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1.1 Subgroups

G2 ⊂ Spin 7 ⊂ Spin 8
∪

SU(4) ∪
∪

Sp(2) ⊂ Sp(2)Sp(1)

Sp(2) fixes a HK triple ω1, ω2, ω3

Sp(2)Sp(1) is the stabilizer of ω2
1 + ω2

2 + ω2
3 = Ω

Spin 7 is the stabilizer of −ω2
1 + ω2

2 + ω2
3 = Φ [BH]



1.2 Euler number

Proposition [GG]. If M 8 (compact and oriented) has a
Spin 7 or an Sp(2)Sp(1) structure then

8χ = 4p2 − p21

Proof. For an SU(4) structure, TMc = T 1,0 ⊕ T 0,1 has total
Chern class

1− p1 + p2 = (1 + c2 + c3 + c4)(1 + c2 − c3 + c4)

= 1 + 2c2 + (c22 + 2c4)

so
8ε = 8c4 = 4p2 − p21.

Argument extends because SU(4), Spin 7, Sp(2)Sp(1) share
a maximal 3-torus!



1.3 Triality

Spin 8 acts on ∆ = ∆+ ⊕∆−

↓ 2: 1

SO(8) acts on T = Λ1

Outer automorphisms of Spin 8 permute T,∆+,∆−.

Restricting to a maximal 4-torus,

Λ1 has 8 weights ±x1,±x2,±x3,±x4
∆+⊕∆− has 16 weights 1

2(±x1 ± x2 ± x3 ± x4)

(with an even number of like signs for ∆+).

If
∑
xi = 0 then Λ1,∆− have the same weights.

In fact Λ1 ∼= ∆− as Spin 7, Sp(2)Sp(1) modules.

In general, ∆⊗∆ =
⊕

Λi. Here,

∆+ ⊗∆+
∼= Λ4

+ ⊕ Λ2 ⊕ Λ0

∆+ ⊗∆− ∼= Λ3 ⊕ Λ1



2.1 A hat class

The complexified tangent bundle has Chern class

c(TMc) =

4∏
1

(1− x2i )

so p1 =
∑
x2i . Its Chern character is

ch(TMc) =

4∑
1

(exi + e−xi) = 8 + 2
∑
x2i + 1

12

∑
x4i

Similarly,

ch(∆+ −∆−) =

4∏
1

(exi/2 − e−xi/2) = εÂ(M)−1

where ε = x1x2x3x4 is the Euler class, and we define

Â(M) =

4∏
1

xi/2

sinh(xi/2)
= 1− 1

24p1 + 1
5760(7p

2
1 − 4p2) + · · ·



2.2 Dirac operator

This is defined as γ ◦ ∇ where m is Clifford mult:

Γ(M,∆+)
∂/−→ Γ(M,∆−)

Given a vector bundle V with connection, it extends to an
elliptic operator

Γ(M,∆+ ⊗ V )
∂/ V−→ Γ(M,∆− ⊗ V ).

The resulting index ind(V ) = dim ker ∂/ − dim coker∂/
depends only on the topology of V :

Theorem [AS]

ind(V ) =

∫
M

ch(V )Â(M)

• V = ∆+ −∆− gives the 2-step de Rham complex
4⊕
i=0

Λ2i d+d∗−→
4⊕
i=1

Λ2i−1.

Of course, ind(V ) = χ =
8∑
i=0

(−1)ibi.



2.3 Betti numbers

• V = C equates the index of ∂/ with

Â = Â2 = 1
5760(7p

2
1 − 4p2)

• V = ∆+ + ∆− gives rise to the signature operator

4+⊕
i=0

Λi −→
8⊕

i=4−
Λi

and so ind(V ) = b+4 − b−4 = τ. But

ind(V ) =

∫
M

(
16 + 2p1 + 1

24(p
2
1 + 4p2)

)
Â(M)

and
τ = 1

45(7p2 − p
2
1) = L2

Corollary. With a reduction to Spin 7 or Sp(2)Sp(1),

48Â = 3τ − χ

and 24Â = −1 + b1 − b2 + b3 + b+ − 2b−.



2.4 Parallel spinors

• M is QK (holonomy ⊆ Sp(2)Sp(1)) with R > 0 so
‘nearly hyperkähler’

⇒ Â = 0

Also b3 = b− = 0 so b4 = 1 + b2

• M has holonomy equal to Spin 7

⇒ Â = 1

Thus b3 + b+ = 25 + b2 + 2b−

• M is irreducible HK (holonomy = Sp(2))

⇒ Â = 3

Then b3 + b4 = 46 + 10b2 > 76

Beauville’s have (b2, b3, b4) = (23, 0, 276), (7, 8, 108) [G].



3.1 HK constraint

Suppose that M 4n has holonomy Sp(n) with χ 6= 0. Set

P (t) =
4n∑
i=0

bit
i.

Then χ=P (−1) and P ′(−1)=−2nP (−1). Consider

log P (−1+t)
P (−1) = log (1− 2nt + P ′′(−1)

2P (−1) + · · ·) = −2nt + 1
2φ t

2 + · · ·

where φ + 4n2 = P ′′(−1)
P (−1) . By construction,

φ(M ×N) = φ(M) + φ(N)

is additive.

Theorem [S]. Any cpt HK manifold M 4n has φ = −5n/3.
Equivalently

nχ = 6

2n−1∑
i=0

(−1)i(2n− i)2bi

and as a corollary, 24 | (nχ).

n = 1 ⇒ 4b1 + b2 = 22
n = 2 ⇒ 25b1 − 10b2 + b3 + b4 = 46.

