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A tour of exceptional geometry
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Abstract. A discussion of G2 and its manifestations is followed by the

definition of various groups acting on R8. Calculation of exterior and

covariant derivatives is carried out for a specific metric on a 7-manifold,

as a means to illustrate their dependence on the underlying Lie algebra.

This example is used to construct an explicit metric with holonomy

Spin 7, which is reduced so as to obtain both G2 and SU (3) struc-

tures. Special categories of such structures are investigated and related

to metrics with holonomy G2. A final section describes the orbifold con-

struction leading to a known hyperkähler 8-manifold.

Mathematics Subject Classification (2000). 53C25; 53C26.

Keywords. holonomy.

Intoduction

This article is concerned with examples of differential geometric structures
that exist on manifolds of real dimensions 6, 7 and 8. From the mathe-
matical point of view, these examples are based on the structure groups

SU (3),G2,Spin 7, all of which occur as holonomy groups of Ricci-flat met-
rics. Surprising though it might have seemed twenty years ago, it now turns
out that local examples of all such metrics can be found quite explicitly.

To some extent, this has come about from a clearer understanding of 4-
dimensional Riemannian geometry. The explicit examples enable one to
explore more general properties of these Ricci-flat metrics. Following the pi-

oneering work of Yau and later Joyce (all described in [33]), many compact
manifolds are now known to carry metrics with the respective holonomy
groups. However, the emphasis in the present article will be on explicit

local constructions.
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Compact Riemannian manifolds with holonomy group equal SU(n) are
the so-called Calabi-Yau spaces and amongst compact Kähler manifolds
are characterized by the presence of closed n-forms. The case n = 2 is

rather special as the underlying diffeomorphism class is unique (that of a
K3 surface) and the complex manifold need not be projective. Whilst the
study of Calabi-Yau spaces has much in common for all values of n > 3, the

local theory of SU (3) structures has characteristics that favour its study in
relation with other geometries. A complex structure on a 6-manifold is in
fact determined by a 3-form that lies in an open orbit under the action of

the group GL(6,R) of all invertible linear transformations.

Similar phenomena occur in dimensions 7 and 8, since open orbits also
exist in the spaces of 3-forms. In 8 dimensions, the canonical 3-form on the

simple Lie algebra su(3) spans an open orbit under GL(8,R). The corre-
sponding 3-form on the group SU (3) is parallel relative to the biinvariant
metric that it determines, and the holonomy reduces to SU (3)/Z2. But this

is not a holonomy group in Berger’s list [7], and a more general study of
manifolds modelled on this subgroup proceeds by requiring the 3-form to
be harmonic (closed and coclosed) but not parallel [29]. This theory has

little direct contact with SU (3) structures on 6-manifolds, which are in-
stead linked to other structures on 8-manifolds, namely those defined by
the groups Spin 7 and (to a lesser extent) Sp(2)Sp(1). But it does help us

to understand these other structures and the important role played by Lie
algebras.

In the ‘intermediate’ dimension 7, a 3-form ϕ that is generic and pos-
itive at each point completely determines a G2 structure and thereby a
Riemannian metric. If ϕ is closed and coclosed, the holonomy does reduce

to G2 and the metric has zero Ricci tensor. Examples are given in §7. First
however, we study more general G2 structures defined by a form ϕ that is
not parallel, and use this to describe a metric g with holonomy Spin 7 that

was discovered in [24]. Whilst this example can be constructed from a 4-
torus, it allows us to study the relationship between quotienting out by an
S1 action on the one hand, and restricting g to associated hypersurfaces on

the other. Performing both operations produces a metric in 6 dimensions,
and this type of reduction is common to many situations involving special
geometrical structures.

Metrics with holonomy G2 are relevant in the compactifications of
M-theory with unbroken symmetry in 4 dimensions [3, 24]. The standard

examples have singularities that are conical in nature, and are constructed
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using nearly-Kähler manifolds. They have deformations to complete met-
rics that are asymptotically conical [12, 25]. New examples have so-called
asymptotically locally conical (ACL) behaviour [9].

A final section returns to the theme of quaternionic structures on R8

introduced in §2. The aim is to discuss the topology underlying an 8-
dimensional orbifold and hyperkähler manifold, as a means of indicating
some of the problems associated to the construction of compact manifolds
with reduced holonomy. Our tour is an incomplete one, in more than one

sense of the word.

Acknowledgments. This article was written in belated association with a

talk the author gave in Milan in 2002, aimed at providing a brief introduc-
tion to metrics with exceptional holonomy. I am grateful to Bernard Ruf
and others in this connection.

1. A seven times table

Let V denote the vector space R7 endowed with a standard inner product

and a choice of orientation. The automorphism group of this structure is of
course SO(7). The double-covering Spin 7 of SO(7) can be viewed (via its
so-called spin representation) as a subgroup of SO(8) that acts transitively

on the sphere S7. The reader is referred to [31] for a discussion of the groups
Spin(n) in an informal geometrical setting.

The Lie group G2 then arises as the isotropy group of Spin 7 at a point
x ∈ S7, and acts faithfully on TxS

7 ∼= V . Given that Spin 6 ∼= SU(4) also

acts transitively on S7, we may deduce that

SO(6)

SU (3)
∼= SO(7)

G2

∼= SO(8)

Spin 7

are all isomorphic to the real projective space RP 7 = S7/Z2. In fact, SO(7)
also acts transitively on the Grassmannian of oriented 2-dimensional sub-
spaces of R8, via the isomorphisms of homogeneous spaces

SO(7)

U(3)
∼= SO(8)

U(4)
∼= SO(8)

SO(2) × SO(6)
.

Related to this is the fact that G2 acts transitively on the sphere S6 of unit

vectors in V , with isotropy subgroup isomorphic to SU (3).

The importance of G2 representations is illustrated by Table 1.
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n vector space or manifold of dimension n

7 fundamental representation V of G2 and SO(7)
14 the Lie group G2 itself

21
∧

2V , and the groups SO(7),Spin 7
28 S2V , and the group SO(8)
35 space

∧
3V of 3-forms on a 7-manifold

42 intrinsic torsion of an SU (3) metric
49 intrinsic torsion of a G2 metric, and GL(7,R)
56 intrinsic torsion of a Spin 7 metric

63 the group SL(8,R)
70 space

∧
4R8 of 4-forms on an 8-manifold

77 curvature of a metric with holonomy G2

84 curvature of a metric with holonomy SU(4)
168 curvature of a metric with holonomy Spin 7

Table 1

As mentioned in the Introduction, there exist Riemannian manifolds of
dimensions 6, 7, 8 whose holonomy group is equal to SU (3),G2,Spin 7 re-

spectively. Due to the work described in [33], one can also stipulate that the
manifolds be compact, at the expense of finding an explicit expression for
the metric. But it is a much more elementary matter to find manifolds that

admit structures defined by these groups without satisfying the much more
stringent holonomy condition. The failure of the holonomy group to reduce
to G is measured by the so-called intrinsic torsion τ . The numerology in

Table 1 is then no great mystery, as τ is a tensor which, for each tangent
vector X ∈ V , takes values in the quotient so(n)/g, which is isomorphic to
V for each n = 6, 7, 8 [38, 17].

