Index theory and special structures on 8-manifolds

An introduction

Simon Salamon 15 July 2014

1.1 Subgroups

$$G_{2} \subset \underbrace{\operatorname{Spin 7}}_{\bigcup} \subset \operatorname{Spin 8}_{\bigcup}$$

$$\bigcup_{\bigcup}$$

$$SU(4) \qquad \bigcup_{\bigcup}$$

$$\operatorname{Sp}(2) \subset \operatorname{Sp}(2)\operatorname{Sp}(1)$$

Sp(2)fixes a HK triple $\omega_1, \omega_2, \omega_3$ Sp(2)Sp(1)is the stabilizer of $\omega_1^2 + \omega_2^2 + \omega_3^2 = \Omega$ Spin 7is the stabilizer of $-\omega_1^2 + \omega_2^2 + \omega_3^2 = \Phi$ [BH]

1.2 Euler number

Proposition [GG]. If M^8 (compact and oriented) has a Spin 7 or an Sp(2)Sp(1) structure then

$$8\chi = 4p_2 - p_1^2$$

Proof. For an SU(4) structure, $TM_c = T^{1,0} \oplus T^{0,1}$ has total Chern class

$$1 - p_1 + p_2 = (1 + c_2 + c_3 + c_4)(1 + c_2 - c_3 + c_4)$$

= 1 + 2c_2 + (c_2^2 + 2c_4)

SO

$$8\varepsilon = 8c_4 = 4p_2 - p_1^2.$$

Argument extends because SU(4), Spin 7, Sp(2)Sp(1) share a maximal 3-torus!

1.3 Triality

```
Spin 8 acts on \Delta = \Delta_+ \oplus \Delta_-

\downarrow 2:1

SO(8) acts on T = \Lambda^1
```

Outer automorphisms of Spin 8 permute T, Δ_+, Δ_- . Restricting to a maximal 4-torus,

 $\Lambda^{1} \qquad \text{has 8 weights} \quad \pm x_{1}, \pm x_{2}, \pm x_{3}, \pm x_{4}$ $\Delta_{+} \oplus \Delta_{-} \quad \text{has 16 weights} \quad \frac{1}{2}(\pm x_{1} \pm x_{2} \pm x_{3} \pm x_{4})$ (with an even number of like signs for Δ_{+}). If $\sum x_{i} = 0$ then Λ^{1}, Δ_{-} have the same weights. In fact $\Lambda^{1} \cong \Delta_{-}$ as Spin 7, Sp(2)Sp(1) modules.

In general, $\Delta \otimes \Delta = \bigoplus \Lambda^i$. Here,

 $\Delta_{+} \otimes \Delta_{+} \cong \Lambda^{4}_{+} \oplus \Lambda^{2} \oplus \Lambda^{0}$ $\Delta_{+} \otimes \Delta_{-} \cong \Lambda^{3} \oplus \Lambda^{1}$

2.1 A hat class

The complexified tangent bundle has Chern class

$$c(TM_c) = \prod_{1}^{4} (1 - x_i^2)$$

so $p_1 = \sum x_i^2$. Its Chern character is

$$ch(TM_c) = \sum_{1}^{4} (e^{x_i} + e^{-x_i}) = 8 + 2\sum_{i} x_i^2 + \frac{1}{12}\sum_{i} x_i^4$$

Similarly,

$$\operatorname{ch}(\Delta_{+} - \Delta_{-}) = \prod_{1}^{4} (e^{x_i/2} - e^{-x_i/2}) = \varepsilon \hat{A}(M)^{-1}$$

where $\varepsilon = x_1 x_2 x_3 x_4$ is the Euler class, and we *define*

$$\hat{A}(M) = \prod_{1}^{4} \frac{x_i/2}{\sinh(x_i/2)} = 1 - \frac{1}{24}p_1 + \frac{1}{5760}(7p_1^2 - 4p_2) + \cdots$$

