
Self-duality and Exceptional Geometry
Topology and its Applications, Baku, 1987

S.M. Salamon

The local isomorphism between the special orthogonal group SO(4) and the
product SO(3)×SO(3) manifests itself in the conformally invariant decom-
position of the bundle of 2-forms

Λ2T ∗M = Λ2
+T ∗M ⊕ Λ2

−
T ∗M

over an oriented Riemannian 4-manifold M . There is a corresponding de-
composition of the Weyl curvature tensor W = W+ + W−, and M is said to
be self-dual if W− = 0. If M is compact, its signature is given by

τ =
1

3
p1 =

1

12π2

∫
M

(|W+|
2 − |W−|

2)υ,

where υ is the volume form. Consequently, if M is self-dual but not confor-
mally flat, then τ > 0.

Self-duality is the integrability condition for a natural almost complex
structure on the 6-dimensional sphere bundle of Λ2

−
T ∗M [1]. Motivated in

part by this result, we study the 7-dimensional total space X of Λ2
−
T ∗M ,

and characterize curvature conditions on M by means of differential relations
between invariant forms on X. First though, we define the exceptional Lie
group G2 using the inclusion SO(4) ⊂ G2, corresponding to a splitting of
dimensions 7 = 3 + 4. This enables us to construct a family of G2-structures
on X, which amounts to assigning a metric and vector cross product on each
tangent space.

There are only two exceptions in the list of holonomy groups of irreducible
non-symmetric Riemannian manifolds, namely G2 and Spin(7) [2,3,5,11].
This explains the importance of G2-structures, which, in the light of [7], seem
to be a little richer than their Spin(7) counterparts. An examination of the
structure on X leads us to exhibit there a Riemannian metric with holonomy
group G2, when M is the self-dual Einstein manifold S4 or CP 2. No such
complete metrics were previously known. This, and analogous examples with
holonomy G2 and Spin(7), are the subject of a forthcoming joint paper with
R. L. Bryant.
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1. Definition of G2

Let V denote an oriented n-dimensional vector space with a positive defi-
nite inner product <, >. The inner product extends to one on ΛkV ∗, and
together with the orientation defines a unit volume form υ ∈ ΛnV ∗ and an
isomorphism ∗ : ΛkV ∗ → Λn−kV ∗, where

σ(∗τ) =<σ, τ > υ, σ, τ ∈ ΛkV ∗. (1)

Here and in the sequel, an exterior product of differential forms is denoted
by their juxtaposition.

Now take n = 4 and k = 2. Then ∗ is an involution on Λ2V ∗, and we
consider the 7-dimensional space

A = Λ2
−
V ∗ ⊕ V ∗,

where Λ2
−
V ∗ is the −1-eigenspace of ∗. If {e4, e5, e6, e7} is an oriented or-

thonormal basis of V ∗, then Λ2
−
V ∗ is the span of

e1 = e4e5 − e6e7, e2 = e4e6 − e7e5, e3 = e4e7 − e5e6. (2)

Regarding now e1, . . . , e7 as all elements of A, rather than Λ2A, we set

ϕ′ = e1e2e3

ϕ′′ = e1(e4e5 − e6e7) + e2(e4e6 − e7e5) + e3(e4e7 − e5e6).

Then ϕ = ϕ′ + ϕ′′ is the sum of 7 simple 3-forms on a 7-dimensional vector
space, and has the following well-known property (see [5]).

Proposition 1 G2 = {g ∈ GL(V ) : g∗ϕ = ϕ} is a compact Lie group of
dimension 14.