Observations 1.1. (i) If one is honest, 27 is more important than 28 as it
is the dimension of the irreducible the space S2

0V of traceless symmetric

tensors, a representation of SO(7) that stays irreducible when restricted to
G2. It is also the dimension of the space of curvature tensors of a metric
with holonomy SU (3).

(ii) 35 is also the dimension of the space of traceless symmetric tensors in
8 dimensions. Indeed, there is an Spin 7 equivariant isomorphism

∧3R7 ∼= S
2
0R

8 (1.1)
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relevant to the geometry of S7. Here, R8 denotes the representation of
Spin 7 induced from the appropriate Clifford algebra.

(iii) The entry for n = 63 (not one’s favourite multiple of 7) is a feeble
choice, but emphasizes the relevance of volume forms. Actually, 64 has more

significance than 63, being the dimension of the kernel of the composition

g2 ⊗ V ⊂
∧2V ⊗ V →

∧3V ;

the extra 1 dimension compensates for the missing trace in the cokernel
S2

0V ⊕ V .

(iv) There are in fact two non-isomorphic 77-dimensional irreducible repre-

sentations R1, R2 of G2, both of which are summands of g2 ⊗ g2. The space
R1 of curvature tensors of a metric with holonomy G2 corresponds to the
highest weight submodule of

S2g2
∼= R1 ⊕ S2

0V ⊕ R.

Elements in the other two summands fail to satisfy the first Bianchi identity,

and this explains why a manifold with holonomy G2 is necessarily Ricci-flat.
The anti-symmetric part of the tensor product admits a decomposition

∧2g2
∼= R2 ⊕ g2

that allows one to regard R2 as the tangent space of the isotropy irreducible
space SO(14)/G2 [42].

We now turn attention to G2 and its subgroups. The equation 49−14 =

35 implies that GL(7,R)/G2 is an open subset O of
∧

3V . Thus, G2 can be
defined as the subgroup of SO(7) leaving invariant a 3-form ϕ in the open
orbit O (one of two). In fact, we now define

ϕ = e127 + e347 − e567 + e135 − e245 + e146 + e236, (1.2)

explaining this particular choice of canonical form later. Here eijk stands

for ei ∧ ej ∧ ek. Thus,

G2 = {g ∈ GL(7,R) : gϕ = ϕ}.
For example, each of the seven simple 3-forms determines a 3-dimensional
subspace V ⊂ R7. Then multiplication by −1 on V ⊥ is an element of G2.

Changing the sign of just one term in (1.2) would result in a 3-form

with stabilizer the non-compact Lie group G2
∗ contained in SO(3, 4). The

3-form ϕ determines an inner product and orientation. Exactly how is ex-
plained in [10], but the details are immaterial for our purposes. Suffice it

to say that once one has expressed ϕ in the form (1.2) one already has
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the required oriented orthonormal basis. One may then consider the ‘dual
form’

∗ϕ = e3456 + e1256 − e1234 − e2467 + e1367 + e2375 + e1475.

One can almost recover ϕ from ∗ϕ, but there is a slight hitch. The stabilizer

of ∗ϕ in GL(7,R) is Z2 × G2 since −1 preserves ∗ϕ, so the latter fails to
determine the overall orientation.

subgroup C7 3-forms

SU (3) C ⊕ (C3 ⊕ C3) 3

SO(4) C4 ⊕
∧

2
+C4 2

SO(3) S6C2 1

Table 2

The maximal Lie subgroups of G2 are listed in the above table, that

shows the corresponding representation and the dimension of the space of
G-invariant 3-forms. Each choice of subgroup gives rise to an associated
homogenous space, a way of defining G2 and associated geometrical con-

structions:

i. As already remarked, G2/SU (3) is the sphere S6. The relationship
between SU (3) and G2 is a very intimate one that leads to an ac-

tive interaction between geometrical structures described by the two
groups (the author likes to call this ‘SUG’ theory) [17].

ii. G2/SO(4) is an 8-dimensional symmetric space with a quaternion-

Kähler structure. Starting from SO(4) leads to explicit metrics with
holonomy groups equal to G2 on the total spaces of vector bundles
over manifolds of dimension 3 and 4 [12, 25].

iii. G2/SO(3) is an 11-dimensional isotropy irreducible space [8, 42],
though the represention S6C2 is realized as the tangent space of
SO(5)/SO(3). This homogeneous space has a natural G2 structure

that was used to construct a metric with holonomy Spin 7 [10, 38].
Since the space of holomorphic sections of a sextic curve in the plane
CP2 is isomorphic to S6C2, one can define a G2 structure on a real

subvariety of such curves.
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There are three conjugacy classes of 3-dimensional subgroups of SO(4). The
principal or generic one corresponds to (iii) above. Using the isomorphism

Spin 4 = SU(2)+ × SU(2)− (1.3)

(see §3) exhibits two more, namely SU(2)±. A third is formed from the
diagonal SO(3). Each of the four such subgroups gives rise to a nilpotent

coadjoint orbit of gC
2 [35]. Indeed, G2/U(2)+ is the projectivization O/C∗

of the minimal nilpotent orbit O. Remarkably, it is also locally isomorphic
to the principal nilpotent SL(3,C) orbit in sl(3,C). On the other hand,

G2/U(2)− ∼= SO(5)

SO(2) × SO(3)
(1.4)

can be identified with the complex quadric Q5 in CP6, a fact exploited in

[13].

2. Groups acting on R8

We begin this section by reviewing the well-known isomorphism Sp(2) ∼=
Spin 5.

The groups Sp(n) consists of quaternionic matrices Q ∈ Hn,n for which

Q∗Q = I where Q∗ = Q
T
. The mapping

Q = A+Bj 7→
(
A −B
B A

)
= M (2.1)

is a homomorphism for matrix multiplication that also commutes with the
operation ∗ (with conjugation applied in the quaternionic and complex
sense respectively). In particular if Q ∈ Sp(n) then Q∗ ∈ Sp(n) and we

may write the defining equation unambiguously as Q−1 = Q∗. The group
Sp(1) consists of the unit quaternions and (2.1) identifies it with SU(2). It
is alsways true that detM = 1, so Sp(n) ⊂ SU(2n) for n > 2.

Let us pass to the the case n = 2. If Q =

(
a b

c d

)
∈ Sp(2) then

|a| = |d| and |b| = |c|. Whilst the Lie algebra sp(2) may be identified with

the space of ‘anti-Hermitian’ matrices P for which P ∗ + P = 0, consider
instead the vector space

V =

{(
λ q

q −λ

)
: λ ∈ R, q ∈ H

}
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consisting of trace-free matrices P for which P ∗ = P . Observe that V can
be identified with R5 and that

P 2 = (λ2 + |q|2)I = |P |2I, (2.2)

where |P | indicates the Euclidean norm of (λ, q) in R5. The equation (2.2)
tells us that, for each Q ∈ Sp(2), the endomorphism fQ defined by

fQ(P ) = QPQ∗ = QPQ−1 (2.3)

is a linear isometry. Since Q = −I is the only non-identity element that

commutes with all P ∈ R5, the image of f must be a connected component;
thus

Proposition 2.1. The resulting homomorphism f : Sp(2) → O(5) has kernel

{I,−I} ∼= Z2 and image SO(5).