2.2 Dirac operator

This is defined as $\gamma \circ \nabla$ where *m* is Clifford mult:

$$\Gamma(M, \Delta_+) \xrightarrow{\not 0} \Gamma(M, \Delta_-)$$

Given a vector bundle *V* with connection, it extends to an elliptic operator

$$\Gamma(M, \Delta_+ \otimes V) \xrightarrow{\mathscr{P}_V} \Gamma(M, \Delta_- \otimes V).$$

The resulting index $\operatorname{ind}(V) = \dim \ker \partial \!\!\!/ - \dim \operatorname{coker} \partial \!\!\!/$ depends only on the topology of V:

Theorem [AS]

$$\operatorname{ind}(V) = \int_{M} \operatorname{ch}(V) \hat{A}(M)$$

• $V = \Delta_+ - \Delta_-$ gives the 2-step de Rham complex

$$\bigoplus_{i=0}^{4} \Lambda^{2i} \xrightarrow{d+d^*} \bigoplus_{i=1}^{4} \Lambda^{2i-1}.$$

Of course, $ind(V) = \chi = \sum_{i=0}^{8} (-1)^i b_i$.

2.3 Betti numbers

• $V = \mathbb{C}$ equates the index of ∂ with

$$\hat{A} = \hat{A}_2 = \frac{1}{5760}(7p_1^2 - 4p_2)$$

• $V = \Delta_+ + \Delta_-$ gives rise to the signature operator

$$\bigoplus_{i=0}^{4^+} \Lambda^i \longrightarrow \bigoplus_{i=4^-}^{8} \Lambda^i$$

and so $ind(V) = b_4^+ - b_4^- = \tau$. But

$$\operatorname{ind}(V) = \int_{M} \left(16 + 2p_1 + \frac{1}{24}(p_1^2 + 4p_2) \right) \hat{A}(M)$$

and

$$\tau = \frac{1}{45}(7p_2 - p_1^2) = L_2$$

Corollary. With a reduction to Spin 7 or Sp(2)Sp(1),

$$48\hat{A} = 3\tau - \chi$$

and $24\hat{A} = -1 + b_1 - b_2 + b_3 + b^+ - 2b^-$.

2.4 Parallel spinors

• *M* is QK (holonomy \subseteq Sp(2)Sp(1)) with R > 0 so 'nearly hyperkähler'

$$\Rightarrow \hat{A} = 0$$

Also $b_3 = b^- = 0$ so

 $b_4 = 1 + b_2$

- *M* has holonomy equal to Spin 7 $\Rightarrow \hat{A} = 1$ Thus $b_3 + b^+ = 25 + b_2 + 2b^-$
- M is irreducible HK (holonomy = Sp(2)) $\Rightarrow \hat{A} = 3$ Then $b_3 + b_4 = 46 + 10b_2 \ge 76$

Beauville's have $(b_2, b_3, b_4) = (23, 0, 276), (7, 8, 108)$ [G].

3.1 HK constraint

Suppose that M^{4n} has holonomy Sp(n) with $\chi \neq 0$. Set

$$P(t) = \sum_{i=0}^{4n} b_i t^i.$$

Then $\chi = P(-1)$ and P'(-1) = -2nP(-1). Consider $\log \frac{P(-1+t)}{P(-1)} = \log (1 - 2nt + \frac{P''(-1)}{2P(-1)} + \cdots) = -2nt + \frac{1}{2}\phi t^2 + \cdots$ where $\phi + 4n^2 = \frac{P''(-1)}{P(-1)}$. By construction, $\phi(M \times N) = \phi(M) + \phi(N)$

is additive.

Theorem [S]. Any cpt HK manifold M^{4n} has $\phi = -5n/3$. Equivalently

$$n\chi = 6\sum_{i=0}^{2n-1} (-1)^i (2n-i)^2 b_i$$

and as a corollary, $24 | (n\chi)$.

 $n = 1 \Rightarrow 4b_1 + b_2 = 22$ $n = 2 \Rightarrow 25b_1 - 10b_2 + b_3 + b_4 = 46.$

 ϕ plays a role in the theory of symmetric holonomy.