Proof. G2 is defined above as a closed subgroup of GL(V ) containing SO(4).
Decreeing {e1, . . . , e7} to be an oriented orthonormal basis of A defines an
action of SO(7) with Lie algebra

so(7) ∼= Λ2A ∼= Λ2(Λ2
−
V ∗) ⊕ (Λ2

−
V ∗ ⊗ V ∗) ⊕ Λ2V ∗

∼= Λ2
−
V ∗ ⊕ (V ∗ ⊕ K) ⊕ (Λ2

+V ∗ ⊕ Λ2
−
V ∗). (3)
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Here K denotes the 8-dimensional subspace of Λ2
−
V ∗ ⊗ V ∗ of elements with

zero contraction; for example K contains e1 ⊗ e4 + e2 ⊗ e7 which defines a
skew-symmetric endomorphism of V annihilating ϕ. Hence the Lie algebra
G2 of G2 contains K, not to mention Λ2

+V ∗ and one copy of Λ2
−
V ∗. Now

S2A ∼= R ⊕ S2
0A, where

S2
0A

∼= S2
0(Λ

2
−
V ∗) ⊕ R⊕ V ∗ ⊕ K ⊕ S2

0V
∗

is the space of traceless symmetric endomorphisms of A, decomposed into
SO(4)-modules. Consideration of the action of K ⊂ G2 shows that S2

0A is
G2-irreducible. Thus

G2 = so(4) ⊕ K,

and it is not hard to check that G2 ⊂ SO(7). Q.E.D.

The form ϕ defines by contraction a two-fold vector cross product

m : Λ2A −→ A, (4)

of the sort that exists only on a space of dimension 3 or 7 [4]. Using m,
O = R⊕A can be identified with the alternative algebra of Cayley numbers,
to give the description of G2 as the group of automorphisms of O. The
subspace H = R ⊕ Λ2

−
V ∗ corresponds to a quaternionic subalgebra, and K

may be identified with the tangent space of the quaternionic symmetric space
G2/SO(4), parametrizing all quaternionic subalgebras in O [9].

Like S2
0A, the G2-modules A and G2 are irreducible, and from (4), the

orthogonal complement G⊥

2 of G2 in so(7) must be isomorphic to A. The
derivative

δ : End(A) ∼= A ⊗ A ↪→ Λ3A

of the action of GL(V ) on ϕ has kernel G2. It follows that the orbit GL(V )/G2

containing ϕ is open in Λ3A; in fact there is just one other open orbit,
containing the form ϕ′ − ϕ′′, with stabilizer the non-compact form G∗ [5].
Anyway, the above remarks establish

Proposition 2 Λ2A ∼= G2 ⊕ A, Λ3A ∼= R ⊕ S2
0A ⊕ A.
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2. Four-dimensional Riemannian Geometry

Let M be an oriented Riemannian 4-manifold. We shall now use the symbols
e4, e5, e6, e7 to denote elements of an oriented orthonormal basis of 1-forms
on an open set U of M . Accordingly e1, e2, e3 defined by (2) form a basis
of sections over U of Λ2

−
T ∗M . The Levi Civita connection on M induces a

covariant derivative ∇ on this vector bundle, and we set

∇ei = Σ ωi
j ⊗ ej, Ωi

j = dωi
j − Σ ωi

kω
k
j .

Summations here and below are exclusively over the range of indices 1,2,3.
Let X denote the total space of Λ2

−
T ∗M ; its cotangent space at x admits

a splitting
T ∗

xX = V o ⊕ Ho, (5)

where Ho is the annihilator of the horizontal subspaces defined by ∇, and
V o = π∗T ∗

mM, m = π(x). A local section Σ aiei of Λ2
−
T ∗M is covariant

constant iff Σ(dai + Σ ajωj
i ) ⊗ ei = 0, so Ho is spanned by 1-forms

f i = dai + Σ ajπ∗ωj
i ,

where a1, a2, a3 are now interpreted as fibre coordinate functions on X. Of
course V o is spanned by π∗e4, π∗e5, π∗e6, π∗e7.

Omitting the symbol π∗, consider the following invariant forms, defined
globally on X, independently of the choice of basis:

r = Σ (ai)2

dr = 2Σ aif i

α = Σ aiei

dα = Σ eif i, β = f 1f 2f 3

γ = e1f 2f 3 + e2f 3f 1 + e3f 1f 2, υ = −1
6
Σ eiei

For example r is simply the radius squared, α is the tautological 2-form on
X, and υ = e4e5e6e7 is the pullback of the volume form on M .