Let SO(4) denote the subgroup of SO(5) preserving the 4-dimensional
subspace of V for which λ = 0, and acting as +1 on the 1-dimensional
subspace for which q = 0. It is easy to check that

f−1(SO(4)) =

{(
p1 0

0 p2

)
: pi ∈ H, |pi| = 1

}
∼= Sp(1) × Sp(1) (2.4)

(though if one drops the ‘+1’ hypothesis one obtains a second copy of

Sp(1)×Sp(1) represented by off-diagonal matrices). The restriction of (2.3)
to (2.4) corresponds to

q 7→ p1qp2 = p1qp2
−1, (2.5)

whence (1.3). These group actions lead to the concept of self-duality [41, 4],
that we discuss next.

Let x1, x2, x3, x4 be coordinates on R4 and set

q = x1 + x2i+ x3j + x3k.

Under the action (2.5), the quaternion-valued 1-form qdq transforms as

qdq 7→ p1qp2 d(p1qp2) = p2(qdq)p2,

and is thus unaffected by Sp(1)+. If we set ei = dxi then the quaternion-
valued 2-form

d(qdq) = dq ∧ dq
= (e1 + ie2 + je3 + ke4) ∧ (e1 − ie2 − je3 − ke4)

= i$1 + j$2 + k$3,
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where 



$1 = e12 − e34,

$2 = e13 − e42,

$3 = e14 − e23.

(2.6)

The triple ($i) forms a basis of an SO(4)-invariant subspace Λ2
− of

∧
2(R4)∗.

The corresponding triple (ωi) with a plus sign is a basis of a complementary
SO(4)-invariant subspace Λ2

+. The two subspaces Λ2
± are mutual annihila-

tors for the wedge product
∧

2(R4)∗×
∧

2(R4)∗ →
∧

4(R4)∗, and the mapping

(ei) 7→ ((ωi), ($i))

is a double covering SO(4) 7→ SO(3)+ × SO(3)−.

Returning R8 = H2, consider the 2-form

Σ = dq1 ∧ dq1 + dq2 ∧ dq2 =

(
dq1

dq2

)∗
∧

(
dq1

dq2

)

= iσ1 + jσ2 + kσ3,

(2.7)

with values in Im H. Its three components σi are non-degenerate 2-forms
on R8 extending (2.6); for example we may write

σ1 = e12 − e34 + e56 − e78.

The group Sp(2) acts by left multiplication on the column vector in (2.7)
and leaves each σi unchanged. Whereas the subgroup ofGL(8,R) preserving
any one of σi is the symplectic group Sp(4,R) (a non-compact group with

the same dimension of Sp(4)), the stabilizer of all three is precisely Sp(2).

A manifold of dimension 4n with an Sp(n) structure for which the

corresponding invariant 2-forms are all closed is called hyperkähler. The
closure condition ensures that the 2-forms are all parallel relative to the
induced Riemannian metric [32]. A 4-dimensional hyperkähler manifold

therefore has a triple of closed 2-forms like $1, $2, $3 or ω1, ω2, ω3, de-
pending on the orientation. An 8-dimensional hyperkähler manifold has a
triple of closed 2-forms linearly equivalent to σ1, σ2, σ3. The real-valued

4-form

Ω = Σ ∧ Σ =
3∑

i=1
σi ∧ σi (2.8)

invariant by the larger group Sp(2)Sp(1) of transformations of the type
(
q1

q2

)
7→ Q

(
q1

q2

)
p
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with p ∈ Sp(1). This leads to the theory of quaternion-Kähler manifolds
[38].

Example 1. The isotropy action of the space Q5 (see (1.4)) identifies its
holomorphic cotangent space with the tensor product L ⊗ K where L ∼=
C and K ∼= R3 are the respective representations of SO(2) = U(1) and
SO(3). The total space M of the standard R2 bundle over (1.4) (whose
fibre has complexification L⊕L) carries an SO(5)-invariant 4-form linearly

equivalent to (2.8), defined as follows.

The space of (2, 1)-forms on Q5 is

Λ2,1Q5 =
∧

2(L⊗K) ⊗ (L⊗K) ∼= L⊗K ⊗K
∼= L⊕ (L⊗K) ⊕ (L⊗ S2

0K),

and it follows that the 1-dimensional subspace L belongs to the subspace
Λ2,1

0 of primitive forms. In this way, M has a local basis of sections α, β

consisting of 3-forms on Q5, and these can be paired naturally with 1-forms
e7, e8 transverse to the base. If τ is the Kähler form on Q5 then we set
σ1 = τ + e78 and

σ2 ∧ σ2 + σ3 ∧ σ3 = α ∧ e7 + β ∧ e8.
The resulting metric is locally symmetric. However, similar techniques can
be used to construct 8-manifolds with a closed but non-parallel form Ω [39].

The stabilizer of

σ1 ∧ σ1 + σ2 ∧ σ2 − σ3 ∧ σ3 (2.9)

is a different group, isomorphic to the double-covering Spin 7 of SO(7) [11].

One can therefore use (2.9) to define Spin 7 as a subgroup of SO(8).

3. The Levi-Civita connection on a 7-manifold

One purpose of this section is to explain how in certain simple situations
it is possible to calculate the Levi-Civita connection ∇ directly from a
knowledge of the exterior derivative d.

We first define a 7-dimensional Lie algebra to model the represen-

tation in Table 2 defining the inclusion SO(4) ⊂ G2. Extend the basis
(e1, e2, e3, e4) of the previous section to (R7)∗ by adding e5, e6, e7, and de-
cree that

de5 = ω2, de6 = ω3, de7 = ω1.
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Then d defines an isomorphism 〈e5, e6, e7〉 →
∧

2
+R4 so as to couple these

two subspaces (one of (R7)∗ and the other of
∧

2(R4)∗). The unusual choice
of the identification is tailored to fit the conventions that will intervene

below.

Since d2 = 0, we obtain a Lie algebra n whose automorphism group
contains SO(4). In terms of a dual basis (ei) the brackets are given by

[e1, e2] = [e3, e4] = e7, −[e1, e3] = [e2, e4] = e6, [e1, e4] = [e2, e3] = e5.

The associated simply-connected nilpotent Lie group can be realized as

N = {(p,q) ∈ H2 : Re(p2 − q) = 0},

with multiplication

(p,q)(p′,q′) = (p + p
′, q + q

′ + pp
′)

that arises from the matrix representastion

(p,q) ↔



1 p
1

2
q

0 1 p

0 0 1


.

See [18]. The forms e1, e2, e3, e4 are the components of dp whilst e5, e6, e7

are the components of dq − 2p dp (which is purely imaginary).

Let Γ denote the subgroup of N consisting of pairs (p,q) for which the

real and imaginary components of p,q are integers and Re(q) = Re(p2).
The quotient M = Γ\N of N by left translation by Γ is a compact smooth
manifold. Its points consist of right cosets of Γ, and there is a smooth

surjection π : M → T 4 defined by

Γ(p,q) 7→ Z4 + p.

