Index theory and
special structures
on 8-manifolds

An introduction

Simon Salamon
15 July 2014



1.1 Subgroups

Go C |Spin7| C  Spin8
U
SU(4) U
U
Sp(2) C Sp(2)Sp(1)

Sp(2) fixes a HK triple wy, wo, w3
Sp(2)Sp(1) is the stabilizer of w?f + w3 + w3 = )
Spin 7 is the stabilizer of —w? + w3 + w3 = ¢ [BH]



1.2 Euler number

Proposition [GG]. If M® (compact and oriented) has a
Spin 7 or an Sp(2)Sp(1) structure then

8X = dpy — pi

Proof. For an SU(4) structure, TM, = T'Y @ T"! has total
Chern class
Il —p1+p = (1—|—CQ—|—63—|—C4><1—|—CQ—63—|—C4>
= 1+ 2+ (¢ + 2¢4)

SO

8¢ = 8cy = 4py — 1.

Argument extends because SU(4), Spin 7, Sp(2)Sp(1) share
a maximal 3-torus!



1.3 Triality

Spin8  actson A=A, dA_
$2:1
SO(8) actson T = A!
Outer automorphisms of Spin8 permute 7', A, A_.
Restricting to a maximal 4-torus,

Al has 8 weights  +z1, +x9, +x3, T4
A+EDA_ has 16 Weights %(:l:ﬁl?l + xo = 23+ 5134)

(with an even number of like signs for A.).

If > x; =0 then A', A_ have the same weights.
In fact A' 2 A_ as Spin 7, Sp(2)Sp(1) modules.

In general, A ® A = @ A'. Here,
Ay @A Z A A e
Ay @A A Al

112



2.1 A hat class

The complexified tangent bundle has Chern class

4

C<TMC> — H(l - aj?)

1

so p; = Y x7. Its Chern character is
4

ch(T'M,) = Z(e%’ +e ") =842> 1+ 5> ]

1
Similarly,

4

ch(Ay —A_) = H(exzﬂ — e i) = c A(M)!

1

where € = 1297374 is the Euler class, and we define

A(M) = H Smiz/ 2/2) 1 — opy + == (TP — 4ps) +



2.2 Dirac operator

This is defined as v o V where m is Clifford mult:

DM, A,) 25 DM, A

Given a vector bundle V' with connection, it extends to an

elliptic operator

CM, A, @ V) 25 (MA@ V).

The resulting index ind(V') = dimker ¢ — dim coker@
depends only on the topology of V :

Theorem [AS]

ind(V) = /M ch(V)A(M)

o V=A,—A_ gives the 2-step de Rham complex

é/\m de; é/\m_y

1=0 1=1

Of course, ind(V) = x = > (—1)"b;.

1=0



2.3 Betti numbers

e VV = C equates the index of ¢ with

A= 1212 = %60(719% — 4po)

e V=A,+ A_ givesrise to the signature operator

b AN— PN
i=0 i=4-
and so ind(V) = b; — b, = 7. But

ind(V) = /M (16 + 2py + & (p? + 4pa)) A(M)

and

T = 4—15(7]92—}9%) = Lo

Corollary. With a reduction to Spin 7 or Sp(2)Sp(1),

48121:37—X

and 24A = —14+ by —by+ by +b" — 2b.



2.4 Parallel spinors

e M is QK (holonomy C Sp(2)Sp(1)) with R > 0 so
‘nearly hyperkdhler’

A

= A=0
Also b3 =b =0 so by =1+ by

e M has holonomy equal to Spin 7

A

= A=1
Thus by + b =254 by + 20~

e M isirreducible HK (holonomy = Sp(2))

AN

= A=3
Then bs + by = 46 + 10by > 76
Beauville’s have (bs, b3, by) = (23,0, 276), (7,8, 108) [G].




3.1 HK constraint

Suppose that M*" has holonomy Sp(n) with X # 0. Set

P(t) = Z bit"
Then X =P(—1) and P'(—1)= —2nP( 1). Consider
log ](3( H)t) log (1 — 2nt + P”E 1; +o0) = =2nt + 50 t° +
where ¢ + 4n? ];”(( Y . By construction,

¢(M><N) ¢(M) + ¢(N)

is additive.

Theorem [S]. Any cpt HK manifold M*" has ¢ = —5n/3.

Equivalently
2n—1

nxX =6 Z "(2n —i)?
and as a corollary, 24 | (nX)

n=1 = 4b; + by = 22
n =2 = 25b; — 100y + b3 + by = 46.

¢ plays a role in the theory of symmetric holonomy.



