Self-duality and Exceptional Geometry

Topology and its Applications, Baku, 1987
S. M. Salamon

The local isomorphism between the special orthogonal group $S O(4)$ and the product $S O(3) \times S O(3)$ manifests itself in the conformally invariant decomposition of the bundle of 2 -forms

$$
\Lambda^{2} T^{*} M=\Lambda_{+}^{2} T^{*} M \oplus \Lambda_{-}^{2} T^{*} M
$$

over an oriented Riemannian 4-manifold M. There is a corresponding decomposition of the Weyl curvature tensor $W=W_{+}+W_{-}$, and M is said to be self-dual if $W_{-}=0$. If M is compact, its signature is given by

$$
\tau=\frac{1}{3} p_{1}=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) v
$$

where v is the volume form. Consequently, if M is self-dual but not conformally flat, then $\tau>0$.

Self-duality is the integrability condition for a natural almost complex structure on the 6 -dimensional sphere bundle of $\Lambda_{-}^{2} T^{*} M$ [1]. Motivated in part by this result, we study the 7 -dimensional total space X of $\Lambda_{-}^{2} T^{*} M$, and characterize curvature conditions on M by means of differential relations between invariant forms on X. First though, we define the exceptional Lie group G_{2} using the inclusion $S O(4) \subset G_{2}$, corresponding to a splitting of dimensions $7=3+4$. This enables us to construct a family of G_{2}-structures on X, which amounts to assigning a metric and vector cross product on each tangent space.

There are only two exceptions in the list of holonomy groups of irreducible non-symmetric Riemannian manifolds, namely G_{2} and $\operatorname{Spin}(7)$ [2,3,5,11]. This explains the importance of G_{2}-structures, which, in the light of [7], seem to be a little richer than their $\operatorname{Spin}(7)$ counterparts. An examination of the structure on X leads us to exhibit there a Riemannian metric with holonomy group G_{2}, when M is the self-dual Einstein manifold S^{4} or $\mathbf{C} P^{2}$. No such complete metrics were previously known. This, and analogous examples with holonomy G_{2} and $\operatorname{Spin}(7)$, are the subject of a forthcoming joint paper with R. L. Bryant.

1. Definition of \mathbf{G}_{2}

Let V denote an oriented n-dimensional vector space with a positive definite inner product $<,>$. The inner product extends to one on $\Lambda^{k} V^{*}$, and together with the orientation defines a unit volume form $v \in \Lambda^{n} V^{*}$ and an isomorphism $*: \Lambda^{k} V^{*} \rightarrow \Lambda^{n-k} V^{*}$, where

$$
\begin{equation*}
\sigma(* \tau)=<\sigma, \tau>v, \quad \sigma, \tau \in \Lambda^{k} V^{*} \tag{1}
\end{equation*}
$$

Here and in the sequel, an exterior product of differential forms is denoted by their juxtaposition.

Now take $n=4$ and $k=2$. Then $*$ is an involution on $\Lambda^{2} V^{*}$, and we consider the 7 -dimensional space

$$
A=\Lambda_{-}^{2} V^{*} \oplus V^{*}
$$

where $\Lambda_{-}^{2} V^{*}$ is the -1 -eigenspace of $*$. If $\left\{e^{4}, e^{5}, e^{6}, e^{7}\right\}$ is an oriented orthonormal basis of V^{*}, then $\Lambda_{-}^{2} V^{*}$ is the span of

$$
\begin{equation*}
e^{1}=e^{4} e^{5}-e^{6} e^{7}, \quad e^{2}=e^{4} e^{6}-e^{7} e^{5}, \quad e^{3}=e^{4} e^{7}-e^{5} e^{6} \tag{2}
\end{equation*}
$$

Regarding now e^{1}, \ldots, e^{7} as all elements of A, rather than $\Lambda^{2} A$, we set

$$
\begin{aligned}
\varphi^{\prime} & =e^{1} e^{2} e^{3} \\
\varphi^{\prime \prime} & =e^{1}\left(e^{4} e^{5}-e^{6} e^{7}\right)+e^{2}\left(e^{4} e^{6}-e^{7} e^{5}\right)+e^{3}\left(e^{4} e^{7}-e^{5} e^{6}\right)
\end{aligned}
$$

Then $\varphi=\varphi^{\prime}+\varphi^{\prime \prime}$ is the sum of 7 simple 3 -forms on a 7 -dimensional vector space, and has the following well-known property (see [5]).