This realizes M as a T 3 bundle over T 4, where T n denotes the standard
torus Zn\Rn. Being left-invariant (by N and so certainly Γ), the forms ei

pass to the quotient. In symbols, each ei equals the π∗ěi for some 1-form
ěi (which from now on we can also denote ei without undue confusion).

This allows us to carry out all the following computations on the compact
manifold M .

Consider the metric g on M for which (ěi = ei) is an orthonormal
basis of 1-forms, and let ∇ denote the Levi-Civita connection. Then

∇ej =
∑
σj

i ⊗ ei,
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with σj
i + σi

j = 0. Using the natural isomorphism TM ∼= T ∗M induced by
g, we may identify the Levi-Civita connection with the tensor

~∇ =
∑

σj
i ⊗ ei ⊗ ej ∈ n ⊗

∧2n.

Since dei =
∑
σi

j ∧ ej, exterior differentiation likewise corresponds to the
tensor

~d =
∑

(σj
i ∧ ei) ⊗ ej ∈

∧2n ⊗ n.

Moreover, ~d is the image of ~∇ under the composition

f : n ⊗
∧2n ⊂ n ⊗ n ⊗ n →

∧2n ⊗ n

induced from the inclusion
∧

2n ⊂ n⊗ n with wedging. The linear mapping
f is an isomorphism, as its inverse can be computed explicitly from the

formula
2f−1(ejk ⊗ ei) = ei ⊗ ejk − e(ki)∧ej

+ e(ij) ∧ ek, (3.1)

with the conventions

e(ij) = ei � ej = 1
2(ei ⊗ ej + ej ⊗ ei)

eij = ei ∧ ej = 1
2(ei ⊗ ej − ej ⊗ ei).

(We write skew forms so frequently that we omit the customary square

brackets for anti-symmetrization.) The equation (3.1) is valid because its
right-hand side belongs to n ⊗

∧
2n.

In the above terms,

Lemma 3.1. ~∇ = f−1(~d).

We may now write down the covariant derivatives ∇ei without further ado.
The last two terms on the right-hand side of (3.1) tell us what we have to

add on (the ‘symmetric part’) to obtain ∇ from d. The result is displayed
below.

k ∇ek
1 e(27) + e(35) + e(46)

2 −e(17) + e(36) − e(45)

3 −e(15) − e(26) + e(47)

4 −e(16) + e(25) − e(37)

5 e13 + e42

6 e14 + e23

7 e12 + e34

Table 3
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The fact that ∇ek are totally symmetric for 1 6 k 6 4 is simply the
assertion that the corresponding ek are closed. On the other hand, the fact
that ∇ek are skew for 5 6 k 6 7 implies that each of e5, e6, e7 is dual to a

Killing vector field. They generate the T 3 action that makes π a principal
fibration and allows us to write M/T 3 = T 4.

Now ∧2n ⊗ n ∼= n ⊕
∧3n ⊕W,

where W is an irreducible representation of dimension 105. We can de-
compose ∇ into these three components. There is no n component; this

corresponds to the fact that d∗ei = 0 for all i, a consequence of nilpotency.
The component of ∇ in

∧
3n can be identified with the 3-form

δ =
7∑

i=1
ei ∧ dei = e5 ∧ ω2 + e6 ∧ ω3 + e7 ∧ ω1. (3.2)

Using (1.1), we may regard δ as a trace-free symmetric tensor on the 8-

dimensional spin representation ∆ of Spin 7. It follows that δ can be iden-
tified with the Dirac operator

Γ(M,∆) → Γ(M,∆) (3.3)

restricted to the finite-dimensional space of invariant spinors. An introduc-

tion to spinors can be found in [31].

4. G2 and Spin 7 structures

A G2 structure on a manifold is determined by a 3-form linearly equivalent
at each point to (1.2), and will define ∗ϕ. If ∇ denotes the Levi Civita

connection of the metric determined by ϕ then ∇ϕ is completely determined
by the pair (dϕ, d ∗ ϕ) in a way first prescribed in [20]. If ϕ is closed and
coclosed then the holonomy reduces to G2 or a subgroup thereof.

We endow N with a G2 structure based on the form δ. More precisely,
we set

ϕ0 = δ − e567

= e135 − e245 + e146 + e236 + e127 + e347 − e567.
(4.1)

A Hodge operator ∗ is now defined by decreeing (ei) to be an oriented
orthonormal basis of R7. The dual 4-form is then

∗ϕ0 = ε− e1234

= −e2467 + e1367 + e2375 + e1375 + e3456 + e1256 − e1234,



14 Salamon Vol. 72 (2002)

where

ε = ω2 ∧ e67 + ω3 ∧ e75 + ω1 ∧ e56. (4.2)

Observe that d ∗ϕ0 = 0 whereas

dϕ0 = −ε+ 6e1234.

This example illustrates the difficulty in finding a G2 structure for which

both ϕ, ∗ϕ are closed. In fact, no compact 7-manifold with first Pontrjagin
class p1 equal to zero (in H4(N,R)) can have a metric with holonomy equal
to G2.

Now let p = p(t) and q = q(t) be functions of t ∈ R+ to be determined.
The plan is to weight the two subspaces of R7 by p, q respectively, and to

modify the above definitions so as to give

ϕ = p2qδ − q3e567, ∗ϕ = p2q2ε− p4e1234.

On N × R+, consider the 4-form

Ω = ϕ ∧ dt+ ∗ϕ. (4.3)

This is known to be linearly equivalent to the form (2.9) and therefore has
stabilizer Spin 7.

Given that d ∗ϕ = 0,

dΩ = dϕ ∧ dt+ dt ∧ (∗ϕ)′.

The 4-form Ω will be closed if and only if dϕ = −(∗ϕ)′, or equivalently

6p2q = 4p3p′, q3 = (p2q2)′.

The first equation gives q = 2
3pp

′ whence (p5/3p′)′ = t and

p(t) = (at+ b)3/8, q(t) = 1
4(at+ b)−1/4.

Taking a = 1 and b = 0 for simplicity,

ϕ = 1
4 t

1/2δ − 1
64 t

−3/4e567 ∗ϕ = 1
16 t

1/4ε− t3/2e1234.

One can eliminate the fractional powers by means of the substitution t =
2−16/5u4, and neglecting an overall factor of 2−14/5, we may write

Ω = u5δ ∧ du− e567 ∧ du+ uε− u6e1234.

To sum up,
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Proposition 4.1. The metric

g = u3
4∑

i=1
ei ⊗ ei + u−2

7∑
i=5

ei ⊗ ei + u6(du)2 (4.4)

on N × R+ determined by (4.3) has holonomy equal to Spin 7.

Strictly speaking, the closure of Ω tells us only that the holonomy is con-
tained in Spin 7, though the abence of other closed forms can be used to

show that the holonomy does not reduce further.
In this relatively simple situation, we can integrate the coefficients so

as to exhibit Ω as an exact form on N × R+. Indeed, in analogy to (4.3),
we may write

Ω = −Φ′ ∧ du+ dNΦ,

where ′ denotes ∂/∂u, and the right-hand side is the full exterior derivative
of

Φ = −1
6u

6δ + ue567 (4.5)

on the 7-manifold N×R+. This 3-form Φ acts as a ‘potential’ for the Spin 7
structure.

