex structure.

There is a direct link between contact and symplectic structures, which is based
on existence of a standard symplectic structure on the cotangent bundle. The pull-
back 7*# can be interpreted as a genuine 1-form on the total space of the dual line
bundle L~! by means of the pairing between L and L~!. Locally if # = a®s, then
we let 7*0 denote fr*«, where f is the fibre coordinate of L~ dual to the section
s of L. Then

w=d(n"0) = df N7m"a+ frida

is a symplectic form on the principal C*-bundle consisting of L~! minus its zero
section ig(ZM). In fact w equals the pullback of the standard symplectic form on
the cotangent bundle N"°ZM  and L' —iy(ZM) is the symplectification of ZM,
in the sense of Arnold [Ar].

A function s on a symplectic manifold gives rise to the Hamiltonian vector field
H, for which ds = H, 1w. The Poisson bracket

{s,t} = w(Hs, Hy) (9.13)

of two functions s,t on the total space of L™ then equips the space H(ZM, O(L))
of holomorphic sections of L with the structure of a Lie algebra. For the functions
s,t are homogeneous of degree one if and only if they correspond to sections s, ¢ of
L over M. In this case, H, and H, are invariant by the C* action on L !, and
{s,t} is also homogeneous of degree one and can itself be interpreted as a section of

L. This Lie algebra structure identifies the space g¢ of sections of L with the space
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of infinitesimal automorphisms of the contact structure, that is those preserving the
distribution D.

Property (iii) can now be exemplified with (9.11). From 9.5(ii), the restriction
of L to each fibre CP! is isomorphic to its tangent bundle, and it follows that L
is the holomorphic line bundle O(2) over CP#**1. The space H'(CP**1 0(2)) &
(O?(C?*+?) of sections is naturally isomorphic to gc = sp(k + 1, C), and there is an
Sp(k + 1, C)-equivariant embedding

F:CP**' ——CP(g;,) = CP*HDEk3),

Just as in case (i) following 7.6, the image of F' consists of the projective orbit of a
simple tensor product v®v. The latter generates, in suitable coordinates, the space
g, corresponding to a highest root . As explained in (6.7), the projective orbit can
equally be identified with the orbit Sp(k)/C(v) of v € t in sp(k). More generally,

9.6 Theorem [Wq] If 7 is a highest root in the Lie algebra g of a compact simple
Lie group G, then the orbit G/C(v) is the twistor space of a quaternionic Kdhler

symmetric space.

Proof. Briefly, the details are as follows. In terms of the expression (6.5), define

h=tesle P Il

(a,1)=0

m= P [s.]-

(am)=1

Because 7 is a highest root, the integer (a,y) is no greater than 1 unless a = 7. As
a consequence, [m,m] C b, and g = h @ m is an irreducible symmetric Lie algebra.
By construction, h = €@ sp(1), where sp(1) denotes the ideal of h generated by the
root space g,, and induces a quaternionic structure on m in much the same way as
the centre of the isotropy Lie algebra does for a Hermitian symmetric space.

The twistor space Z(G/H) of the corresponding simply-connected symmetric

space is the homogeneous space corresponding to the Lie algebra

g = (teu) e ([slem),
which is identical to (6.6). O
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The classical algebras so(k + 4), su(k + 2), sp(k + 1) give rise to the respective
Grassmannians 57'4(]1{“4), Gro(CHF2), HP*, and the first few “Wolf spaces” of

compact type are

@72(@3):@32, @4(R5):54:Hp1, %(24), @74(]1{6)2617"2(64), HPZ.

The complete list occurs in 5.7, in which it evident that all the Wolf spaces of
compact type apart from HP* have H?(M,Zs) = Z; this is related to the remarks
after (9.10). In fact, HP* is characterized by the condition H?(M,Z,) = 0 amongst
all possible complete quaternionic Kahler manifolds with scalar curvature ¢ > 0.
Moreover, any quaternionic Kahler manifold M with ¢ > 0 has zero odd Betti
numbers and positive signature [S;],[NT]. No complete non-symmetric examples with
t > 0 are known, and in any case must have dimension larger than 8, since an 8-
dimensional analogue of 7.8 can be proved by treating the twistor space ZM as
a Fano 5-fold of index 3 [PS]. Complete homogeneous examples with ¢ < 0 were
discovered and classified by Alekseevskii [Als].

The equivariant embedding F' of the twistor space of a Wolf space in CP(gf.) can
be regarded as a projectivized moment map for the action of the complex Lie group.
This leads to a generalization of the hyperkahler reduction 8.7 for a quaternionic
Kahler manifold M, found by Galicki [Gal, which we first formulate directly on M
treating the 4-form () as if it were an ordinary symplectic 2-form.

Suppose, then, that X is a Killing vector field on a quaternionic Kahler manifold
M. If t #0, M is necessarily irreducible, and one may deduce that VX belongs to
the holonomy algebra, so as in (5.4),

VX € b C sp(k) ®sp(l). (9.14)

Since neither of the modules sp(k), sp(1) feature in A*, the 3-form X Q) is closed.
In the hyperkdhler case t = 0, (9.14) must be imposed as a hypothesis, but then

3 3
X 10 = Zd/f Aw' = d(z,uiwi),
=1 i—1
where p!, 2, u? are the moment maps for the individual symplectic forms w?, w?, w?.

9.7 Lemma When t # 0, there exists a unique section ( of the subbundle VM of
A2T*M with fibre sp(1) for which d¢ = X 1.
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Proof. Define ( to equal the sp(1)-component of VX. This will do the trick, at

least up to a constant, for d¢ can be identified with

V(¢ € AM'®sp(1) = Mol @ AL,

and is completely determined by R(X), in the notation of (4.17). This tells us that
the component of V(¢ in [A\jo?] vanishes, and the component in A'! is proportional
to tX . Uniqueness follows from the fact that if (' — ( is a non-zero parallel section
of VM, then R(¢' — ¢) =0, which is only possible if ¢ = 0. O

More generally, the action of a group G of isometries preserving the Sp(k)Sp(1)
reduction of a quaternionic Kahler manifold M with ¢ # 0 gives rise to a “moment
section” p € T'(M,VM). If = '(0) denotes its zero set in M, the methods of

chapter 8 can be extended to prove

9.8 Theorem [GL] If the quotient p'(0)/G is a manifold, then its induced metric

18 quaternionic Kahler.

A basic example will illustrate the idea. The action of the circle group U(1) on
HF*! corresponding to left multiplication by e induces an action on both CP2+!
and HP¥, and the subgroup of Sp(k + 1) of isometries that commute with U(1)
equals U(k + 1). It follows that the resulting quotient

pH(0)/U) = {lgo, -l = Y Gpig. = 0}/U(1) (9.15)
r=0
is a complex Grassmannian, with twistor space a flag manifold F':

L™ —iy(F) —— H —{0}
l C J’ C*
F L gp?rt
|ep! |ep!
Go(CHY) WPk
In fact, by reinterpreting the coordinates in (9.15), each horizontal arrow can be

thought of as a sort of symplectic quotient. The relevance of the twistor space to
this set-up was described in detail in [HKLR].
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We have already seen that over the twistor space of any quaternionic Kahler
manifold M with ¢ # 0, the total space of the C*-bundle L™ —4y(ZM) is complex
symplectic. In fact, Swann has shown that this real 4(k+1)-dimensional manifold
has both a hyperkdhler and a quaternionic Kéhler metric (indefinite when ¢ < 0),
generalizing the obvious ones on HF*! and HP**! [Sw]. In particular, this allows
the theory of quaternionic Kédhler manifolds to be subsumed into the theory of hy-
perkéhler ones. When M is a Wolf space, L™'—iy(Z) is a complex nilpotent coadjoint
orbit (cf. (ii) at the end of the last chapter); in particular the hyperkahler metric for
M = G5(C**1) is a degenerate limit of the Calabi metric on p~1(c)/U(1) & T*CP*.

Galicki and Lawson [GL] have described a modification of the above example
giving rise to a host of quaternionic Kahler non-symmetric metrics at regular points of
orbifolds. In particular, reducing to a 4-manifold, they discover infinitely many non-
isometric self-dual Einstein metrics on weighted complex projective spaces. Their
methods succeed in constructing smooth quotients when the scalar curvature ¢ is

negative.

A theorem of LeBrun [Les]| associates to any real analytic conformal manifold
N of signature (3,k — 1) a 4k-dimensional quaternionic Kahler manifold M* with
t < 0. The basic example is the non-compact dual M?® of the Wolf space @;4(]1%8),
each point x of whose twistor space Z defines a null line in the complex quadric
Q* c CP?%, which is a compactification and complexification of Minkowski space
R3!. In general, the twistor space ZM appears as an open set of the space of null
geodesics of a complexification of N. The bundle é\;; (T'N) of 3-planes on which ¢

is positive definite becomes identified with a hypersurface at infinity of M*~.

Torsion and underlying structures

Let M be a 4k-dimensional manifold with an Sp(k)Sp(1)-structure. From (9.3), one
may deduce that Sp(k)Sp(1l) is a maximal Lie subgroup of SO(4k) for £ > 1. In
contrast to the complex situation, there is no larger “symplectic” group preserving
), but despite this, we have seen some constructive analogies with symplectic ge-
ometry. The quaternionic Kéahler condition is characterized by the vanishing of the
Sp(k)Sp(1)-structure function Ty(p) = (VQ)(p) which, we recall from 2.2, belongs
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to the space

N®(sp(k)@sp(1)- = [Mo' B0
(9.16)
= Mol e Mol e Mol @ [Mo'] @ [\go'] @ [Ajo ']
The last three summands are the components of A'®[A2], so from (9.7), the GL(k, H)H* -
structure function belongs to the three submodules of (9.16) involving o3. These
three spaces therefore house the obstruction to the existence of a torsion-free G L(k, H)H?* -
connection. A manifold admitting a GL(k, H)H*-structure with a torsion-free con-
nection is called quaternionic, and this is precisely the most general situation in which
it is possible to define a complex manifold ZM satisfying 9.5 (i) [Bes, 14.68],[BE].
The torsion-free connection will not be unique, but can be made so by choosing a
volume form for it to preserve. When £ = 1, the torsion condition is vacuous, since
GL(1,H)H* is identical to the pointwise conformal group R* x SO(4), but in this
lowest-dimensional case, it is most appropriate to regard a quaternionic manifold as
one with a self-dual conformal structure (see the remarks after 9.4). As a higher-
dimensional example, we cite the total space of the tangent bundle 7'M, where M
is quaternionic Kéhler, or 4-dimensional self-dual Einstein [Ss].
The existence of the twistor space explains why it is possible to define analogues
of the Dolbeault d-operator on an arbitary quaternionic manifold. Consider the

space
M0 = ATV ®2) 2 V@2

of forms of type (r,0) with respect to the complex line z € S§? as in (9.12). As

z varies, 2’ = 2®...®z generates the symmetric tensor product o¢”, and the

T

GL(k, H)H* -module
> DT = o]
z€S5?
generalizes (7.9). If A"M denotes the subbundle of A\"T*M with fibre [A\jo"], we

define a differential operator

D:ATM < NTM %5 N T Py At
where p is the projection which is well defined by the action of H*. Note that
A'M =T*M, so certainly D?: A°M — A2M vanishes; when k =1, A2M coincides

with the bundle A2 M of (anti-)self-dual 2-forms. The next result can be deduced
from (9.16).
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9.9 Proposition A manifold M with an Sp(k)Sp(1)-structure, k > 2, is quater-
nionic if and only if
D

0= C®(M) — D(T*M) 2 T(A’M) 25 ... — T(A%M) =0

1s a complex.

There has been considerable investigation of the symmetries of the tensor V(2
(e.g., in [FM]). When &k > 3, all six components of (9.16) are to be found in the
space A® in 9.2, and the following result is proved by showing that the relevant

homomorphism is injective.

9.10 Lemma [Sw| A manifold of dimension 4k > 12 admitting a closed 4-form

Q, linearly equivalent to (9.4) at each point is quaternionic Kdhler.