Proposition $1 G_{2}=\left\{g \in G L(V): g^{*} \varphi=\varphi\right\}$ is a compact Lie group of dimension 14.

Proof. G_{2} is defined above as a closed subgroup of $G L(V)$ containing $S O(4)$. Decreeing $\left\{e^{1}, \ldots, e^{7}\right\}$ to be an oriented orthonormal basis of A defines an action of $S O(7)$ with Lie algebra

$$
\begin{align*}
\mathrm{so}(7) \cong \Lambda^{2} A & \cong \Lambda^{2}\left(\Lambda_{-}^{2} V^{*}\right) \oplus\left(\Lambda_{-}^{2} V^{*} \otimes V^{*}\right) \oplus \Lambda^{2} V^{*} \\
& \cong \Lambda_{-}^{2} V^{*} \oplus\left(V^{*} \oplus K\right) \oplus\left(\Lambda_{+}^{2} V^{*} \oplus \Lambda_{-}^{2} V^{*}\right) \tag{3}
\end{align*}
$$

Here K denotes the 8-dimensional subspace of $\Lambda_{-}^{2} V^{*} \otimes V^{*}$ of elements with zero contraction; for example K contains $e^{1} \otimes e^{4}+e^{2} \otimes e^{7}$ which defines a skew-symmetric endomorphism of V annihilating φ. Hence the Lie algebra \mathcal{G}_{2} of G_{2} contains K, not to mention $\Lambda_{+}^{2} V^{*}$ and one copy of $\Lambda_{-}^{2} V^{*}$. Now $S^{2} A \cong \mathbf{R} \oplus S_{0}^{2} A$, where

$$
S_{0}^{2} A \cong S_{0}^{2}\left(\Lambda_{-}^{2} V^{*}\right) \oplus \mathbf{R} \oplus V^{*} \oplus K \oplus S_{0}^{2} V^{*}
$$

is the space of traceless symmetric endomorphisms of A, decomposed into $S O(4)$-modules. Consideration of the action of $K \subset \mathcal{G}_{2}$ shows that $S_{0}^{2} A$ is G_{2}-irreducible. Thus

$$
\mathcal{G}_{2}=\mathrm{so}(4) \oplus K
$$

and it is not hard to check that $G_{2} \subset S O(7)$. Q.E.D.
The form φ defines by contraction a two-fold vector cross product

$$
\begin{equation*}
m: \Lambda^{2} A \longrightarrow A \tag{4}
\end{equation*}
$$

of the sort that exists only on a space of dimension 3 or 7 [4]. Using m, $\mathbf{O}=\mathbf{R} \oplus A$ can be identified with the alternative algebra of Cayley numbers, to give the description of G_{2} as the group of automorphisms of \mathbf{O}. The subspace $\mathbf{H}=\mathbf{R} \oplus \Lambda_{-}^{2} V^{*}$ corresponds to a quaternionic subalgebra, and K may be identified with the tangent space of the quaternionic symmetric space $G_{2} / S O(4)$, parametrizing all quaternionic subalgebras in \mathbf{O} [9].