A different type of G2 structure can be obtained by factoring out by

one of the S1 actions generated by the vector fields dual to e5, e6, e7. For
definiteness, let X be the vector field for which g( · , u2X) = e7, so that
e7(X) = 1. Using

Xy Φ = −1
6u

6ω1 + ue56,

it is easy to verify that

LXΦ = Xy dΦ + d(Xy Φ) = Xy Ω + d(Xy Φ) = 0.

The exact 3-form

φ = −XyΩ = (−u5ω1 + e56) ∧ du− u(ω3 ∧ e5 − ω2 ∧ e6) (4.6)

has stabilizer G2 and determines a metric on the quotient. Since e7 has

norm u relative to (4.4), φ is in effect weighted by u and we may write

Ω = φ ∧ e7 + u4/3 ∗ φ,
where ∗φ is computed relative to the Riemannian metric induced from φ.
It follows that

∗φ = −u14/3e1234 + u−1/3ω1 ∧ e56 + u11/3(ω2 ∧ e5 + ω3 ∧ e6) ∧ du,
and

d ∗ φ = d(u−1/3) ∧ (2u5e1234 + ω1 ∧ e56) = φ ∧ Φ̃,

where Φ̃ = 1
3u

−19/3(u5ω1 + 2e56) is a variant of Φ.
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Whilst theG2 structure (4.1) satisfied d∗ϕ = 0, the one defined by (4.6)
satisfies dφ = 0. The former type is called cocalibrated and the latter type
calibrated. It is much easier to find cocalibrated structures; for example, any

hypersurface of R8 has one. The cocalibrated condition indicates a partial
integrability of the G2 structure in the sense that it is possible to define
various subcomplexes of the de Rham complex [21]. A very special class of

cocalibrated structures are those for which ∗φ is a constant times dφ; this
is the ‘weak holonomy condition’ discussed in [26, 22, 14].

Let W denote the hypersurface, isomorphic to N/S1, formed by taking
u = 1. There is the following diagram.

N ↪→ N × R+

y
y

W ↪→ W × R+

The restriction of φ to W is then the form

ψ+ = ω2 ∧ e6 − ω3 ∧ e5 = d(e56),

which on W is ‘dual’ (in a sense to be explained in §5) to the 3-form

ψ− = ω2 ∧ e5 + ω3 ∧ e6.
The restriction of ∗φ is

−e1234 + e1256 + e3456 = 1
2σ

2, (4.7)

where σ = −ω1 + e56. The restriction of the mapping σ 7→ σ ∧ σ to the
set of non-degenerate 2-forms is 2:1, so σ is determined by (4.7) and the
orientation. Observe that

dσ = ψ+, dψ− = e1234.

The passage from 8 to 6 dimensions in exceptional geometry was de-
scribed in [13] in a different context. The interaction of low dimensional
structures discussed in [37]. A study of the induced structure on W moti-

vates the following section.

5. SU (3) structures

Consider the groupGL(2n,R) of invertible real matrices of order 2n. Whilst

the standard symmetric bilinear form on R2n is represented by the identity
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matrix I2n of order 2n, the standard antisymmetric form is represented by
the matrix

Jn =

(
0 −In
In 0

)
. (5.1)

The group U(n) is isomorphic to the intersection of any two of the following
subgroups of GL(2n,R):

i. the orthogonal group O(n) of matrices X that satisfy XTX = I2n;
ii. the symplectic group Sp(n,R) consisting of matrices X satisfying

XTJnX = Jn;
iii. the subgroup, isomorphic toGL(n,C), of matricesX for which JnX =

XJn or equivalently X−1JnX = Jn.

The last two correspond to thinking of Jn representing either a bilinear
form or a linear transformation.

A manifold of real dimension 2n is called almost-Hermitian if its prin-

cipal frame bundle contains a U(n) subbundle. Such a manifold possesses
respectively (i) a Riemannian metric g, (ii) a 2-form σ, and (iii) an orthog-
onal almost-complex structure J , related by the formula

σ(X,Y ) = g(JX, Y ).

In accordance with (5.1), one typically chooses an orthonormal basis (ei)
1-forms at each point for which

Jek = −en+k, Jen+k = ek, 1 6 k 6 n,

σ =
n∑

k=1

ek,n+k.

With this convention, α = e1 + ien+1 is a form satisfying Jα = iα and has
type (1, 0).

Let us pass to the case n = 3. For the particular U(3) structure con-
sidered in the previous section, we actually chose an orthonormal basis (ei)
of 1-forms such that

Je1 = e2, Je3 = e4, Je5 = −e6,
σ = −e12 − e34 + e56.

(5.2)

Although this differs from the above, w3 is still a positive multiple of e123456

so that J has a positive orientation.

The action of U(3) on the space Λ3,0 of (3, 0)-forms relative to J corre-

sponds to the determinant representation, and the structure ofM is reduced
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further to SU (3) by the assignment of a non-zero (3, 0)-form Ψ. Consistent
with the choice (5.2), we may for example take

Ψ = −i(e1 − ie2) ∧ (e3 − ie4) ∧ (e5 + ie6),

and we define

ψ+ = ImΨ = e136 − e145 − e235 − e246,

ψ− = ReΨ = e135 + e146 + e236 − e245.

These real 3-forms satisfy the compatibility relations

σ ∧ ψ± = 0 (5.3)

and

ψ+ ∧ ψ− = 2
3σ

3. (5.4)

There are two complementary ways of viewing (5.3):

i. If we fix J (we shall explain below that this is determined by ψ+)
then it asserts that σ belongs to the space Λ1,1 of (1, 1) forms at

each point. This follows because in general σ2,0 is fully detected by
(σ ∧ ψ+)2,3.

ii. If we fix σ then (5.3) asserts that ψ+ belongs to the space Λ3
0 of

primitive 3-forms (isomorphic to quotient of Λ3 by the image of Λ1

under wedging with σ).

In the second point of view, Sp(3,R) acts transitively on forms ψ+

satisfying (5.3) and (5.4), and has orbits of codimension 1 on Λ3
0.

The relationship between ψ+ and ψ− on a 6-manifold is analogous
to that between ϕ and ∗ϕ on a 7-manifold. It is known that ψ+ actually

determines ψ− in a pointwise algebraic sense [29]. More precisely, any 3-
form ψ+ arising from an SU (3) structure belongs to an open GL(6,R) orbit
O in

∧
3R6 and has isotropy subgroup conjugate to a standard SL(3,C).

By means of this subgroup, ψ+ determines the almost complex structure
J , and therefore the 3-form ψ− = Jψ+.

To make this construction more explicit, suppose that

ψ+ =
∑

i<j<k

aijke
ijk.

We extend the definition of the coefficients aijk so that they are antisym-
metric in the indices i, j, k. The associated tensors J and ψ− can in theory

be determined via
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Lemma 5.1. At a given point, Je1 is proportional to the 1-form

a123a456 − a124a356 + a125a346 − a126a345 + a134a256

−a135a246 + a136a245 + a145a236 − a146a235 + a156a234)e
1

+2(a234a256 + a235a264 + a236a245)e
2

+2(a345a362 + a346a325 + a342a356)e
3

+2(a456a423 + a452a436 + a453a462)e
4

+2(a562a534 + a563a542 + a564a523)e
5

+2(a623a645 + a624a653 + a625a634)e
6

Example 2. Suppose that ψ+ is a 3-form for which ai56 = 0 for 1 6 i 6 4.