This result has particular relevance to the reduction procedure of 9.8. However,
it is in the eight-dimensional case, when A3 2 A5  that (9.16) bears most similarity
with (3.13). The following version of 3.5 begs an example of a compact 8-manifold
satisfying the “symplectic” condition df2 = 0, but which is not quaternionic Kahler.
Corresponding examples in the complex case are relatively easy to construct on
certain compact nilmanifolds, formed by taking the quotient of a complex nilpotent

Lie group by a discrete subgroup [CFG].
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9.11 Figure Components of the Sp(2)Sp(1)-structure function VQ

(Mol | Moo

(o'l | [Aoo']

0 0 0 0 ? 0
0 0 ? ? 0 0
Quaternionic Quaternionic Symplectic
Kahler

As quaternionic is to quaternionic Kéhler, so hypercomplex is to hyperkahler. As
indicated in the preceding chapter, a hypercomplex manifold M is one admitting a
triple I, I, I3 of complex structures with I1ls = —I,1; = I3. A corollary of the next
result is that the integrability of just two of these structures implies that 25’21 a'l;
(for Y (a*)? = 1) is integrable.

9.12 Proposition [O] Two anti-commuting almost complex structures on a man-
ifold are both integrable if and only if the GL(k,H)-structure they determine admits

a torsion-free connection. Any such connection is unique.

Proof. Any torsion-free GL(k,H)-connection is automatically a torsion-free connec-
tion on each of the two GL(2k, H)-structures corresponding to I; and 5. The latter
are therefore complex structures. Uniqueness is a consequence of the injectivity of

the fundamental sequence
§5: (R*™)*®gl(k, H) — A?(R*)*QR*.

Existence of the connection follows from the fact that the GL(k, H)-structure func-

tion in cokerd is determined by the Nijenhuis tensors of I; and I,. Rather than
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verify this last assertion, we indicate an explicit proof when k£ = 1, and the bun-
dles of (1,0)-forms of two anti-commuting almost complex structures I;, [ can be

expressed locally as
span{e’ —ie?, e® +ie*}, span{e' —ie3 e! +ie’}. (9.17)

To say that a connection preserves the resulting GL(1, H)-structure means VI; =
0 = VI, or equivalently that the operator Vx leaves invariant the bundles (9.17),

for any vector field X. If Ve" =", al,e®*®e!, this is equivalent to the equations

s,t
1 _ .2 _ 3 _ 4
Oy = Qg = Qlgp = Qyy,
oy = —og, LF ],
3 4

gy = Oy, Oy = Oy, Qfy = Oy,
for all £. These equations are consistent with the zero torsion condition de” =
Yo ilah, —af)e’ A€t provided I3, I are integrable, which means that the bundles
(9.17) are closed under exterior differentiation. The connection is then completely

determined by formulae like

20‘%2 = (ab - 0‘%1) + (0‘21 - a?4) - (a;l4 - a’iQ)'

O

Given an oriented 3-dimensional manifold NV, hypercomplex structures arise natu-
rally from a study of the space of all parallelizations of N (the next remarks are based
on an interpretation by Hitchin of work of Ashtekar et al. [AJS]). Let e'(t), €2(t), e3(¢)
be a triple of linearly independent 1-forms on a 3-dimensional manifold, which de-
pend on a real parameter ¢. Then together with e* = —dt on N x R, they define
a hypercomplex structure as in (9.17) if the dual vector fields X7, X5, X3 satisfy the

evolution equations

dX
d—tl == [XZaX3]a
dX
d—t2 = [XSaXl]a
dX
a ~ Xl

These equations are formally analogues to those of Nahm, in which the relevant Lie
algebra is that of vector fields on N, and solutions correspond to critical points of

the Chern-Simons invariant for connections on T'N.
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The last proposition is reminiscent of the “fundamental theorem of Riemannian
geometry” 2.6. The hypercomplex structure underlies a hyperkahler structure if and
only if there exists a Riemannian metric which is covariant constant relative to the
Obata connection determined by 9.12:; of course, the Obata and Levi Civita connec-
tions coincide in this case. As a corollary, observe that an irreducible hyperkahler
metric is determined up to homothety by its associated complex structures.

The curvature of the Obata connection on a hypercomplex manifold M has two
irreducible GL(k,H)-components, one of which is a skew-symmetric “Ricci tensor”,
which is simply the 2-form w representing the induced curvature of the real line bun-
dle A**T*M , and vanishes if and only the restricted holonomy reduces to SL(k, H).
The vanishing of both components implies integrability of the GL(k,H) structure,
and hence the existence of a flat affine structure on M ; manifolds of this sort were
considered by Sommese [So], and Kato [K]. A basic example of a compact integrable
hypercomplex manifold which cannot admit any Kahler metric is the quaternionic
Hopf surface (H* —{0})/I' = S*~1 x S') where I' is the group generated by the
multiplicative action of a quaternion ¢ with |g| > 1.

The definitions of hypercomplex and hyperkihler do not require modification
when k£ = 1, but are closely linked by the special isomorphism SL(1,H) = SU(2).
First observe that 9.12 implies that a 4-dimensional hypercomplex manifold M has
a self-dual conformal structure; in addition, the 2-form w € T'(M, A3 M) is self-dual.
Then w vanishes identically if and only if M is locally hyperkahler; this leads to a

classification of compact hypercomplex 4-manifolds [Boys].
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9.13 Figure Quaternion-related structures

RIEMANNIAN MANIFOLD UNDERLYING GEOMETRY
HoLoONOMY GROUP TORSION-FREE STRUCTURE GROUP
Y4 Y4
self-dual Einstein self-dual conformal
SO(4) R* x SO(4)
k=1
half-flat or hypercomplex
Ricci-flat Kahler
SU(2) = SL(1,H) H* = R* x SU(2)
quaternionic Kahler quaternionic
Sp(k)Sp(1) GL(k, )H*
k>2
hyperkahler hypercomplex
Sp(k) GL(k, H)
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10 Classification Theorems

In this chapter, we address the question of which Lie groups arise as holonomy groups
of irreducible Riemannian manifolds which are not symmetric. Symmetric spaces are
characterized by the invariance of their curvature tensor R under parallel translation,
so the departure from being symmetric is measured by the covariant derivative VR.
We begin by examining properties not only of this tensor, but also higher derivatives
of an Einstein curvature tensor.

An important characteristic of many symmetric spaces is the existence of sub-
spaces of the tangent space of dimension greater than one, on which the curvature
operator vanishes. The fact that such flat subspaces can exist only in symmetric
situations is a deep result which was first proved by Berger as a corollary of his clas-
sification mentioned in our introduction. For completeness, we reproduce a direct
proof of this fact of Simons, and derive Berger’s list from the more well-known theory

of Lie groups acting transitively on spheres.

Covariant derivatives of curvature

The reduction of the holonomy to a subgroup H of SO(n) imposes conditions of
varying severity on the curvature tensor R. There are also restrictions on the co-

variant derivative VR, which have their origin in the second Bianchi identity

10.1 Proposition (VR),, + (VyR).z+ (V.R)sy = 0.

Proof. The curvature tensor arises from the Lie algebra valued 2-form ® = (§ AO)R
on the frame bundle LM, defined by (1.12). The structure equation df = —[¢, 0]
implies that the horizontal component (§ A AG)VR of d® is zero. The proposition

reinterprets this 3-fold anti-symmetrization. O

A more enlightening proof of this identity was given by Kazdan [Kal; it appears as
an integrability condition for the invariance of the definition of curvature under the
action of the diffeomorphism group.

In the presence of a holonomy reduction, 10.1 implies that VR belongs to the

kernel of the natural mapping
by: Al @RY — A’®b, (10.1)
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formed from the inclusion R C h®¥§, and the composition
az: A'®b — A'®A% — A®. (10.2)

In analogy to 4.2, the reduced space of covariant derivatives of curvature tensors is
therefore

kerb, = (A1®§RH) N (ker as ® I)).

It was shown by Berger [Be;| that for all but a handful of subgroups H acting
irreducibly on O(n), the space ker by is zero. Notice that information may be inferred
from the study of kera,, which does not require knowledge of the space R¥ of
curvature tensors.

A lot can also be said regarding the iterated covariant derivatives V¥R, when
the holonomy group is a proper subgroup of SO(n). Rather than treat the latter
case, we shall suppose that M is an Einstein manifold, which is automatic for many
holonomy reductions. By Einstein, we understand that the component of R in the

space Y2 vanishes, so that
VR € N'®@(W e R) C A'aR.

The space W of Weyl tensors is not a summand of A'®A!, so the tensor product
A'®W cannot contain A! as an O(n)-submodule. Since it is clear that the restriction
of by to the subspace A'®R containing the differential dt of the scalar curvature is

non-zero, we have
VR e A'®W, and dt=0, (10.3)

whence the well-known fact that the scalar curvature of an Einstein manifold is

constant.

10.2 Theorem Let M be an Einstein manifold of dimension n > 3. Then
V¥R is completely determined by its component in the irreducible O(n)-summand
of ®kA1®W of highest weight, together with lower order derivatives V'R, where
0<l<k—-2.
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Proof. For notational convenience, we shall suppose that n = 7, in order to apply

6.9, although the general case requires no essential modification. We begin with the

decompositions
AQW = (1,0,0)®(2,2,0)
= (3’270)@(272a1)®(2;170)a
AMRA? = (1,1,0)®(1,1,1)
= (2,2,1)®(2,1,00® (2,1, ) (1,1,1)® (1,1,0) & (1,0,0).

Let R* denote the component of VXR in the highest weight summand
(k+2,2,0) C SFeW c Q@"A'QW.

A quick check shows that the rank of by is as large as Schur’s lemma permits, so
from (10.3),

VR = R' € (3,2,0) = kerb,.

The second derivative V2R belongs to A'®(3,2,0), and any of its components
that do not lie in the kernel of the skewing map

5:A'®(3,2,0) = A'QA'QW — A’QW

are determined by R(R) (cf. (4.17)). Using

A'®(3,2,0) = (3,2,1)&(3,1,0)8(3,3,0)9(2,2,0)®(4,2,0),

A2®W = (35 2, 1)69(3’ L, 0)69(3’ 3, 0)69(2’ 2, O)EB(Q’ L, 1)69(1’ 1, 0)69(2’ 2, l)a
one checks that kerd = (4,2,0), so
V2R = R? + quadratic terms in R.

The proof proceeds by induction; to prove the statement concerning R¥*! assum-

ing those for R*~! and R*, the key points are
(i) RF equals the component of V(R*~!) in (k +2,2,0);
(i) (k+3,2,0) = (A1®(k+ 2,2,0)) N (22®(k+ 1,2,0));
(iii) all the components of VRF, apart from RF™! are determined by R(RF1)

and the covariant derivatives of components of VR*~! orthogonal to R*. 0
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As a simple application of 10.2, an Einstein n-manifold M admitting a group of
isometries whose isotropy subgroup at some point m acts as SO(n) on T,,M must
have constant curvature. This follows from the analyticity of Einstein metrics [DK],
and the fact that the spaces containing R¥, k > 0, contain no invariants.

The covariant derivative VR of the curvature tensor of an Einstein 4-manifold has
two irreducible components under the action of SO(4), corresponding to the highest
weight summands of A'® W, [S]. Other information on covariant derivatives of the

curvature tensor may be extracted from [Bouy],[G4].

Rank and Transitivity

Let H be a compact Lie group, regarded as a symmetric space as in (5.15), with
the complement m identified with a copy of the Lie algebra § of H. Then the Lie
algebra t of a maximal torus can be thought of as a maximal abelian subalgebra of

m. More generally, given a symmetric space G/H with
g=hom,

a subalgebra a of m is necessarily abelian because [m,m] C h. Thus a is flat in the

sense that

[z,y] = Ryy

vanishes for all z,y € a, and a is tangent to a torus in G/H. Actually, any subspace
b for which

[[x,y],z] :Rwyz € b, fl:,y,ZE[‘J

defines a symmetric algebra [b,b] @ b, and a totally geodesic submanifold of G/H .
The subspace b is known as a Lie triple system [He].