Like $S_{0}^{2} A$, the G_{2}-modules A and \mathcal{G}_{2} are irreducible, and from (4), the orthogonal complement \mathcal{G}_{2}^{\perp} of \mathcal{G}_{2} in so(7) must be isomorphic to A. The derivative

$$
\delta: \operatorname{End}(A) \cong A \otimes A \hookrightarrow \Lambda^{3} A
$$

of the action of $G L(V)$ on φ has kernel \mathcal{G}_{2}. It follows that the orbit $G L(V) / G_{2}$ containing φ is open in $\Lambda^{3} A$; in fact there is just one other open orbit, containing the form $\varphi^{\prime}-\varphi^{\prime \prime}$, with stabilizer the non-compact form $G^{*}[5]$. Anyway, the above remarks establish

Proposition $2 \quad \Lambda^{2} A \cong \mathcal{G}_{2} \oplus A, \quad \Lambda^{3} A \cong \mathbf{R} \oplus S_{0}^{2} A \oplus A$.

2. Four-dimensional Riemannian Geometry

Let M be an oriented Riemannian 4-manifold. We shall now use the symbols $e^{4}, e^{5}, e^{6}, e^{7}$ to denote elements of an oriented orthonormal basis of 1-forms on an open set U of M. Accordingly e^{1}, e^{2}, e^{3} defined by (2) form a basis of sections over U of $\Lambda_{-}^{2} T^{*} M$. The Levi Civita connection on M induces a covariant derivative ∇ on this vector bundle, and we set

$$
\nabla e^{i}=\Sigma \omega_{j}^{i} \otimes e^{j}, \quad \Omega_{j}^{i}=d \omega_{j}^{i}-\Sigma \omega_{k}^{i} \omega_{j}^{k} .
$$

Summations here and below are exclusively over the range of indices 1,2,3.
Let X denote the total space of $\Lambda_{-}^{2} T^{*} M$; its cotangent space at x admits a splitting

$$
\begin{equation*}
T_{x}^{*} X=V^{o} \oplus H^{o} \tag{5}
\end{equation*}
$$

where H^{o} is the annihilator of the horizontal subspaces defined by ∇, and $V^{o}=\pi^{*} T_{m}^{*} M, m=\pi(x)$. A local section $\Sigma a^{i} e^{i}$ of $\Lambda_{-}^{2} T^{*} M$ is covariant constant iff $\Sigma\left(d a^{i}+\Sigma a^{j} \omega_{i}^{j}\right) \otimes e^{i}=0$, so H^{o} is spanned by 1 -forms

$$
f^{i}=d a^{i}+\Sigma a^{j} \pi^{*} \omega_{i}^{j}
$$

where a^{1}, a^{2}, a^{3} are now interpreted as fibre coordinate functions on X. Of course V^{o} is spanned by $\pi^{*} e^{4}, \pi^{*} e^{5}, \pi^{*} e^{6}, \pi^{*} e^{7}$.

Omitting the symbol π^{*}, consider the following invariant forms, defined globally on X, independently of the choice of basis:

$$
\begin{gathered}
r=\Sigma\left(a^{i}\right)^{2} \\
d r=2 \Sigma a^{i} f^{i} \\
\alpha=\Sigma a^{i} e^{i} \\
d \alpha=\Sigma e^{i} f^{i}, \quad \beta=f^{1} f^{2} f^{3} \\
\gamma=e^{1} f^{2} f^{3}+e^{2} f^{3} f^{1}+e^{3} f^{1} f^{2}, \quad v=-\frac{1}{6} \Sigma e^{i} e^{i}
\end{gathered}
$$

For example r is simply the radius squared, α is the tautological 2-form on X, and $v=e^{4} e^{5} e^{6} e^{7}$ is the pullback of the volume form on M.

Proposition 3 (i) M is self-dual if and only if $d \gamma=2 t v d r$ for (the pullback of) some scalar function t on M; (ii) M is self-dual and Einstein if and only if $d \beta=\frac{1}{2} t d \alpha d r$, for some constant t. If t exists in either case, it equals $\frac{1}{12}$ of the scalar curvature of M.