φ plays a role in the theory of symmetric holonomy.



3.2 QK topology

By analogy to Spin 8/Spin 7 ∼= S7,

Spin 8

Sp(2)Sp(1)
∼=

SO(8)

SO(5)×SO(3)
= Gr3(R8)

Given an Sp(2)Sp(1) structure,

TMc
∼= E ⊗H ∼= ∆−

∆+
∼= Λ2

0E ⊕ S2H

where S2H ∼= 〈I, J,K〉c. We have

∆+ −∆− = Λ2
0E − E⊗H + S2H = Λ2

0(E −H).

Proposition. Relative to Sp(n)Sp(1),

V = ∆+ −∆− ∼= Λn
0(E −H).

This explains why ch(V ) ∈ H4n(M,R). Similar techniques
can be used in other situations to prove, e.g. Mg inside
Fg → Gr4(2g+2) has TMg = Q⊗W−ψ2Q and pg1 = 0 [K].



3.3 Isometry groups

Over M = HP2, H is the tautological line bundle. In
general,

h = −4c2(H) ∈ H4(M,Z)

represents the class generated by Ω, and h2 ∈ N.

Proposition. Suppose M 8 is QK with R > 0. Then

ind(S2H)=1, ind(TM)=−1−b2, ind(Λ2
0E)=2b2+1

The corresponding modules are trivial representations of
the isometry group G. On the other hand,

ind(S4H) = dimG = 5 + h2 > 6.

By twistor/Mori theory, one knows that b2 > 0 implies
M ∼= Gr2(C4). So we can assume b2 = 0 and b4 = 1. Then

dimG = 21, 14, 9, 6.

The first two cases are HP2 and G2/SO(4), the other two
can be eliminated [PS].



3.4 Rigid operators

When an isometry group S1 or G acts on M, the indices
become virtual G modules. Operators like ∂/ ⊗∆+ that
involve Betti numbers will be rigid, meaning that the
indices are sums of trivial modules.

Theorem [AH]. If a compact spin manifold admits a
non-trivial S1 action then Â = 0. (cf. Spin 7)

Define a sequence of virtual vector bundles R′i by

R′(q) =

∞∑
i=0

qkR′k =
∞⊗
i=1

Λ(q2i−1)/Λ(−q2i).

Explicitly, R′0 = C
R′1 = TM = Λ1 (Rarita-Schwinger)
R′2 = Λ2 ⊕ Λ1

R′3 = Λ3 + Λ2 + S2 + Λ1

R′4 = 2Λ1 + Λ2 + Λ3 + Λ4 + 2S2 + Vsw

Theorem [W, BT]. If M 2n is a compact spin manifold then
ind(R′k) is rigid for each k.

Strategy: ind(R′(q)) is a mero function on C/〈1, e2πiq〉.



4.1 Fernández example

Theorem [CF]. There are 12 nilpotent Lie algebras g that
admit left-invariant G2 structures with dϕ = 0.

They all give rise to compact nilmanifolds N = Γ\G but
with π1 = Γ infinite and p1 = 0! An easy one is

g∗ = 〈e1, . . . , e7〉 = g5 ⊕ R2

with de4 = e12 and de5 = e13. The closed 3-form is

(45− 67)1 + (46− 75)2 + (47− 56)3 + 123.

The cohomology ring of N is isomorphic to that of the
DGA (

⊕
Λig∗, d) [N], which:

(i) is freely generated by e1, . . . , e7,

(ii) has a nilpotent property dek ∈
∧

2〈e1, . . . , ek−1〉.
This means that it is a minimal model for the de Rham
algebra (over R). It has a non-zero Massey product

〈[e2], [e1], [e3]〉 = [−e43 + e25] ∈ H2(N,R)/〈[e3], [e2]〉.



4.2 Formality

If M is simply connected or ‘nilpotent’, its minimal model
determines π∗(M)⊗Q.

A manifold is formal if there is a morphism of its mimimal
model to (H∗(M,R), d = 0) inducing an isomorphism on
cohomology (so the latter determines rational homotopy).
All Massey products must vanish.

• Spheres are formal: e.g. the minimal model for S2n is
S(x2n)⊗ Λ(y4n−1) with dy = x2. Indeed, πi(S2n)⊗Q is
non-trivial iff i = 0, 2n, 4n− 1.

• Compact symmetric spaces are formal: cohomology is
represented by parallel forms, so Massey products vanish.

• Compact Kähler manifolds are formal, thanks to the
∂∂ lemma and Chern’s theorem [DGMS].

• A nilmanifold is formal only if it is a torus [H], so
nilmanifolds can’t be Kähler even though many admit
both complex and symplectic structures.

• Positive QK manifolds are formal, because they have
Kähler twistor spaces [A].



4.3 Low dimensions

• Any simply-connected (compact oriented) 6-manifold
is formal. Any k -connected manifold Mn with n 6 4k+2
is formal [M].

• Any M 7 or M 8 with b2 6 1 is formal [C].

• There exist simply-connected symplectic manifolds
M 2n that are not formal for all n > 4.

• Which of the known manifolds with holonomy G2 or
Spin 7 are formal? Many have vanishing Massey products
since [α] ∪ [β] = 0 implies that α ∧ β = 0 as forms.

Why is the cohomology ring of a manifold with special
holonomy compatible with index theory constraints, like
b3 + b+ = 25 + b2 + 2b− for Spin 7 ?

What about the topology of compact 8-manifolds with
holonomy Sp(2)Sp(1) and R < 0 ?
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