Any two maximal abelian subalgebras of g are Ad G-conjugate; likewise any two
maximal abelian subspaces of m are Ad H-conjugate, and their common dimension
is called the rank of G/H . Given such a subspace a of m, the analogy just mentioned

suggests studying the action of ad(a) on g. In particular, any u,v € a define an

endomorphism
T(u,v)r = —ad(v)ad(u)z
= [[u,z],v] (10.4)
= R,
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of m. The first Bianchi identity 4.1 implies that R,,v = R, u, so that T(u,v) =

T(v,u). Moreover,

10.3 Lemma {7T(u,v): u,v € a} is a set of commuting symmetric endomorphisms
of R".

Proof. The fact that g(7T (u,v)z,y) = g(z, T(u,v)y) is a consequence of the symmetry
9(Rywz,y) = g(Ryyu,v). From (4.1) and the invariance of the curvature tensor R,

we have
RA:c,y + Rz,Ay =0, Ae€b. (105)
The fact that T'(u,v)oT(x,y) = T(z,y)oT (u,v) follows by taking A = Ry, . O

There exists an orthonormal basis R* consisting of simultaneous eigenvectors for

the T'(u,v)’s. One such eigenvector e satisfies
T(u,v)e = k(u,v)e,

k being the corresponding symmetric bilinear form on a. If £ # 0, then R, .w =

k(w,w)e # 0 for some w € a, and

Rue =

= h(w, ) Ry (10.6)

Applying both sides to the vector v, one sees that the rank of the bilinear form £ is

equal to one, and determines a “root plane”
U, = {u€a:R,=0}

of codimension one in a.

As an example, consider the Grassmannian

~ optay . S0 +q)
Cry(B) = SO(p) x SO(q)

of oriented real p-dimensional subspaces of RP*Y, with p < ¢. Its isotropy rep-

resentaion may be identified with the tensor product RP ® R?, whose factors have
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respective orthonormal bases {z1,...,2,}, {y1,...,9,}. A maximal abelian subal-

gebra of m is given by
a = span{z;®y; : 1 <1 < p}, (10.7)

and the orthogonal complement of any x;®y; in a is a possible Uy. When p = 2,

the description (3.17) gives a very clear interpretation of (10.7); it is tangent to a

torus S* x S! lying in some totally geodesic submanifold CP! x CP! = Q2.
Observe that the product M; x My of two symmetric spaces always has rank

greater than one.

10.4 Lemma An irreducible n-dimensional symmetric space has rank one if and

only if its holonomy group H acts transitively on the sphere S™' C m.

Proof. The action of H on z € S™! gives rise to a map £, H — S™! with
differential

dly:b=T,H — T,S" " = {z}*.

It is not hard to see that df, is surjective for all z € S™ ! if and only if H is
transitive. Since the Lie algebra b is generated by curvature operators, surjectivity

fails precisely when there exists y € {z}* for which
0= g(Ruvxay) = g(RwyU,U) (108)
for all u,v € R". The span of x and y is then an abelian subspace of m. O

Transitivity on the sphere may be thought of as an infinitesimal consequence
of the fact that any rank one symmetric space is two-point homogeneous, meaning
that any two pairs of equidistant points can be interchanged by a suitable isometry.
Closely connected with this is the fact that rank one symmetric spaces have all
their geodesics simple closed and of equal length [Ca,]. It follows from 5.2 that an
irreducible symmetric spaces has rank one if and only if its sectional curvature is

non-zero for every 2-plane. The list

Fy

s®  Cp™, HWPF, OP’=_—_——°-_
’ ’ ’ Spin(9)

of simply-connected ones of compact type can be deduced from the following classi-
fication, a special case of the theorem of Montgomery and Samuelson [MS], [B1].
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10.5 Theorem Let H be a closed subgroup of O(n) acting acting transitively and
effectively on the sphere S™~'. Then H is one of

Sp(), Sp(PU), Sp(3)Sp(1),
Gy (n=17), Spin(7) (n=28), Spin(9) (n=16).

Proof. Since H is compact, its Lie algebra has the form h = 3 @ [h, h], where 3
is its centre, and [h, h] is a sum of simple ideals. We first show that § is in fact
“nearly simple”, in the sense that it is the direct sum of a simple ideal and at worst
an ideal isomorphic to sp(1) or u(1l). Suppose first that h equals the direct sum
h1 @ b2 of two non-zero ideals. Certainly h acts irreducibly on R™, which is therefore

isomorphic to one of
(i) [Vi]®[V2], and each V; has an antilinear ¢ with £? = +1;
(ii) [V1®V5], and each V; has an antilinear & with e = —1;
(iii) [Vi®V3].
The three cases correspond to the imposition of real, quaternionic or complex struc-

tures respectively; in each one, V; is a complex irreducible h;-module.

If x € R*, we know that h(z) = h. In case (i) the example (10.7) shows that
one V; must be 1-dimensional, which implies that h; = 0. In case (ii), any real vector

x can be written v, ®vy + v Revy, and

h(z) = hvi®ve + v1®bve + h(ev))Reve + cv1RY(€vs).

Hence one V; is generated by v; and ev;, which means that h; acts as sp(1). Similarly,
in (iii), one h; must be isomorphic to u(1).

It is now possible to deduce the theorem from the classification of simple Lie
algebras and their representations. Assuming b has rank greater than one, R” cannot
equal the adjoint representation of f, for any two vectors z,y in the Lie algebra t of
a maximal torus will satisfy (10.8). For n > 4, the isotropy subgroup is necessarily
non-trivial for n > 4, and one need check only real irreducible representations of

dimension less than or equal to dimbf. Experience in the methods of chapter 6
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shows that all the representations for which h(z) = {z}* occur in the following list.

>
5u(m)’ mz 2 [[)\1,0]] (] RQm
u(m
sp(k), k>1
p( ) [/\1®C2] o R4k
sp(k)©sp(1)
1 ~ PN
so(n), n>7 A=K
AR (n="7), AXRS (n=09)
g2 pER

The basic representation p of Go, and the spin representation A of Spin(2m — 1)

are discussed in the last two chapters. [l

The homogeneous spaces

U(m) Sp(k)Sp(1) Spin(9)

Um—1)  Sp(k—1)Sp(1)” Spin(7) (10.9)

occur naturally as the distance spheres in CP™, HP* and OP? respectively, and in
the last two cases the induced metrics include non-standard Einstein ones [J],[BK]. In
fact, S'° possesses exactly three non-homothetic homogeneous Einstein Riemannian
metrics [Z;]. The spaces (10.9) all have a reducible isotropy representation that
reflects their realization as sphere bundles over CP™!, HP*~! and S® respectively;

the HP! case is related to a construction in chapter 12.

Results of Berger and Simons

As usual, we fix an orthonormal frame p in order to identify the tangent space 7;, M
with R", and the holonomy group H = H(p) with a subgroup of O(n). In order to
apply the above ideas to an n-dimensional Riemannian manifold M, it is necessary
to compensate for the fact that the curvature tensor R = R(p) will not be invariant
by the holonomy group. It then becomes appropriate to consider the orbit of R in
the space R7 C A’®H.
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10.6 Theorem If M is irreducible, then either the holonomy group H acts tran-
sitively on S™1 or its identity component H® acts trivially on the space of curvature

tensors R,

Proof. We follow [Si], to which the reader should refer for more details. To prove
the theorem, we may suppose that H = H° is a closed connected subgroup of O(n)
acting irreducibly on R™, but not transitively on S™ !, and that J C R¥ is an
H-orbit. We shall eventually conclude that J consists of one point, irrespective of

the common dimension d for R € J of the ideal
h® = span{h~'oR,,0h: h € H},

of b (cf. (2.11)). First, though, consider the more modest hypothesis that the con-
clusion is valid whenever (n,d) is replaced by (n’,d’) < (n,d), where < denotes the
lexicographic ordering. The case n = 2 is trivial.

The assumption that H C O(n) does not act transitively on the sphere implies
that there exist linearly independent vectors z,y € R* such that R, = 0 for all
R € J. This follows by simply replacing (10.8) by

0= g(hilRuvh’xay) = g(Rhw,hyuaU)

in the proof of lemma 10.4. Let W be a mazimal subspace R" for which R,, =0
for all z,y € W and R € J. Given R € J, a symmetric bilinear form Tg(u,v) is
defined on W as in (10.4), and provided J # {0}, we may always choose W so that
the simultaneous eigenvectors are not all trivial ones. Given an eigenvector e with

eigenvalue k # 0, the hyperplane Ug = ker k of W is used to define
Mgy = {veR":S,, =0, Vu€ Ugy, S€J}

The generalization

k(w,u)
k(w,w)

Sye = Swe, YueW, SelJ

of (10.6) implies that Mgy contains W @ Re. If Mg, and Mg s are distinct, then
MR,k: N MR,k’ = W (1010)

For let x belong to the intersection; then S,, = 0 for all w € W = Ugry + Ur 1,

and so x € W by maximality. We also have

SAu,m = _Su,Ama Yu € UR,k, m € MR,ka SeJ Aeb, (10.11)
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which implies, for each R € J, that
Roy(Mri) C Mpy, Vr,y € Mpy. (10.12)

This property is expressed by saying that Mgy is totally geodesic.

A central assertion in the proof is that

R* = Mgy, (10.13)

where the sum ranges over all R € J, and over all non-zero eigenvalues k arising for
each R. Suppose that y is orthogonal to every Mpg ;. By the maximality of W, to
prove (10.13), it suffices to show that A = R,,, vanishes for all w € W and R € J.

For each R, y is a sum of trivial eigenvectors, so it belongs to
Z = {z:Tr(u,v)z2=0, Yu,v € W, R € J}.

This is a proper subspace of R" (use the notion of sectional curvature (4.6)), and is
totally geodesic as in (10.12) [Si, lemma 7]. This means that the restriction R = R|

belongs to the space R of curvature tensors on Z with values in the Lie algebra of
H = {hlz:heH, h(Z)CZ}.

If H acts irreducibly on Z, our inductive hypothesis implies that either R is the
curvature tensor of a symmetric space or R acts transitively on the sphere in Z. In

A

the former case, using (5.3), Ry,,w = 0 implies

N

0 = Ryyz = Az, Vze Z (10.14)

In the latter case, (10.14) also follows as a consequence of the fact that Rhw,zhw
vanishes for all z € Z and h € H. In general, (10.14) may be established by
decomposing Z into irreducible summands. To complete the proof of (10.13), it
remains to show that Am = 0 whenever m belongs to some Mg;. Now, if u €
Ury, then Au = 0 and from (10.11), Am € Mgy; but (10.12) implies that 0 =
9( R amw,y) = g(Am, Am).

A corollary of (10.13) is the existence of at least two distinct spaces as in (10.10).
For if not, R® = Mgy, and it is easy to see with the irreducibility assumption that
this implies that J = {0}. We now replace our choice of original choice of W by
another subspace hW for some h € H. This does not affect the validity of the above

arguments, and in view of (10.10), it is possible to choose a basis {z;} of R", each
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element, of which belongs to either AW or some M Iji_,hW,k' If A = Rpyy, for some
R e J and w € W, then h*® is a proper ideal of h¥. This follows from the fact
that if e is an eigenvector of Tr(u,v) with non-zero eigenvalue k, then Sp,. = 0
whenever S belongs to the orbit of H containing AR [Si, lemma 11].

Because H acts on R™ irreducibly, h can be varied in the above argument so
as to manufacture a basis {A;} of h¥ such that dimbh?® < d for all . This can
be extended to a basis of h with the same property, since any complementary ideal
to h® in b annihilates R. By the inductive hypothesis, the resulting elements A;R
must all be annihilated by b, and it follows that 0 = A?(R) = —A!A;(R), whence
A;R = 0 and R is H-invariant. With the value n fixed, the inductive hypothesis
can then be verified for all d. O

We can conclude from 10.6 that if the holonomy group H of a Riemannian
manifold M is not transitive on S™!, then at each point ¢ in the holonomy bundle
@ = Q(p), the tensor R(g) is annihilated by the holonomy algebra h. Simons’s
ingenious proof relied solely on the first Bianchi identity, but we need to resort to
the second Bianchi identity to assert that R(p) is actually constant on ). From
the arguments that led up to 5.2, we do know that h = hB@ is generated by
R(q) = c(q)(KY + ﬁKso(n)). But then ¢(g) is a universal constant times the
scalar curvature, which is itself constant by virtue of (10.1). Therefore R itself is
constant on the holonomy bundle, or in symbols, VR = 0.