3.2 QK topology

By analogy to Spin8/Spin7 = S7,

Spin8 | SO(8) ) 8
oS 50 xs0@) — THE)

Given an Sp(2)Sp(1) structure,
TM. = FEQH = A_
A, = A2E@ S*H
where S*H = (I, J, K) . We have
Ay —A =NFE—-FE®H+S°H=M\(E—-H).

Proposition. Relative to Sp(n)Sp(1),
V=A,—A_ ~A(E— H).
This explains why ch(V) € H*(M,R). Similar techniques

can be used in other situations to prove, e.g. M, inside
Fy — Gry(2g+2) has TM, = Q @ W —4*Q and p{ = 0 [K].



3.3 Isometry groups

Over M = HP?, H is the tautological line bundle. In
general,
h=—4c(H) € H'(M,Z)

represents the class generated by 2, and h* € N.

Proposition. Suppose M°® is QK with R > 0. Then
ind(S?H)=1, ind(TM)=—1-by, ind(A3E)=2by+1

The corresponding modules are trivial representations of
the isometry group G. On the other hand,

ind(S*H) = dimG =5+ h* > 6.
By twistor/Mori theory, one knows that b, > 0 implies
M = Gry(C"). So we can assume b, = 0 and by = 1. Then
dim G = 21, 14, 9, 6.

The first two cases are HP*? and G,/SO(4), the other two
can be eliminated [PS].



3.4 Rigid operators

When an isometry group S* or G acts on M, the indices
become virtual G modules. Operators like § ® A, that
involve Betti numbers will be rigid, meaning that the
indices are sums of trivial modules.

Theorem [AH]. If a compact spin manifold admits a
non-trivial S! action then A = 0. (cf. Spin7)

Define a sequence of virtual vector bundles R; by
R(q)=) ¢"R, = ® Al )/A(=¢").
i=0 =

Explicitly, R, =C
R) =TM = A' (Rarita-Schwinger)
R, =A@ A
Ry =A%+ A* + 5%+ A
Rl =2AY + A2+ A3+ AT+ 252 + 1,

Theorem [W, BT]. If M*" is a compact spin manifold then
ind(R}) is rigid for each k.

Strategy: ind(R/(q)) is a mero function on C/(1, e*™%).



4.1 Fernandez example

Theorem [CF]. There are 12 nilpotent Lie algebras g that
admit left-invariant G, structures with dy = 0.

They all give rise to compact nilmanifolds N = I'\G but
with m = I" infinite and p; = 0! An easy one is

g =(e',...,e") = g5 ®R?
with de! = e'* and de® = e'. The closed 3-form is

(45 — 67)1 + (46 — 75)2 + (47 — 56)3 + 123.

The cohomology ring of N is isomorphic to that of the
DGA (6 A'g*, d) [N], which:

(i) is freely generated by e, ... e,
(ii) has a nilpotent property de® € A*(el, ... eF1).
This means that it is a minimal model for the de Rham
algebra (over R). It has a non-zero Massey product

(e’], [, [e']) = [—e™ + e™] € HA(N,R)/({[e”], [¢”]).



4.2 Formality

If M is simply connected or nilpotent’, its minimal model
determines 7, (M) ® Q.

A manifold is formal if there is a morphism of its mimimal
model to (H*(M,R),d = 0) inducing an isomorphism on
cohomology (so the latter determines rational homotopy).
All Massey products must vanish.

e Spheres are formal: e.g. the minimal model for S** is
S(SEQn) X A<y4n_1> with dy = 332. Indeed, 7T¢<S2n> %Y Q 1S
non-trivial iff 7 = 0, 2n, 4n — 1.

o Compact symmetric spaces are formal: cohomology is
represented by parallel forms, so Massey products vanish.

e Compact Kdhler manifolds are formal, thanks to the
00 lemma and Chern’s theorem [DGMS].

e A nilmanifold is formal only if it is a torus [H], so
nilmanifolds can’t be Kdhler even though many admit
both complex and symplectic structures.

e Positive QK manifolds are formal, because they have
Kdhler twistor spaces [A].



4.3 Low dimensions

e Any simply-connected (compact oriented) 6-manifold
is formal. Any k-connected manifold M" with n < 4k+2
is formal [M].

e Any M7 or M® with by < 1 is formal [C].

e There exist simply-connected symplectic manifolds
M?" that are not formal for all n > 4.

e Which of the known manifolds with holonomy G, or
Spin 7 are formal? Many have vanishing Massey products
since |a| U || = 0 implies that o A § = 0 as forms.

Why is the cohomology ring of a manifold with special
holonomy compatible with index theory constraints, like
bs + b =25+ by +2b~ for Spin7?

What about the topology of compact 8-manifolds with
holonomy Sp(2)Sp(1) and R < 07
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