There are examples in which this condition is a consequence of assuming
that dψ+ = 0. The lemma implies that Je1 ∈ 〈e1, e2, e3, e4〉. By symmetry
the same is true of Jei for i = 2, 3, 4, so that the space

〈e5, e6〉 = 〈e1, e2, e3, e4〉o

is J -invariant, and ψ− also lacks coefficients with indices i56.

6. Kähler and nearly-Kähler metrics

Let M be an almost-Hermitian manifold of real dimension 2n. Then M is
Kähler if the following hold:

i. J is integrable, in the sense that (M,J) is locally equivalent to Cn

with its standard complex coordinates,

ii. σ is closed.

It is well known that these condition are sufficient to guarantee that ∇J = 0

and ∇σ = 0 so that parallel transport preserves not only g but J and σ. In
the case the holonomy group is conjugate to U(n) or a subgroup thereof.

Definition 6.1. A Calabi-Yau manifold is a compact Kähler manifold with

holonomy group equal to SU(n).

Since it is precisely the determinant of U(n) that acts on the space Λn,0,
the extra reduction is characterized by having a parallel (n, 0)-form. On the
other hand, suppose that M is a compact Kähler manifold of real dimension

2n with a nowhere-zero closed (n, 0) form Φ. Then the canonical bundle Λn,0

is trivial, c1(M) = −c1(Λn,0) vanishes in H2(M,R). Yau’s Theorem implies
that M has a Ricci-flat Kähler metric, and it follows (non-trivially) that

∇Φ = 0. If n > 3, such an M is projective, i.e. a submanifold of some
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CPm. This relies on fact that the cone of Kähler forms on (M,J) is open
in H2(M,R) = H1,1 and so intersects H2(M,Z) ∼= H1(M,O∗); the result
then follows from Kodaira embedding theorem.

We return again to the 6-dimensional case n = 3.

Example 3. Consider the intersection of two hypersurfaces S1, S2 in CP5

defined by polynomials f1, f2 of degrees d1, d2. If df1 ∧ df2 6= 0 at all points

of M=S1 ∩ S2 then M is a complex manifold. Since

TCP5|M ∼= TM ⊕O(d1) ⊕O(d2),

we have 6 = c1(TM)+d1+d2. Thus, c1 = 0, (d1, d2) is one of (1, 5), (2, 4), (3, 3).
The first case gives S ⊂ CP4, and χ = c3 = −200,−176,−144 respectively.

An example more akin to a K3 surface is the following. Let

ε = e2iπ/3 = 1
2(−1 +

√
3)/2, (6.1)

and set

Γ = {(z1, z2, z3) : zr = ar + εbr ∈ Z[ε]}.
Then Γ\(C3,+) is diffeomorphic to T 6. Multiplication by ε on C3 induces
a mapping θ : T 6 → T 6 with θ3 = 1 that preserves the canonical 3-form
dz1 ∧ dz2 ∧ dz3. Then θ has 27 fixed points, and O = T 6/〈1, θ, θ2〉 has

27 singular points locally resembling C3/Z3. Each of these is resolved by
considering the total space of Λ2,0 = O(−3) → CP2 that has a canonical

(3, 0)-form. This gives an overall resolution Õ of O with a nowhere-zero
(3, 0)-form. It is Calabi-Yau manifold with b2 = 9 + 27 and b3 = 2, so
h1,1 = 0 and χ = 76. We remark that the total space O(−3) admits a

metric with holonomy SU (3) of the form

(r + 1)1/4gFS + (r + 1)−3/4gfibre

[15].

Let M be a manifold of real dimension 6, with an SU (3) structure

determined by a Ψ = ψ+ + iψ− of type (3, 0). Since exterior differentiation
maps forms of type (3, 0) into those of type (3, 1), we may write

dΨ = Ψ ∧ ξ0,1, (6.2)

for some real 1-form ξ. It follows that the 4-forms dψ+, dψ− have no compo-
nent of type (2, 2). Conversely, the Nijenhuis tensor of J (the obstruction to

J defining a complex structure) can be identified with (dψ+)2,2 +(dψ−)2,2.
The structure is therefore Kähler if and only if

dσ = 0, (dψ+)2,2 = 0, (dψ−)2,2 = 0. (6.3)
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Since the norm of Ψ is constant, ∇Ψ is completely determined by its skew-
symmetric part dΨ, and the vanishing of this characterizes a fur‘ther reduc-
tion of the holonomy group to SU (3). The holonomy of M therefore reduces

SU (3) if, in addition to (6.3), the remaining component (??) vanishes.

In the general case of an SU (3) structure with forms satisfying (5.3),
we always have

dσ ∧ ψ± = σ ∧ dψ±,

so that there is some redundancy in (6.3). The form ξ represents the so-
called W5 component of the intrinsic torsion, in the terminology of [17]

that extends [28]. When M is complex, two special situations are worth
emphasizing:

i. If ξ is exact, we may write ξ = df for some real-valued function f ,

and

d(efΨ) = ef (∂f ∧ Ψ + dΨ) = 0.

Then ef/2g is a Hermitian metric with a closed (3, 0)-form.
ii. If Jξ = dg is exact then

d(eigΨ) = eig(i∂g ∧ Ψ + dΨ) = 0,

and g already possesses a closed (3, 0)-form.

We now turn attention to situations in which J is typically non-
integrable.

Definition 6.2. We shall say that an SU (3) structure is coupled if dσ is
proportional to ψ+ at each point.

Such structures are necessarily non-symplectic as dσ 6= 0. On the other
hand, a coupled SU (3) structure satisfies

i. the ‘co-symplectic’ condition whereby

d(∗σ) = d( 1
6σ

2) = 1
3σ ∧ dσ = 0,

and
ii. dψ+ = 0.

These two conditions, taken together, correspond to the vanishing of half
of the torsion components of the SU (3) structure, so we may speak of the
structure being ‘half-flat’ or ‘half-integrable’.

A subclass of coupled SU (3) structures are the nearly-Kähler ones. In
general an almost Hermitian metric is said to be nearly-Kähler if

(∇XJ)(X) = 0
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for all X [27]. This is equivalent to asserting that the torsion of the U(n)
structure is completely determined by (dσ)3,0, and lies in the real space
underlying Λ3,0. For example, if G is a compact Lie group then it is known

that G×G=(G×G×G)/G is a 3-symmetric space and admits a nearly-
Kähler metric [43].

Example 4. (i) The sphere S6 = G2/SU (3) has an SU (3) structure and cor-
responding differential forms σ, ψ+, ψ− compatible with its standard metric
g. The flat metric on R7 − {0} = S6 × R+ has the conical form t2g + dt2.

Set e7 = dt and consider

ϕ = t2σ ∧ dt+ t3ψ+,

∗ϕ = t3ψ− ∧ dt+ 1
2 t

4σ2.