Theorems 10.5, 10.6 lead to Berger’s theorem [Be;] cited in the introduction.
Combined with 5.6, it gives more or less the complete picture concerning the possible
holonomy groups of a simply-connected irreducible Riemannian manifold, although
we may tie up a few loose ends. As Berger observed, the existence of Sp(k)U(1) as

a holonomy group is precluded by the equality

RSBV — R5p(k),

which arises from an easy adaptation of the proof of 9.3. Later, it was shown by
Alekseevskii [Al; ], and Brown and Gray [BG] that Spin(9) is eliminated from the list
of non-symmetric holonomy groups on similar grounds. In fact, R7"( is generated

by the curvature tensor of the Cayley projective plane OP? (see (12.12)).

10.7 Table Holonomy groups of irreducible Riemannian manifolds
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HoLoNOMY GROUPS
OF SYMMETRIC SPACES

(i) H a maximal compact subgroup of a centreless
non-compact group G, with G¢ simple,
n = dim G—dim H; e.g. H one of:
SO(n) .
(ii) H a simple centreless U(2) SU(3)
2
compact group, Sp(n
e i Sp(2)Sp(1) P()
G2 Spm(7)

HoLONOMY GROUPS OF METRICS
NOT LOCALLY SYMMETRIC

The lists of Cartan and Berger combine to give the above table of holonomy groups
which, as we shall soon see, are all realized by complete Riemannian metrics. The
corresponding problem in the non-simply-connected case is non-trivial; for symmetric
spaces it leads to the analogue of the space form problem [W3]. Since the groups
Go, Spin(7), U(m), Sp(k)Sp(1) are their own normalizers, one need only worry
about the Ricci-flat Kahler case. See also the remarks concerning flat manifolds in
chapter 2. Another situation which is not entirely straightforward is that in which
M is a non-complete reducible Riemannian manifold; although 10.5 can be applied
to each factor H; of 2.9, it remains to relate the behaviour of the metric at different
points on M.

The problem of reducibility is much more serious for a metric with indefinite sig-
nature, which has been studied by Wu [Wu],[Bes|. However, Berger’s classification of
groups acting irreducibly encompassed the indefinite case. Apart from some obvious
non-compact forms of the groups above with n,m or k replaced by (p, ¢), and more
exceptional cases, the list includes SO(m, C) (regarded as a subgroup of SOy(m,m),
cf. (5.16)) and the potential holonomy group SO(k,H) (regarded as a subgroup of
SOy(2k,2k), cf. (5.14)) [Bey],[Bra].

A final application illustrates how 10.8 can be combined with other major the-

orems of Riemannian geometry.
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10.8 Theorem [Bea;,Bo,,FW| Let M be a compact Kihler manifold with zero

Ricci tensor. Then some finite covering of M is isomorphic to a product
Tx M x---x M, x N X---x N,

where T is a complez torus, and each M; (respectively N;) is a compact simply-
connected manifold with holonomy group equal to SU(m;), m; > 3 (respectively

Sp(k;), k; = 1). In particular, the holonomy group H of M is compact.

Proof. The decomposition theorem of de Rham’s implies that the universal covering
M of M is isometric to the product of C? and various simply-connected irreducible
factors, each of these will also have Ricci-flat Kahler metrics. If one of these irre-
ducible factors is not compact, it must contain a line, that is a geodesic defined
for all real values of its parameter, minimizing the distance between any two of
its points. The Cheeger-Gromoll theorem (valid whenever the Ricci tensor is non-
negative) [CG|,[EsH] would then imply that the line splits off as a factor, which is a

contradiction. By 5.2, 10.7, we may now write
M = CP x My x---x M, x Ny X ---x Nj,

with M;, N; as in the theorem.

Because M; X --- x N, admits no covariant constant (and by Bochner, no holo-
morphic) vector fields, its group of isometric automorphisms is finite. It follows that
if " is the subgroup of (M) consisting of elements that act trivially on each M;
and Nj;, then C?/I" is a compact manifold. If I is the subgroup of I' of pure trans-
lations, the proof is completed by setting 7" = CP /T, which is a torus by the remarks
surrounding (2.10)). O

Berger observed the following corollary of the classification theorem. The exis-
tence on an n-dimensional irreducible Riemannian manifold of a non-zero covariant
constant exterior k-form, 0 < k < n, implies that M is Einstein, or that the form is
a multiple of a Kahler 2-form. This applies in particular to our fundamental 4-form
5.3. In view of 9.11 and 12.4, it would be interesting to enumerate the circum-

stances in which a closed 4-form guarantees the existence of an Einstein metric.
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11 The Holonomy Group Gg

The aim of this chapter is to establish the existence of Riemannian metrics whose
holonomy group equals the exceptional 14-dimensional Lie group G, regarded as a
subgroup of SO(7). After definitions based on the existence of a subgroup SO(4),
we discuss Gp-structures on seven-dimensional manifolds, in much the same spirit
as the geometries arising from U(m) and Sp(k)Sp(1) were tackled previously. The
relevant structure function can be read off from the exterior derivatives of a 3-form
and a 4-form, both of which therefore play a crucial role in the theory.

Of course, obtaining metrics with holonomy group strictly contained in G4 is
an easy matter, an extreme example being the flat metric on R?. However, even
this case should not be dismissed, because it is important for an understanding of
exactly how the Gy-structure on R” is built out of a certain structure on the sphere
S%. An attempt to duplicate this situation by replacing S® with the twistor space

of a 4-manifold leads us to the required metrics with exceptional holonomy.

Relations with SO(4)

A convenient way of describing any of the exceptional Lie groups is to choose a
suitable subgroup from which to build up a picture of the larger group. This ap-
proach works most effectively when the resulting coset space is symmetric. The list
of symmetric quaternionic Kahler manifolds includes the 8-dimensional coset space
G2/S0O(4), and in order to identify its isotropy representation, we first undertake a
momentary digression on representations of SO(4).

In chapter 7, we managed quite well with the description of SO(4) as the double-
covering of SO(3) x SO(3), but greater insight is obtained by treating SO(4) =
Sp(1)Sp(1) as a special case of (9.1). From this point of view, any irreducible

representation of SO(4) is real and has the form
APY = [6” ®0%], p+q even, (11.1)

where o, 0% are the symmetric powers of the basic representations of the two Sp(1)-
factors. For reasons of dimension and irreducibility, SO(4) must act on the tangent
space of G3/SO(4) as follows. If we decree that o = o7, then the other factor A! in
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(9.2) equals 02, so as to define a non-trivial inclusion of the second Sp(1) factor in

Sp(2). This leads to the symmetric Lie algebra

g = sp(l)@sp(l) @ [0}, ®07]
A2’0 P AO,Z P A1’3

(11.2)

12

in which the bracket can be made explicit using the appropriate SO(4)-equivariant
homomorphisms.

We define G5 to be the simply-connected Lie group with the above Lie algebra,
but it is more useful to seek a low-dimensional representation of SO(4) whose Lie
algebra of endomorphisms contains the right-hand side of (11.2). For this purpose,

consider the 7-dimensional space

po= ALlg A02
= Al @ A2,

(11.3)

where the second line refers to standard representations of SO(4) discussed in chap-

ter 7. In terms of (7.4) and (7.5), 1 has an oriented orthonormal basis

E'=dz', E?=dz? E?=d2® E*=dz",
(11.4)

E5 — wl, E6 — w? E7 — wS

? Y

that is compatible with the inclusion SO(4) C SO(7). This basis enables us to
identify A’y with so(7). We resume the habit, begun in chpater 7, of omitting the

exterior product symbol A.

11.1 Lemma G5 is the subgroup of GL(7,R) that preserve the 3-form

o= (EIEZ —E3E4)E5+ (EIES —E4E2)E6+ (E1E4 —E2E3)E7+E5E6E7,
and lies in SO(T).
Proof. This result is analogous to 9.1. As a temporary measure, let f denote the

subalgebra of End p annihilating ¢. By construction, ¢ is SO(4)-invariant, so b
contains s0(4). In terms of SO(4)-modules, End p 2 R @ O2u @ A\’u, where

1%

R@ Al,l @ AQ,Q @ A0,4 @ A1,3

Oc

(11.5)
7

1%
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The element E' A E5 + E* A E® € A\’ defines an endomorphism

(E',E*,E*, E*, E° E° E") — (E,0,0, E®, —E', —E*,0)
that does not preserve the decomposition (11.3), but nevertheless annihilates ¢. It
belongs to the subspace A = A'® A2 which by Schur’s lemma must therefore lie
in h. A quick check of elements in other irreducible components in (11.5) confirms
that b is the subalgebra of s0(7) isomorphic to s0(4) ® A'?, which can be identified

with go. An explanation of the fact that the stabilizer of ¢ is simply-connected can
be found in [Bry]. O

From 11.1, g, is the kernel of the mapping
End 1 = p@p — Np, (11.6)

defined by a +— a(p). Since dim(A*u) = 35 = dim(End p) — dim(g,), this mapping
is surjective, and the orbit GL(7,R)/Gy of ¢ is open in A’u. The only other open
orbit is generated by the form ¢* obtained from ¢ by changing the coefficient of
ESESE"™ to —1. The Lie algebra of its stabilizer G is the symmetric Lie algebra
dual to (11.2); this is a subalgebra of s0(4, 3), and has a non-zero projection to both
the components A3 that appear in (11.5). Thus any 3-form that is “positive” and
“non-degenerate” in an appropriate sense has stabilizer G5. The reader is invited to
work out explicitly how the 3-form determines an underlying positive definite metric
g on .

There are many essentially equivalent ways of setting up the algebra needed to
understand the action of Go on R7. The decomposition (11.3) corresponds to the

description
O = ReO®ImO

= RelmHoH

of the octonians or Cayley numbers in terms of quaternions. The representation pu

plays the role of the space Im O of imaginary octonians, and Cayley multiplication
Np — p
XAY — XxY,

(11.7)

is defined by setting g(z Xy, 2) = ¢(z,y, 2z). The fact that (11.7) is an isometry puts
it on a par with the ordinary vector cross product of R®. With our choice of basis
elements, ¢ and therefore (11.7) are encoded in the well-known configuration below

(referred to, for example, in [Fr]).
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11.2 Figure Fano projective plane with orientations

3,
5, 7
4 6 2

A subspace of p the form span{z,y,z x y} is called associative, and corresponds
to the imaginary part of a quaternionic subalgebra of O, or equivalently the subspace
A? in (11.3). The set of all associative subspaces is parametrized by Go/SO(4). If we
map a 3-plane with an oriented orthonormal basis {z,y, 2z} to the element zAyAz in
/\3R7, then the associative planes are those on which the linear functional ¢ assumes
its maximum value 1, and constitute a “face” of the Grassmannian 617“3(]1%7). This
property means that the ¢ is a calibration form of R, a notion introduced by Harvey
and Lawson [HL], and shown to be extremely significant for the study of minimal

varieties. See also [HM].

The roots of the Lie algebra g, can be read off from (11.2); they are

v3) (3,3
Lv3)  (1,-v3
(-
(-

(2,0)

)
(-2,0) )
(0,2v/3)

(Oa '2\/5)

1,v3) (-1,-V/3)
3,v3)| (-3,-V3).

(3,
(
(-
(-

To obtain this list, we have taken each weight relative to SO(4), interchanged the
coordinates, and multiplied the new second one by +/3; for instance, the highest
weight (1, 3) of A'® became (3, \/3) The /3 ensures that the resulting points have
rotational symmetry about the origin in R?, which can be identified with the Lie

algebra t of a maximal torus of Gs.
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To return to integral coordinates, it is customary to express the roots as linear
combinations of two simple ones, which we have boxed. In the new coordinates, the

roots become

(1,0)] (3,1) (0,-1)

(-1,0) (2,1) (-1,-1)
(3,2) (1,1) (-2,-1)
(-3,-2) [(0,1)] (-3,-1).