Proof. We refer the reader to [1] for basic properties of the curvature tensor of a Riemannian 4-manifold. The curvature of the induced connection on the bundle $\Lambda_{-}^{2} T^{*} M$ is determined by the Ricci tensor, and the half W_{-}of the Weyl tensor which may be regarded as a section of $\Lambda_{-}^{2} T^{*} M \otimes \Lambda_{-}^{2} T^{*} M$. Moreover M is self-dual and Einstein iff

$$
\begin{equation*}
\Omega_{2}^{1}=t e^{3}, \quad \Omega_{3}^{2}=t e^{1}, \quad \Omega_{1}^{3}=t e^{2} \tag{6}
\end{equation*}
$$

where $t=\frac{1}{12}$ (scalar curvature). Since the trace-free Ricci tensor essentially belongs to $\Lambda_{-}^{2} T^{*} M \otimes \Lambda_{+}^{2} T^{*} M, M$ is self-dual iff (6) holds modulo elements of $\Lambda_{+}^{2} T^{*} M$. The proposition is now the result of a computation involving the formulae

$$
d e^{i}=\Sigma \omega_{j}^{i} e^{j}, \quad d f^{i}=\Sigma\left(f^{j} \omega_{i}^{j}+a^{j} \Omega_{i}^{j}\right)
$$

Q.E.D.

Motivated by section 1, we next consider the 3 -form

$$
\begin{equation*}
\varphi=\lambda^{3} \beta+\lambda \mu^{2} d \alpha \tag{7}
\end{equation*}
$$

where λ and μ are scalar functions on X. Observe that
$\varphi=E^{1} E^{2} E^{3}+E^{1} E^{4} E^{5}-E^{1} E^{6} E^{7}+E^{2} E^{4} E^{6}-E^{2} E^{7} E^{5}+E^{3} E^{4} E^{7}-E^{3} E^{5} E^{6}$,
where E^{i} equals λf^{i} for $i=1,2,3$ and $\mu \pi^{*} e^{i}$ for $i=4,5,6,7$, and forms an oriented orthonormal basis of 1-forms for the underlying $S O(7)$-structure on X. In view of (1), we also have

$$
\left.\begin{array}{rl}
* \varphi & =E^{4} E^{5} E^{6} E^{7}+E^{2} E^{3} E^{6} E^{7}-E^{2} E^{3} E^{4} E^{5}+E^{3} E^{1} E^{7} E^{5} \\
& =\mu^{4} v-\lambda^{2} \mu^{2} \gamma .
\end{array} \quad-E^{3} E^{1} E^{4} E^{6}+E^{1} E^{2} E^{5} E^{6}-E^{1} E^{2} E^{4} E^{7}\right)
$$

Proposition 1 implies
Proposition 4 If λ and μ are strictly positive everywhere, (7) determines a G_{2}-structure on X, i.e. a G_{2}-subbundle P of the principal frame bundle of X, whose underlying Riemannian metric has the form $\lambda^{2} g^{V}+\mu^{2} g^{H}$ in terms of the splitting (5).

3. Torsion considerations

If D denotes the Levi Civita connection of the Riemannian metric in Proposition 4, the quantity $D \varphi$ measures the failure of the holonomy group to reduce to G_{2}, i.e. the extent to which parallel transport does not preserve the principal subbundle P. Its properties were studied by Fernández and Gray in [7], and we first summarize their approach.

Choose any connection \tilde{D} that reduces to P, so that $\tilde{D} \varphi=0$. Fix a frame $p \in P$ at the point $x=\pi(p) \in X$, and a vector $v \in T_{x} X$. The difference $D_{v}-\tilde{D}_{v}$ defines, relative to p, an element of the Lie algebra so(7). The same is true of $D_{v} \varphi=\left(D_{v}-\tilde{D}_{v}\right) \varphi$, but since this is independent of the choice of \tilde{D}, it actually belongs to the subspace \mathcal{G}_{2}^{\perp}. Therefore $(D \varphi)_{x}$ may be regarded as an element of

$$
\begin{equation*}
T_{x}^{*} X \otimes \mathcal{G}_{2}^{\perp} \cong A \otimes A \cong \mathbf{R} \oplus \mathcal{G}_{2} \oplus S_{0}^{2} A \oplus A \tag{9}
\end{equation*}
$$