Then
0 = dϕ = t2dσ ∧ dt+ 3t2dt ∧ ψ+

0 = d ∗ϕ = t3dψ− ∧ dt+ 2t3dt ∧ σ2.
(6.4)

This implies that

dσ = 3ψ+, dψ− = −2σ2,

equations which characterize the nearly-Kähler condition in 6 dimensions.

(ii) Take G=SU(2) and consider M = G×G×G)/G ∼= S3 × S3. It has a

global basis of 1-forms (e1, . . . , e6) such that

de1 = e35, de3 = e51, de5 = e13,

de2 = e46, de4 = e62, de6 = e24.

We have chosen the odd indices to refer to the first factor, and the even
ones to the second. If we choose represent a point of S3 × S3) by a triple

(g1, g2, g3) with g1 the identity, then the isotropy represention makes G acts
diagonally on 〈e1, e3, e5〉 × 〈e2, e4, e6〉. The 2-form

σ = e12 + e34 + e56

is then invariant relative to this action.

The automorphism θ of order 3 that is cyclic on the factors induces

the action

(v1, v2) 7→ (−v2, v1 − v2)

on TxM and has eigenvalues 1, ε, ε2 (notation as in (6.1)). One can interpret

the ε eigenspace

Λ1,0 = 〈e1 + εe2, e3 + εe4, e5 + εe6〉
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of θ as the space of (1, 0) forms of almost complex structure J on M . An
SU (3) structure is then defined by setting

ψ+ + iψ− = i(e1 + εe2) ∧ (e3 + εe4) ∧ (e5 + εe6).

On now verifies that

dσ = − 2√
3
ψ+, dψ = 1

2σ
2,

equations that are equivalent to (6.4).

Nearly-Kähler metrics also exist on the complex projective space CP3

and the flag manifold F3 = SU (3)/T 2.

The complex Hesienberg group

H =








1 x z
0 1 y
0 0 1


 : x, y, z ∈ C





is a T 2 bundle over T 4. On H there are left-invariant 1-forms

dx = e1 + ie2,
dy = e3 + ie4,

dz − xdy = e6 + ie5

that satisfy

dei =





0, i = 1, 2, 3, 4,

−e14 − e23, i = 5

−e13 + e24, i = 6.

These pass to the compact quotient M 6 = Z6\H [1]. Complex structures
are discussed in [34].

7. Metrics with holonomy G2

We now describe some metrics with holonomy G2 based on various previous
examples. One of the first realizations of a metric with holonomy G2 came

about from nearly-Kähler metrics [12, 25].

Proposition 7.1. If M 6 has a strict nearly-Kähler metric then M ×R+ has

a metric g0 with holonomy G2.
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The word ‘strict’ means that the structure is not Kähler, and in par-
ticular not flat. This result is part of a more comprehensive theory linking
manifolds with Killing spinots to ones with excpetional holonomy [5, 22].

A lot more is true – if M is one of the known nearly-Kähler 6-manifolds
S3 × S3, CP3, F = U(3)/U(1)3 then g0 can be deformed to a complete
metric gλ with holonomy G2 and asymptotic to G0. This is indicated as

follows.

S3 × S3 ⊂ V
yR4

S3

CP3 ⊂ Λ+

yR3

S4

F ⊂ Λ+

yR3

CP2

These metrics have isometry groups SU(2)3, SO(5) and SU (3).

For example, in the second case,

gλ = (r + λ)−1/2gR3 + (r + λ)1/2π∗gS4 , λ > 0,

and gλ ∼ g0 at infinity. The three models admit S1 quotients with M 7/S1

homeomorphic to R6.

The methods of §3 show that if M has an SU (3) structure depending
on a real parameter t then the metric compatible with either (and both) of
the forms

ϕ = σ ∧ dt+ ψ+

∗ϕ = ψ− ∧ dt+ 1
2σ

2

has holonomy contained in G2 if and only if

i. it is half-flat (see above),
ii. it satisfies

dσ = (ψ+)′, dψ− = −(1
2σ

2)′. (7.1)

See [30].

If the structure is coupled, we can expect to solve (7.1) with ψ+ =

f(t)ψ+
0 . This implies that the induced almost-complex structure is constant.

The simplest examples that fall into the above category begin from
a hyperkähler 4-manifold. Let M be such a manifold, with closed 2-forms
$1, $2, $3 defined as in (2.6). A bundle W over M with fibre T 2 can be

defined from connection 1-forms e5, e6.
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Theorem 7.2. Let ω̃1 = (a+ bt)ω1 and u = t(a+ bt)2. Then the forms

ϕ = −ω̃1 ∧ e5 + dt ∧ e56 + t(ω2 ∧ e6 + uω3 ∧ dt)

∗ϕ = ω3 ∧ e56 + t3ω2 ∧ dt ∧ e5 + t3ω1 ∧ dt ∧ e6 + 1
2 t

4ω1 ∧ ω1.
(7.2)

determines a metric on W × R+ with holonomy in G2.

Example 5. A more complicated example is associated to the 6-dimensional
Lie algebra with

dei =





0, i = 1, 2, 3, 4,

−e14 − e23, i = 5,

e34, i = 6.

This can be regarded as a degeneration of (??). For simplicity we take
a = 0, b = 1. Then the associated metric is

t2
2∑

1

ei ⊗ ei + t4
2∑

1

ei ⊗ ei + t−4e5 ⊗ e5 + t−2e6 ⊗ e6 + 4t8dt2.

Consider the SU(3)-structure for which

ω = t3(e13 + e42) + t−3e56,

ψ+ + iψ− = (e1 + ite3) ∧ (e2 − ite4) ∧ (e5 + ite6),

by analogy to (??). This yields a G2-structure with closed forms

ϕ = 2t7(e13 + e42) ∧ dt+ 2te56 ∧ dt− e125 − t2(e146 + e236 + e345),

∗ϕ = −2t7e346 ∧ dt+ 2t5(e145 − e126 + e235) ∧ dt+ e1256 − e2456 + t6e1234.

There are many generalizations in which M 6 is replaced by a nilman-
ifold. [24]

On S3 × S3, to satisfy σ ∧ dσ=0 define

σ = x′e12 + y′e34 + z′e56

To satisfy dψ+ = 0 we take ψ+ to have a similar form to dσ, but more
precisely

ψ+ = x(e352 − e146) + y(e514 − e362) + z(e136 − e524)

so that the forms extend to N = M × (a, b) with

dϕ = (dσ − (ψ+)′) ∧ dt = 0

d ∗ϕ = (dψ− − 1
2(σ2)′) ∧ dt
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Proposition 7.3. dψ− ∈ 〈e3456, e5612, e1234〉 and d ∗ϕ = 0 iff

(y′z′)′ =
2x(x2−y2−z2)√

(x+y+z)(−x+y+z)(x−y+z)(x+y−z)
cyclically.

Example 6. If x = y = z then
√

3x′x′′ = −x and x = − 1
18

√
3
t3 gives the

nearly-Kähler metric on M . Other variants of the construction give rise to
complete metrics with holonomy G2 on 7-manifolds foliated by Mt [9].

Reductions of G2 meytrics are discussed in [2, 3].