The following diagram shows the fundamental Weyl chamber (meant to subtend an
angle of 30°), which is given by T = {(a,b) : 3b < a < 2b}.

11.3 Figure Roots and weights of G,

T
(8’572 *

® roots

* dominant weights
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11.4 Lemma [Bon;| There are isomorphisms

Np=gon
Np=2Reue Ol

in which the components are all irreducible representations of Gy.

Proof. The decomposition of /\3u is a direct consequence of (11.6), and the subspace
of /\2u isomorphic to p itself is spanned by interior products of vectors with the
invariant 3-form ¢. Irreducibility may be checked by applying 6.5 to the tensor
product p®pu. The weights of u are (0,0) and those of the inner hexagon of 11.2,
including the highest weight (2,1). One obtains

(2,1) (4,2)v (4,2)
(1,1) (3,2) v (3,2)
(-1,0) (1,1) x
('2"1) (0’0)\/ (070)
(-1,-1) (1,0) x
(1,0) (3,1) x
(0,0) (2,1)yv (2,1),
whence

pop = (2,1)®(2,1) = (4,2)8(3,2)® (2,1) ® (0,0)

(11.8)
¥ OmueeneoudR

does indeed have four irreducible components. Incidentally, the SO(7)-components
of OFu remain irreducible under G,, and (2k, k) is the highest weight of the usual
primitive subspace @g,u. O

G, as a structure group

Suppose that ¢ now denotes a 3-form on a 7-dimensional manifold M, such that the
stabilizer of ¢ is isomorphic to G, at each point. Recall that this is an open condition
on ¢. The Gy-structure allows us to identify each tangent or cotangent space of M
with the representation u. According to 5.3, M has a distinguished G,-invariant

4-form ). Up to a constant multiple, {2 can be identified with *¢, where * denotes
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the star operator relative to the orientation and Riemannian metric determined by
the inclusion Gy C SO(7) and so itself depends on ¢. In the orthonormal notation
of 11.1,

xp = E'E?EE*— (E'E? — E3E%)ESET
—(E'E® — E*E®)E"E° — (E'E* — E2E3)E°ES.

11.5 Lemma [FG] The holonomy group of the Riemannian metric induced by ¢
s contained in Gy if and only if dp =0=dx* .

Proof. From 2.2, the obstruction V¢ to the holonomy reduction has values in the
space [ ®g; , which is isomorphic to (11.8). Since V is torsion-free, dp and dx ¢

are determined by V¢ by means of respective SO(7)-equivariant linear maps

0: N’ — A= Nu
o pN° . — N = Np.

With the aid of 11.3, it is a straightforward business to verify that these maps are
both surjective, so that dp =0 = d*¢ implies V¢ = 0.

Incidentally, the fact that p®gsy has a unique p-component implies that the
p-components of dp and d * ¢, which can be identified with

e A*xdp, and xdxpA*xp

respectively, are proportional. An easy calculation using a trial ¢ with non-constant

coefficients then shows that these two 6-forms are actually equal. O

The significance of G5 as a structure group is enhanced by the fact that it is a
maximal subgroup of SL(7,R), a consequence of the irreducibility of @gu. This
contrasts with the complex and quaternionic situations; nevertheless in the present
case there also exist natural conditions to impose that are less restrictive than the full
holonomy reduction. Given a Gy-structure, two obvious conditions are that dy = 0
(“symplectic”) or d * ¢ = 0 (“cosymplectic”, with apologies to those who use that
expression for certain types of contact manifolds).

This approach was developed by Ferndndez and Gray [FG|, and has recently

resulted in an example of a compact parallelizable 7-manifold M with a symplectic
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Gs-structure [F3]. This manifold has a non-zero element [p] € H*(M,R), but none-
the-less cannot carry a metric with holonomy in G5, because if it did, the evaluated

first Pontrjagin class

(muleh i) = g5 [ w®ARIA

~ 82

would have to be non-zero. This assertion is a consequence of the fact that the
bilinear form b on g C A’ defined by a A B A ¢ = b(a, B) A *¢ is negative-
definite. Further topological consequences of holonomy reductions have been studied
by Bryant and Harvey [BH,].

11.6 Figure Components of the Gy-structure function Vo

g2 R

0 0 0 ? ? 0
0 0 0 ? 0 0
G5 Holonomy Cosymplectic Symplectic

The cosymplectic property is a type of integrability condition akin to self-duality
for a 4-manifold, and is one of those conditions that is detected by the existence of
a subcomplex of the de Rham complex. Bearing in mind 3.7 and 9.9, we consider
A'M = M xR, AAM = T*M, and let A2M, A*M be the subbundles of \*T*M,
A’T*M with fibres g3, Ry respectively. In addition, let D denote exterior differ-

entiation followed by the appropriate projection.
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11.7 Lemma If M has a cosymplectic Go-structure, then
0 — D(AM) 2= rat M) 25 ra2m) 2 1(4PM) - 0
1s a complex.

Proof. If (A2M)* denotes the subbundle of A*T*M with fibre gy, then the compo-
sition D?: A'M — A3M vanishes if and only the composition (A2M)+ — A3M of
d with orthogonal projection is zero. If « is a section of (A2M)~, then a A ¢ =0,

and the second composition can be identified with the homomorphism
a = daAxp=—aAdx g,

which measures the component of d * ¢ proportional to «. [l

The operators of the resulting complex can be thought of as generalizations of
grad, div and curl, whose existence is a consequence of the cross product (11.7).

Other readers will be happier in the knowledge that the rearranged two-step complex
[(A°M @ A°M) — T'(A'M @ A*M)

defines the Dirac operator of the 7-dimensional manifold M.

11.8 Proposition [Al,] The space of curvature tensors R on a manifold M with
holonomy contained in Gy is isomorphic to the module with highest weight (6,4), and

M has zero Ricci tensor.

Proof. Labelling modules by highest weights, a decomposition of go®gs and some

dimension counting along the lines of 11.4 gives

O’e: = (6,4 On@R
Ng: = g, @ (6,3),

and it is curious that both the modules irreducible (6,4),(6,3) have 77 dimensions.
The remaining components of ()gy inject into A*x. The fact that (6,4) is not a
summand of @2 i implies the vanishing of the Ricci tensor. O
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Further representation-theoretic calculations involving the second Bianchi iden-
tity reveal that the covariant derivative VR of the curvature tensor of M takes
values in the module (7,5). More generally, each higher covariant derivative V¥R is
completely determined by its components in the module (6 + 2k, 4+ k) together with
the derivatives of lower order, just like in 10.2; once again this an effective illustra-
tion of the tight conditions imposed by a holonomy reduction. It is also relevant to
the abstract existence techniques described by Bryant in [Brs].

Let VM denote the subbundle of /\3T*M on a 7-manifold M, with fibre V =
GL(7,R)/G4 consisting of positive non-degenerate 3-forms. To establish the exis-
tence of a metric with holonomy equal to G5, one needs a section ¢ of VM for
which (i) 11.5 holds identically, and (ii) at some point m € M, the curvature tensor
R € R satisfies Im(R) = g,. The higher curvature components enter as obstruc-
tions to extending the k-jet at m of a section of VM with dp and d * ¢ zero to
order k—1 to a (k+1)-jet with the same derivatives zero to order k. In [Bry],
Cartan-Kéhler theory is used to prove that any such jet jZ(¢) with & = 2 can in
fact be extended to a local solution ¢ of (i). The curvature tensor R|, at m will

depend only on j2,(¢) and can readily be preassigned so as to satisfy (ii).

The group G, acts transitively on the sphere S® C u, with stabilizer SU(3).
This well-known fact was, after all, the basis of the inclusion of G, as a possible

holonomy group. From 11.1, the invariant 3-form can be written
o =(+wAE, (11.9)
where
w=E'E*— E?E? + E°ES
¢ = Re{(F' +iE*)(E* —iE®)(E® +1E%)}.

When G, acts on p, the stabilizer of E7 must act on its orthogonal complement as
an 8-dimensional subgroup of SU(3), that is SU(3) itself.

Some insight into the relationship between the two subgroups SO(4) and SU(3)
of GG, is provided by the array below of maps between G, spaces. The upper three
spaces are all orbits of the adjoint representation, and accordingly are equipped with
natural complex structures, for which the appropriate fibres are complex subman-
ifolds in the twistor space tradition. These spaces have been exploited by Musso
[Mus] to study minimal surfaces in M = G5/SO(4), which behaves in some respects

like a 4-dimensional Riemannian manifold.
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11.9 Figure Fibrations involving Go

G
U(l)xU(1)
cp! CP!
GQ G2 ~_ 7
ZM = =
0, oy - e ®)
cp! ﬁl CPp?
GQ 6 G2
M = =
S0() STIEY

Metrics with holonomy group G»

The formula (11.9) describes the special Hermitian structure of S®, with E7 playing
the role of a constant 1-form on R”. The action of SU(3) on the real 6-dimensional
vector space R® = [A10] gives rise to a real 2-dimensional space [A%?] of invariant 3-
forms, which contains ¢ in the above situation. One can choose a € [A\*?] orthogonal

to ¢ in such a way that the following differential relations hold:

d d

w >y (¢ >
a —

0 (11.10)
W —4 .

These relations are forced on us by the SU(3)-invariance, and the fact that S° is
nearly Kéhler [FI], as defined at the end of chapter 3.

The twistor spaces

SO(5)
7 4 _ MU\Y) P3
5 U(2) CP,
ZCP?2 = SLB) — F3

T b
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endowed with the non-integrable almost complex structure .Jy, are two other ex-
amples of homogeneous nearly-Kéhler 6-manifolds. In fact they are 3-symmetric
spaces, being equipped with a 3-fold symmetry s, about each point m, for which
Jo = (2(5;m)« +1)/v/3, and are included in the classification of Wolf and Gray [WG].
The metrics in question are the normal ones induced from the bi-invariant metric
on SO(5) and SU(3), and are in fact Einstein. This fact is justified independently
by theorems in [G3],[WZ] and [FGr], and motivated, by analogy with R” — {0}, a

search for metrics with holonomy G5 on the total spaces
CP? x Rt = A25* —43(S"),  F?®xR" = A2CP? —4,(CP?). (11.11)
minus their zero sections.

11.10 Theorem If M* is a self-dual Einstein manifold, there exists a Riemannian

metric with holonomy group contained in Gy on a domain of the total space of A2 M .

Proof. The list 7.2 is tailor-made for the task at hand. In analogy to (11.4), set

E'=un*el, B2 =un*e?, E? =un*e®, E* = un*e?,
(11.12)
E? =ob', ES =vb?, E™ = vb3,

where {e’} is the local orthonormal basis of 1-forms for which w! = e'e? — e3e* etc.,
and u = u(p), v = v(p) are functions of the radius squared p. Wherever u and v

are non-zero, (11.12) determines a Gq-structure with

¢ = vPvdr + 0B,
o = u'd— utv?y.

Applying 7.3 gives

dp = (u*)'dpdr + v3dB
= ((u%)’ - iv?’t) dpdr;
dxo = (u')'ddp— i(u*v?)vdp — Ju*vidy
= ((u4)' — éuzvzt) ddp — £ (u?v?)"ydp.
To solve dp = 0 = d * ¢, we must first set uv equal to a constant k£ to kill
off the coefficient of ydp = %57’. The vanishing of the two remaining coefficients is

165



then equivalent to the single equation 6(u*)’ = kt; this compatibility, at first sight
surprising, results from remarks made at the end of the proof of 11.5. The final

solution is

1 1
4 !
u=(Wtp+0)", v=k(kto+e) (11.13)
where ¢ is another constant. The form ¢ is non-degenerate provided that p >
—64/k*t (respectively p < —6£/k*t) if t > 0 (respectively ¢ < 0). The result now

follows from 11.5. ]

The simplest-looking solution occurs when ¢ > 0, when we may choose k so that
%th = 1 and take £ = 0 to give a Gy-structure on A2 M minus its zero section,

which as in (11.11) equals ZM x R, where ZM is the hypersurface given by p = 1.