Let $W_{1} X \cong X \times \mathbf{R}, W_{2} X, W_{3} X, W_{4} X \cong T X \cong T^{*} X$ denote the vector bundles associated to P with fibre $\mathbf{R}, \mathcal{G}_{2}, S_{0}^{2} A, A$ respectively. Corresponding to (9), there is a decomposition

$$
D \varphi=w_{1}+w_{2}+w_{3}+w_{4}
$$

in which w_{i} is a section of $W_{i} X$. Now D is torsion-free, and there exist surjective homomorphisms

$$
\begin{aligned}
a: T^{*} X \otimes \Lambda^{3} T^{*} X & \longrightarrow \quad \Lambda^{4} T^{*} X \cong W_{1} X \oplus W_{3} X \oplus W_{4} X \\
a^{*}: T^{*} X \otimes \Lambda^{3} T^{*} X & \longrightarrow \quad \Lambda^{5} T^{*} X \cong W_{2} X \oplus W_{4} X,
\end{aligned}
$$

such that $d \varphi=a(D \varphi)$ and $d * \varphi=a^{*}(D \varphi)$ (cf. Proposition 2). Thus
Proposition 5 [7] With the above identifications, $d \varphi=\left(w_{1}, w_{3}, w_{4}\right)$, and $d * \varphi=\left(w_{2}, w_{4}\right)$, so $D \varphi=0$ if and only if $d \varphi=0=d * \varphi$.

Call a differential form on X of type (p, q) if, at each point, it is built up from forms on the base of degree p and forms of degree q involving f^{i}. Endow X with the G_{2}-structure of Proposition 4, with λ and μ arbitrary positive scalar functions on X. Then $d \varphi$, unlike * , has no component of type $(4,0)$. Moreover $\varphi d \varphi=0$, whence $d \varphi$ has no component in the subbundle
$W_{1} X \subset \Lambda^{4} T^{*} X$, and we always have $w_{1}=0$. Further components of $D \varphi$ can be eliminated by a suitable choice of λ and μ.

Theorem (i) If M is self-dual, an open set of X admits a G_{2}-structure with $D \varphi=w_{3}$; (ii) if M is self-dual and Einstein, an open set of X admits a G_{2}-structure with $D \varphi=0$.
Proof. We apply Proposition 3. If M is self-dual, we seek λ, μ such that

$$
d * \varphi=d\left(\mu^{4}\right) v-d\left(\lambda^{2} \mu^{2}\right) \gamma-\lambda^{2} \mu^{2} 2 t v d r,
$$

vanishes. Taking $\lambda \mu=c=$ constant, we obtain a solution

$$
\begin{equation*}
\mu=\left(2 c^{2} t r+d\right)^{\frac{1}{4}}, \quad \lambda=c\left(2 c^{2} t r+d\right)^{-\frac{1}{4}}, \tag{10}
\end{equation*}
$$

where d is another constant. If M is also Einstein, then $d t=0$ and

$$
d \varphi=d\left(\lambda^{3}\right) \beta+\lambda^{3} \frac{1}{2} t d \alpha d r+d\left(\lambda \mu^{2}\right) d \alpha=0 .
$$

Note that λ, μ can only be strictly positive on all of X if t is everywhere non-negative. Q.E.D.

