Row equivalence

SUMMARY

Let M, M' be two matrices.

We say that *M* is *row equivalent* to *M'* if *M*, *M'* have the same size and *M'* can be obtained from *M* by one or more ERO's. We indicate this by writing $M \sim M'$.

It is obvious that, for any matrices M, M', M'', we have

- $M \sim M$,
- $M \sim M'$, $M' \sim M'' \Rightarrow M \sim M''$.

But because each type of ERO can be reversed, we also have

• $M \sim M' \Rightarrow M' \sim M$.

These three properties mean that \sim is an *equivalence relation*.

Now suppose that M = (A | B) and M' = (A' | B') represent linear systems with B, B' column vectors.

Theorem. $M \sim M'$ iff the two systems AX = B and A'X = B' have the same solutions.

If $M \sim M'$ then r(M) = r(M') and r(A) = r(A') because row reduction preserves the rank of matrices. By (RC1), solutions only exist if all these ranks are all equal.