1/4

Reverting to the radial parameter r = p*/*, the associated Riemannian metric is

1 3
g = 1’ Z e'®e’ + 6t tr 2 Z b b
i—1 =1
— P2prgM 46 (4d7"2 n TQgZ> (11.14)
= 24t tdr? + r?g?M,
where Z denotes the 2-sphere, and g?M = g™ +6t~1¢gZ is a metric on ZM , analogous
to the flat conical metric on S® x R .
The metric g?M involves a different scaling to the standard Kihler Einstein metric
that exists on the twistor space when t > 0, and for M = S* or CP? it coincides

with the nearly Kahler Einstein one alluded to above. In contrast to 7.5, the 2-form

defined by ¢ and the almost complex structure J,, by means of (3.8), equals
w = 2(ete? — edet) + 6t 120%° = 27+ 6t o

at the point z € ZM with o' =1, a®> = 0= a® (see (7.18)). Using 7.2 and (7.16),
observe that on ZM ,
w2 =wAw = 472424t tor
= 24t (y — 3t0)
= 24t dao,
which is consistent with (11.10), where « is the imaginary part of the canonical
(3,0)-form (7.21).
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The almost Hermitian manifold (ZM, J,, g?*) is the one determined by the am-
bient G-structure in the sense of Calabi [Cas]. Moreover, its holomorphic curves,
which parametrize minimal surfaces in M [ES], give rise to 3-dimensional submani-
folds of A2 M whose tangent spaces are associative with respect to the G-invariant
cross product.

To obtain a complete metric with holonomy in G5, we must suppose that M is
itself complete and has ¢ > 0; from 7.8 this means that M is either S* or CP2.
Then taking ¢k°t =1 and £ =1 in (11.13) gives the metric

3

1 1 o

g = (p+1)2r g™ +6t 1 (p+1)"2 E 'R0,
i=1

which is asymptotic to (11.14) as p = r* — co. Incredibly, this metric has exactly the
same exponents as the 4-dimensional Eguchi-Hanson metric (8.7), and is complete
for the same reason.

The question of whether all the metrics of 11.10 have holonomy group H equal
to G5 is more delicate. What we do know from 10.7 is that if H is a proper subgroup
of G4, then the metric is reducible, and (at least if M is simply-connected) one can
show that there must be a non-zero covariant constant vector field [Brs]. Special
arguments are then available for the cases M = S* or CP?, in which the metric
is invariant by the groups SO(5) and SU(3) respectively. Indeed, there can be no
non-trivial representation of these groups on the space of covariant constant vector
fields, which would otherwise be ridiculously large. On the other hand, no subspace
of T,(A?> M) can be invariant by the respective isotropy groups U(2), U(1)xU(1).

One deduces

11.11 Corollary [BS] The total spaces of A2.S* and A2 CP? have Ricci-flat com-

plete metrics with holonomy group equal to G5 .

By construction, the respective groups SO(5) and SU(3)/Z3 of isometries of the base
lift to isometry groups of these Ricci-flat metrics. An examination of the remaining
Weyl curvature tensor shows that there are no other isometries of the total space
apart from multiplication by —1 on the fibres. In addition, we remark that under the
weaker hypothesis that M is self-dual, the total space of A2 M has a cosymplectic
(l9-structure.

The above theory concerning the existence of the GG-structures has its origins in

the splitting of the 7-dimensional Go-module relative to the subgroup SO(4). If we
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reduce further to the kernel SU(2) of the homomorphism SO(4) — Aut(A%), then
(11.3) becomes

p = [C®o]® 07, (11.15)

where [0?] is the basic representation of SU(2)/Zy = SO(3), whose complexification
is the symmetric square of the SU(2)-module o. Such spinor terminology will be
used extensively in the next chapter, but we indicate briefly here how it leads to
another example of a Go-metric, referring the reader to [BS] for more information.

The splitting (11.15) is realized geometrically on the total space of the spin bundle
with fibre o over an oriented Riemannian 3-manifold N. The summand [C?®o] is
just a fancy way of expressing the real space underlying the fibre o, and [0?] is
identified with a typical tangent space to N. It is now possible to formally repeat
the construction 7.2 of invariant forms, although the roles of base and fibre become
interchanged. In particular, a 3-form with stabilizer G5 is formed by adding the
volume form on N with a canonical 3-form ¢ formed from wedging 2-forms on the
fibre with 1-forms on N. However, there is little flexibility in the curvature tensor of
N and the equations dp = 0 = d * ¢ constrain N to have constant curvature. When
N = 83, one can again arrange for the resulting Riemannian metric to be complete
with holonomy group equal to G5; it is then defined on a manifold diffeomorphic to
S3 x R*, and is linked to an Einstein metric on S x S3.

Recall that the manner in which Gs-structures have been constructed by breaking
up each tangent space into the direct sum of subspaces of dimension 3 and 4 had
its origin in the existence of the symmetric Lie algebra (11.2). This has a further
significance. Namely, with a few sign changes, the examples can be modified to

produce pseudo-Riemannian metrics of signature (3,4) and holonomy group Gj.
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12 The Holonomy Group Spin(7)

It seems fair to include a definition of the groups Spin(n) in this chapter, so we begin
with a summary of the relevant theory of Clifford algebras, which will motivate some
of the constructions which follow. However, the reader can freely skip this section,
since our subsequent treatment of Spin(7) will be largely independent of the general
theory, being based instead on the fundamental 4-form built up from invariants of
the group SU(4), and subsequently Gj.

Although it helps to understand Gy before tackling Spin(7), there are certain
features that make it relatively easy to recognize metrics on 8-dimensional manifolds
whose holonomy is contained in Spin(7). We discuss an example arising from an
isotropy irreducible homogeneous space, which was in fact the first metric constructed
with an exceptional holonomy group. Finally, we return to the concept of self-duality
to construct Spin(7)-structures on the spin bundle of 4-dimensional manifold with

self-dual and Einstein curvature.

Clifford algebras

Let {ei,...,e,} be an orthonormal basis for the standard positive definite inner

product g on R®. The Clifford algebra C;, is the algebra over R generated by an

identity 1 and the symbols ey, ..., e, subject to relations
el = -1,
€res = —€4e., T F 8.

The feature which can be used to characterize C, in a universal sense is the
inclusion 7: R® < C,, with the property that (i(z))? = —||z|*1.

As a vector space, C,, has a basis consisting of the 2" elements
1, enér,...€p, r<re<--<r,, 1<k<n. (12.1)

In fact the subspace generated by these elements for fixed £ is independent of the
original choice of basis, and provides a natural vector space isomorphism between
C, and the exterior algebra @ A*R". In these terms, C, can be defined by

0

zy =rxANy+zly, x¢€ /\k]R", Yy € /\ER", k</? (12.2)
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where z 1y € /\Z_kR” is a suitably defined interior product.
Of particular importance is the Zjy-graded structure defined by

Cr =A{zx1mg.. . w05 12, ER"} = @Ai,

even

Co = {zzy... 2951 1z, € R*} = @Ai.
odd

Let Spin(n) denote the subset of C;7 consisting of all even products 15 . .. Zop_1T2,
of elements of R with each ||z;|| equal to 1. Then Spin(n) is a closed subgroup of
the group of all invertible elements of C),, and contains both 1 and —1. If z is an

element of R* C C,, of norm one, then

—zyzt = (yr+2¢9(z,y))zt

= y—2g(z,y)x
= Tz(y)

is the reflection of y in the hyperplane perpendicular to . The following is well-

known:

12.1 Proposition The mapping : x — r, induces an epimorphism m of Spin(n)
onto the special orthogonal group SO(n) with kernel {1,—1}, and Spin(n) is simply-

connected for n > 3.

For example, if « = f+e,7 € ker 7 is written as a linear combination of the elements
(12.1) so that B,7 do not involve e, for some fixed r, then ae, = e,a implies that
v = 0. Thus « is a multiple of the identity 1.

The group Spin(3) = Sp(1) contains the unit elements

ege3 =1, eze; =j, eex =4k

of the subalgebra C5", which is itself isomorphic to the quaternions H. It is easy to
check that

C,=C, C,=H CiHeH C,=H?), (12.3)
where F'(n) denotes the algebra of nxn matrices with entries in F', and that

Crss & Co&C. (12.4)
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The last isomorphism can be seen by taking an orthonormal basis {fi, fo, f3, fa} of
R* in addition to the basis {e;} of R"; then the elements

1®f1, 1®f2, 1®f3, 1&fs, e1®f1faf3fs, ---, e1®[f1f2f3/a

constitute a basis of R*™* and satisfy the generating relations for Cj, 4.

A representation p: Spin(n) — AutV factors through SO(n) exactly when its
kernel contains —1; if this is not the case, p is called spin. We shall illustrate the
ensuing theory with n = 7 and 8 (an historical reference is [Li]). Fix an orthonormal
basis {ei,...,es} of R® C Cs, and consider C7 to be the subalgebra generated by
ey, -..er. From (12.3),(12.4), and the fact that HQ gH = R(4), we have

Cr = C38C, = R(8) @ R(3),
Cs = C,®C, = R(16).

(12.5)

There is a canonical involution € = ejes...eg in Cg that is independent of the
choice of basis and commutes with Spin(8). Consequently, there is an eigenspace

decomposition
RIG = A_|_ @ A_,

with representations pi:Spin(8) — AutA.. Since & anti-commutes with any ele-

ment in R® C Cy, there are also maps
R8®Ai g A;,

known as Clifford multiplication. The subspaces (1 £ eg)A, are invariant by C7,
which accounts for the description (12.5), and the two Spin(8)-modules A;, A_ are
isomorphic to a common Spin(7)-module.

The choice an isometry between R® C Cg and A, enables us to lift the homo-

morphism p, to an outer automorphism p of Spin(8):
Spin(8)

(12.6)
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It is known that p® = 1, and p is the so-called triality automorphism. For example,
the inclusion (10.9) of Spin(7) in Spin(9) can be described as igopoiz, where i, :
Spin(n) <= Spin(n + 1) is the usual inclusion [Bs].

Spin representations may be described in arbitrary dimensions using the methods
above, but because of the erratic description of the first eight real Clifford algebras,
one has to complexify to make a clean statement. For each m > 2, there exist
distinct complex 2™-dimensional irreducible Spin(2m)-modules AL, which restrict
to a common Spin(2m —1)-module A. In its turn, A restricts to the Spin(2m —2)-
module A, ¢ A_.

One can be more explicit by reducing Spin(2m) to the subgroup SU(m), lifted

from its standard inclusion in SO(2m). There are isomorphisms

AL = P A

even (12.7)

A= A,

where as usual \*? denotes an exterior power of the basic representation of SU(m)

on C™. Indeed, if x € AY? @ \%!, there is an action
Ml 50— 20 Aa+ 2% 10 e A0 g \OAT

which extends to a representation of the Clifford algebra Cs,, ®gC on (12.7), with

multiplication as in (12.2).

Spin(7) as a structure group

Our description of Go in the preceding chapter was based on the subgroup SO(4),
which is the stabilizer of an appropriate symmetric space. An analogous description
of Spin(7) proceeds from the group Spin(6), which is the stabilizer for the action of
Spin(7) on the 6-sphere S°.

Another explanation of the fact 6.4 that Spin(6) is isomorphic to the group
SU(4) of special unitary transformations of a complex 4-dimensional space A* would
not go amiss. In analogy with the real 4-dimensional case (7.3), SU(4) commutes
with an isomorphism *: \¥0 — \%4~k_ In particular A>° = \%? is the complexifica-
tion of a real 6-dimensional vector space [A\?°], which gives rise to the required 2:1
homomorphism SU(4) — SO(6).
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The 8-dimensional space A'? @ A\%! can in fact be identified with the restriction

of the spin representation A of Spin(7). Before verifying this, let
{E'4+iE° E> +iE® E® +iE",E* —iES} (12.8)
be a special unitary basis of A (labelled eccentrically as a result of conventions
that had their origin in chapter 7), and consider the SU(4)-invariant 4-form
Q = Rel|(E' +iE%)(E? +iE®)(E® + iE7)(E* — iE°) :
—i|B'E® + B2B* + BT — BB’

= (E'E’E°’-E*E*E°+E'E’E°—~E*E’E°+E'E*E"-E’E3E"+ E°ESE")E8
+E1E2E3E4—E1E2E6E7—|—E3E4E6E7—E1E3E7E5
+E*E?E"ES—E'E*ESES+ E?E3ESES

 ONE 4 (129)
in the notation of the preceding chapter.