In [7] it is shown that any minimally embedded hypersurface of $\mathbf{R}^{\mathbf{8}}$ also has a G_{2}-structure with $D \varphi=w_{3}$. A contrasting example with $D \varphi=w_{2} \neq 0$ has been found in [6]. We remark that in general w_{2} is the obstruction to the existence of a short elliptic complex

$$
0 \rightarrow C^{\infty}(X) \xrightarrow{\text { grad }} C^{\infty}(X, T X) \xrightarrow{\text { curl }} C^{\infty}(X, T X) \xrightarrow{\text { div }} C^{\infty}(X) \rightarrow 0,
$$

on X whose operators are manufactured using D and (4) in analogy with the 3 -dimensional case. Indeed, if $f \in C^{\infty}(X)$ is a function, and $v \in C^{\infty}(X, T X)$ is a vector field, $\operatorname{curl}(\operatorname{grad} f)=m(D \wedge(\operatorname{grad} f))$ vanishes identically, but $\operatorname{div}(\operatorname{curl} v)$ equals the contraction of $D v$ with w_{2}. We conjecture that a complex of this sort can be defined on X, using only the self-dual conformal structure of M. Topological consequences of the existence of a self-dual metric with t non-negative have been given by LeBrun [10].

Self-dual Einstein metrics have been generated by quaternionic Kähler reduction [8]. However a theorem of Hitchin states that a complete Riemannian 4-manifold which is self-dual, Einstein and of positive scalar curvature is
necessarily isometric to the sphere S^{4}, or the complex projective plane $\mathbf{C} P^{2}$ [3, 13.30]. In either of these two cases, the Riemannian metric

$$
(2 t r+1)^{-\frac{1}{2}} g^{V}+(2 t r+1)^{\frac{1}{2}} g^{H}
$$

on X corresponding to the solution (10) with $c=d=1$ is complete, essentially because $\int_{0}^{\infty}(2 t r+1)^{-\frac{1}{4}} d\left(r^{\frac{1}{2}}\right)$ diverges. Because $D \varphi=0$, the holonomy group H is contained in G_{2}, which in turn implies that the Ricci tensor is zero [3]. Furthermore, the respective groups $S O(5), S U(3)$ act as isometries on X with generic orbits of codimension 1. Consideration of the induced action on a hypothetical space of covariant constant 1-forms shows that X is locally irreducible, and it follows that $H=G_{2}$ [5]. In conclusion:
Corollary The total space of $\Lambda_{-}^{2} T^{*} S^{4}$ and $\Lambda_{-}^{2} T^{*} \mathbf{C} P^{2}$ admits a complete Ricci-flat Riemannian metric with holonomy equal to G_{2}.

References

[1] M.F. Atiyah, N.J. Hitchin, I.M. Singer: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. Lond. A 362 (1978), 425-461.
[2] M. Berger: Sur les groupes d'holonomie homogène des variétés à connexion affines et des variétés riemanniennes, Bull. Math. Soc. France 83 (1955), 279-330.
[3] A.L. Besse: Einstein Manifolds, Springer, Berlin-Heidelberg-New York, 1987.
[4] R.B. Brown, A. Gray: Vector cross products, Comm. Math. Helv. 42 (1967), 222-236.
[5] R.L. Bryant: Metrics with exceptional holonomy, (to appear)
[6] M. Fernández: An example of a compact calibrated manifold associated with the exceptional Lie group G_{2}, J. Diff. Gem. 26 (1987), 367-370.
[7] M. Fernández, A. Gray: Riemannian manifolds with structure group G_{2}, Ann. Mat. Pura Appl. 32 (1982), 19-45.
[8] K. Galicki, H.B. Lawson: Quaternionic reduction and quaternionic orbifolds, preprint.
[9] R. Harvey, H.B. Lawson: Calibrated geometries, Acta. Math. 148 (1982), 47-157.
[10] C. LeBrun: On the topology of self-dual manifolds, Proc. Amer. Math. Soc. 98 (1986), 637-640.
[11] S. Marchiafava: Alcune osservazioni riguardanti i gruppi di Lie G_{2} e Spin(7), candidati a gruppi di olonomia, Ann. Mat. Pura Appl. 129 (1981), 247-264.