Proposition 3 (i) M is self-dual if and only if dγ = 2tυdr for (the pullback
of) some scalar function t on M ; (ii) M is self-dual and Einstein if and only
if dβ = 1

2
tdαdr, for some constant t. If t exists in either case, it equals 1

12

of the scalar curvature of M .
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Proof. We refer the reader to [1] for basic properties of the curvature tensor
of a Riemannian 4-manifold. The curvature of the induced connection on
the bundle Λ2

−
T ∗M is determined by the Ricci tensor, and the half W− of

the Weyl tensor which may be regarded as a section of Λ2
−
T ∗M ⊗ Λ2

−
T ∗M .

Moreover M is self-dual and Einstein iff

Ω1
2 = te3, Ω2

3 = te1, Ω3
1 = te2, (6)

where t = 1
12

(scalar curvature). Since the trace-free Ricci tensor essentially
belongs to Λ2

−
T ∗M ⊗ Λ2

+T ∗M , M is self-dual iff (6) holds modulo elements
of Λ2

+T ∗M . The proposition is now the result of a computation involving the
formulae

dei = Σ ωi
je

j, df i = Σ(f jωj
i + ajΩj

i ).

Q.E.D.

Motivated by section 1, we next consider the 3-form

ϕ = λ3β + λµ2dα, (7)

where λ and µ are scalar functions on X. Observe that

ϕ = E1E2E3+E1E4E5−E1E6E7+E2E4E6−E2E7E5+E3E4E7−E3E5E6,

where Ei equals λf i for i = 1, 2, 3 and µ π∗ei for i = 4, 5, 6, 7, and forms an
oriented orthonormal basis of 1-forms for the underlying SO(7)-structure on
X. In view of (1), we also have

∗ϕ = E4E5E6E7 + E2E3E6E7 − E2E3E4E5 + E3E1E7E5

−E3E1E4E6 + E1E2E5E6 − E1E2E4E7

= µ4υ − λ2µ2γ. (8)

Proposition 1 implies

Proposition 4 If λ and µ are strictly positive everywhere, (7) determines a
G2-structure on X, i.e. a G2-subbundle P of the principal frame bundle of
X, whose underlying Riemannian metric has the form λ2gV +µ2gH in terms
of the splitting (5).
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3. Torsion considerations

If D denotes the Levi Civita connection of the Riemannian metric in
Proposition 4, the quantity Dϕ measures the failure of the holonomy group
to reduce to G2, i.e. the extent to which parallel transport does not preserve
the principal subbundle P . Its properties were studied by Fernández and
Gray in [7], and we first summarize their approach.

Choose any connection D̃ that reduces to P , so that D̃ϕ = 0. Fix a frame
p ∈ P at the point x = π(p) ∈ X, and a vector v ∈ TxX. The difference
Dv−D̃v defines, relative to p, an element of the Lie algebra so(7). The same
is true of Dvϕ = (Dv−D̃v)ϕ, but since this is independent of the choice of D̃,
it actually belongs to the subspace G⊥

2 . Therefore (Dϕ)x may be regarded
as an element of

T ∗

x X ⊗ G⊥

2
∼= A ⊗ A ∼= R ⊕ G2 ⊕ S2

0A ⊕ A. (9)

Let W1X ∼= X×R, W2X, W3X, W4X ∼= TX ∼= T ∗X denote the vec-
tor bundles associated to P with fibre R, G2, S2

0A, A respectively. Corr-
esponding to (9), there is a decomposition

Dϕ = w1 + w2 + w3 + w4,

in which wi is a section of WiX. Now D is torsion-free, and there exist
surjective homomorphisms

a : T ∗X ⊗ Λ3T ∗X −→ Λ4T ∗X ∼= W1X ⊕ W3X ⊕ W4X

a∗ : T ∗X ⊗ Λ3T ∗X −→ Λ5T ∗X ∼= W2X ⊕ W4X,

such that dϕ = a(Dϕ) and d∗ϕ = a∗(Dϕ) (cf. Proposition 2). Thus

Proposition 5 [7] With the above identifications, dϕ = (w1, w3, w4), and
d∗ϕ = (w2, w4), so Dϕ = 0 if and only if dϕ = 0 = d∗ϕ.