12.2 Lemma The subgroup of GL(8,R) leaving Q invariant is isomorphic to
Spin(7), which acts transitively on S with stabilizer Gs.

Proof. Compared to 9.1 and 11.1, we now have the luxury of two subgroups to
play with simultaneously. Let H denote the stabilizer of ¢ in GL(8,R), and A
the vector space R® upon which it acts. By construction, H contains both SU(4)
and Gy x {e}, and the relationship between the three groups H, SU(4) and G5 is
expressed in representation-theoretic terms by the formula

A = [ALO] ~ udR
The Lie algebra b C sl(8, R) can be dug out from amongst the spaces
A = [0*] @ A" = O ek,
A’A = 50(8) >~ N[N Dsu(d) DR X gy ® ud p.
Indeed, a match of their dimensions yields
b >~ su(4) @ [A20] ~ 0 @y, (12.10)

and shows that A\”A has a 7-dimensional H-invariant summand which exhibits the
required double covering H — SO(7). The two isomorphisms in (12.10) correspond
to the homogeneous spaces S® 22 Spin(7)/Spin(6) and ST = Spin(7)/Gs, the second
of which is the orbit containing E® in A. O
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The richness of 8-dimensions is illustrated by the following display of subgroups of
SO(8), extending (6.10). The boxed ones are possible holonomy groups of irreducible
Riemannian metrics; they are paired with more obvious subgroups acting reducibly,
by means of the triality automorphism (12.6) which interchanges tangent and spin
representations. Whereas the group SO(8 — k) is the subgroup of SO(8) fixing k
linearly independent tangent vectors, so the subgroups in the same row as Spin(7)
are characterized by the property that they fix k£ linearly independent spinors, where
k ranges from 1 to 4. A unified treatment of the characterization of holonomy
reductions by parallel spinors and forms is given in [W]; we exploited topological

consequences of the above facts in chapter 8.

12.3 Figure Selected subgroups of SO(8)

Sp(1) x Sp(1)
p(1)x Sp(1)
Sp(2)Sp(1)
k T U(4)
| r
Sp(1)xSp(1) — | Sp(2) | ——— | SU(4) | ——— | Spin(7) \

—— SU(3) e SO(8)
SOM4) —— SO() S0(6) SOU)'//////
J
' } SO(6)x SO(2)
' SO(5)x SO(3)

SO(4) x SO(4)
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Although we chose to build up the Spin(7) form Q from invariants of SU(4) and
G, another possibility is to start from the subgroup Sp(2) leaving fixed “Kéhler

2 w* of non-degenerate 2-forms. Whereas the 4-form 2% (w?)? leads to

triple” w!, w
the subgroup Sp(2)Sp(1), its modification (w')? + (w?)? — (w?)? equals twice (12.9)
in suitable coordinates, and therefore has stabilizer Spin(7). This observation was
used by Bryant and Harvey [BH;]| to pursue higher-dimensional generalizations of

Spin(7)-geometry in a hyperkihler context.

A reduction of the principal frame bundle of an 8-manifold M to Spin(7) is
characterized by a 4-form  which is linearly equivalent at each point to (12.9). The
inclusion Spin(7) C SO(8) induces a Riemannian metric on M, and as usual, the
failure of the holonomy to reduce to Spin(7) is measured by V(2.

We denote the 7-dimensional representation of Spin(7) that factors through
SO(7) by A'. The proof of 12.2 exhibited A is a submodule of A®A, which

implies the existence of a homomorphism
m: A'QA — A,

otherwise known as Clifford multiplication. This can be understood by extending
the methods of 6.9 to cover Spin(7) by allowing half-integral weights. The weights
of A are then the eight triples (+1,+21,+1), and there are decompositions

ARA = (3:5:3)8(3:2:3)
(0,0,0) ®(1,0,0) & (1,1,0) & (1,1, 1)
AN A @ A A3,

1

1%

A'®A = (1,0,0)®(3, %, 2)
(

1%
—~~
Nw
N
N
~—

)
N
N
N
~—

>~ A'g A.

In particular, the Spin(7)-module A’ = ker m is irreducible, and Schur’s lemma

can be used to check that the composition
A'®A = NPARA — A’A (12.11)

is an isomorphism. This striking fact allows us to identify V2 with dQ2 so that
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12.4 Lemma [Bry| The holonomy group of the Riemannian metric defined by the
4-form Q is contained in Spin(7) if and only if dQ2 = 0.

The fact that V2 has only two components (commented on in [F1]) contrasts
with the situations we have encountered for other holonomy groups. Of course, the
orbit GL(8,R)/Spin(7) containing © is not open in A*A; indeed the following
result, easily deduced from remarks above, identifies its normal space at €2 with the

space Y2 of traceless symmetric forms on R”.

12.5 Proposition There are isomorphisms

N’A = Al A2
N’A = As A,
ANA=RoA@TZ AA =A%

12.6 Corollary [Al;] The space R57"™7) of reduced curvature tensors is isomor-
phic to the submodule W of 6.9, and any metric with holonomy group contained in

Spin(7) has zero Ricci tensor.

Proof. The space 577 equals the kernel of

Os0(7) = O°(A°A) — N'A.

Combining 6.9 and 12.5 with Schur’s lemma, it suffices to check that there exist
2-forms o, 8,7 € s0(7) € A’A for which a A o, B A § are linearly independent
elements of /\iA, and A~y is a non-zero element of A*A. The vanishing of the
Ricci tensor will follow from the fact that ()”A does not contain W.

The Lie algebra s0(7) of Spin(7) contains su(4), which can be identified with the
space [A\y'] of primitive (1,1) forms relative to a Hermitian structure on A. Using
the decomposition (8.12), «, 8,7 are readily found inside su(4). O

We shall not prove the corresponding statement for the subgroup Spin(9) of
SO(16), namely that R577(16) =~ R which forces any metric with holonomy group
contained in Spin(9) to be symmetric [Al;],[BG]. However, an analysis of this case
may be made by writing down an explicit matrix representation of the Clifford algebra
Cy, or by decomposing the spin representation of Spin(9) as R® = A @ A with
respect to the subgroup Spin(7). Although the latter has three independent invariant
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elements in A*(A @ A) it is easy to see that no combination of these is annihilated
by s0(9) =2 ROA' @A Pso(7). This implies the existence of a symmetric Lie algebra

fs = s0(9) ®R. (12.12)

Further verification is required to show that the non-trivial components of (3)?s0(9)
all inject into A*(A @ A).

A sporadic example

From 12.2, the flat Spin(7)-structure on R® induces on any hypersurface N a Gj-
structure. If Q is the associated 4-form on R®, then from (12.9), i*Q = *¢, and
so the resulting Gy-structure on N is cosymplectic (cf. 11.7). The remaining two
components of dp relate to the second fundamental form of N [Br;]. For example
the structure on the totally umbilic sphere S7 must be invariant by the isotropy

group G itself, so
dp=kxyp, dxp=0, (12.13)

where k is a non-zero constant on S”. Actually, a suitable scaling of the metric
allows one to set £k = 1.

By analogy to 11.7, one might predict that a Gy-structure satisfying (12.13), but
whose metric is not isometric to S7, will lead to a metric whose holonomy is contained
in Spin(7). Structures satisfying (12.13) are said to have “weak holonomy group” Gj,
a notion introduced by Gray [Gs]; they have the property that parallel translation
preserves the associative subspaces defined by the cross product (11.7). We shall
exhibit such a structure on a non-standard homogeneous space SO(5)/SO(3), but
we must first discuss the representation theory of SU(2).

The complex irreducible SU(2)-modules are precisely the k-fold symmetric tensor
k

(&)

products % = @ko of the basic one ¢ = C?. The space ¢* may be regarded

as that consisting of homogeneous polynomials of degree k£ in two variables, and

multiplication of polynomials determines an SU(2)-invariant mapping o*®ct —

k+£

o On the other hand, an invariant skew form A°c — C extends to make

contractions of — gk—2%

whenever 1 < ¢ < [k/2]. Using Schur’s lemma it is now
easy to deduce the “Clebsch-Gordan” formula

min{k,e}
ool = Y M (12.14)
=0
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which may be regarded as the simplest version of 6.2.

Observe that o?* is the complexification of a real vector space [0?¥] equal to the
fixed points of £2*, where ¢ corresponds to multiplication by the quaternion j on
o, which is invariant by SU(2) = Sp(1). For example [0?] determines the double
covering SU(2)=Spin(3) — SO(3), and as well as being the basic representation of
SO(3), it is also isomorphic to the adjoint representation via the usual vector cross

product:
su(2) =s0(3) = A’[0?] = [07].

More generally, [0%*] = (D§[0?] is the primitive component of
QoY = e e [c* e - o0 R

We now ask the question “is [0%] the isotropy representation of a homogeneous

space?”. This is the case when the bracket on s0(3) extends to make
g =s0(3)®[0"] = [0”] @ [0*]

into a Lie algebra by means of contractions
Nlo™ = 10", Nlo™] = [0™]

arising from (12.14). The second of these projections is necessarily zero when £ is
even, so in this case g would be automatically be a symmetric Lie algebra. The only
point where the Jacobi identity remains in doubt involves the brackets [z, [y, z]],
where x,y, z all belong to [0%].

We quote the following result as a corollary of the classification, due indepen-
dently to Manturov [Ma] and Wolf [W4], of homogeneous spaces with irreducible

isotropy action, tempting the reader to give a direct proof.

12.7 Proposition [0%*] the isotropy representation of a homogeneous space M if

and only if k equals 1,2,3 or 5, and g is one of s0(4), su(3), so(5), go.
The corresponding simply-connected spaces have the form

§% = SU(2) =

SOB3) SO(3) SOB) SO@B)
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The action of SO(3) on the G-module p determined by the last space must satisfy
Nu=gaopo?ell e
and the only solution is y = [¢®]. In other words, the homomorphism
SO(3) — SO(7) C Aut[0°], (12.15)
which is itself the isotropy representation of SO(5)/SO(3), factors through Gs.
12.8 Theorem [Brs]| There ezists a Riemannian metric with holonomy equal to

. SO(5)
R* .
Spin(7) on the product X S003)

Proof. From (12.15) the principal SO(3)-bundle over M = SO(5)/S0O(3) with total
space SO(5) lies in a Gy-subbundle of the frame bundle. The resulting structure

then equips M with with a 3-form ¢ and a Riemannian metric ¢™. It is remarkable

that the refinement

pep =2 [0°%®[0°)]
~ 020l @[] @ [0®] @ [0t @ [0?] D R,

of (11.8) contains a unique SO(3)-invariant. The same is true of the space

Ao’ = O]

~ o] @lod]| o]0t DR

of 3-forms on M, whose decomposition was deduced immediately from 11.4.
In addition, A*[0%] = A°[0®] contains no SO(3)-invariants, and H*(M,R) = 0
(see below), so we may deduce that ¢ satisfies (12.13). If ¢ is a real coordinate, the

4-form
Q= pdt — ktxop

defines a Spin(7)-structure on RT x M by (12.9), provided kt < 0. Since Q is
closed, the holonomy group of the corresponding metric dt? + k?t2g™ is contained in
Spin(7), and the holonomy algebra h must lie between so0(3) and so(7) = s0(3) &
[0%]®[0'%]. However, g = s0(3)®[c'?] is the only proper subalgebra whose holonomy
representation restricts to the SO(3)-module R @ [0%]. This is ruled out by showing
that no non-zero multiple of dt can be parallel. Thus h = so(7). d
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The manifold M = SO(5)/SO(3) = Sp(2)/SU(2) has an established history as
an odd man out. Berger proved that, apart from the rank one symmetric spaces,
there are only two normal homogeneous manifolds with everywhere strictly positive
sectional curvature, one of which is M [Bes]. He also showed that M is not home-
omorphic to S7, for although they share the same real cohomology, M has torsion
in dimension 3. The positive curvature of M is a consequence of the algebraic fact
that the Lie bracket of

s0(h) = s0(3)®m

has the property that [z,y] # 0, whenever z,y are linearly independent elements
of the subspace m = [¢%]. This in turn follows from the fact that its m-component
can be identified with the cross product = x y of (11.7).
The inclusion SO(3) C SO(5) defining M induces an embedding
SO(3) SO(5)

2 _ 4
S =50@ ' So@ 2

whose image is a Veronese surface in S*. It follows that M parametrizes Veronese
surfaces in S*, which lift to holomorphic rational normal curves in the twistor space
CP? [ES]. Similarly, its isotropy irreducible partner Go/SO(3) parametrizes Veronese
surfaces in S which are holomorphic relative to the standard almost complex struc-
ture of S°.