3.2 QK topology

By analogy to Spin 8/Spin 7
$$\cong$$
 S^7 ,

$$\frac{\text{Spin 8}}{\text{Sp}(2)\text{Sp}(1)} \cong \frac{\text{SO}(8)}{\text{SO}(5) \times \text{SO}(3)} = \mathbb{G}r_3(\mathbb{R}^8)$$
Given an Sp(2)Sp(1) structure,
 $TM_c \cong E \otimes H \cong \Delta_-$
 $\Delta_+ \cong \Lambda_0^2 E \oplus S^2 H$

where $S^2H \cong \langle I, J, K \rangle_c$. We have

$$\Delta_+ - \Delta_- = \Lambda_0^2 E - E \otimes H + S^2 H = \Lambda_0^2 (E - H).$$

Proposition. Relative to Sp(n)Sp(1),

$$V = \Delta_+ - \Delta_- \cong \Lambda_0^n (E - H).$$

This explains why $ch(V) \in H^{4n}(M, \mathbb{R})$. Similar techniques can be used in other situations to prove, e.g. \mathcal{M}_g inside $\mathcal{F}_g \to \mathbb{G}r_4(2g+2)$ has $T\mathcal{M}_g = Q \otimes W - \psi^2 Q$ and $p_1^g = 0$ [K].

3.3 Isometry groups

Over $M = \mathbb{HP}^2$, *H* is the tautological line bundle. In general,

 $h = -4c_2(H) \in H^4(M, \mathbb{Z})$

represents the class generated by Ω , and $h^2 \in \mathbb{N}$.

Proposition. Suppose M^8 is QK with R > 0. Then

 $\mathrm{ind}(S^2H)\!=\!1, \ \mathrm{ind}(TM)\!=\!-1\!-\!b_2, \ \mathrm{ind}(\Lambda_0^2E)\!=\!2b_2\!+\!1$

The corresponding modules are trivial representations of the isometry group G. On the other hand,

$$\operatorname{ind}(S^4H) = \dim G = 5 + h^2 \ge 6.$$

By twistor/Mori theory, one knows that $b_2 > 0$ implies $M \cong \mathbb{G}r_2(\mathbb{C}^4)$. So we can assume $b_2 = 0$ and $b_4 = 1$. Then

dim
$$G = 21, 14, 9, 6.$$

The first two cases are \mathbb{HP}^2 and $G_2/SO(4)$, the other two can be eliminated [PS].

3.4 Rigid operators

When an isometry group S^1 or G acts on M, the indices become virtual G modules. Operators like $\partial \otimes \Delta_+$ that involve Betti numbers will be *rigid*, meaning that the indices are sums of trivial modules.

Theorem [AH]. If a compact spin manifold admits a non-trivial S^1 action then $\hat{A} = 0$. (cf. Spin 7)

Define a sequence of virtual vector bundles R'_i by

$$R'(q) = \sum_{i=0}^{\infty} q^k R'_k = \bigotimes_{i=1}^{\infty} \Lambda(q^{2i-1}) / \Lambda(-q^{2i}).$$

Explicitly,
$$R'_0 = \mathbb{C}$$

 $R'_1 = TM = \Lambda^1$ (Rarita-Schwinger)
 $R'_2 = \Lambda^2 \oplus \Lambda^1$
 $R'_3 = \Lambda^3 + \Lambda^2 + S^2 + \Lambda^1$
 $R'_4 = 2\Lambda^1 + \Lambda^2 + \Lambda^3 + \Lambda^4 + 2S^2 + V_{sw}$

Theorem [W, BT]. If M^{2n} is a compact spin manifold then $ind(R'_k)$ is rigid for each k.

Strategy: $\operatorname{ind}(R'(q))$ is a mero function on $\mathbb{C}/\langle 1, e^{2\pi i q} \rangle$.

4.1 Fernández example

Theorem [CF]. There are 12 nilpotent Lie algebras \mathfrak{g} that admit left-invariant G_2 structures with $d\varphi = 0$.