Call a differential form on X of type (p, q) if, at each point, it is built
up from forms on the base of degree p and forms of degree q involving f i.
Endow X with the G2-structure of Proposition 4, with λ and µ arbitrary
positive scalar functions on X. Then dϕ, unlike ∗ϕ, has no component of type
(4, 0). Moreover ϕdϕ = 0, whence dϕ has no component in the subbundle

6



W1X ⊂ Λ4T ∗X, and we always have w1 = 0. Further components of Dϕ can
be eliminated by a suitable choice of λ and µ.

Theorem (i) If M is self-dual, an open set of X admits a G2-structure with
Dϕ = w3; (ii) if M is self-dual and Einstein, an open set of X admits a
G2-structure with Dϕ = 0.

Proof. We apply Proposition 3. If M is self-dual, we seek λ, µ such that

d∗ϕ = d(µ4)υ − d(λ2µ2)γ − λ2µ22tυdr,

vanishes. Taking λµ = c = constant, we obtain a solution

µ = (2c2tr + d)
1
4 , λ = c(2c2tr + d)−

1
4 , (10)

where d is another constant. If M is also Einstein, then dt = 0 and

dϕ = d(λ3)β + λ3 1

2
tdαdr + d(λµ2)dα = 0.

Note that λ, µ can only be strictly positive on all of X if t is everywhere
non-negative. Q.E.D.

In [7] it is shown that any minimally embedded hypersurface of R8 also
has a G2-structure with Dϕ = w3. A contrasting example with Dϕ = w2 6= 0
has been found in [6]. We remark that in general w2 is the obstruction to
the existence of a short elliptic complex

0 → C∞(X)
grad
−→ C∞(X, TX)

curl
−→ C∞(X, TX)

div
−→ C∞(X) → 0,

on X whose operators are manufactured using D and (4) in analogy with the
3-dimensional case. Indeed, if f ∈ C∞(X) is a function, and v ∈ C∞(X, TX)
is a vector field, curl(grad f) = m(D ∧ (grad f)) vanishes identically, but
div(curl v) equals the contraction of Dv with w2. We conjecture that a
complex of this sort can be defined on X, using only the self-dual conformal
structure of M . Topological consequences of the existence of a self-dual
metric with t non-negative have been given by LeBrun [10].

Self-dual Einstein metrics have been generated by quaternionic Kähler
reduction [8]. However a theorem of Hitchin states that a complete Rieman-
nian 4-manifold which is self-dual, Einstein and of positive scalar curvature is
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necessarily isometric to the sphere S4, or the complex projective plane CP 2

[3, 13.30]. In either of these two cases, the Riemannian metric

(2tr + 1)−
1
2 gV + (2tr + 1)

1
2 gH

on X corresponding to the solution (10) with c = d = 1 is complete, essen-

tially because
∫
∞

0 (2tr + 1)−
1
4 d(r

1
2 ) diverges. Because Dϕ = 0, the holonomy

group H is contained in G2, which in turn implies that the Ricci tensor is
zero [3]. Furthermore, the respective groups SO(5), SU(3) act as isometries
on X with generic orbits of codimension 1. Consideration of the induced
action on a hypothetical space of covariant constant 1-forms shows that X
is locally irreducible, and it follows that H = G2 [5]. In conclusion:

Corollary The total space of Λ2
−
T ∗S4 and Λ2

−
T ∗CP 2 admits a complete

Ricci-flat Riemannian metric with holonomy equal to G2.
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