Row equivalence

SUMMARY

Let M, M^{\prime} be two matrices.
We say that M is row equivalent to M^{\prime} if M, M^{\prime} have the same size and M^{\prime} can be obtained from M by one or more ERO's. We indicate this by writing $M \sim M^{\prime}$.

It is obvious that, for any matrices $M, M^{\prime}, M^{\prime \prime}$, we have

- $M \sim M$,
- $\quad M \sim M^{\prime}, M^{\prime} \sim M^{\prime \prime} \Rightarrow M \sim M^{\prime \prime}$.

But because each type of ERO can be reversed, we also have - $M \sim M^{\prime} \Rightarrow M^{\prime} \sim M$.

These three properties mean that \sim is an equivalence relation.

Now suppose that $M=(A \mid B)$ and $M^{\prime}=\left(A^{\prime} \mid B^{\prime}\right)$ represent linear systems with B, B^{\prime} column vectors.

Theorem. $M \sim M^{\prime}$ iff the two systems $A X=B$ and $A^{\prime} X=B^{\prime}$ have the same solutions.

If $M \sim M^{\prime}$ then $r(M)=r\left(M^{\prime}\right)$ and $r(A)=r\left(A^{\prime}\right)$ because row reduction preserves the rank of matrices. By (RC1), solutions only exist if all these ranks are all equal.