They all give rise to compact nilmanifolds $N = \Gamma \setminus G$ but with $\pi_1 = \Gamma$ infinite and $p_1 = 0$! An easy one is

$$\mathfrak{g}^* = \langle e^1, \dots, e^7 \rangle = \mathfrak{g}_5 \oplus \mathbb{R}^2$$

with $de^4 = e^{12}$ and $de^5 = e^{13}$. The closed 3-form is

$$(45 - 67)1 + (46 - 75)2 + (47 - 56)3 + 123.$$

The cohomology ring of *N* is isomorphic to that of the DGA $(\bigoplus \Lambda^i \mathfrak{g}^*, d)$ [N], which:

(i) is freely generated by e^1, \ldots, e^7 , (ii) has a nilpotent property $de^k \in \bigwedge^2 \langle e^1, \ldots, e^{k-1} \rangle$. This means that it is a *minimal model* for the de Rham algebra (over \mathbb{R}). It has a non-zero Massey product

 $\langle [e^2], [e^1], [e^3] \rangle = [-e^{43} + e^{25}] \in H^2(N, \mathbb{R}) / \langle [e^3], [e^2] \rangle.$

4.2 Formality

If *M* is simply connected or 'nilpotent', its minimal model determines $\pi_*(M) \otimes \mathbb{Q}$.

A manifold is *formal* if there is a morphism of its mimimal model to $(H^*(M, \mathbb{R}), d = 0)$ inducing an isomorphism on cohomology (so the latter determines rational homotopy). All Massey products must vanish.

• Spheres are formal: e.g. the minimal model for S^{2n} is $S(x_{2n}) \otimes \Lambda(y_{4n-1})$ with $dy = x^2$. Indeed, $\pi_i(S^{2n}) \otimes \mathbb{Q}$ is non-trivial iff i = 0, 2n, 4n - 1.

• Compact symmetric spaces are formal: cohomology is represented by parallel forms, so Massey products vanish.

• Compact Kähler manifolds are formal, thanks to the $\partial \overline{\partial}$ lemma and Chern's theorem [DGMS].

• A nilmanifold is formal only if it is a torus [H], so nilmanifolds can't be Kähler even though many admit both complex and symplectic structures.

• Positive QK manifolds are formal, because they have Kähler twistor spaces [A].

4.3 Low dimensions

• Any simply-connected (compact oriented) 6-manifold is formal. Any *k*-connected manifold M^n with $n \leq 4k+2$ is formal [M].

• Any M^7 or M^8 with $b_2 \leq 1$ is formal [C].

• There exist simply-connected symplectic manifolds M^{2n} that are not formal for all $n \ge 4$.

• Which of the known manifolds with holonomy G_2 or Spin 7 are formal? Many have vanishing Massey products since $[\alpha] \cup [\beta] = 0$ implies that $\alpha \land \beta = 0$ as forms.

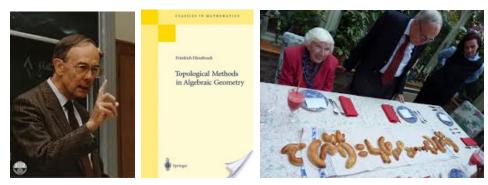
Why is the cohomology ring of a manifold with special holonomy compatible with index theory constraints, like $b_3 + b^+ = 25 + b_2 + 2b^-$ for Spin 7?

What about the topology of compact 8-manifolds with holonomy Sp(2)Sp(1) and R < 0?

5.1 References

- [A] Amman
- [AH] Atiyan and Hirzebruch
- [AS] Atiyan and Singer
- [BH] Bryant and Harvey
- [BT] Bott and Taubes
- [C] Cavalcanti
- [CF] Conti and Fernández
- [DGMS] Deligne, Griffiths, Morgan and Sullivan[G] Guan
- [GG] Gray and Green
- [H] Hasegawa
- [K] Kirwan
- [M] Miller
- [N] Nomizu
- [PS] Poon and Salamon
- [S] Salamon
- [W] Witten

5.2 Bibliography



Topological Methods in Alg Geometry, F. Hirzebruch 1927–2012



Lectures on K(X), by R. Bott 1923-2005

Lectures on Lie groups, by J.F. Adams 1930-1989