8. A compact example

A serious discussion of the known examples of compact manifolds with ex-
ceptional holonomy [33, 36] is beyond the scope of this article. Nevertheless,
this final section contains some topological observations that are relevant

to the constructions.

We return to the quaternionic formalism of §4 and the description of
R8 as H2. There are two groups acting on H2 that potentially give rise
to compact Riemannian manifolds which have reduced holonomy but are

not locally symmetric. They are Sp(2) and Sp(2)Sp(1), and the resulting
structures are characterized by the forms (2.7) and (2.8). To the author’s
knowledge there are as yet no known compact examples with holonomy

equal to Sp(2)Sp(1) that other than symmetric spaces and their finite quo-
tients. Any new examples will necessarily have negative Ricci tensor. On
the other hand, there are two known examples of compact manifolds with

holonomy equal to Sp(2). Below, we shall describe the first example, found
by Fujiki [23], albeit in a setting more adapted to [33]. It was generalized
by Beauville [6].

Let Z8 denote the standard lattice consisting of points (q1, q2) all of

whose real components are integral, so that T 8 = H2/Z8 is a torus. The
elements

α : (q1, q2) 7→ (−q2, q1)

σ : (q1, q2) 7→ (q2, q1)

generate the standard action of the dihedral group D on the plane (in this
case quaternionic). Whilst α is ‘rotation by 90o’, σ is ‘diagonal reflection’.
Observe that this action on H2 preserves the 2-form (2.7) and its real com-

ponents σ1, σ2, σ3. It also preserves Z8 and passes to T 8.
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For each g ∈ D we may consider

i. the centralizer C(g) of g in D,
ii. the fixed point set F g of g acting on T 8,
iii. the topological space F (g) = F g/C(g),

iv. the Poincaré polynomial P (F (g)) =
8∑

k=0

bk(F (g))tk,

where bk = dimHk(F (g),R) is the kth Betti number. If g1, g2 are conjugate
in D then F (g1) and F (g2) are obviously homeomorphic.

Table 4 lists a representative g of each conjugacy class in D. In each
case the codimension c of F g is either 4 or 8. The product of P (F (g)) with

tc/2 will thereofre be a polynomial that satisfies Poincaré duality bk = b8−k.
Moreover, it is then possible to subdivide the new middle Betti number in

the form m
n to reflect the decomposition H4 = H+ ⊕H− arising from the

Hodge ∗ mapping.

g g(q1, q2) F g C(g) tc/2P (F (g))

e (q1, q2) T 8 D 1 + 6t2 + 13
9 t

4 + 6t6 + t8

α (−q2, q1) 16 points Z4
16
0 t

4

α2 (−q1,−q2) 256 points D 136
0 t

4

σ (q2, q1) T 4 Z2
2 t2 + 3

3t
4 + t6

σα (−q1, q2) 16T 4 Z2
2 16(t2 + 3

3t
4 + t6)

1 + 23t2 + 216
60 t

4 + 23t6 + t8

Table 4

The last row of the table is then merely the sum of the various terms

tc/2P (F (g)). It represents the so-called orbifold cohomology of the singular
space T 8/D [16, 19].

Theorem 8.1. There is a resolution S → T 8/D with Betti numbers

b2 = 23, b+4 = 216, b−4 = 60.

The smooth 8-manifold S possesses a metric with holonomy Sp(2).

The idea is to write

T 8/D =
(T 4/± 1) × (T 4/± 1)

〈σ〉 ,



28 Salamon Vol. 72 (2002)

and use the fact that the resolution of T 4/± is a Kummer surface, and
the resolution of (K × K)/〈σ〉 is the Hilbert scheme discussed in [6]. In
practice, the hyperkähler structure is detected by the presence of a complex

symplectic form on S.

Let M be a compact 8-manifold with holonomy group H contained in

Spin 7. Then

Â = 1
24(−1 − b2 + b3 + b4+ − 2b4−)

is an integer. It is the index of the Dirac operator (3.3) and counts the
number of harmonic (necessarily parallel) spinors. In particular, it equals
1, 2, 3 if H equals Spin 7, SU(4), Sp(2) respectively. Moreover, if H ⊆ Sp(2)

then

b3 + b4 = 46 + 10b2,

so that H = Sp(2) implies

b3 + b+4 = 75 + 7b2

[40]. These relations are satisfied by S with Â = 3.

One can modify the action of D by adding translations. By way of a
simple illustration, let p be a quaternion satisfying 2p ∈ Z4 (such as p = 1

2),
and re-define

α(q1, q2) = (p− q2, p+ q1).

Whilst α2 and σ remain invariant, σα(q1, q2) = (p−q1, p+q2). The induced

action on the cohomology of T 8, and so the polynomial P (F e) = P (T 8/D),
remains the same. But the table is affected in the following way.

i. For g = α2, the action of D/λα〉 on F g has 16 orbits of size 2 (8 for
which α acts trivially and 8 for which σ acts trivially) and 56 of size

4. The entry 136
0 t

4 is therefore replaced by 72
0 t

4.

ii. σ〈 no longer has fixed points.

iii. As a consequence, the cash total becomes 1 + 7t2 + 104
12 + 7t6 + t8.

This provides another solution of the above relations with Â = 3. This
time however, there is no resolution of the orbifold T 8/D carrying a metric

with holonomy Sp(2). The problem is that, for the new action, there are
isolated points, but it is well known however that the singularity C4/Z2

has no hyperkähler resolution. For the original action, the fixed point set

F σ〈 = 16T 4 acts to ‘mask’ or ‘censure’ such isolated points.
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As an extreme case, one can replace D by Z2 so as to obtain the
orbifold Poincaré polynomial

P (T 8/Z2) + 256
0 t

4 = 1 + 28t2 + 291
35 t

4 + 28t6 + t8,

and Â = 8. This is completely consistent in this sense that any even spinor
is Z2-invariant and parallel, so 8 is just the dimension of the spin bundle.
In theory, one might expect to realize smooth hyperkähler 8-manifolds as

resolutions of the form T 8/Γ where Γ is a more complicated finite group
acting on T 8 preserving the Sp(2). In practice though one comes up against
the problem of unresolvable singularities. On the other hand, the method

has been spectacularly successful in constrcting manifolds with holonomy
6 and G2 [33].
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conexes à courbure strictemente positive. Ann. Sc. Norm. Sup. Pisa, 15:179–

246, 1961.

[9] A. Brandhuber, J. Gomis, S. S. Gubser, and S. Gukov. Gauge theory at large

n and new g2 holonomy metrics. hep-th/0106034.



30 Salamon Vol. 72 (2002)

[10] R. Bryant. Metrics with exceptional holonomy. Annals of Math., 126:525–576,

1987.

[11] R. Bryant and R. Harvey. Submanifolds in hyper-Kähler geometry. J. Amer.

Math. Soc., 2:1–31, 1989.

[12] R. Bryant and S. Salamon. On the construction of some complete metrics with

exceptional holonomy. Duke Math. J., 58:829–850, 1989.

[13] R. L. Bryant. Submanifolds and special structures on the octonians. J. Differ.

Geom., 17:185–232, 1982.

[14] F. M. Cabrera, M. D. Monar, and A. F. Swann. Classification ofG2-structures.

London Math. Soc., 53:407–416, 1996.
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