The metric of 12.8 has the same form as (11.14). Applying this cone construction
to an arbitrary 7-manifold M with a Gs-structure satisfying the weak holonomy
condition (12.13), one can use the fact that any Spin(7)-metric is Ricci-flat to deduce
that M is Einstein, a fact proved independently in [G3]. As far as our original choice
of M is concerned, any isotropy irreducible space is automatically Einstein, as all
bilinear forms on the tangent space are proportional. In the final section, we shall
produce an analogous metric, in which M is replaced by an isotropy reducible space
Sp(2)/Sp(1), namely the sphere S7.

Spin(7)-metrics and self-duality

Let M be a self-dual Einstein 4-manifold M, as in the preceding chapter. This time
we must also suppose that M is a spin manifold, which we recall means that its

principal bundle P of oriented orthonormal frames lifts to a Spin(4) or SU(2) x

180



SU(2)-bundle P. Of course, this is always true locally, but it general it requires the
vanishing of the second Stiefel-Whitney class wy(M). We shall be working on the

real 8-dimensional total space of the spin bundle
o.M =P X Spin(4) 0—,

where o denotes the basic complex 2-dimensional vector space on which the second
SU(2) factor acts (see (11.1)).

For the purposes of calculation, we may choose a section w € T'(U, AiM ) of unit
norm, defining a positively oriented orthogonal almost complex structure on the open
set U. Suppose also that {e!,e?} is a Hermitian basis of (1,0)-forms on U, with
w = —i(e'el + e%e?), which is consistent with the definition (3.6). Then there exist

real forms ¢, E*, on the total space o_M such that

2

lel _ e2¢

~—
I
o
—
|

—im* (e E'E? — E3E4,

%) = & = E'E- E‘B? (12.16)

n*(ele? —e

—ir*(e'e2 +e’el) = ¢ = E'E'- E’E®

what we have done here is to write down explicitly the isomorphism )\(l)’lM ~ A2 M
((7.7) with orientations reversed).

The complex symplectic form e'e?, of type (2,0) relative to w, defines an SU(2)-
structure on U. With respect to this, e!,e? may be regarded as sections of the
spinor bundle according to the isomorphism o_ = A0 which is really a special
case of (12.7). The elements a',a? of the dual basis to {e',e?*} may be regarded
as complex-valued coordinates on o_M. Adapting the techniques of chapter 7, we

define 1-forms
2 .
b o=da'+> dryl, 1<i<2,
j=1
where Ve' = Zj Y;®e’. The equations

i(b'0l —0%0%) = f' = E°E® — E7(—E°),
(b0 —b?1) = f* = ESE" — (—ES)E®, (12.17)
i(0'02 + b?0Y) = f? = FE°(—E°) — ESE"
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define 1-forms E° E® E7 —FE® (labelled in accordance with (12.8)) and 2-forms
L 2%, 2 on o_M. Observe that the 1-forms e!, e? of (12.16) have been replaced by
bT, b2 respectively, to account for the Hermitian duality.

Let u = u(p), v = v(p) be positive functions of the Hermitian norm squared

2 .
p=>_|a'[*. Comparing (12.16),(12.17) with (12.9), we see that
i=1

3 3 3
Q= —%uQ Zcici + uchifi — %112 z:fzfZ (12.18)
i=1 i=1 i=1

is a 4-form whose stabilizer is isomorphic to Spin(7), and associated to the Rieman-

nian metric
4 8
uwY E'®QFE +v)Y E'QE'. (12.19)
=1 =5

We leave the reader to verify that the definition of €2 does not depend on our choice

of basis, so that it is a globally-defined 4-form on the total space of the spin bundle.

12.9 Proposition If M is a 4-dimensional self-dual Finstein spin manifold with
non-zero scalar curvature t, then for some range of values of p, the functions u, v

can be chosen so that (12.19) is a metric with holonomy group contained in Spin(7).

Proof. Note that —3 > c'c and —¢ > f'f* are just fancy ways of writing the
pullback 7*9 of the volume form on M, and the corresponding “vertical” 4-form
—b'b16%h2. Now

b = (Vg + dl 7 d),
J
where U/ are the curvature 2-forms which satisfy

W = L@,

where the subscript ( denotes the primitive component relative to w. This is a
complex analogue of (7.15), whence it may be proved directly.
For the purposes of computing derivatives, we are free to work at a fixed point

z € n7(m) for which a?(z) =0 and Ve'|,, = 0. In this case,
db'|, = a'yi = —opitalct,
db?|, = a'py = —5ta'(c® +ic?),
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and

dQ; = Re [(“2)'dﬂ-7r*19 — Ltuva' b7 + (wv)'dp ' f?
+ptahe? (i T + (¢ + i 0T ) |

= ((UQ)' — %tuv) dp.m*9 + ((uv)' _ %mﬂ)dpzcifi.
This is zero when
3'U/U/” + 2(u’)2 — 0 and v = 8t—1ul’
or
g _2
w= (ko OF, o=kt kot )7,
where k,¢ are constants, with k¢ > 0. When ¢ < 0, we must have p < |k|/£. O

From (7.26), the only complete self-dual Einstein 4-manifold with ¢ > 0 which is

spin is S*. In this case, the metric
3 2 &
(p+1)5mg" + Lt (p+1)75 ) E'QE (12.20)
i=5

on o_S* is complete, and using its invariance under the group SO(5) of isome-
tries lifted from S*, it can be shown that there are no parallel 1-forms or 2-forms.

The classification 10.7 then confirms that the holonomy group is actually equal to
Spin(7).

12.10 Corollary [BS] The total space of the spin bundle over S* has a complete
Ricci-flat metric with holonomy equal to Spin(7).

The above constructions are reminiscent of those of Calabi [Cas], and form part
of a more general framework for studying Einstein metrics on total spaces of bundles
pioneered by Bérard Bergery [B],[Bes]. They also generalize more familiar situations
in which new metrics are built from Riemannian submersions, but a crucial feature
is that the curvature of the bundle in question satisfy the Yang-Mills equations. In
this context, we should have remarked earlier that the condition that a 4-dimensional
manifold be self-dual and Einstein is equivalent to the condition that the induced
connection on its associated bundles A?> M, o_M satisfy the self-dual Yang-Mills

equations [AHS]. The results are particularly effective when, like in our examples,
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a Lie group G acts on the total space with orbits of codimension one. In fact,
a general programme might consist of determining, for each G, the set of all G-
invariant cohomogeneity one Einstein metrics.

The spin bundle over S* = HP! can be identified with the tautological quater-
nionic line bundle with fibre o in (9.10). Its total space can then be identified
with quaternionic projective plane with a point removed, and there is some analogy
between (12.20) and the Sp(2)Sp(1)-invariant quaternionic Kahler metric on this
vector bundle. The metric (12.20) is asymptotic to

dr? +r’ds*, r= p3/10,

where ds? is a non-standard “squashed” Einstein metric on the sphere S”. In partic-
ular, the Spin(7) metric is not asymptotically locally Euclidean like that of Calabi-
Eguchi-Hanson (8.8).

Page and Pope [PP] have made a systematic study of Einstein metrics on the
total spaces of bundles over quaternionic Kahler manifolds. The higher-dimensional
situations are also relevant to Gy and Spin(7)-metrics, given the construction of
Galicki and Lawson [GL] of self-dual Einstein orbifolds. In fact, it is tempting to
look for a direct reduction process for metrics with holonomy G5 and Spin(7), based

on their characterization by closed 3-forms and 4-forms.
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Notation index

The list includes most symbols which are introduced in the text by some form of def-
inition and subsequently appear in another chapter. Page numbers refer to selected

occurrences. Greek and other symbols are at the end.

skewing maps

skewing maps

various vertical 1-forms
Betti numbers

Bochner tensor

Chern classes

pointwise conformal group
complex projective space
centralizer of a weight
sum of roots

various differential operators
various horizontal spaces
differential operators
Riemannian metric
Hermitian metric

root spaces

exceptional Lie group
quaternionic group

real Grassmannians
complex Grassmannians
holonomy groups
holonomy algebra
Dolbeault cohomology
quaternionic projective space
almost complex structure
almost complex structures
almost complex structures

Killing form

46,142
46,143
93,108,166,182
8,101,110,117
53,85,98
38,97,102,110
49,89,135
40,80,98,119,129
76,98,131

76,158
43,136,162
10,93,99
36,108,111
10,20,34,109,166,183
37,43,108

75,131
155,173,179
21,116,126,135
41,132,146
73,121,134
23,25,58,149,174
28,50,58,149
42,57,111
129,149

32,129
90,104,114,125
95,165

60,151
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SL(k,H)
S0o(p, q)
Sp(k)
Sp(k)Sp(1)
sp(k)
Sp(2m, R)
Sp(m, C)
Spin(n)
SU(m)
su(m)

t

To(p)

W, W
ZM

various line bundles

frame bundle
complementary subspace
Cayley numbers

powers of hyperplane bundle
bundle of orthonormal frames
holonomy bundle

complex quadrics

curvature tensor

curvature operator

spaces of curvature tensors
sphere

quaternionic group
pseudo-orthogonal group
quaternionic unitary group
quaternionic group
quaternionic unitary algebra
real symplectic group
complex symplectic group
double cover of SO(n)
special unitary group
special unitary algebra
scalar curvature

structure tensor

spaces of Weyl tensors

twistor space

Christoffel symbols
skewing map

spin representations
involution of some kind
invariant tensor or 2-form

canonical 1-form

40,100,130

9,25,34

59,144

148,157
41,103,109
10,26,34,63,93
23,50,130
42,80,104
13,26,58,128,141,163
27,45,58,144
46,50,58,149,162,176
44,65,149,180
69,139,
20,56,89,152
66,79,114,140,153
124,154

67,83,131

34,69

35,70,116
79,87,147,170
53,109,153,163,172
33,71,84
49,61,94,130

18,35
47,87,91,142,176
95,130,164

14,21,25
17,22,35,50
148,154,171,181
67,77,97,147
14,21,34,115
9,15,45,141



S =3
o

BN

.

Q0 E E & xX € oS

V1 V1

volume form

torsion 2-form

canonical bundle
representations of O(n)
representations of SO(4)
representations of U(m)
representations of U(m)
bundles of complex forms
representations of Sp(k)
moment mapping
representation of G,
difference of connections
involution or symmetry
representations of O(n)
representations of U(m)
representations of Sp(k)
tautological form
signature

fundamental Weyl chamber
connection 1-forms
curvature 2-forms
invariant 3-form

Euler characteristic
connection 1-forms
non-degenerate 2-form
triple of 2-forms

various 4-forms

covariant derivative
star isomorphism

real vector spaces

88,182
13,45

53,99,107
20,32,46,55,88
89,155
31,58,90,111,172
33,51,84,112,181
35,42,111
67,79,127
77,118,133
155,179
16,22,49,63
64,106,116
20,47,55,83,91
51,68
125,154,177
93,109,199
101,110

76,158
12,28,63,91
13,26,45
155,173,179
101,110,117
91,107,182
33,37,118,164,181
90,104,115,126,165
61,126,160,173

12,27,35,55,61
86,160,172
32,67
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