SUMMARY

 \mathbb{R}^n is a 'vector space'. Its elements are vectors (thought of as rows or columns, each with n coordinates) that can be multiplied by scalars, and added or subtracted.

A *subspace* is a subset V of \mathbb{R}^n that is closed under

(S1) addition of its elements,

(S2) multiplication by scalars.

Any such V must contain 0.

Suppose that u_1, u_2 belong to a subspace *V* of \mathbb{R}^n . Then

 $a_1\mathbf{u}_1 + a_2\mathbf{u}_2 \in V$ for all $a_1, a_2 \in \mathbb{R}$.

The set \mathscr{L} {**u**₁, **u**₂} of all such LC's is already a subspace.

When n = 2 and u_1, u_2 are LI then $\mathscr{L} \{u_1, u_2\} = \mathbb{R}^2$. If u_2 is a multiple of u_1 then $\mathscr{L} \{u_1, u_2\} = \mathscr{L} \{u_1\}$ represents a line passing through the origin 0 (or the zero subspace $\{0\}$).

More generally, the set of linear combinations

 $\mathscr{L} \{\mathbf{u}_1,\ldots,\mathbf{u}_k\} = \{a_1\mathbf{u}_1 + \cdots + a_k\mathbf{u}_k : a_i \in \mathbb{R}\}$

of *k* vectors is the smallest subspace containing them.